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Abstract 

There are still many open questions concerning the relationship between (steady) 
kinetic equations, random particle games designed for these equations, and tran-
sitions, e.g. to fluid dynamics and turbulence phenomena. The paper presents 
some first steps into the derivation of models which on one hand may be used 
for the design of efficient numerical schemes for steady gas kinetics, and on the 
other hand allow to study the interplay between particle schemes and physical 
phenomena. 
Key words: stationary kinetic equation, numerical schemes. 

1 Introduction 
Numerics for nonlinear kinetic equations is dominated by Monte Carlo simulation schemes 
- at least in the cases when complex realistic situations are to be evaluated (1]. This 
is due to the fact that the Boltzmann collision operator is an at least five-dimensional 
integral which in each iteration step has to be calculated at each point in a discretized 
six-dimensional phase space. This is a task which seems to be too time and memory 
consuming (even on any of the present supercomputers) to be solved by application of 
any of the classical numerical discretization schemes. A way out is given by stochastic 
integration methods. Such methods seem to be superior to classical schemes whenever 
a .function to be integrated is either high-dimensional or irregular (or both) [2] - a sit-
uation which "is typical for the Boltzmann collisioD: integral. Such schemes are robust, 
allow in a natural way to model a lot of physical phenomena and are well-understood 
from a mathematical view point - as far as time evolution problems are concerned (3, 4]. 

On the other hand, Monte Carlo schemes are still not well understood for the calcu-
lation of stationary - in particular interior flows. There are many open questions ranging 
from systematic errors due to the nonlinearity of the collision operator [5] to the question 
whether certain features observed at numerical simulations are related to physical effects 
like turbulence or are artificial effects inherent to Monte Carlo schemes [6]. (However, 
such schemes have certain similarities to other random games which are designed to 
describe features of physical turbulence, see [7].) Further, random algorithms for gas 
kinetics may not be expected to yield the precision and resolution obtained nowadays 
for example in continuum flow calculations. Besides the fact that there are always fluc-
tuations in the order of magnitude of the inverse square root of the (local) number of 
particles, the major drawback is that the use of many modern numerical techniques is 
prohibited. For example, features like multigrid and adaptive grid techniques are very 
unlikely to be applied efficiently to particle simulations. 

Computer capacities have been rapidly increased during recent decades. In the 
field of numerics for the N avier Stokes equations, this development was accompanied 
by a tremendous progress. E.g., according to [8], a minimal (necessary, not sufficient) 
requirement for a code to be taken serious is that it properly resolves a Karman vortex 
street. A similar success for numerics of gas kinetics is in our opinion in the long 
run only possible, if alternatives (or better: supplements) to Monte Carlo schemes are 
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found. This paper is intended to provide some impulses into this direction for stationary 
equations. The scope is 

• Find an appropriate way for the decoupling of free flow and collision operators. A 
lot of calculational effort in Monte Carlo schemes corresponds to the preprocessing 
of data for collisions which do not take place (e.g. the sorting of particles in 
physical space, the choice of collision partners and the calculation of collision 
probabilities for all particles, although only a small fraction of particles suffer 
collisions). This should be avoided in an efficient scheme. 

• Find a way to discretize the collision integral. Due to the definitions of collision 
relations this is not straightforward. We propose an ansatz yielding a compromise 
between strongly simplifying models like BGK models (which are mainly used for 
deterministic numerical schemes, see e.g. [9] and the references cited there) and 
the original operator. The general framework presented here contains features of 
two-particle interactions and gives way to the hope that a hierarchy of models can 
be derived which on one end of the scale are quite coarse and rigorously tractable 
with the chance of studying features like turbulence and the :fluid-dynamic limit, 
and on the other end can be refined enough to serve as a basis for a realistic kinetic 
equation which can b.e solved by an efficient numerical scheme. 

• Develop a basis on which it is possible to compare results from different numerical 
schemes and to gain more insight in particular into random games and Monte 
Carlo simulations. 

2 Stationary boundary value problems 

2.1 A fixed point equation for stationary solutions 
We consider the boundary value problem for f = f ( x, v) 

V:c · \l:cf = J(f,J), !+(a,v) = ,,P(a,v) (2.1) 

on n x JRP, where n c IRq, q ~ p, is a bounded convex domain with smooth boundary 
an (i.e. the inner normal n(a) on an exists for all a E an). V:z; E IRq denotes the 
projection of v E JRP onto the subspace spanned by n. With 

ar+ := {(a,v): a E an,(n(a),vx) > O}, (2.2) 

f + = f lar + represents the flow through an into n and is prescribed by the fixed function 
'lj;. In many cases of interest, f + is given by some reflection law at the boundary, and 
thus 1f; depends on the outgoing flow f-. We do not consider this in the present paper. 
The collision operator J (., . ) is defined as 

J(f, f)(v) = J+(f)(v) - pf(v) (2.3) 
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with the density p defined by 

p(x) = f f(x,v)dv }IRP 

and the gain term 1+(.) given by 

l+(f)(v) = f f f(v')f(w')d'fldw. jIRP jB 

(2.4) 

(2.5) 

Here, B is the surface of the unit sphere in JRP with the normalized surface measure 
d'fl, and ( v', w') is obtained from ( v, w) via a continuous transform T : B x ]RP x ]RP --1' 
]RP X JRP, 

(v',w') = T11(v,w) =: (TJ 1)(v,w), TJ 2)(v,w)), (2.6) 

satisfying r; = id for all "l E B. From the convexity of 11 follows the existence of unique 
mappmgs 

~(x,v): (11XJRP)LJ8r+ ~ 811 (2.7) 

and 

r:i1xJRP~ffi+ (2.8) 

such that x = ~(x, v) + r(x, v) · V:z:. With this definition, mild solutions of the boundary 
value problem are defined as solutions of the fixed point equation 

. ( r(x,v) ) f(x, v) = ,,P( ~(x, v ), v) ·exp - Jo · p(x - svx)ds + 

f(.,,v) J+(f)(x - sv, v) ·exp (-la' p(x - av.,)da) ds (2.9) 

(see, e.g., [10]). 

2.2 An iteration scheme 
There are many ways to try to design iterative schemes for the numerical approximation 
of the fixed-point problem. E. g. one may attempt in the spirit of [11] to construct 
monotone sequences of upper and lower solutions converging to a solution. The study 
of convergent sequences is not the main objective of this paper. Therefore we restrict 
to the simplest iterative scheme which converges for the examples presented in the final 
section. It is given by 

j(n+l)( x, v) = .,P( ii>( x, v ), v). exp (- r(.,,v) p(n) ( x - sv.,)ds) + 

f(.,,v) J+(f(nl)(x - sv.,,v) ·exp (-la' p(nl(x - av.,)da) ds(2.l0) 
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with an appropriate choice for the initial guess f(o). It is reasonable to believe that in 
many situations such a scheme indeed converges to a stationary solution of the Boltz-
mann equation. In fact, for one-dimensional problems and with the density fixed at 
p = 1 (which may be achieved through a transformation of the one-dimensional space 
variable), a Monte Carlo version of this iteration was tested in [12], with evidence of 
convergence. 

It is useful to decouple the iteration into two problems of the following type: 

• Problem 1: Given (for each x) a function f = f(v), solve 

g = A[f,J] 

with a given bilinear operator A[.,.]. 

• Problem 2: Given functions g = g(x,v) and p = p(x), solve 

f(x, v) = ,P( if!(x, v ), v). exp (- r(z,v) p(x - sv,,)ds) + 

f"(z,v) g( x - sv,,, v) · exp ( - l' p( x - av,,)da) ds (2.12) 

For A[.,.] we choose a modification of the collision gain term J+, as will be described 
in section (3.2). The second integral at the right hand side of (2.12) becomes singular for 
Vx -+ 0. Therefore we continue discussing properties of A[.,.] for which the function f 
in problem 2 is well-defined. For simplicity, we restrict to the spatially one-dimensional 
case: n := [O, l]. For v E JRP denote by VJ_ the part of v orthogonal to Vx such that 
v = (vx, v.L)·. Define the space L00

,
1 := L00 ([0, 1], L1(JRP)) with corresponding norm 

ll-lloo,1, and Was the Banach space of functions f E L1 with 

llfllw := sup IPi1f(vx)I + llfllL1 < oo, 
lvzl9 

(2.13) 

where 

(2.14) 

is the projection off into Vx-direction. 

Theorem 1: Suppose A: L1 x L1 -+ W is a bounded bilinear operator. If f E L 00
,
1 is 

nonnegative, if g(x, v) = A[f(x, .), f(x, .)](v ), and if 

h(x, v) = ,P( if!(x, v ), v) ·exp (- f(z,•) p[f](x - sv,,)ds) + 

lr(z,•) g( x - sv,,, v) · exp (- f p[f] ( x - av,,)da) ds 
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(where p[f] is the density related to f), then h E L0011
, h is nonnegative, and there 

exists a constant K, such that 

!lhlloo,1 ~ 11~111 + K,' llJll~,1· (2.16) 

An immediate consequence is the boundedness of the recursive scheme at least for small 
data. Further, in the case of convergence we obtain a classical solution. 

Corollary: Define the sequence f(n) by equation (2.15) (with the replacements f -+ 
f(n)' h -+ J(n+l) ). 

a) If If 11~11 1 ~ 1/41'\, and if f(o) is nonnegative with f(o) ~ 1/21'\, then the sequence 
f(n) is also nonnegative and bounded by 1/2K,. 

b) If f(n) converges in W, then the limit is a classical solution of the fixed point 
problem. 

Proof of Theorem 1: The case 'lj; = 0 is trivial and is not discussed here. Because 
of the boundedness of A[.,.] we have 

sup llg(x, .)llw ~ llAll · llfll~,1· 
xE[0,1] 

(2.17) 

Suppose Vx -=/:- 0. We may assume Vx > 0. Then r( x, 'lJ) = x /vx, and 

.h(x, v) = 'lj;(O, v) ·exp(-~ fx p[f](s)ds) + ~ tz: g(s, v) ·exp(-~ f.x p[f](a)da) ds. 
Vx lo Vx lo Vx t1 . . . 

Define Pmax := SUPxe[o,l] llf( x,.) llL1. Then 

h( x, v) :'.:'. h0 ( x, v) := 1/;(0, v) ·exp ( x ·::a=) :2: 1/;(0, v) ·exp ( _ P::=) . (2.18) 

We conclude the existence of a Pmin > 0 such that p[h]( x) ~ Pmin· This yields 

1 l:z: ( ( x - s) . p . ) h(x,v)::; ~(O,v) + - g(s,v) ·exp - mm ds. 
V:z: 0 V:z: 

(2.19) 

A simple estimate shows that for arbitrary a, /3 > 0 

1 ( a) 1 ~ exp - /3 ~ a + /3. (2.20) 

It follows 

ix 1 
h(x,v)::; ~(O,v) + g(s,v) · ( ) ds 

0 V:z: + X - S • Pmin 
(2.21) 

and 

11 1 
Piih(x, v:z:) ~ Pi1~(0, vx) + sup llg(x, .)llw · I I t dt 

xE[O,l] 0 V:z; + · Pmin 
(2.22) 
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if Vx :::; 1. The same estimate with <I>(O, .) replaced by <I>(l, .) holds for -1 :::; Vx < 0. 
Since 

11 1 dt 
Vx ---t 0 lvxl + t · Pmin 

(2.23) 

defines a function in Lioc(lR), the estimate (2.22) controlls h(x,v) for lvxl:::; 1. A controll 
for lvxl > 1 is straightforward (just ignore the exponentials and 1/vx in (2.19)), and the 
theorem is proven. D 

We are going to discuss numerical schemes for these problems. Certainly, problem 2 
may be attacked by a classical integration scheme. Problem 1 is not straightforward if 
we want to work on a fixed grid in velocity space. Therefore we develop an ersatz model 
reflecting the correct evolution of certain moments due to two-particle interactions. 

3 A model gain term 

3.1 Basic ideas 
There are a lot of possibilities to model gain terms for kinetic collision operators. The 
spectrum ranges from the Boltzmann gain term, which is the best founded one in the 
setting of mesoscopic descriptions, and of which a special case has been introduced in 
section 2.1, to descriptions like those given by BGK-like models. While the first ones 
ar.e based on two-particle collisions providing physical conservation laws like momentum 
and energy conservation, the latter ones give merely a rough description based on local 
equilibria, where particles "forget" their pre-collision velocities 'during a collision. Such 
models cannot be based on two-particle m~chanics. 

Discrete velocity models like those surveyed in [13] are also based on two-particle 
mechanics; however, in general it is hard to find a "smooth" link between these models 
and the continuous velocity setting just by increasing the discrete-velocity domain. An 
exception is [14], where a .discrete velocity model is derived as a finite difference scheme 
for the continuous setting. 

In the long run, our aim is to formulate in a general setting a large class of two-
particle collision models with velocities on a regular grid which .serve as a bridge between 
theory and numerics for realistic applications. Our approach chosen here is somewhere 
between the original Boltzmann collision operator and BGK models. It is based on a 
probabilistic description of two-particle interactions which provides a correct treatment 
of certain physical quantities in the mean, but not for each realization. 

In our opinion, such a description allows for a broad range of models starting from 
very crude discrete velocity models (which can be efficiently treated theoretic.ally) to 
more and more refined models which come arbitrarily close to physical "reality" and 
which can nevertheless be treated with numerical efficiency. Our models are based on a 
weak formulation which is shortly introduced in the following section. 
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3.2 Model gain terms leaving invariant certain moments 
With A[f, J] = l+(f), Problem 1 of section 2.2 reads: Given the absolutely continuous 
measure f( v )dv, calculate g( v )dv as solution of the equation 

g(v) == r J, f(v')f(w')d'fJd2w. jlR.P B (3.24) 

Exploiting the symmetry properties of the collision kernel (in particular the fact that 
T71 is an involution), we end up with the following weak formulation (see [3]). Suppose 
that V is the set of continuous bounded test functions on lR.2. Multiplication of (3.1) 
with cp E V, integration and integral transformation (using dv' dw' == dvdw) leads to 

f cp(v)g(v)dv == f f f c/;(TJ1)(v,w))dw('TJ)f(v)d2vf(w)d2w for</> E V. (3.25) Jrn.2 Jrn.2 Jrn.2 j B 

Our intention is now to replace the right hand side by one that leaves the integral 
invariant for cp out of a finite dimensional space. Denote 

VH :=span( cpi, i == 1, ... N) (3.26) 

for a fixed set H = { c/;i, i = 1, ... , N} of (not necessarily bounded) test functions. For 
a continuous mapping S : Z x JRP x JRP ~ JRP (with an appropriate set Z) and a 
probability measuredµ on Z we call an equation 

Jm., <P(v )g( v )dv = JIR, JIR, fz <P(S(z, v, w))dµ(z)f(v )d2v f(w)d2w, <PE V (3.27) 

a "VH-invariant" rriodel problem for (3.1), if 

fz <P(S(z, v, w))dµ(z) =Ja <fo(TJ1l(v, w))dw(17) (3.28) 

for all v, w E JRP, cp E VH. It is this equation which is readily discretized if S is chosen 
appropriately. Let us point out that this formulation of a model problem preserves 
nonnegativity and the L1-norm of the original collision operator. 

3.3 Discretized velocity space 
We discuss a discretized model problem in a two-dimensional velocity space. For v = 
(v:i:,vyf denote c/;0 := 1, c/;1(v) := V:z:, c/;2(v) := vy, c/;a(v) := v;, and cp4(v) := v;. We 
develop a discretized model gain term leaving invariant these quantities. Using the 
explicit formula 

TJ1)(v,w) = v - {v -w,'TJ) · 'TJ, (3.29) 

straightforward integrations show that 

Ja <Po(TJ1l(v, w))dw(17) = 1, (3.30) 
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Define the index set G := {(i,j),i,j = -r, ... , r} for some 0 < r E JN and suppose that 
the velocity space lR2 is discretized to the finite regular grid Gh := { h · ( i, j), ( i, j) E 
G}. (Since it should not cause any confusion, we identify elements of G with the 
corresponding ones in Gh.) Suppose given two velocities v, w on the grid, v = ( i, j), 
w = (k, l). According to (3.30) to (3.34) we have to define a non-negative valued function 
Sijkl on the grid such that 

r 
2: Sijkl(m, n) = 1, (3.35) 

m,n=-r 

r i+k E m · Sijkz(m,n) ~ - 2-, 
m,n=-r . . 

(3.36) 

~ . ( ) j+l 
6 n · Sijkl m, n = -

2
-, 

m,n=-r 
(3.37) 

(3.38) 

(3.39) 

The simplest possible choice is to seek for a function factorizing in x- and y-direction, 
i.e. Sijkl(m, n) := Qijkz(m)~;kz(n) with the symmetry property ~;kz(n) = Q;kzi(n). 
This reduces the equations (3.12) to (3.16) to the three conditions 

r 
E Qijkz(m) = 1, (3.40) 

m=-r 
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I' i + k L m · Qijkl(m) = - 2-, 
m=-I' 

(3.41) 

(3.42) 

E.g. for r = 1 (i.e. for a nine-velocity model) this leads to a well-posed linear system 
of equations with the solution 

b- a 
Qijkl(-1) = -2-, 

Qiikl(O) = 1 - b, 

a+b 
Qijkl(l) = --

2 

(3.43) 

(3.44) 

(3.45) 

where a and bare the right hand sides of (3.41) and (3.42). Unfortunately, this solution 
may become negative for a few indices which makes slight modifications necessary (see 
section 5.1). 

4 Discretization and a deterministic scheme 

4.1 Well-posedness of the collision operator 
In the course of section 3.2, problem 1 (solution of (2.11)) was changed into the modified 
vers10n 

• Problem l': Suppose S : Z x ]RP x JRP -t JRP sufficiently regular, and dµ(z) a 
probability measure on Z. Given f = f(v) in a suitable function space V, find 
g E V such that for all <P in the dual spave V* 

j <P(v)g(v)dv = j j j <P(S(z,v,w))dµ(z)f(v)dvf(w)dw =: Tt<P· (4.1) 

By changing to the space of Borel measures, we can easily prove the well-posedness 
of the problem. 

Theorem 2: Suppose S is Borel measurable, and da. is a fi.nite Borel measure on JRP. 
Then there exists a unique fi.nite Borel measure d{3 on JRP satisfying 

f <P(v)d{3(v) = f f f <jJ(S(z,v,w))dµ(z)da.(v)da.(w) }IR.P }IR.P}ffi.P}z (4.2) 

for arbitrary continuous and bounded functions </J. 

9 



P r o o f : Since 

IJIR• JIR• fz <P( S( z, v, w) )dµ(z )da( v )da( w) I ~ 11</Jlloo · ( a(JRP) )2 , ( 4.3) 

and since for nonnegative cp the integral is nonD;egative, the mapping 

Ta: c/;---+ f f f c/;(S((z,v,w))dµ(z)da(v)da(w) Jrn.11 Jrn.11 J z 
( 4.4) 

is a positive functional on cg(JRP). Therefore (see, e.g. [15, u 4.9]) there exists au-finite 
measure df3 satisfying Tac/;= J cf;df3. Since Tac/;< oo for c/; E L00 (JRP), df3 is finite. From 
classical results follows that df3 is unique (see for example the Portmanteau theorem, 
(16]). D 

For cases of collision kernels described by transition densities K(.lv,w), we obtain again 
a classical model gain term. Suppose 

j <P(S(z, v, w))dµ(z) = j <P(v')K(v'lv, w)dv' ( 4.5) 

for all test functions </J, and v, w E JRP; then df3 is absolutely continuous, and the solution 
of ( 4.1) is given by 

g(v) = j j K(vlv',w')f(v')dv'f(w')dw'. (4.6) 

Since K(.lv,w) is then a probability density for ail v,w, we find that g E L1 (1R.P). In 
particular we conclude 

Corollary: Under the assumption ( 4.5), problem 1' is uniquely solvable in V = L1 (JR!'), 
with the solution g given by ( 4.6). 

4.2 The discretized problem 
Of course, the discretized case is included in Theorem 1. A formal discretization is 
obtained as follows. Denote the index set G and the grid Gh as in section 3~3. (We 
again identify elements a= (i,j) E G with the corresponding elements in Gh.) Replace 
in equation ( 4.1) f by a corresponding function on G; replace S: Z x lR2 x lR2 -+ lR2 by 
a discrete version Sd : Z x G x G -+ G. Choose as the set of test functions the functions 
?./; on·G. Then the right hand side of equation (4.1) turns into 

(4.7) 

With O"a13(!) := µ({z E Z: Sd(z,a,(3) = 1}), we obtain 

f 'lf;(Sd(z,a,{3))dµ(z) = L:ua13(!). Jz ~ 
( 4.8) 
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Using the basis { 8,.7)' E G} of the test function space, the discretized version of 
problem 1' reads: Find the function g on G satisfying 

9-r = I: O"a(3(T)Jaf(3· ( 4.9) 
a.,(3EG 

Like equation ( 4.6), this is an explicit formula for the solution g. Here, we do not discuss 
any convergence properties in the limit of the grid constant h -+ 0. This will be studied 
in a future paper. 

Let the one-dimensional physical space be given as the unit interval [O, 1]. Choose 
v E ]RP fixed, and a:= V:z;. Let's assume a~ a. The iteration scheme of the preceding 
section leads to an integral equation of the form 

- ( 1 rx ) rx/a. ( 1 J.x ) J(x) = 'ljJ ·exp - a lo p(s)ds +lo g(x - sa) ·exp - a s p(a)da ds ( 4.10) 

with ;j; and g given. A discretized version is given immediately as follows. Choose NE lN 
and denote h := 1/ N and Xi := i · h for i = 0, ... N. Write fi as the approximation of 
f(v) at Xi· Then / 0 = ;j;; in a straightforward manner, a conservative first order upwind 

· scheme is derived which leads to the recursive formula 

( 
h · Pk-1) h !k = 1 - a · fk-1 + a · 9k-1 · ( 4.11) 

(Of course, for a < 0, fk is determined from the vaiues at k + 1 rather than at k - 1.) 

5 Numerical experiments 

5.1 The setting 
We consider the nine-velocity model (i.e. r = 1, see section 3.3) on the slab n = [O, 1]. 
The transition probability of a velocity ( i, j) due to the influence of a" collision partner" 
(k, l) is given by the factorizing terms Sijkl with Qiikl defined by (3.19) to (3.21). These 
formulas do not guarantee nonnegativity. Therefore in all cases, for which one of the 
terms on the right hand side of (3.19) to (3.21) is negative, we modify into 

• Model 1: Qijkl(m) := 8imi 
this means that changes of some velocity components are simply ignored. 

• Model 2: Qi;kz(m) := 1/3 form= -1, 0, 1; 
this introduces a slight smearing out in the velocity space. 

Of course this modification could be avoided by a more elaborate discrete collision model. 
We leave this for a future paper. 

For the discretization, the step size in the position space is chosen to coincide with 
the parameter h in velocity space. 
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We compare a deterministic numerical scheme with a Monte Carlo simulation scheme. 
The deterministic scheme is obtained in a straightforward way by combining ( 4.9) (prob-
lem 1') with (4.11) (problem 2). The Monte Carlo scheme is a time evolution algorithm 
based on time-splitting of free flow and collisions. For the simulation of the collisions we 
use N anbu's scheme with the modification of [17] which was mathematically analyzed 
in [3]. The stationary approximation is obtained by time-averaging. 

5.2 Numerical results 
We perform three numerical experiments: The calculation of an equilibrium for the 
homogeneous Boltzmann equation, and steady slab solutions for a zero-gradient and a 
non-zero gradient velocity field - both for the deterministic and for the Monte Carlo 
scheme. 

1. Equilibrium solution: First, we calculate the homogeneous zero mean velocity equi-
librium state with density 1. The deterministic iteration converges for both model 
1 and 2. As expected for reasons of symmetry, the occupation densities p( i, j) for 
the velocities (i,j) depend only on Iii+ ljl. 

l~I +Iii 
0 
1 
2 

(1) 
0.2180 
0.1160 
0.0795 

(2) (3) 
0.2136 0.2136 
0.1224 0.1225 
0.0742 0.0741 

Tab 1: Equilibrium·p(i,j) 

(4) 
0.2196 
0.1215 
0.0736 

The Monte Carlo scheme exhibits a seemingly strange behaviour for model 1, since 
after a couple of time steps all particles are concentrated in merely one (or a few) 
velocity state. This state is random, but fixed once occupied by all particles. 
Though· seemingly surprising, this effect has already been observed for N anbu's 
scheme [18] and is due to, the effect that because of momentum fluctuations the 
particle system drifts from a zero mean velocity state into a random non-zero 
state and freezes there. Tab. 1 shows the deterministic results for model 1 ( 1) 
and model 2 (2), and MC results for model 2 for numbers of particles per velocity 
state N = 180 (3) and N = 18 (4). 

2. Zero gradient field: For inflow conditions at x = 0 and x = 1 given by this equilib-
rium state, a stationary solution is given which is constant along the interval [O, 1]. 
This solution is obtained by the deterministic calculation. For the Monte Carlo 
scheme the situation is different. We ran test cases with up to 20 particles per 
velocity state (i.e. 180 particles per spatial cell). As inflow we chose a constant i.e. 
non-fluctuating number of particles. As a result, we observed an approximatingly 
constant state in the interiour, however boundary layers at the boundaries x = 0 
and x = 1 (see Fig. 1 for the density profile). For model 1, the simulation result 
fluctuates - apart from the boundary layers - with an error of roughly 1 % (Fig. 
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1, solid line). The approximating 4-th order polynomial (dotted line) even lies 
within 0.3 % error. The error within the boundary layers increases to 2 %. For 
model 2, the situation is similar, however the constant state in the interior is 2 % 
too high. (The auxiliary lines in Fig. 1 indicate the solution p = 1 and the 2.5 % 
error bounds.) 

Fig.1: Equilibrium density profile from Monte Carlo simulation 

3. Non-zero gradient field: By modifying the inflow conditions, we generate a sym-
metric Vy-velocity gradient. Fig. 2 shows the profile of the first moment p · vy 

obtained from deterministic computations for different Knudsen numbers ... We 
recognize an almost constant slope for large Knudsen numbers (dotted line) and a 
constant (equilibrium) state in the interior with boundary layers for small Knudsen 
numbers (solid line). Fig. 3 reveals significant differences between the determin-
istic calculation (dotted line) and Monte Carlo simulations with 180 particles per 
cell (solid line). 

5.3 Some concluding remarks 
Ways to numerical high-resolution solutions are very restricted as long as one has to 
rely on Monte Carlo schemes. Deterministic schemes for model problems might be an 
alternative. Since existence and uniqueness results for steady solutions are very rare, 
both kinds of simulations should contribute to increase our knowledge and understand-
ing in these cases. There is a need for high-resolution solutions, which in the future 
may perhaps be designed from deterministic model problems. On the other hand, a 
systematic investigation of random particle games may help to understand a lot more 
about physical phenomena connected to fluctuations. 
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