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Abstract 

Considering a mental experiment with a superposition of quasi-
classical basic states for gauge theory and gravitation we obtain non-
classical quantum observables. They can be interpreted as the diffe-
rence of the gauge potentials of the basic states in gauge theory and 
a homeomorphism of the metrics of the basic states in general relati-
vity. It is possible to consider gauge- and coordinate condltions (f.e. 
Lorentz gauge and harmonic coordinates) as new physical equations 
for these observables. For gravity we obtain in this way an interesting 
quasi-classical generalization of general relativity with two times -
the time of general relativity and the harmonic time. 
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0 Introduction 
In classical gauge theory the gauge potential is not measurable. All obser-
vables of the gauge field depend only of integrals over closed curves of the 
gauge potential. This is connected with gauge symmetry. We cannot distin-
guish the potential A and the potential T9 (A), obtained from A by a gauge 
transformation 

Let's consider now quantum gauge theory and it's connection to classical 
theory. For every classical potential A there will be some coherent state or 
wave packet G(A) in the correspondent quantum theory, and for every gauge 
transformation g some unitary operator T9 of the correspondent quantum 
symmetry group. There may be difficulties in this picture as several slightly 
different coherent states for the same potential and different composition 
rules for the T9 , but in the classical limit h ~ 0 we will have 

Gauge invariance of the quantum theory means that all observables 0 are 
gauge invariant (T9 0 = OT9 ). Then it is not possible to distinguish between 
th states G(A) and T9 G(A). 

Now let's consider a superposition state G(A) + G(A'). It's clear that 
we cannot distinguish between this state and T9 G(A) + T9 G(A'). But what 
is with G(A) + T9 G(A')? These states are gauge-equivalent only in some 
degenerate cases like T9 = 1. Normally they are not gauge equivalent in the 
sense defined before. But on the other hand we have no classical observables 
to distinguish between these states. The measurement of Fij gives the same 
result for these states - Fij or Ffj with probability ~. 

There are two possible solutions for this contradiction. The first is to 
have a quantum theory with T9 = 1 for all g. Then these states are all 
gauge-equivalent. The other possibility is that there are new non-classical 
observables which can distinguish between such states. We think that it 
is necessary to go the second way. There are new observables, namely the 
differences of the potentials Ai( x) - A~( x ). They are gauge-invariant if we 
use the same gauge-transformation for A and A'. 
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To show this we let's remember the Bohm-Aharonov-experiment. It has 
shown, that it is possible to get new observables in quantum mechanics. 
But in this experiment the state tested with a test part.icle was a classical 
state. We consider here a quantum state - a nontrivial superposition of 
quasi-classical states. We let it interact with some test particle and try to 
get some nontrivial interference picture. Considering the quasi-classical limit 
of the classical Schroedinger theory we obtain observables depending of the 
difference of the potentials Ai( x) - A~( x ). . 

If this relative gauge potential A- A' is measurable, there must be a new 
evolution equation for it. The Maxwell equations cannot describe this evolu-
tion. It seams possible to find this equation considering the non-relativistic 
quasi-classical limit of the quantum field theory. That means, from this po-
int of view :field theories with different gauge-conditions are different physical 
theories. 

For gravity we have a similar situation. We have to consider the group . 
of all diffeomorphisms instead of the gauge group. The role of the difference 
of gauge potentials plays the relative position of the metrics. The result is 
the same - it is possible to measure this relative position by considering 
a superposition of gravitational fields. The experiment is the same, we use 
the non-relativistic limit of quantum gravity - the Schroedinger theory, but 
now with Newtonian potential. But here we have no accepted quantum 
field theory. We have to find a new physical equation to describe the new 
observables. As a natural candidate to complete the Einstein equations we 
consider here the harmonic coordinate condition. 

Considering the Lorentz gauge as a physical equation, we change only the 
interpretation of some part of the theory. On the contrary, if we consider the 
harmonic condition as a physical equation, we obtain a lot of fundamental 
changes in gravitation. The topology becomes trivial, the scenario of the 
collapse to a black hole and the big bang changes. We get a new theory -
a quasi-classical generalization of general relativity. 

A new (physical and philosophical) interpretation of the terms of the 
theory seams necessary. It seams possible to interpret the harmonic time co-
ordinate as the absolute, non-measurable time of classical quantum mecha-
nics. From this point of view for quantization of gravity we have to use 
the scheme of classical quantum mechanics (with absolute time, states and 
probabilities) and not of relativistic field theory. 
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1 An Experiment 
In this section we describe an easy mental experiment for gauge theory and 
for gravity. We consider a nontrivial superposition state of a source of the 
field - the first particle - an it's interaction with some test particle. 

We assume some quasi-classical, nonrelativistic situation. The only quan-
tum effect we are interested in is the superposition. Let 17fiz) and 17fir) (left and 
right) be two quasi-classical states of a source of the field we are interested 
in. Let xi and Xr be be their position. That means 

Xl7fi1;r) ~ Xtfrl'1fiz;r) 
'¢iz;r( X) ~ 5( X --. Xtfr) 

Now we need a possibility to construct a nontrivial superposition state 
of these states. That means, we need some observable. 0 with eigenstates 
l7fio) = ~(17fir) + !'¢'1)) and !'¢'1) = ~(17fir) -17fiz)). 

Then we consider a test particle in some initial state lcpo). If it is a quasi-
classical state we can describe the result of the interaction of l7fi1;r) with lcpo) 
(modulo a phase factor) using classical mechanics. The resulting two-particle 
state also can be considered as a quasi-classical state and will be nearly a 
tensor product. 

For simplicity we assume that the state l7fii;r) of the first particle doesn't 
change. We can get this if the first particle is very heavy or if we have an 
external field holding the first particle in it's position. 

Now we can describe our experiment. We start with the state l7fio) of 
the first particle and the state lcpo) of the test particle. Then we let them 
interact. After this interaction we measure: 

• our observable 0 of the first particle with eigenstates l7fio) and 1'¢'1), 

• the coordinate x of the test particle. 

1.1 Case of Electric Field 
Consider now the case of the electric field. At first we are not interested in 
relativistic or magnetic effects. That's why we use the classical Schroedinger 
two-particle theory for the description of the results.· Using P, X, M, Q for 
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momentum, coordinate, mass and charge of the first particle and p, x, m, q 
for the test particle we have the following Hamiltonian: 

p2 ~ Qq 
H = 2M + Vext(X) + 2m - 47rcolX - xi· 

Vext describes some external potential holding the first particle at x1 and 
Xr (that means with sharp minima in X1/r ). 

If the first particle is in one of the states l'!/J1;r) we can replace the X in the 
interaction term by X1/r· Now our Hamiltonian is the sum of two one-particle 
operators. We have assumed that l'!/Ji;r) is (nearly) stable. For the result of 
our one-particle problem for the test particle with the Hamiltonian 

p2 Qq 
H1/r = - - I 1. 2m 47rco X1/r - x 

and the initial value lcpo) we use the description l'P1/r)· Then the solution 
of the two-particle-problem is approximative 

l'l/J1/r) @ I 'Pl/r) • 

Now we can solve the problem for the initial value l'!/Jo)@ lcp0 ). We obtain 
the full solution 

Using the designation l'Po;1) = ~(lcp1) ± l'Pr)) we obtain the solution 

Now we can describe the result of our measure. If the first particle is in 
the state l'!/Jo), then the test particle is in the state lcpo) and we obtain as the 
result of our measure of the coordinate p0 (x) = lcp0 (x)l 2 • In the other case 
we obtain P1( x) = lcp1( x )12. 

Let's compute the result in the quasi-classical case. To compute 'Pl/r for 
some point x we have to compute the classical trajectory 'Yl/r from the start 
point Xo to x for the Hamiltonian H1/r· Then we can compute a phase factor 
f1/r as the exponent of the integral of the action over "fl/r· The module of 
the sum f = f1 ± fr nearly defines the interference picture we get. 
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Using the description 

At(x) = Q 
. 47rt:olxc;r - xi 

and fo for the value off without electric field we obtain 

f1/r = fo exp-iq j A~r(Tl/r(t))dt. 
That means, the result of the measure depends on their quotient 

exp -iq j A~(l1(t)) - A~(lr(t))dt. 

It's clear how to write this in a relativistic invariant form: 

exp -iq j A~(l1(t)) - Ai(-yr(t))dxi. 

But this is a dependence of the difference of two gauge potentials and 
obviously depends on the gauge condition we use. You can consider this as a 
dependence of an integral of gauge fields over a closed path ( "/l and in other 
direction 'Yr), but with different gauge potentials on different parts of the 
path. It is. gauge invariant only if we use the same gauge transformation for 
all fields. 

1.2 Case of Gravity 
To obtain an analogical result for gravity is simpler as for the electric field. It 
is not necessary to compute the phase factor. To see this we have to consider 
the analog of the difference of the gauge potentials in general relativity. 

The symmetry group - the analog of the group of gauge transformations 
in general relativity - is the group of coordinate transformations. Consider 
now many gravitational fields in some coordinate system. What we have to 
find are things which are invariant if we use the same coordinate transfor-
mation for all field but change if we use different coordinate transformations 
for every field. 

It's easy to find such invariants. We can define some equivalence between 
events in different metrics. Two events are equivalent if they have the same 
coordinates. If we use the same coordinate transformation for all fields, this 
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equivalence relation doesn1t change. From mathematical point of view these 
are matched diffeomorphisms of different metric spaces or different metrics 
on the same manifold. 

Now let 1s compute the results 0f our experiment and search for measu-
rables depending on this equivalence. For the description of the experiment 
we use the Schroedinger theory, but now with the Newtonian potential: 

p2 P2 Mm 
H = 2M + Vext(X) + 2m - Glx -XI. 

We get an analogical solution p0 (x) = lcpo(x)l 2 and p1(x) = lcp1(x)l 2 . And 
we see that these functions p- 0 /1 depend on our equivalence relation descri-
bed before! To compute 'Po/1 ( x) we have to add functions defined for different 
gravitational fields. That means, in the language of general relativity they 
are events in different metrics. Obviously we need a correspondence bet-
ween these events to define the sum or the difference of functions on different 
metrics. 

Consider now the probability of transition from l7fio) to l7fi1). We get 

Po-1 = j P1(x)dx = Hl - lR(cprl'P1)). 

It also depends on our equivalence relation. This result is interesting 
because we don1t need a measure of coordinates to measure it. We need only 
our observable 0 of the first particle. 

Let's now consider the quasi-classical case - if the states of the test 
particle l'Pl/r) can be considered as wave packets near classical trajectories 
/1/r· If these trajectories are so different, that there is de facto no intersection 
of the wave pack~ts, we have Po--+l = ~'and we obtain two equal peaks as the 
result of our measurement. A more interesting result we obtain, if we have an 
intersection (in coordinate space, not in phase space) of these trajectories. 
Then we obtain an interesting interference picture, different for l7fio) and 
l7fi1). Considering only this qualitative picture we can define the points of 
intersection of /r and /I· This can be used for some kind of direct measure 
of equivalent events. 

We have found a lot of interesting observables for the case of gravity: 

• The transition probability Po--+l , defined by the scalar product of 'Pr 
with 'Pl· 
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• The probability distributions p0; 1 ( x ), defined by the sum and the dif-
ference of 'Pr and 'Pl. 

• The qualitative picture, defining the points of intersection of the quasi-
classical trajectories 'Yr and (l· 

All they are depending on some equivalence relation between events of 
different gravitational fields - our analog of the difference of gauge potentials 
for gravity. 

2 Consequences 
The main consequence of our results is that every quantum field theory has 
to define in it,-s quasi-classical, non-relativistic limit the behaviour of these 
measurables. This limit has to coincide with the results of the Schroedinger 
theory. 

The problem is that this behaviour is fully undefined by the correspondent 
classical theory-gauge theory or general relativity. That means, there must 
be a new equation in the theory. In non-relativistic situation the behaviour 
is well-defined by the Schroedinger theory. But if we try to use the same 
quasi-classical language to compute some first order relativistic correction 
we will see that it is impossible to get any result because of the arbitrariness 
of gauge potentials and coordinate system. To repeat the classical result 
or to obtain a first order relativistic correction we need some new equation 
describing our new observables. 

Let's consider possibilities to do this. At first we have to find variables 
to describe our new observables. For gauge fields it seams natural to define 
a new (now measurable) gauge potential A as the difference of the gauge 
potential of the current field and the gauge potential of the vacuum. For 
gravity we can use the coordinates of the equivalent event of the trivial 
(vacuum) field as the new observable. Now the new equation we need has 
the form of a gauge or coordinate condition. But it is only the form - from 
our point of view we have a new physical equation and it is possible to prove 
it by an experiment. 

That means, we need some gauge or coordinate condition that looks like 
a physical equation. For this problem we have some standard candidates -
the Lorentz gauge 
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in gauge theory and the harmonic coordinates 

in general relativity. They fulfil the following necessary conditions: 

• they define the evolution of our new observables if they are given for 
some initial state. 

• they define a correct causality for the dependence of the new observa-
bles from initial values. 

• they give the correct classical limit. 

• they looks very nice - like relativistic physical equations. 

But there are also other possibilities for such equations. For example, we 
can use the equations 

and assume that the initial values fulfil the Lorentz condition. 

2.1 Quantum Gauge Theories 
Using one of these equations we can define a quasi-classical theory which 
enables us to compute relativistic corrections for our experiment. 

But for the electric field and other gauge fields we have already a good 
quantum field theory. It's possible to compute the results of our experiment 
using this theory. What will we get? I think we get approximately the 
same result as using the gauge condition used in the field theory a a new 
physical equation:. I haven't proved it exactly, because our states are not 
asymptotically free. 
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We get a new interpretation of the role of the gauge condition in the 
quantum theory. It is necessary to use some gauge condition and different 
gauge conditions define different quantum theories. In principle it is possible 
to distinguish between these theories by experiment. It doesn't mean that 
there is no gauge symmetry in the theory - but there is only one gauge 
freedom for all fields, and that's why the gauge symmetry becomes trivial. 

This contradicts to the usual point of view, that the results of the qu-
antum. field theories are independent of the gauge used. May be there is an 
error in the proof of the independence, may be it is a consequence of the 
restriction of the set of states to asymptotically free states only. From our 
point of view there are only two alternatives: 

• the theory is independent of the gauge condition used. Then the 
Schroedinger theory is not the non-relativistic limit of the correspon-
dent field theory. 

• the theory depends on the gauge used, and it is in principle possible to 
verify it by experiment. 

3 Quasi-Classical Gravity 
But what about gravity? We have no quantum field theory for gravity. 
We can consider new, quasi-classical theories of gravitation including new 
equations for our new observables into the equations of general relativity. 
For example, we obtain new, interesting effects, if we consider the harmonic 
coordinate condition as a physical equation. This was done by Logunov 1 [4]. 
We obtain interesting fundamental differences to general relativity: 

• All solutions are defined in JR4. There are no nontrivial topologies in 
the theory. 

• The part of the black hole behind the horizon is not a part of the "full" 
solution, because we have another definition of a full solution in the 
theory. 

1 I cannot agree with his point of view that general relativity cannot describe the results 
of experiments in the classical situation. Here I agree with (5]. But the idea to consider 
the harmonic coordinate condition as a physical equation is very nice. 
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• Only the flat Friedmann metric is isotropic and homogeneous, since we 
have another definition of a homogeneous solution. The big bang is not 
a part of the solution (it is at x 0 ~ -oo ), but we obtain a singularity 
for T ~ oo and finite x 0 . 

• On the other hand experimental result are the same as in general re-
lativity, because the equations of general relativity are a part of the 
new theory. For example, the post-Newton parameters are the same 
as for general relativity, and the results about black holes for observers 
outside of the black hole also coincide with general relativity. 

• We have a new symmetry group - the group of affine transformations. 

This is a new theory, since we have new predictions about the behaviour of 
quasi-classical superposition states. Let's call this theory here quasi-classical 
gravity. But it is not an alternative theory, because there is no contradiction 
to general relativity and general relativity is their "classical limit" 2 • 

4 Interpretation 
We have some new terms in our theory. We need a physical and philosophical 
interpretation of these new terms. We give here an interpretation which 
revives the classical absolute time. The idea is to consider the new equations 
we have as equations for an absolute time and for absolute space coordinates: 

Dt = 0; Dxi = 0, i = 1, 2, 3; 

Now we have two time scales in our theory - the other is the path-
dependent time 

defined by metric tensor of general relativity. It will be interpreted (as in 
general relativity) as the time defined by clocks. It depends on the path of 
the clock and of the gravitational field. In quantum mechanics this time T 

2 Logunov considers his theory as an alternative theory to general relativity 
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will be uncertain because of the uncertainty of the path and the gravitational 
field. 

This interpretation reduces the symmetry group of the theory from the 
full affine group of the flat space-time JR4 to some affine· variant of the Galilei 
group 3 . This seams like a step back to the last century. But there are a lot 
of arguments for introducing an absolute time: 

• Why absolute time was thrown away from physics? There was a sym-
metry group (the Lorentz group) which was considered as the global, 
independent and fundamental symmetry group of nature. Now we know 
that this symmetry is only local, depends on the gravitational field and 
this field is. in reality a quantum, uncertain field. I think only the non-
measurability is ·not a sufficient reason to throw away absolute time. 

• It seams natural to distinguish between two notions of time - a me-
asurable time defined by clocks and a notion of time describing past, 
presence, future and_ causality. Consider, for example, the definition of 
time given by Newton [1): 

Absolute, true, and mathematical time, in itself, and from its 
own nature, flows equally, without relation to any thing external; 
and by other name called Duration. Relative, apparent, and vul-
gar time, is some sensible and external measure of duration by 
motion, whether accurate or unequable, which is commonly used 
instead of true time; as an hour, a day, a month, a year. It may 
be, that there is no equable motion, whereby time may be accura-
tely measured. All motions may be accelerated and retarded, but 
the flowing of absolute time is liable to no change. 

• Obviously the measurable aspect of time was developed by special and 
general relativity. But there is also a big difference between the no-
tion of time in classical mechanics and in quantum mechanics. It is a 
development of the other, absolute aspect of time: 

3 Here we have another difference of our theory with the "relativistic theory of gravity" 
of Logunov [4]. In the theory of Logunov there is a special-relativistic metric 'Yij which 
plays a central role in the interpretation, and the affine group reduces to the Poincare 
group. 
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- there is no standard self-adjoint operator for time measurement. 
For every time measurement we have to built some operator A 
depending of the Hamiltonian: [A, H] ::::::: iii. 
It's difficult to built such a time measurement operator, since the 
spectrum of the Hamiltonian is usually positive and it is in possible 
to define an A with [A, H] =iii. That means, time measurement 
is uncertain. 

superposition makes quantum theory global in space - for the 
description of a state at some moment we have to describe the full 
space. 

there is no superposition of states at different time. That means, 
the absolute time is defined exactly. 

That means, in general relativity and in quantum mechanics we consi-
der different things using the notion "time". It seams to be an illusion· 
to unify things in quantum gravity which are different already in clas-
sical quantum mechanics. 

• In our theory the gravitational field doesn't play such a fundamental 
role as in general relativity. It describes no longer the space-time it-
self and it's topology, because this space-time is independent of the 
gravitational field and his topology is given and trivial. The gravitati-
onal field describes the behaviour of meters, clocks and other physical 
objects in this absolute space-time. It seams natural to define such a 
fundamental thing as causality using this absolute space-time and not 
the gravitational field. Defining absolute space and absolute time is an 
easy way to define a causality. 

• If we have an absolute time we can use the apparatus of the classical 
quantum theory with states, observables and probabilities for the qu-
antization of gravity. The path integral is a very powerful instrument 
for quantization, but makes it really sense without states and proba.bi-
lities? May be renormalization of quantum gravity fails because there 
are used relativistic invariant schemes for a problem with another sym-
metry? 
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• For Einstein general relativity was more fundamental then quantum 
theory. Now most of physics think that the gravitational field must be 
quantized. The gravitational field looks like some space-time version 
of ~ gauge field which has to be unified with these theories. Bells 
theorem and it's experimental proof also have shown the power of the 
fundamental principles of quantum mechanics in relativistic area. I 
think it's time to say that quantum theory is more fundamental then 
general relativity. Reviving the absolute time of classical quantum 
mechanics is a step in this direction. 

Using this interpretation we get a new but in some kind "very old" picture 
of the world. May be you don't like this picture, but there is no contradiction 
with experimental facts. The most of the predictions of the theory are the 
same as in general relativity. More, there are additional predictions about the 
behaviour of quantum superpositional stat,es, which are not possible in gene-
ral relativity, but coincide with the predictions of the Schroedinger theory. 

• There is an absolute (affine) space JR3. 

• There is an absolute time t. 

• The space is filled by some ether. The ether will be described by the 
symmetric tensor 9i;(x, t) of signature (1, 3). 

• The motion of the ether will be described by the Einstein equations 
and the harmonic coordinate equation. 

• The factor dT = V9i;dxidxi defines the velocity of clocks which 1s 
influenced by the ether. 

• The velocity of light is some kind of sonic speed of the ether. 
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