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Abstract 

The paper studies boundary integral operators of the bi-Laplacian on piecewise smooth 
curves with corners and describes their mapping properties in the trace spaces of variational 
solutions of the biharmonic equation. We formulate a direct integral equation method for 
solving mixed boundary value problems for the biharmonic equation on a nonsmooth plane 
domain, analyse the solvability of the corresponding systems of integral equations and prove 
their strong ellipticity. 

1 Introduction 

The present paper is devoted to the study of boundary integral operators of the bi-Laplacian on · 
piecewise smooth curves with corners and to the analysis of a direct integral equation method for 
solving the biharmonic equation with mixed boundary conditions on a nonsmooth plane domain 
n with boundary r. Although boundary element methods offer important advantages over 
domain type methods and are frequently used for solving plate bending or related problems for 
fourth-order equations (cf [2], [11] and also the references therein), their theoretical foundation 
is very limited compared with the results for second-order equations. 

For the case of smooth boundary quite satisfactory results are available by using nowadays 
standard tools from the theory of integral and pseudodifferential equations and of approximation 
methods. In connection with indirect boundary integral equation methods we mention Chapter 
8 of the book [2], where a detailed analysis of the mapping properties of biharmonic boundary 
·integral operators and of indirect formulations for four types of boundary value problems can 
be found. As a rule indirect methods are designed for specific classes of problems, but their 
application to other types of plate bending problems, for example to mixed boundary conditions, 
is complicated both in analytical and numerical respect. The study of direct methods can be 
based on the approach of Costaoel and Wendland, which was developed in [4], [9] and results 
in a complete description of the mapping properties of boundary integral ope.rators and the 
strong ellipticity of systems of first kind integral equations corresponding to various types of 
boundary conditions. This can be used to consider different numerical methods for solving 
the corresponding integral equations, to analyse stability and error estimates similar to well-
established techniques for second-order equations. 

If the boundary of the domain has corners then the situation is quite different. The boundary 
integral operators are no longer classical pseudodifferential operators and biharmonic boundary 
value problems have in general only weak solutions. Thus the extension of similar considerations 
concerning direct methods for second-order equations requires the study of the behaviour of 
biharmonic boundary integral operators applied to the Cauchy data of H 2-functions. In [8], the 
first paper devoted to the study of boundary integral equations for the biharmonic equation in 
nonsmooth domains, Costabel, Stephan and Wendland considered an indirect method for the 
solution of the boundary value problem gradulr = f. Using a layer potential ansatz with the 
gradient of the biharmonic fundamental solution as integral kernel they obtained a system of 
two integral equations of the first kind with logarithmic principal part. Thus they avoided the 
above mentioned problem of dealing with the application of biharmonic integral operators to 
the Cauchy data of weak solutions. This was first done by Bourlard in [1], where the biharmonic 
Dirichlet problem on a polygonal domain was transformed into the variational formulation for 
the first kind boundary integral equation with the biharmonic single layer potential. It was 
shown that the variational problem is coercive on the dual of the space of Dirichlet data of 
H 2-functions (the boundary values of the function and its normal derivative), that means the 
single layer potential operator is a symmetric and strongly elliptic mapping from this dual into 
the trace space. Similar results were obtained in [15] by applying some methods for second-
order equations from [5] and [7] in order to define and to study biharmonic boundary integral 
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operators. These operators were associated with the bilinear form 

j llullvdx, 
n 

(1.1) 

which is positive definite on H5(0) and corresponds to the biharmonic Dirichlet problem. The 
simple idea was to consider the two functions of the Dirichlet datum of a H 2-function, which 
obviously are subjected to some compatibility conditions at the corner points of r, as one 
element of a trace space and to define Neumann data of H 2-functions u with ll 2u E L2 by 
using the form (1.1) similar to the case of second-order equations. It turns out that the 
Neumann data belong to the dual of the trace space. Then the biharmonic layer potentials 
are simply the values of the duality functional applied to the Neumann datum (single layer) or 
the Dirichlet datum (double layer) of the biharmonic fundamental solution and to an element 
of the corresponding dual space, which becomes the density. Now the setting is the same as 
for potentials of second-order equations, and by using the approach of Costabel [5] we prove 
jump relations for the potentials, introduce the boundary integral operators and analyse their 
mapping properties in the trace spaces of variational solutions. The obtained results were used 
to derive boundary integral equations for interior and exterior biharmonic Dirichlet problems 
in nonsmooth domains and to analyse their solvability. 

In the present paper we extend the approach of [15] in order to treat other types of boundary 
conditions, which appear in thin plate bending as free, simply supported or roller-supported 
plate. To this end the bilinear form (1.1) has to be replaced by another form 

2 . 

au(u,v) = j(utiullv+(l- u) .L: 8;81cu8;81cv)dx 
n 1,k=l 

connected with the bending strain energy of a Kirchhoff plate if 0 < u < 1/2. In Section 2 
we provide the analogous construction as in· [15] to define the Neumann data of H 2-functions 
u with ll2u E L2 , which now depend on u and contain, even for smooth u, Dirac-functionals 
supported at the corner points of the boundary. Further we consider the existence of variational 
solutions of interior and exterior Dirichlet and Neumann problems. In Section 3 we introduce the 
biharmonic layer potentials associated with au, characterize their behaviour at infinity and prove 
the jump relations .and representation formulas for biharmonic functions. The corresponding 
boundary integral operators will be studied in Section 4. Here we see that for 0 ~ u < 1 
these operators behave like the boundary integral operators of the Laplacian. In Section 5 we 
transform biharmonic boundary value problems into equivalent systems of boundary integral 
equations. If the boundary value problem allows a coercive variational formulation then the 
corresponding system of integral equation is strongly elliptic. We study the solvability of this 
system, which leads immediately to stability results for Galerkin boundary element methods. 

In this paper we restrict the analysis of continuity problems to the trace spaces of variational 
solutions, i.e. to energy norms. By using the calculus of Mellin convolutions it is possible to 
consider the continuity of the biharmonic boundary integral operators in other than energy 
norms and to study the regularity of solutions of the obtained strongly elliptic systems of 
integral equations. Additionally, other boundary integral formulations and their approximate 
solution can be analysed. This will be the topic of another paper. 

2 Traces of H 2-functions on piecewise smooth boundaries 

For the following let r be a simple closed curve in the plane (x1, x2 ) composed of m smooth 
arcs ri. Adjacent arcs ri-l and ri meet at the corner points xi, i = 1, .. . m, with the interior 
angles ai, 0 < ai < 27r. The interior of r we denote by 0 1 , the exterior JR2\01 by 0 2 , and 
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1et the unit normal n = (n1, n2) on r be directed into 0 2 • In the following we denote by 8;, 
j = 1, 2, the partial derivative with respect to x;, by 8n = nl 81 + n2 82 the normal derivative 
and by 8-r = -n2 81+n182 the tangential derivative along r. Using a general result of Jakovlev 

. [12] we can characterize the traces of the Sobolev space H 2(01), which we equip with the norm 

2 

llullH2(ni) = (llulli2cni> + lul~:l2(ni)) 112 , where lulh2cni> := L ll8;8kulli2cni) · 
j,k=l 

Lemma 2.1 ([12]) There exists a constant c > 0 not depending on u E H 2(01) such that 

m 

E (llullHs/2(ri) + l18nullH1/2(ri)) + ll81ullH1/2(r) + l182ullH1/2(r) ~ c llullH2(n) · 
i=l 

In order to define the trace space of H 2 (01) and the corresponding trace mapping we make 
the following conventions. We identify functions on r with periodic functions depending on arc 
length s and denote the derivative with respect to s by du/ ds = u' . Since with exception of 
the corner points xi there holds 

d 
81ulr = nl 8nU - n2 8-rU I 82ulr = n2 8nU + nl 8-rU and 8T = ds 

Lemma 2.1 suggests the definition of the trace space 

V(r) = { ( ::) : u 1 E H 1(r), niu2 - n2u~, n2u2 + niu~ E H 1l2(r)} 

.equipped with the canonical norm. we· introduce the generalize? trace mapping 

7u := (a:~r) : H 2 (01) ~ v(r) . 

Lemma 2.2 ([12]) The linear mapping 

is continuous and has a continuous right inverse 

In particular, 'Y maps C0 (JR.2) onto a dense subspace of V(r). 

If we define the duality form 

(2.1) 

where (·, ·)r denotes the extension of the L2-scalar product on r, then the dual space of V(r) 
can be described as follows. 

Lemma 2.3 The vector ( ::) belongs to (V(r))' iff there exist z1 , z2 E H-1/ 2(r) such that 

v3 = n1z1 + n2z2 and (cpjr, v4)r = -((cplr)', n2z1 - niz2)r, V cp E C~(JR.2). 
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In the. following we will consider boundary integral equations connected with plate bending 
problems. To this end we introduce the bilinear form 

2 

aO'(u, v) = a01 (u, v) := j( u~u~v + (1 - u) .L: 8;8ku8;8kv )dx 
01 J,k=l 

(2.2) 

well-known in the variational formulation of bending problems for a thin plate with Poisson 
ratio u = A./2(A. + µ), A. and µ are the Lame constants of the material. If u represents the 
deflection function on 0 1 corresponding to suitable loading and boundary conditions then the 
value of 

(2.3) 

is exactly twice the bending strain energy of the plate. 
The analysis of boundary value problems for the biharmonic equation and of corresponding 

boundary integral equations is based on the fact that the bilinear form aO' is coercive on appro-
priate function spaces for certain values of the parameter u. By (2.3) the form aO' is coercive 
on H 2 (01 ) at least for 0 ~ u < 1. We mention that in the case of a smooth boundary r the 
form aO' is coercive on H 2(01 ) if and only if -3 < u < 1, as stated in [10]. 

Furthermore, if u, v E CQ°(01) then we have 

I 8;8ku a;8kv dx = j 8;8;u 8k8kv dx , 
01 01 

hence for u, v E HJ(fh) the value of au(u, v) does not depend on u and the seminorm 
(au(u, u))1!2 = luln2(oi) is a norm on HJ(01) equivale~t to II · lln2c01 y. Thus for ·given 
f E L2(01), 7/J E V(r) the problem · 

(2.4) 

has a unique solution u E H 2 (01) being the weak solution of the Dirichlet problem 

;u = 7/J. (2.5) 

It is obvious that the solution operator defined by u = T(f, 7/J) is a continuous mapping 

In order to consider other boundary value problems we define besides the operators an and 
8.,. of normal and tangential differentiation along r the differential operators 8nn, an.,. and 8.,..,. 
by the relations 

8nnU = n~ 8~u + 2n1n2 8182u + n~ 8iu,. 
8-rnu = (n~ - n~)a182u - nln2(8iu - 8iu) , 
a.,..,.u = n~ 8iu - 2n1n2 8182u + n~ 8iu. 

Lemma 2.4 Let u E H 2(01 , ~2) and u E JR. The mapping 

80'u : 7/J ~ [80'u, 7/;] := ·aO' ( u, ;-,,p) - j ;-,,p ~ 2u dx 
01 

4 

(2.7) 

(2.8) 



is a continuous linear functional on V(r) that coincides for sufficiently smooth u and for 'r/J = 

( :: ) E V (r) with the functional 

[8uu, 'r/J] = - J (v1 8n!:l.u - (1- u) v~ 8rnu) ds + J V2 (u~u+ (1- u) 8nnu) ds. (2.9) 
r r 

Moreover, the linear operator 8u : H 2 (f2i, ~2)-+ (V(r))' is continuous. 

Proof : Since 

2 

u~u ~v + (1 - u) L 8;8ku 8;8kv 
j,k=l 

= ~u~v + (1- u)(2 8182u8182v - 8~u8iv - Biu8~v) 

we use for u E H 4 (01) and v E H 2(01) Green's formula to get 

j (~u ~v - v ~2u) dx = j (~u 8nv - v 8n~u) ds 
n1 r 

and 

j (2 8182u8182v - 8~u8iv - 8iu8~v) dx = j (8.,.v8rnu - 8nv 8.,..,.u) ds. 
n1 r 

Thus the value of the domain integrals 

afi, ( u, ~) - j v t:..2u dz 
n1 

depends only on "(V E V(r) and we obtain formula (2.9) known as Rayleigh-Green formula. 
Since 

there exists a constant depending only on u such that 

Hence the assertion follows by continuity from Lemmas 2.2 and the fact that C00 (01 ) is dense 
in H 2(0i, ~2) (see [15]). 

Corollary 2.1 For u, v E H 2 (0i, ~2) there holds Green' second formula 

j ( v ll 2 'lL - 'lL t>.2v )dz = [ 5.-'111yu] - [<i.-'ILJYV] • 
n1 

For 1/J = ( :: ) E V (r) we write formula. (2.9) in the form 

[8uu, 'r/J] = -(v1, Nuu)r + (v2, Muu)r , 
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where for sufficiently smooth u, say u E H 4(fh), we have 

(2.12) 

and the derivative of 

(2.13) 

is understood in distributional sense. In plate bending Muu corresponds to the bending moment, 
Tuu to the twisting moment and Nuu is known as transverse force. In general the twisting 
moment Tuu is discontinuous at the corner points of r. Therefore 

m 

N«,.u = Nuu +I: 8(· - xi)(Tuu(x~) - Tuu(x~)) , 
i=l 

where tS(x) is the Dirac functional, Tuu(xi+ )-Tuu(xi-) is the corner force at xi and the function 
Nuu, known as Kirchhoff shear, is equal to 

on the arcs ri . (2.14) 

If we use that adjacent arcs meet at the corner point xi with the interior angle ai, then from 
(2.7) follows easily that 

(2.15) 

Here the unit vector 

. 1f-ai . 1f-ai . ai ai) 
n" = ( cos(cpi + ), sm(cpi + --)) = ( - sm(cpi - ~2 ), cos(cpi - -2 ) 

' 2 2 ' ' 

is directed like the bisector of the angle between n( x~) and n( x~), 'Pi denotes the angle between 
the x1-axis and n(x~), and 

i ( ( ai ) . ( ~ )) r = - cos 'Pi - 2 , sm 'Pi - 2 . 
Hence we get 

m 

Nuu = Nuu+ (1- a) 2:8(· - xi)sinai (8.,.i.,.iU(xi)- aniniu(xi)). (2.16) 
i=l 

The vector composed of the components of the Dirichlet and Neumann data 

(2.17) 

will be called Cauchy datum of u E H 2(fh, .6.2) associated with the bilinear form au. 
Let us now consider the problem to find u E H2 (S11) such that for given x E (V(r))' 

au(u, v) = [x,-yv], V v E H 2 (S11). (2.18) 

By (2.8) this is equivalent to the Neumann problem for the biharmonic equation 

(2.19) 
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We denote by 1E'1 the space of linear functions on JR2 and introduce the factor space 1£2 (fh) := 
H 2(0.1)/ JP1 • It is well known that 

gives a norm on the Hilbert space 1£2 (fh) equivalent to the quotient norm 

Further we denote by l (I') the traces of linear functions, l (I') := 'Y(JP1), consider the space 
W(I') := V(I')/l (I') equipped with the factor norm and the adjoint (W(I'))' with respect to 
(2.1), which can be identified with the polar set 

l (r)_L := {x E (V(r))' : [x, ,,p] = o, v ,,p E z (r)} . 

Obviously the assertions of Lemma 2.2 remain true for the mapping 'Y: 1£2 (01) -->- W(I'). 

Lemma 2.5 Let u E 1£2 (01) with 6.2u = 0 and 0 ~ u < 1. There exist constants not depending 
on u such that 

C1 llull~2(ni) ~ ll8crull(W(r))' ~ c21lul1~2(ni) · 
Proof: Since 8crp = O, p E 1E'1, the mapping 8cr is defined on the equivalence classes u E 1£2 (01) 

with 6.2u E L2 (01). Further, for any u E H 2 (01) with 6.2u = 0 there holds 

From (2.10) we .get 

j[8cru, 1/JJI ~·ccr lulk2(ni)h-1/Jlµ2(ni) ~ c llul1~2(ni)ll~ll~cr) , 
hence 8u maps {u E 1£2 (01): 6.2u = O} into (W(I'))' and 

On the other hand, for u E H 2 (01) with 6.2u = 0 we have 

[8uu, 'Yu]= a01 ( u, u) = u l16.ulli2cni) + (1 - u) lulk2(ni) , 

such for 0 ~ u < 1 

Hence we derive 

(2.20) 

(2.21) 

D 

Corollary 2.2 Let 0 ~ u < 1. The Neumann problem (2.19) has a solution u E H 2 (01) if and 
only if x E l (r)..L. The corresponding equivalence class iL E 1£2 (01) is unique. 

Lemma 2.6 The set {(1cp,8ucp): cp E C0 (JR2 )} is dense in V(r) X (V(I'))'. 
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Proof: The assertion is proved if we show that for ( ,,P, x) E V(r) x (V(r))' the relation 

(2.22) 

implies ,,P = x = 0. 
Choosing arbitrary f E L2 (01) we obtain by applying Corollary 2.1 and (2.6) 

[8a-T(f, 0), ,,P] [8a-T(f, 0), 1T(O, ,,P)] - [8a-T(O, ,,P ), 1T(f, O)] 

- j (T(f, 0) ~2T(O, ,,P)- T(O, ,,P) ~2T(f, 0)) dx 
01 

- - j f T(O, ,,P) dx. 
01 

Since C00 (01 ) is dense in H 2(0i, ~2) relation (2.22) holds also for cp = T(f, 0), such that 

j f T(O, ,,P) dx = 0 for all f E L2 (01). 
01 

Thus T(O, ,,P) = 0 yielding ,,P = 1T(O, ,,P) = 0. From (2.22) it follows now that 

[x, 1cp] = O for all cp E H 2(01 , ~2) , 

which together with Lemma 2.2 implies x = 0. 
D 

·Let us consider some properties of boundary value problems in the exterior domain 02. The 
traces of functions given outside of 0 1 are defined such that for any cp E C0 ( JR2 ) there holds 

Hence, if fi denotes a domain containing 0 1 , u E H 2(0\0i, ~2) and v E H 2 (0\01) then we 
have 

2 

[8a-u,1v]:= j ((cpv)~2u-u~(cpv)~u-(1-u) L 8;8ku8;8k(cpv))dx, 
j,k=l 

where cp E C0 (0) with cp = 1 on a neighbourhood of 0 1 • 

We define the Hilbert space W 2(02) which is a special case in a family of weighted Sobolev 
spaces studied in [13] and allows the variational formulation of exterior boundary value problems 
for the biharmonic equation. We denote p(r) = log(2 + r 2 ) and introduce 

W
2
(fl2) := { 'U: (1+1o:P)p(lo:I) I (1+10:1~);/2p(lo:I) I fJ;fJ1cu E L

2
(fl2) I j, k = 1, 2} I 

W5(02) := closure of C0 (02 ) in W 2 (02). 

equipped with the canonical norm. 
It is proved in [13] that the seminorm 
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is a norm on W5(0 2 ) and on the factor space W 2 (02)/ JP1 equivalent to the corresponding 
induced norms. Hence the bilinear form 

2 

afi2 (u, v) := j(al:l.ul:l.v+ (1- a) .L 8;8ku8;8kv )dx 
02 1,k=l 

(2.23) 

is positive definite on WJ(02) and, for 0 ~ a < 1, on 1-£2 (02), where we use the notations 
1-£2 (02) = W2(02)/ 1P1 and llull1l2(n2) := lulw2(n2)- Furthermore, for u E W2 (02) with l:l.2u = O 
and 0 ~ a < 1 there holds 

[8a-u, ;u] = - a02 (u, u) ~ (a - 1) lul~2(n2 ) , 
such that analogously to Lemma 2.5 we obtain 

(2.24) 

Lemma 2. 7 Let u E 1-£2 (02) with l:l.2u = 0 and 0 ~ a< 1. There exist constants not depending 
on u such that 

C1 llull~2(02 ) ~ ll8a-ull(W(r))' ~ c2 llull~2(n2 ) · 
Quite analogously to the interior problems the following assertions holds. 

Lemma 2.8 For any 7/J E V(r) the weak formulation of the Dirichlet problem 

;u= 7/J , a02 (u,v) = 0, Vv E WJ(02), 

has a unique solution u E W2 ( 02). The exterior Neumann problem 

afi2 (u,v) = -[x,;v], Vv E W 2(02), 

has a solution u E W2 (02 ) if and only if x El (r).L C (V(r))'. The corresponding equivalence 
class u E 1-£2 ( 02) is unique. 

3 Layer potentials for the bi-Laplaci~n 

Here we consider the biharmonic layer potentials, which are based on the fundamental solution 
of the bi-Laplacian !::,. 2 

G(x) := _!_lxl 2 log lxl, x E JR2 , 
871" 

and are associated with the form au. Nate that the operator 

Qu(x) := (G(x, ·), u)n2 with G(x, y) = G(x - y) 

is the two-sided inverse of l:l.2 on the space of compactly supported distributions on JR2 • Fur-
thermore, 

(3.1) 
is continuous. We have the following representation formula which follows immediately from 
the special case a = 1. 

Lemma 3.1 Let u E L2(JR2) be a function with compact support such that the restrictions 
uln1 E H2(01), uln2 E H1~(02) and f = .6.2uln2\r E L2(1R2). Then for x E JR2\r the 
representation . 

u(x) = QJ(x) - [{8uu},;G(x, ·)] + [8uG(x, ·), {;u}] 
holds, where 

{;u} := ;(uln2) - ;(uln1 ) , {8uu} := 8u(uln2) - 8a-(uln1 ), 

denote. the jumps of the Cauchy data across r. 
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This leads to the definition of the layer potentials for x E .JR2\r 
Vx(x) := [x,1G(x, ·)], 

!Cu'if;(x) := [8uG(x, ·), 7/1], 
X E (V(r))', 

7/1 E V(r). 

Lemma 3.2 The layer potentials 

are continuous. 

Proof : Because of 

Vx(x) = (G(x, ·),1'x)R2 

we can write 

Vx = Q1'x. 

(3.2) 

(3.3) 
The adjoint of the trace map 1'' : (V(r))'-+ H~p(.JR2) is continuous, therefore the assertion 
for V follows from (3.1). 

Due to Lemma 3.1 the solution u = T(O, 'if;) of the Dirichlet problem (2.5) can be represented 
by 

such that Lemma 2.4 and the continuity of T imply 

D 

Note that the definitions (2.1) and (3.2) lead to the known representations of V and !Cu 

as integral operators ( cf [16], [11]). If the corn ponents .of the vector x = ( :~) are integrable 

functions then we have 

Vx(x) = _ __!_ j v1(Y) Ix - Yl 2 log Ix - YI dsy 
87r 

r 

+ 8~ j v2(y)(ny,y- z)(2log jz - yj + 1) ds11 . 
r 

(3.4) 

Using (2.16) we obtain that for 1/J = ( :: ) E V (r) the potential K .. 1/1 is the sum of two integrals 

and of a finite number of functions depending on the point values at the corners v1 ( xi) 

(3.5) 

where 

l+u 1-u((ny,y-x)2 1) 
Mu,yG(x, y) = 4;-(log Ix - YI+ 1) + 4;- Ix -yl 2 - 2 , 

N G( ) _ l+u (ny,y-x) 1-u((n .. y,y-x)3 ((ny,y-x) 2 1)) 
<r x, y - -- + -- - "" - - . ,y 47r Ix - YI 2 27r Ix - Yl 4 y Ix - y 12 2 
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Here Ky denotes the curvature of r at the boundary pointy, K, = dcp/ds I where cp is the angle 
between the x1-axis and ny. 

Let us define the linear spaces 

Lj :== {u(x) = Vx(x)- lCu'l/;(x): ('l/;,x) E V(r) x (V(r))', x E O;}, 

of biharmonic functions representable via layer potentials. From Lemmas 3.1 and 3.2 we con-
clude that the space L'[ corresponding to the interior domain is independent of a and coincides 
with the set of functions u E H 2(01) satisfying fl.2u = 0. Moreover, for u E. L1 there holds the 
representation formula 

(3.6) 

The space L2 consists of functions u E H1~(02) characterized by fl.2u = 0 and a special 
asymptotic behaviour at infinity which will be described in the following lemma. To this end 
we take the functions on JR,2 

g1(x, y) = 1, 

g3(x, y) = IYl 2 
, 

92(x, y) = (x, y) , 

IYl 2 

g4(x, y) = 2 + (x, y)2 , 

denote by x = x/lxl the direction of x and introduce 

I;x(x) = [x7yg;(x, ·)], x E (V(r))', 

Jj'l/;(x) = [8ug;(x, ·),'if;], 'if; E V(r), j = 1, ... ,4. 
(3.7) 

Note that Ji arid J2 vanish, 11; fJ and J3 are constants, while 12, l4 and J4 depend on the 
direction of x. Since the asymptotics of the fundamental solution for lxl = R --+ oo can be 
written in the form ( cf. [3]) 

G(x, y) = _]:_(R2 log R - g2(x, y)(2R log R + R) + g3(x, y) log R + g4(x, y)) 
87r (3.8) 

the definition (3.2) of the layer potentials implies 

Lemma 3.3 For given ('l/;,x) E V(r) x (V(r))' the function 

u(x) = lCu'l/;(x) - Vx(x) 

behaves for large Ix I = R as 

+O(R-1), 

u(x) = _ _]:_ (11x R2 log R - I2x(x )(2R log R + R) + (l3X - J3 'if;) log R 
87r (3.9) 

+ J4x(x) - J4,,P(x)) + O(R-1
). 

Corollary 3.1 The operator Ku : V(r) --+ W2(n2) is continuous. 

Now one can prove the representation formula for functions u E L2. 
Lemma 3.4 For u E L2 with Cauchy data (1u, 8uu) there holds 

(3.10) 
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Proof. We enclose 0 1 by a ball BR with radius R > jxj. Then the representation formula (3.6) 
is valid for the bounded domain 02 n BR yielding 

u(x) = Ka-1u(x) - V8a-u(x) 

+ j (u Na-,zG(x, z) - Mu,zG(x, z) 8nu + Ma-u 8n:G(x, z) - G(x, z) Na-u)dsz . 
SR 

Using the asymptotics (3.9) of u(z) as R = lzl -+ oo and the asymptotics (3.8) of the funda-
mental solution it was shown in [15] that the integral 

j ( U 8nz !::l.G ( X, Z) - !::l.G ( X, Z) 8n U + !::l. U 8nz G ( X, Z) - G ( X, Z) 8n!::l. U) ds z . 
SR 

converges to 0 as R ~ oo. By the same technique one obtains after some lengthy computations 
that the remaining integral converges to O, too. 

D 

Corollary 3.2 The function u E L2 belongs to the weighted Sobolev space W 2(02) if and only 
if 8a-u E l (r).L. · 

Corollary 3.3 Let 0 ~ u < 1. If the exterior Neumann problem 

8a-u = x € (V(r))', (3.11) 

has a solution u E L2 then this solution is unique. 

Proof: Obviously it suffices to show that 8t1'u = 0 for u E L2 implies u = 0. Due. to Lemma 
2.7 we have llull~2(n2 ) = O, hence u E 1P1. ·But in view of the asymptotics (3.9) this is only 
possible if u = 0. 

. We note that the exterior Dirichlet problem 

!::l. 2u = 0 in n2' (U = 7/J E V(r) , 

is not uniquely solvable in L2, in general. For example, the two biharmonic functions 

D 

(3.12) 

have vanishing trace (Uj = Q on the circle r with radius e-1 , whereas for any circle r with 
radius r -=f=. e-1 the problem 

(U=O, (3.13) 

has only the trivial solution. 
In the following we say that the curve r satisfies .the assumption A1 if the corresponding 

exterior homogeneous Dirichlet problem (3.13) has only the trivial solution, or equivalently 

A1 : u E L~ with 1u = 0 implies 8"u = 0 . 

Recently Costabel and Dauge proved in [6] that for any general curve r there exist between 1 
and 4 values of the scaling factor p > 0 such that the scaled curve pr = {px E JR2 , x E r} 
violates assumption A1. 

The layer potentials provide the following jump relations: 

12 



"Lemma 3.5 

{'yVx} = o, {8a-Vx} = -x 
{1X:a-7/J} = 7/J, {80-X:o-7/J} = 0 

for all x E (V(I') )' , 
for all 'ifJ E V(r) . 

Proof: Since u = Vx E Hz~(IR2 ) we have 1(ulo1 ) = 1(ulo2 ). Further, from (3.3) we obtain 
that .6. 2u = 1'x in distributional sense, i.e. 

ju .6. 2 cp dx = (1'x, cp) R.2 = [x, 1cp] 
R.2 

for any cp E C0 ( JR.2). On the other hand 

Thus 

j u.6.2 cp dx 
01 

j u.6.2cpdx 
02 

Let now u = Ka-'l/1, 'ifJ E V(r), and again cp E C0 (JR2). The second Green formula yields 

j u.6.2cpdx = -[{8a-u},1cp]+ [8a-cp,{1u}]. (3.14) 
R,2 

The definition of Ka- provides 

(3.15) 

where 8~'1/J denotes the compactly supported distribution on JR2 defined by 

So .6.2u = 8~ 'ifJ in distributional sense, therefore 

ju .6.2cp dx = [8a-cp, 'l/1] . (3.16) 
R,2 

Comparing (3.14) and (3.16) we obtain 

[8a-cp, 'l/1- {1u}] = -[{8a-u},1cp] for all cp E C0 (JR2). 

Thus from (2.22) we conclude that 

D 

13 



Lt Boundary integral operators for the bi-Laplacian 

In this sction we study some basic properties of· boundary integral operators connected with 
the biharmonic layer potentials. These operators are defined as the traces 

Ax:= 21Vx , 
Cu'l/J := 21(X:u'l/Jln1 ) , 

Bux:= 2 8u(Vxlni), 
Vu'l/J := -2 8u(X:u'l/Jln1 ) • 

Formally this definition is the same as for second order equations given in [5]. We will show 
that the biharmonic boundary integral operators have analogous properties as the corresponding 
operators of the Laplacian. 

Lemma 4.1 ([6],[15]) The operator A: (V(r))'-+ V(r) is continuous, symmetric and strongly 
elliptic, it is positive definite on (W(r))', i.e. for any x E (W(r))' = l (r)J. there holds 

[x, Ax] ~ c llxll(v(r))' 

with a positive constant not depending on X· If additionally the curve r satisfies the assumption 
A1 then A is bijective. 

Here and in the following the adjoints of boundary integral operators are taken of course 
with respect to the duality (2.1). 

Lemma 4.2 Let 0 ~ u < 1. The continuous operator 1J u : V (r) -+ (V (r) )' is symmetric 
and strongly elliptic with ker Vu = l (r) and im Vu = l (r)J.. Moreover,. the. isomorphism 
Vu : W(r) -+ (W(r))' is positive definite. 

Proof: Note fir~t that the boundedness and symmetry of 1J"u ·follows immediately from Lemmas 
2.2, 2.4, 3.2 and the symmetry of the kernel function G. To prove that Vu is positive definite 
we take 'if; E V(r) and set u1 = -X:u'l/Jln1 , u2 = -X:u'l/Jln2. The jump relations lead to 

1 
8uu1 = 8uu2 = 2 Vu'l/J, 1u2 - 1u1 = -'if;. 

Due to Corollary 3.1 we have lul~2(n2 ) < oo, such that by (2.21) and (2.24) 

Since 

we obtain 

~ [1'u'l/J, 'if;]= [8uu1, 1u1] - [8a-u2, 1u2] = afi1 ( u1, u1) + afi2 ( u2, u2) 

~ (1 - u)(llu1ll~2(ni) + llu2ll~2cn2 )) · 

hence 1'u is strongly elliptic in V(r). From (2.20) it is clear that ker 1'a- = l (r). 
D 

Lemma 4.3 The boundary operators Cu : V(r) -+ V(r) and Bu (V(r))' -+ (V(r))' are 
continuous and connected by the relation B~ = Cu + 2 I . 

14 



Proof: For any ('if;, x) E V(r) x (V(r))' we obtain 

[Bux, 'if;]= [8u(Vxln1) + 8u(Vxln2) + x, 'if;] 
= (91'xln1+91'xln2,8~'1/J)R2 + [x, 'if;]= (91'x, 8~'1/J)R2 + [x, 'if;] 
= (1'x, 1Cu'lfJ)R2 + [x, 'if;]= [x, 1(1Cu'l/Jln1) + 1(1Cu'l/Jln2)] + [x, 'if;] 
= [x, 21(7Cu1/Jln1) +'if;]+ [x, 'if;] = [x, Cu'l/J] + 2[x, 'if;] , 

where the jump relations for Vx and 11Cu'l/J as well as (3.15) are used. 
D 

If we introduce the operator Wu :=I+ Cu then Bu =I+ W~ and from Lemma 3.5 we 
derive for j = 1, 2 

1 . 1 . 
1(7Cu'l/Jln;) = 2 (Wu+ (-1)3 I) 'if; , t5u(Vxln;) = 2 (W~ - (-1)' I) X. (4.1) 

Let us mention that in the special case u = 1, where the form au is not coercive, we obtained 
the following characterizations in [15]: 

• The operator ~(I - W1) = -~ C1 is the Calderon projection onto the traces 1u of har-
monic functions u E H 2(01) ; 

• The operator ~(I+ W1) = ~ B~ projects onto the traces 1u of all harmonic functions 
u E Hz~(02 ) with the asymptotics u(x) = a(log lxl + 1) + O(ixl-1), lxl -7 oo, for some 
real a; 

• The operator 1J1 = 0. 

Now we introduce the bounded linear operator 

and define two mappings 

V(r) 
x 

(V(r))' 

V(r) 
x 

(V(r))' 

1 . 
<lu,j := 2 (J - (-1)3~u), j = 1, 2. 

(4.2) 

(4.3) 

Lemma 4.4 The operators ~u,j are the Calderon projections in V(r) x (V(r))' mapping onto 
the set of Cauchy data ( 1u, 8uu) of functions u E L'J. 

Proof: For arbitrary ('if;, x) E V(r) x (V(r))' and u = (-l)i(JCu'ifJ - Vx) E L'J the jump 
relations of Lemma 3.5 and (4.1) imply 

Let now u E L'J. Then the representation formula (3.6) or (3.10), respectively, yields 
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after applying the jump relations we obtain. 

showing that the mappings ~u,j are bounded projections and that the Cauchy data of all 
functions from L'J belong to the image of ~u,j· 

D 

Since the Calderon projections for the interior and exterior problems are conjugate 

~O',l + ~u,2 = I ' 

the space V(r) x (V(r))' can be decomposed as the direct sum of closed subspaces 

(4.4) 

Further, from ~!,j = ~u,j we derive the relations 

Corollary 4.1 

(4.5) 

Lemma 4.5 Let 0 < a < 1. The operator (I - Wu) : V(r) -+ V(r) is bijective, whereas 
(i + Wa-) : V(r)-+ V(r) is Fredholm wzth index zero. Furthermore, ker (I+ Wu)= l (r) and 
im (I+ Wu)= A(l (r)J.). 

Proof: From ( 4.5) we have 

A:Vu =(I+ Wu)(I - Wu)= (I - Wer)(I + Wer). (4.6) 

Since A and :Der, 0 =5 a < 1, are strongly elliptic the operator A Ver is Fredholm with index 
zero and by well-known arguments (cf. [14], Thms. 1.3.1and1.3.3) t.he operators (I± Wer) are 
Fredholm itself. Based on the relations ( 4.1) one can use as in the case of Laplace's equation 
the uniqueness of the interior Dirichlet problem in L 1 and of the exterior Neumann problem in 
L2 to derive that 

ker (I - Wer) = ker (I - W~) = 0 . (4.7) 

Therefore (I+ Wer) is Fredholm with index O, from ( 4.6) its kernel and image can be determined 
by using Lemmas 4.1 and 4.2. 

D 

5 Boundary integral equations for plate bending problems 

Using the layer potentials and boundary integral operators it is now quite easy to transform 
biharmonic boundary value problems into integral equations over the boundary. For example, 
the results of Sections 2 and 3 and certain layer potential representations lead immediately to 
equivalent integral equations for Dirichlet and Neumann problems. However, the analysis of 
indirect methods for other types of boundary conditions seems to be more involved. Here. we 
fix attention on a direct method which produces strongly elliptic systems of boundary integral 
equations equivalent to mixed biharmonic boundary value problems. Having the properties of 
boundary integral operators at hand the analysis of the proposed method extends simply the 
well-studied approach for second order equations to our situation. 
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We introduce the bounded bilinear form on V(r) x (V(r))' 

( (~)' (: hcrJx(V(r))' := [r, 1/1] + [x, p] · 

From (4.2) we see that for any ('lf;,x) E V(r) x (V(r))' the equality 

(!B .. (~)' (~)) v(r)x(V(r))' = -[x, W .. 1/1] + [x, Ax]+ [:V .. 1/1, "1] + [W~x, "1] 

= [x, Ax]+ [Va-'l/J, 'l/J] 

(5.1) 

(5.2) 

holds. Let us denote by P: V(r)-+ V(r) a bounded projection, set Q =I - P and introduce 
the projection~ in V(r) x (V(r))' by 

Note that 

im P 
x 

im Q' 

im P x im Q' = im ~ and im Q x im P' = im (I - ~) 

(5.3) 

are closed subspaces of V(r) x (V(r))' which are in duality with respect to (5.1). Since 
(im Q).l.. = (ker P).l.. = im P' the equality (5.2) leads to 

( <t ·(Q'lj;) (Q'lj;)) -~((I-(-l)i9J)(Q'lj;) (Q'lj;)) 
u,i P'x ' P'x v(r)x(v(r))1 - 2 a- P'x ' P'x v(r)x(v(r))' 

(-l)j+l I I 
= 2 ( [AP x, P x] + [1?a-Q'l/J, Q'lf;]) . 

Hence for any projection P the mappings 

imQ imP m: := (-l)i+i ~ <tu,i (I - ~): x x (5.4) 
im P' im ·Q' 

do not depend on j = 1, 2. If 0 ~ u < 1 then in view of Lemmas 4.1 and 4.2 the operator m;' 
satisfies a Garding inequality 

(cm:+'!')(~) I (~)) V(I')x(V(I')}' ;:: C ( 111/lllhr) + llxll~V(I')}') I 

V ( 'ljJ, x) E im Q x im P' , 

with a positive constant c and some compact operator'!. Since the adjoint of m!' with respect 
to the form (5.1) provides the same property we derive 

Lemma 5.1 Let 0 ~ u < 1 and P be a bounded projection in V(r). Then m;' defined in (5.4) 
is a Fredholm operator with index zero from im (I - ~) into im ~ and strongly elliptic with 
respect to the form ( 5 .1). 

Note that the two trivial cases P = I and P = 0 are treated in Lemmas 4.1 and 4.2, 
respectively. 

The mapping m;' is closely connected with the biharmonic boundary value problem: 

Find u E LO: 3 such that 'P"(U = p and 
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where (p, r) E im P x im Q' are the given boundary values. Indeed, for u E Lj we know from 
Lemma 5.1 that 

To solve (5.5) we decompose 

such that the unknowns 7/1 = Q1u and x = P'8uu have to satisfy the equation 

(I - Q'.,,,;) (~) = (Q'.,,,; - I)(~) . 
In particular, applying the projection~ to both sides we get the equation 

Lemma 5.2 Let (p,r) E im P x im Q'. 

(i) If u E Lj satisfies (5.5) then 7/1 = Qru and x = P'8uu solve the equation (5.7). 

(ii) If (7/1, x) E im Q x im P' is a solution of (5.7) then the function u given in f2; by 

solves the boundary value problem (5.5). 

Proof: It remains to show (ii). For u from (5.8) there holds in view of Lemma 4.4 

('u) -It . (7/J + p) 8uu - G',J x+r . 

Since the equation (5.7) is fulfilled we have 

(
7/J + p) ~ (I - ltu,j) X + r = 0 , 

implying 

P1u=P('l/l+p)=p and Q'8uu=Q'(x+r)=r. 

(5.6) 

(5.7) 

(5.8) 

D 

Thus any solution of the boundary value problem (5.5) can be obtained by solving the 
system of boundary integral equations (5.7). Note that in general this system has more linear 
independent solutions than (5.5). 

Lemma 5.3 Let 0 ~ u < 1 and (3;, j = 1, 2, be the dimension of the null-space of the corre-
sponding homogeneous problem (5.5) with p = r = 0. Then 

dim ker ~~ = (31 + (32 ~ 3 and (31 =dim Q(l(r)). 
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Proof: Since u E Lj with (1u, 8uu) E im Q X im P', i.e .. P1u = Q'8uu = 0, determines an 
element ( 1u, 8uu) E ker m: and and by ( 4.4) 

it is clear that dim ker m: ~ /3i + /32. 
On the other hand, since V(r) x (V(r))' is the direct sum of these subspaces there exists 

a basis in ker m: consisting of elements of the subspaces. Due to Lemma 5.2 (ii) and the 
representation formulas (3.6) and (3.10) we get therefore dim ker m: ~ /3i + /32. 

Let now u E Li with P1u = Q' 8uu = 0. Then 

and Lemma 2.5 yields u E IPi, i.e. 1u E l (r) and 8uu = 0. Hence the homogeneous boundary 
conditions can be satisfied by /3i = dim Q (l(r)) linear independent elements of Li. 

Using (2.24), Corollaries 3.2 and 3.3 it can be seen quite similarly that 

u E L2 n W 2('22) with P1u = Q'8uu = 0 implies u = 0. 

Hence any nontrivial solution of the homogeneous boundary value problem in the outer domain 
0 2 satisfies 8uu ~ l (r).L or more precisely, the corresponding equivalence class 8uiL in the factor 
space (V(r) )' /l (r).L is different from zero, 8uiL -:f. 0. 

Consequently, if (7/1, x) E (im Qxim P')nker m.: and X -:f. 0 then the equivalence class x -:f. 0 
in (V(r))' /l (r).L. This means that /32 is not greater than the number of linear independent 
elements x E im P' with x -:f. 0 which equals to 

dim P (l(r)) = 3 - dim Q (l(r)) = 3 - {3i . 

D 

Now we introduce the assumption 

Ap : If u E L2 satisfies P1u = 0 and (I - P')8uu = 0 then u = 0 . 

and consider the boundary value problem (5.5) for j = 2. 

Theorem 5.1 Suppose that r satisfies assumption Ap, let (p, r) E im P x im Q' and 0 ~ u < 
1. Then the boundary value problem for the bi-Laplacian 

.6.2u = 0 in '22 
P1u = p , (J - P') 8uu = r 

(5.9) 

has in the space L2 a unique solution given by 

u = X:a- ( 7/J + p) - V (x + r) , 

where ( 7/J, x) E im Q x im P' solve the system of boundary integral equations 

21: (~) = -~~v,1 (~) • (5.10) 

If additionally the projection P reproduces the traces of linear functions, P1p = 'YP for all 
p E IPi, then (5.10) is uniquely solvable. 
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For j = 1 the boundary value problem (5.5) admits the variational formulation: 

Find u E H 2 (fl1) such that P1u = p and 
a01 (u,v) = [r, Q1v], Vv E Hf,(01) := {u E H 2 (fl1): P1u = O}. 

(5.11) 

It is clear that (5.11) is uniquely solvable for 0 ~ u < 1 iff the only linear function p satisfying 
P1p = 0 is the trivial function p = 0. 

Theorem 5.2 Suppose that the projection P satisfies P(l (r)) = l (r), let 0 ~ u < 1 and 
(p, r) E im P x im Q'. The unique weak solution of the boundary value problem for the bi-
Laplacian 

~2u=O in fl1 
P1u = p, (I - P') 8(1'u = r 

(5.12) 

can be obtained by the formula 

u = V(x + r) - JC(T(,,P + p), 

where ( 7/J, x) E im Q x im P' solve the system of boundary integral equations 

(5.13) 

If r satisfies assumption Ap then (5.13) is uniquely solvable. 

Roughly spoken, if the boundary conditions are such that the biharmonic boundary value 
problem can be transformed into a coercive variational problem then it is equivalent to a strongly 
elliptic system of boundary integral equations. 

As an example we now consider the choice of the projection P for mixed boundary conditions. 
We assume that the boundary r is composed of four disjoint parts re, rh, rr, and rt suc~.that 

and consider a bounded projection P in V (r) providing 

(5.14) 

whereas the functions w; are extended to the other parts of r in some specific way. Clearly 
there exists of variety of projections giving (5.14), which differ only in the method of extending 
w;. But the concrete form of the projection P is not important, we need only the existence of 
bounded projections, llP7/Jllv(r) ~ c 117/Jllv(r), which is obvious. Since for the adjoint of Q = I-P 
we have 
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we conclude that in weak sense 

( ) ( ) { 

Z3 = V3, Z4 = V4 

Q' :: = ;: E (V(r))' with Z3 = V3 

Z4 = V4 

(5.15) 

We note that the space ker P x ker Q' in which the unknowns ('if;, x) of the system (5.6) have 
to be sought is independent of the concrete choice of P. Moreover, the definition of the trace 
spaces together with the description of ker P x ker Q' imposes certain compatibility conditions 
for the components of 'if; and x at singular boundary points, i.e. corners and points at which 
the type of boundary conditions changes. We will not go into detail, we mention only that it 
is important to take into account these compatibility conditions in choosing the approximation 
spaces for the numerical solution of (5.6). 

If we formulate the boundary conditions in (5.5) 

1'-yu = p = (::) E im 1' , Q'5vu = r = (::) E im Q' 

in terms of the Cauchy data of u, which are defined in (2.17), then we obtain from (5.14) and 
(5.15) the well-known mixed boundary conditions of plate bending 

(i) clamped 

u = 91 ' 8n u = 92 . on r c ; 

(ii) hinged or simply supported 

u = 91 ' ·Muu = 93 

(iii) roller-supported 

on rr; 

(iv) free 

on r1. 

To state the stability result of the Galerkin method for solving the system of integral equa-
tions derived from the mixed boundary conditions (i)-(iv) we introduce sequences of finite 
dimensional spaces of approximating functions Xh c ker P and Yh c ker Q', h -+ O, such that 

uxh x yh is dense in ker p x ker Q'. 
h 

Theorem 5.3 Suppose that 0 ~ u < 1 and that the interior and the exterior boundary value 
problem for the biharmonic equation with homogeneous boundary conditions (i)-(iv), i.e. 9i = 0, 
have only trivial solutions. Then the Galerkin equations 

(~ (7/Jh) ('Ph)) - 2(-l)i((<t . _I) (P) ('Ph)) 
u Xh ' </>h V(r) x (V(r))' - u,J T ' </>h V(r) x (V(r))' ' 

V (:~) E Xh X Yh (5.16) 
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are uniquely solvable for all sufficiently small h and the approximate solutions 

converge quasioptimally to the biharmonic function u in O.j, j = 1, 2, satisfying the boundary 
conditions (i)-(iv), for example, for any x E O.j the estimate 

holds with some constant not depending on u and h. 

References 

[1] M. Bourlard, Probleme de Dirichlet pour le bilaplacien dans un polygone: resolution par elements 
finis frontieres raffines, C.R.Acad.Sci.Paris, Ser. I, 306 (1988), 461-466. 

[2] G. Chen, J. Zhou, Boundary element methods, Academic Press, London et al, 1992. 

[3] S. Christiansen, P. Hougaard, An investigation of a pair of integral equations for the biharmonic 
problem, J.Inst.Maths.Applics 22 (1978) 15-27. 

[4] M. Costabel, Starke Elliptizitat von Randintegraloperatoren erster Art, Habilitationsschrift, Darm-
stadt 1984. 

(5] M. Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. 
Anal. 19 (1988), No.3, 613-625. 

[6] M. Costabel, M. Dauge, Invertibility of the biharmonic single layer potential operator, Institut de 
Recherche Mathematique de Rennes, Prepublication 95-13, Rennes 1995. 

[7] M. Costabel, 'E. Stephan, A direct boundary integral equation method for transmission problems; J. 
Math. Anal. Appl. 106 (1985), 367-413. 

[8] M. Costabel, E. Stephan, W. L. Wendland, On boundary integral equations of the first kind for the 
bi-Laplacian in a polygonal plane domain, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. ( 4), 10 (1983), 
197-241. 

[9] M. Costabel, W. L. Wendland, Strong ellipticity of boundary integral operators, J. Reine Angew. 
Math. 372 (1986), 39-63. 

[10] R. D. Grigorieff, Randwertaufgaben /Ur elliptische Bilinearformen auf wm12 (f2), IV §4 in F. Stum-
me!, Rand- und Eigenwertaufgaben in Sobolewschen Raumen, Lecture Notes in Mathematics 102, 
Springer, Berlin-Heidelberg-New York 1969. 

[11] F. Hartman, R. Zotemantel, The direct boundary element method in plate bending, Int. J. Num. 
Methods Engng. 23 {1986), 2049-2069. 

[12] G. N. Jakovlev, Boundary properties of functions of the class wJl) on domains with corners, Dokl. 
Akad. Nauk SSSR 140 (1961), No. 1, 73-76 (in Russian). 

[13] J.C. Nedelec, Appro:cimation des equations integrales en mecanique et en physique, Lecture Notes, 
Centre de Mathematiques Appliquees. Ecole Polytechnique, Palaiseau 1977. 

(14] S. Pro:Bdorf, Some classes of singular equations, North-Holland, Amsterdam-New York-Oxford, 
1978. 

[15] G. Schmidt, B. N. Khoromskij, Boundary integral equations for the biharmonic Dirichlet problem 
on non.smooth domains, Preprint WIAS No. 129, Berlin 1994. 

[16] M. Stern, Boundary integral equations for bending of thin plates, in C. A. Brebbia (ed.), Progress 
in Boundary Element Methods, Vol. 2, Pentech Press London, Plymouth, 1983, 158-181. 

22 



. Recent publications of the 
Weierstrafi-lnstitut fiir Angewandte Analysis und Stochastik 

Preprints 1995 

151. Anton Bovier, Christo£ Kiilske: There are no nice interfaces in 2+1 dimen-
sional SOS-models in random media. 

152 .. Ilja Schmelzer: Covariant geometry description. 

153. Alexander Korostelev, Michael Nussbaum: Density estimation in the uniform 
norm and white noise approximation. 

154. Peter Hall, Michael Nussbaum, Steven E. Stern: On the estimation of a sup-
port curve of indeterminate sharpness. 

155. Lev D. Pustyl':Q.ikov: On the stability of solutions and absence of Arnol'd 
diffusion in a nonintegrable Hamiltonian system of a general form with three 
degrees of freedom. 

156. Ralf Kornhuber: Adaptive monotone multigrid methods for some non-smooth 
optimization problems. · 

157. Sergej Rjasanow, Wolfgang Wagner: A generalized collision mechanism for 
stochastic particle schemes approximating Boltzmann type equations. 

158. Nikolai Nefedov, Klaus Schneider: Singularly perturbed systems: Case of ex-
change of stability. 

159. Rainer Dahlhaus, Michael H. Neumann, Rainer von Sachs: Nonlinear wavelet 
estimation of time-varying autoregressive processes. 

160. Henri Schurz: Numerical regularization for SDEs: Construction of nonnega-
tive solutions~ 

161. Anton Bovier, Veronique Gayrard: The retrieval phase of the Hopfield model: 
A rigorous analysis of the overlap distribution. 

162. Boris N. Khoromskij, Gunther Schmidt: A fast interface solver for the bihar-
monic Dirichlet problem on polygonal domains. 

163. Michael H. Neumann: Optimal change-point estimation in inverse problems. 

164. Dmitry Ioffe: A note on the extremality of the disordered state for the Ising 
model on the Bethe lattice. 



165. Donald A. Dawson, Klaus Fleischmann: A continuous super-Brownian mo-
tion in a super-Brownian medium. 

166. Norbert Hofmann, Peter Mathe: On quasi-Monte Carlo simulation of stochas-
tic differential equations. 

167. Henri Schurz: Modelling, analysis and simulation of stochastic innovation 
diffusion. 

168. Annegret Glitzky, Rolf Hiinlich: Energetic estimates and asymptotics for 
electro-reaction-diffusion systems. 

169. Pierluigi Colli, Jiirgen Sprekels: Remarks on the existence for the one-dimen-
sional Fremond model of shape memory alloys. 

170. Klaus R. Schneider, Adelaida B. Vasil'eva: On the existence of transition 
layers of spike type in reaction-diffusion-convection equations. 

171. Nikolaus Bubner: Landau-Ginzburg model for a deformation-driven experi-
ment on shape memory alloys. 

172. Reiner Lauterbach: Symmetry breaking in dynamical systems. 

173. Reiner Lauterbach, Stanislaus Maier-Paape: Heteroclinic cy~les for reaction 
diffusion systems by forced symmetry-breaking. 

17 4. Mi~hael Nussbaum: Asymptotic equivalence of density estimation and Gaus-
sian white noise. 

175. Alexander A. Gushchin: On efficiency bounds for estimating the offspring 
mean in a branching process. 

176. Vladimir G. Spokoiny: Adaptive hypothesis testing using wavelets. 

177. Vladimir Maz'ya, Gunther Schmidt: "Approximate approximations" and the 
cubature of potentials. 

178. Sergey V. N epomnyaschikh: Preconditioning operators on unstructured grids. 

179. Hans Babovsky: Discretization and numerical schemes for stationary kinetic 
model equations. 




