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Abstract

In this paper a condition number for linear-quadratic two-stage stochastic optimization problems
is introduced as the Lipschitz modulus of the multifunction assigning to a (discrete) probability
distribution the solution set of the problem. Being the outer norm of the Mordukhovich coderivative
of this multifunction, the condition number can be estimated from above explicitly in terms of the
problem data by applying appropriate calculus rules. Here, a chain rule for the extended partial
second-order subdifferential recently proved by Mordukhovich and Rockafellar plays a crucial role.
The obtained results are illustrated for the example of two-stage stochastic optimization problems
with simple recourse.

1 Introduction

In numerical analysis, a condition number of a given mathematical problem represents an upper bound
on the ratio of the (relative) solution error to the (relative) data error. Its size provides information on
the difficulty of solving the problem and its reciprocal is often proportional to the perturbation distance
of the problem from ill-posedness. In [2] an increasing interest in conditioning of various optimization
models is detected (see, for example, [3, 7, 6, 11, 19]) and general concepts are developed for deriving
condition numbers of generalized equations.

In this paper, we consider convex stochastic optimization models of the form

min
{∫

Rs

g(x, ξ)P (dξ) : x ∈ X
}
, (1)

where X is a nonempty closed convex subset of Rm, P a probability distribution on Rs and g is an
extended real-valued measurable function on Rm × Rs such that g(·, ξ) is convex for all ξ in the
support of P . Particular cases of (1) are two-stage linear or linear-quadratic stochastic programs. Our
aim is to derive results on the conditioning of such optimization models.

So far the only paper studying conditioning of such stochastic optimization models is [17]. There, the
authors assumed for (1) that in addition X is polyhedral, P has finite support, g(·, ξ) is piecewise
linear for all ξ in the support of P and that (1) has a unique solution x0. Their approach consists in
considering empirical or Monte Carlo sampling methods for solving (1) and in studying the required
sample size N such that the unique (random) solution x̂N of the empirical approximation

min
{
N−1

N∑
i=1

g(x, ξi) : x ∈ X
}
, (2)

satisfies problem (1) with high probability. The ξi, i ∈ N, in (2) are independent and identically dis-
tributed Rs-valued random samples with common distribution P . Motivated by large deviation tech-
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niques they consider the number β > 0 such that

lim
N→∞

N−1 log (1− P (x̂N = x0)) = −β

as a condition measure of problem (1). More precisely, the number (2β)−1 is called condition number
of (1). Moreover, the authors derived an approximate formula for the condition number.

In this paper, we study linear-quadratic two-stage stochastic optimization problems (see [14]) and their
conditioning. Such problems may be introduced by considering the Lagrangian (see also [13])

L(x, z) = 〈c, x〉+ 1
2
〈x,Cx〉+ E

(
〈z, h(ξ)− T (ξ)x〉 − 1

2
〈z, Bz〉

)
(x ∈ X, z ∈ Z),

whereX and Z are nonempty convex polyhedra in Rm and Rk, respectively,B and C are symmetric
and positive semidefinite matrices, c ∈ Rm, h(ξ) is a random vector in Rk and T (ξ) a stochastic
k×m-matrix, and E denotes expectation with respect to a probability distribution P . Primal and dual
problems are then associated by general duality and given by

min
x∈X

max
z∈Z

L(x, z) and max
z∈Z

min
x∈X

L(x, z).

The primal problem is of the form

min
{
〈c, x〉+ 1

2
〈x,Cx〉+ E (Φ(x, ξ)) |x ∈ X

}
, (3)

where x is the first-stage decision and

Φ(x, ξ) = max
z∈Z

{
〈z, h(ξ)− T (ξ)x〉 − 1

2
〈z,Bz〉

}
. (4)

We assume that a (k, r)-matrix W and a vector q ∈ Rr are given and consider the following explicit
description of the polyhedron Z :

Z = {z ∈ Rk : W>z ≤ q}. (5)

As shown in the Appendix, (4) may be reformulated as

Φ(x, ξ) = inf
y≥0

{
〈q, y〉+ 1

2
〈h(ξ)− T (ξ)x−Wy,B−1(h(ξ)− T (ξ)x−Wy)〉

}
(6)

if B is positive definite. Hence, Φ(x, ξ) corresponds to minimal second stage (random) costs associ-
ated with a recourse decision y ∈ Rr taken upon observing ξ ∈ Rs and penalizing the violation of
the equality

Wy = h(ξ)− T (ξ)x (7)

by means of a quadratic penalty term instead of meeting (7) exactly as in classical two-stage linear
stochastic optimization. The latter would require to assume relative complete recourse. In the context
of two-stage linear-quadratic stochastic optimization we do not insist on this assumption.

As shown in [16, Theorems 9 and 23], solutions of two-stage stochastic programs do not depend in a
Lipschitzian way on the underlying probability distribution in general. More precisely, the behaviour of
the growth function

ψP (τ) = inf
{∫

Rs

g(x, ξ)P (dξ)− v(P )|d(x, S(P )) ≥ τ, x ∈ X
}

(τ ≥ 0) (8)
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near τ = 0 becomes important. Here, v(P ) and S(P ) are the optimal value and the solution set of
(1), respectively, and d(x, S(P )) refers to the distance of x ∈ X to S(P ). Lipschitzian dependence
can only be concluded if the function ψP (see (8)) has linear growth close to τ = 0. Such linear growth
condition is satisfied in two-stage linear stochastic programming if the support of P is finite.

Therefore, we assume that the random vector ξ has a discrete uniform probability distribution with
atoms or scenarios ξ1, . . . , ξN . Then the optimization problem (3) can be written as

min
{
〈c, x〉+ 1

2
〈x,Cx〉+N−1

∑N
i=1 Φ(x, ξi)|x ∈ X

}
. (9)

In order to study the dependence of solutions to (9) on the probability distribution we consider the
vector p :=

(
ξ1, . . . , ξN

)
of scenarios and introduce the solution set mapping S : RNs ⇒ Rm as

S(p) := {x ∈ X|x solves (9)}. (10)

Our aim is to apply concepts from [2] in order to associate a condition number with the two-stage
stochastic optimization problem (9).

2 Basic Concepts and Notation

As usual, we denote by ’gr M ’ the graph of some multifunction M .. We recall the following two basic
properties of multifunctions M : X ⇒ Y between metric spaces X, Y :

Definition 2.1. M has the Aubin property at a point (x̄, ȳ) ∈ grM if there exist L, δ > 0 such that

d (y,M (x1)) ≤ Ld (x1, x2) ∀x1, x2 ∈ Bδ(x̄)∀y ∈M (x2) ∩ Bδ(ȳ). (11)

As a weaker condition, M is said to be calm at (x̄, ȳ) ∈ grM if there exist L, δ > 0 such that

d (y,M (x̄)) ≤ Ld (x, x̄) ∀x ∈ Bδ(x̄)∀y ∈M (x) ∩ Bδ(ȳ).

The constant
lipM(x̄, ȳ) := inf {L|∃δ > 0 : (11)} (12)

is called the graphical modulus of M at (x̄, ȳ) [15, p.377]. It can be interpreted as the Lipschitz
modulus of the multifuction M . For the following definitions and properties we refer the reader to [9]
and [15].

Definition 2.2. Let C ⊆ Rm be a closed subset and x̄ ∈ C . The Mordukhovich normal cone to C at
x̄ is defined by

NC(x̄) :=
{
x∗|∃ (xn, x

∗
n)→ (x̄, x∗) : xn ∈ C, x∗n ∈ [TC(xn)]0

}
.

Here, [TC(xn)]0 refers to the Fréchet normal cone to C at xn, which is the negative polar of the
contingent cone

TC(x) := {d ∈ Rm |∃tk ↓ 0, dk → d : x+ tkdk ∈ C, ∀k} . (13)

to C at xn. For an extended-real-valued, lower semicontinuous function f : Rm → R̄ with |f(x̄)| <
∞, the Mordukhovich normal cone induces a subdifferential via

∂f(x̄) := {x∗| (x∗,−1) ∈ Nepi f (x̄, f(x̄))} .
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If f : Rm → R is locally Lipschitz around x̄ and g : Rm → R̄ with |g(x̄)| < ∞ is proper and lower
semicontinuous, then the following sum rule applies:

∂ (f + g) (x̄) ⊆ ∂f(x̄) + ∂g(x̄). (14)

Definition 2.3. LetM : Rn ⇒ Rm be a multifunction with closed graph. The Mordukhovich coderiva-
tive D∗M(x̄, ȳ) : Rm ⇒ Rn of M at some (x̄, ȳ) ∈ grM is defined as

D∗M(x̄, ȳ)(y∗) := {x∗ ∈ Rn| (x∗,−y∗) ∈ NgrM(x̄, ȳ)}

In case thatM is single-valued, i.e., ȳ = M(x̄), we simply writeD∗M(x̄) instead ofD∗M(x̄,M(x̄)).

If f : Rm → R is locally Lipschitz around x̄, then the following scalarization formula holds true:

D∗f(x̄)(y∗) = ∂ 〈y∗, f〉 (x̄). (15)

Definition 2.4. For a lower semicontinuous function f : Rn → R ∪ {∞} which is finite at x ∈ Rn

and for an element u ∈ ∂f(x) the second-order subdifferential of f is a multifunction ∂2f(x, u) :
Rn ⇒ Rn defined by

∂2f(x, u) (w) := (D∗∂f) (x, u) (w) ∀w ∈ Rn.

If ∂f(x) is single-valued, then, coherently with Definition 2.3, we simply write ∂2f(x).

Definition 2.5. For a lower semicontinuous function f : Rn × Rm → R ∪ {∞} which is finite at
(x, z) ∈ Rn×Rm, the partial subdifferential is defined as ∂xf(x, z) := ∂f (·, z) (x). Following [10],
for (x, z) ∈ Rn × Rm and any u ∈ ∂xf(x, z) the (extended) partial second-order subdifferential of
f is a multifunction ∂2

xf(x, z, u) : Rn ⇒ Rn × Rm defined by

∂2
xf(x, z, u) (w) := (D∗∂xf) (x, z, u) (w) ∀w ∈ Rn.

If ∂xf(x, z) is single-valued, then, coherently with Definition 2.3, we simply write ∂2
xf(x, z).

3 A condition number for linear-quadratic two-stage stochastic
optimization problems.

We consider the representation (4) of the optimal second-stage costs with the polyhedron Z defined
in (5):

Φ(x, ξ) = sup
z

{
〈h(ξ)− T (ξ)x, z〉 − 1

2
〈z,Bz〉 |W>z ≤ q

}
Throughout the rest of the paper we shall make the following assumptions for Φ:

� B is symmetric and positive definite.

� The polyhedron Z is nonempty and nondegenerate (i.e., it satisfies the Linear Independence
Constraint Qualification at all its points).
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� T and h are continuously differentiable.

As a consequence of these assumptions, Φ is finite-valued and Φ(·, ξ) is convex for any ξ ∈ Rs.
Now, the solution set to our optimization problem (9) is equivalently characterized by the generalized
equation

0 ∈ ∂xΨ(x, p) +NX(x), (16)

where ∂x and N denote the partial subdifferential and the normal cone, respectively, in the sense of
convex analysis and

Ψ(x, p) := 〈c, x〉+ 1
2
〈x,Cx〉+N−1

∑N
i=1 Φ(x, ξi) (x ∈ Rm, p =

(
ξ1, . . . , ξN

)
∈ RNs).

(17)
Consequently, the solution set mapping S defined in (10) can also be written as

S(p) = {x ∈ Rm|(16) is satisfied}. (18)

Following [2], we call lipS (p̄, x̄) as defined in (12) the condition number of problem (9) at a point
(p̄, x̄) ∈ grS. By definition, lipS (p̄, x̄) < ∞ if and only if S has the Aubin property at (p̄, x̄) (see
Def. 2.1). Moreover [15, Theorem 9.40], the condition number can be calculated as

lipS (p̄, x̄) = sup
x∗∈B

sup
p∗∈D∗S(p̄,x̄)(x∗)

‖p∗‖ , (19)

where D∗S (p̄, x̄) refers to the Mordukhovich coderivative of S at (p̄, x̄) (see Def. 2.3).

The following observation follows from standard results of parametric nonlinear programming (see,
e.g., [1]) via the positive definiteness of B:

Proposition 3.1. Let (x̄, ξ̄) ∈ Rm × Rs be arbitrary. Then, the partial function Φ(·, ξ̄) is strictly
differentiable with∇xΦ(x̄, ξ̄) = −T>(ξ̄)z(h(ξ̄)− T (ξ̄)x̄), where z(v) is the unique element of

argmax
W>z≤q

〈v, z〉 − 1
2
〈z,Bz〉 . (20)

Moreover,∇xΦ is locally Lipschitz around (x̄, ξ̄).

Corollary 3.1. Let x̄ ∈ Rm and p̄ =
(
ξ̄1, . . . , ξ̄N

)
∈ RNs. Then, the partial gradient∇xΨ(x̄, p̄) of

the function Ψ defined in (17) exists, is Lipschitz continuous around (x̄, p̄) and is given by

∇xΨ(x̄, p̄) = c+ Cx̄+N−1

N∑
i=1

∇xΦ(x̄, ξ̄i).

Now we are in a position to formulate an upper estimate for the coderivative of our solution mapping
S in (18) as it will be required in an upper estimation of the condition number (19):

Proposition 3.2. Let (p̄, x̄) ∈ grS, where x̄ ∈ X and p̄ :=
(
ξ̄1, . . . , ξ̄N

)
∈ RNs. Assume that the

multifunction
w 7→ {(p, x) |w ∈ ∇xΨ(x, p) +NX(x)} (21)

is calm at (0, p̄, x̄) (see Definition 2.1). Then,

D∗S (p̄, x̄) (x∗) ⊆
{
p∗
∣∣∃v∗ : (−x∗, p∗) ∈ ∂2

xΨ (x̄, p̄) (v∗)

+D∗NX(x̄,−∇xΨ (x̄, p̄)) (v∗)× {0}} . (22)
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Proof. By Corollary 3.1, there exists a neighbourhood U of (x̄, p̄) such that the solution mapping S is
locally described by

S(p) = {x|0 ∈ f(x, p) +NX(x)} ∀(x, p) ∈ U ,

where f(x, p) := ∇xΨ(x, p) is Lipschitz on U . From the equivalence

(p, x) ∈ grS ⇐⇒ g(p, x) := (x,−f(x, p)) ∈ grNX

we see that grS = g−1 (grNX) for a locally Lipschitzian mapping g. As observed in [18, Proposition
5.2], our calmness assumption implies even calmness of the multifunction

w := (w1, w2) 7→ {(p, x) |w2 −∇xΨ(x, p) ∈ NX(x+ w1)} = {(p, x) |g(p, x) + w ∈ grNX}

at (0, 0, p̄, x̄). This allows us to invoke [4, Theorem 4.1], in order to derive the inclusion

NgrS (p̄, x̄) ⊆
⋃
{D∗g (p̄, x̄) (w∗) |w∗ ∈ NgrNX

(g (p̄, x̄))} . (23)

With the partition w∗ = (u∗, v∗) and defining the functions π (p, x) := x and f̃ (p, x) := −f(x, p)

we obtain that g =
(
π, f̃

)
and, thus,

D∗g (p̄, x̄) (u∗, v∗) = ∂ 〈w∗, g〉 (p̄, x̄) = ∂
(
〈u∗, π〉+

〈
v∗, f̃

〉)
(p̄, x̄)

⊆ ∂ 〈u∗, π〉 (p̄, x̄) + ∂
〈
v∗, f̃

〉
(p̄, x̄) = (0, u∗) +D∗f̃ (p̄, x̄) (v∗) .

Here we exploited the sum rule (14) and the scalarization formula (15). Moreover, using the definition
of the coderivative it is easy to see by virtue of [15, Exercise 6.7] that

(x∗, p∗) ∈ D∗f (x̄, p̄) (−v∗)⇐⇒ (p∗, x∗) ∈ D∗f̃ (p̄, x̄) (v∗) .

As a consequence,

D∗g (p̄, x̄) (u∗, v∗) ⊆ {(p∗, x∗) | (x∗ − u∗, p∗) ∈ D∗f (x̄, p̄) (−v∗)} .

Combining this with (23) yields

D∗S (p̄, x̄) (x∗) ⊆ {p∗|∃ (u∗, v∗) ∈ NgrNX
(g (p̄, x̄)) : (−x∗ − u∗, p∗) ∈ D∗f (x̄, p̄) (−v∗)}

which leads to (22) upon recalling the definitions of g and f as well as the fact that D∗∇xΨ (x̄, p̄) =
∂2
xΨ (x̄, p̄) (see Def. 2.5).

4 Computation of ∂2
xΨ

In order to apply Proposition 3.2, we have to compute explicitly the partial second-order subdifferential
∂2
xΨ (explicit formulae for the other term D∗NX are available from the literature, see, e.g., [5]). As a

first step, we reduce the computation of ∂2
xΨ to that of ∂2

xΦ:
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Proposition 4.1. Under the assumption of Proposition 3.2 holding at some (p̄, x̄) ∈ grS, where
x̄ ∈ X and p̄ :=

(
ξ̄1, . . . , ξ̄N

)
∈ RNs one gets that, for all v∗ ∈ Rm,

∂2
xΨ (x̄, p̄) (v∗) ⊆

{(
C>v∗ +N−1

∑N

i=1
x∗i , N

−1p∗
)
| (x∗i , p∗i ) ∈ ∂2

xΦ
(
x̄, ξ̄i

)
(v∗) ,

(i = 1, . . . , N)
}
.

Proof. Defining, p :=
(
ξ1, . . . , ξN

)
and Φ̃i (x, p) := Φ (x, ξi) for i = 1, . . . , N and (x, p) in

a neighbourhood of (x̄, p̄), we may write Φ̃i = Φ ◦ ϑi, where ϑi (x, p) = (x, ξi) and infer that
∇xΦ̃i = (∇xΦ) ◦ Ai with a surjective matrix

Ai :=

(
I 0
0 Bi

)
; Bi :=

(
0, . . . , 0, I

i
, 0, . . . , 0

)
.

Now, the coderivative chain rule in [9, Theorem 1.66] yields that

D∗∇xΦ̃i (x̄, p̄) =
[
Ai
]>
D∗∇xΦ

(
x̄, ξ̄i

)
=
[
Ai
]>
∂2
xΦ
(
x̄, ξ̄i

)
(i = 1, . . . , N) .

On the other hand, ∇xΨ (x, p) = c + Cx + N−1
∑N

i=1∇xΦ̃i (x, p) by (17). Therefore, exploiting
Definition 2.5 and the calculus rules (14) and (15), one ends up at

∂2
xΨ (x̄, p̄) (v∗) = D∗∇xΨ(x̄, p̄) (v∗)

= ∂ 〈v∗,∇xΨ〉 (x̄, p̄) ⊆
(
C>v∗, 0

)
+N−1

N∑
i=1

∂
〈
v∗,∇xΦ̃i

〉
(x̄, p̄)

=
(
C>v∗, 0

)
+N−1

N∑
i=1

D∗∇xΦ̃i (x̄, p̄) (v∗)

=
(
C>v∗, 0

)
+N−1

N∑
i=1

[
Ai
]>
∂2
xΦ
(
x̄, ξ̄i

)
(v∗) .

Consequently, we arrive at the assertion of our Proposition via the inclusion

∂2
xΨ (x̄, p̄) (v∗) ⊆

{(
C>v∗, 0

)
+N−1

∑N

i=1

(
x∗i , B

>
i p
∗
i

)
| (x∗i , p∗i ) ∈ ∂2

xΦ
(
x̄, ξ̄i

)
(v∗) ,

(i = 1, . . . , N)
}
.

After reducing ∂2
xΨ to ∂2

xΦ we are faced now with the computation of the latter. In order to do so, it
will be convenient to write Φ in (4) as a composition

Φ(x, ξ) = θ (α(x, ξ)) , α(x, ξ) := h(ξ)− T (ξ)x, θ (v) := sup
W>z≤q

〈v, z〉 − 1
2
〈z,Bz〉 (24)

Now, a chain rule for partial second-order subdifferentials recently proved by Mordukhovich and Rock-
afellar [10, Theorem 3.1] allows us to derive the following further reduction of calculus:
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Lemma 4.1. Let x̄ ∈ Rm and ξ̄ ∈ Rs be such that T (ξ̄) is surjective. Then, for all v∗ ∈ Rm, it holds
that

∂2
xΦ
(
x̄, ξ̄
)

(v∗) = −
(
0,∇>

〈
z
(
α(x̄, ξ̄)

)
, T (·) v∗

〉 (
ξ̄
))

+
(
−T (ξ̄),∇h

(
ξ̄
)
−∇ (T (·) x̄)

(
ξ̄
))>

∂2θ
(
α(x̄, ξ̄)

) (
−T (ξ̄)v∗

)
,

where z (v) was introduced in Proposition 3.1.

Proof. The surjectivity of∇xα(x̄, ξ̄) = −T (ξ̄) allows us to apply the above-mentioned chain rule in
order to derive that

∂2
xΦ
(
x̄, ξ̄
)

(v∗) =
(
∇2
xx 〈z̄, α〉

(
x̄, ξ̄
)
v∗,∇2

xξ 〈v̄, α〉
(
x̄, ξ̄
)
v∗
)

+(
∇xα

(
x̄, ξ̄
)
,∇ξα

(
x̄, ξ̄
))>

∂2θ
(
α
(
x̄, ξ̄
)
, z̄
) (
∇xα

(
x̄, ξ̄
)
v∗
)
,

where z̄ is uniquely defined by the equation

∇xΦ
(
x̄, ξ̄
)

=
[
∇xα

(
x̄, ξ̄
)]>

z̄ = −T>(ξ̄)z̄.

Hence, z̄ = z
(
α(x̄, ξ̄)

)
, where z (v) was introduced in Proposition 3.1 as unique element of (20).

Since also
∇xΦ

(
x̄, ξ̄
)

= −T>(ξ̄)∇θ(α
(
x̄, ξ̄
)
)

by (24), the injectivity of−T>(ξ̄) yields that z̄ = ∇θ(α
(
x̄, ξ̄
)
) which allows us to omit the argument

z̄ in the expression ∂2θ
(
α
(
x̄, ξ̄
)
, z̄
)
. Taking into account that

∇2
xx 〈z̄, α〉

(
x̄, ξ̄
)
v∗ = 0

∇2
xξ 〈z̄, α〉

(
x̄, ξ̄
)
v∗ = −

[
∇〈z̄, T (·) v∗〉

(
ξ̄
)]>

∇ξα
(
x̄, ξ̄
)

= ∇h
(
ξ̄
)
−∇ (T (·) x̄)

(
ξ̄
)
,

we arrive at the asserted formula.

Now, it remains to provide an explicit formula for the second order subdifferential ∂2θ. Before we do
so, we recall the following

Proposition 4.2. [5, Corollary 3.5] Consider a polyhedron P := {u|Au ≤ b}. Fix arbitrary ū ∈ P
and w̄ ∈ NP (ū). Let the Linear Independence Constraint Qualification be satisfied at ū. Denote by
I := {i| 〈ai, ū〉 = bi} the index set of active rows of A at ū and by J := {i ∈ I|λi > 0} the index
set of strictly positive multipliers, where λ is the unique solution of

∑
i∈I λiai = w̄. Then,

D∗NP (ū, w̄) (s∗) =pos {ai|i ∈ I : 〈ai, s∗〉 > 0}+ span {ai|i ∈ I : 〈ai, s∗〉 = 0} if s∗ ∈
⋂
i∈J

a⊥i ,

∅ else

Here, ’pos’ and ’span’ refer to the convex cone and linear subspace, respectively, generated by the
elements in the corresponding set.
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Proposition 4.3. For any v̄, w∗ ∈ Rr, the second-order subdifferential of the function θ in (24) calcu-
lates as

∂2θ (v̄) (w∗) = {z∗|Bz∗ − w∗ ∈ D∗NZ (z (v̄) , v̄ −Bz (v̄)) (−z∗)}

=


{
z∗
∣∣∣∣Bz∗ − w∗ ∈ pos {wi|i ∈ I : 〈wi, z∗〉 < 0}

+ span {wi|i ∈ I : 〈wi, z∗〉 = 0}

}
if z∗ ∈

⋂
i∈J w

⊥
i ,

∅ else,

where z (v̄) refers to the unique element of (20) and - with respect to the notation introduced in (5) -
the wi represent the columns of the matrix W . Moreover I := {i| 〈wi, z (v̄)〉 = qi} is the index set
of active rows of W> at z (v̄) and J := {i ∈ I|λi > 0} is the index set of strictly positive multipliers,
where λ denotes the unique solution of

∑
i∈I λiwi = v̄ −B z (v̄).

Proof. Given the definition of θ in (24) and applying Proposition 3.1 to the special case h(ξ) = 0 and
T (ξ) = −I for all ξ, we see that θ is strictly differentiable with ∇θ(v) being the unique element of
(20), i.e., ∇θ(v) = z(v). Moreover, ∇θ is locally Lipschitz. With Z defined in (5), we deduce from
(20) the equivalence

(v, z) ∈ gr∇θ ⇐⇒ v −Bz ∈ NZ (z)⇐⇒ (z, v −Bz) ∈ grNZ .

Hence gr∇θ = L−1grNZ , where L(v, z) = (z, v −Bz) is a surjective linear mapping. Then,
recalling the symmetry of B, [15, Exercise 6.7] yields that

Ngr∇θ (v̄,∇θ (v̄)) =

(
0 I
I −B

)
NgrNZ

(∇θ (v̄) , v̄ −B∇θ (v̄)) .

Exploiting the corresponding definitions, this last relation entails the first equality asserted in this propo-
sition. Now, with Z defined in (5) satisfying the Linear Independence Constraint Qualification (see
basic assumptions imposed at the beginning of Section 3), the assertion of the proposition follows
immediately from Proposition 4.2.

5 An upper estimate for the condition number

5.1 An upper estimate for D∗S

Collecting the results of Theorem 3.2, Proposition 4.1 and Lemma 4.1, we arrive at the following upper
estimate for the coderivative of the solution mapping S in (18):

Theorem 5.1. Let (p̄, x̄) ∈ grS, where x̄ ∈ X and p̄ :=
(
ξ̄1, . . . , ξ̄N

)
∈ RNs. Assume that the

multifunction (21) is calm at (0, p̄, x̄) and that the matrices T (ξ̄i) are surjective for i = 1, . . . , N .

9



Then,

D∗S (p̄, x̄) (x∗) ⊆


p∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃v∗∃u∗ ∈ D∗NX(x̄,−∇xΨ (x̄, p̄)) (v∗) ,

∃z∗i ∈ ∂2θ
(
h(ξ̄i)− T (ξ̄i)x̄

)
− T (ξ̄i)v∗) (i = 1, . . . , N) :

N−1

N∑
i=1

[
T (ξ̄i)

]>
z∗i = C>v∗ + x∗ + u∗,

p∗i = N−1
(
−∇>〈v̄, T (·)v∗〉

(
ξ̄i
)

+
[
∇h
(
ξ̄i
)
−∇(T (·)x̄)

(
ξ̄i
)]>

z∗i

)
,

(i = 1, . . . , N) .


In the following Proposition we provide an instance under which the calmness assumption of the
previous Theorem is satisfied:

Proposition 5.1. If T is a constant mapping, i.e. T (ξ) ≡ T , and h is an affine linear mapping, i.e.
h (ξ) = Aξ + b, then the calmness condition of Proposition 3.2 is satisfied.

Proof. Denote by M the mapping defined in (21). Putting z =
(
z1, . . . , zN

)
and, as before, p =(

ξ1, . . . , ξN
)
, we introduce the sets

Λ1 : =
{

(y, p, x, z) |
(
x, y − c− Cx−N−1T>

∑N

i=1
zi
)
∈ grNX

}
Λi

2 : =
{

(y, p, x, z) |
(
Aξi + b− Tx, zi

)
∈ gr∇θ

}
(i = 1, . . . , N) .

Then, grM = π
(
Λ1 ∩ Λ1

2 ∩ · · · ∩ ΛN
2

)
, where π denotes the projection onto the first 3 coordinates.

Indeed, by definition of M and by Corollary 3.1,

(y, p, x) ∈ grM ⇐⇒ y − c− Cx−N−1

N∑
i=1

∇xΦ(x, ξi) ∈ NX(x).

Since∇xΦ(x, ξi) = −T>∇θ (h (ξi)− Tx) for i = 1, . . . , N by (24), it follows that

(y, p, x) ∈ grM ⇐⇒ ∃z : (y, p, x, z) ∈ Λ1 ∩ Λ1
2 ∩ · · · ∩ ΛN

2 ,

which amounts to the asserted identity. Now, the graph of the normal cone mapping to a polyhedron
such as grNX can be represented as a finite union of polyhedra. Hence Λ1 as a preimage of such set
under an affine linear mapping is a finite union of polyhedra itself. Moreover, with the same argument,
the relation gr∇θ = L−1grNZ used in the proof of Proposition 4.3 reveals that gr∇θ too is a finite
union of polyhedra and, hence, so are the sets Λ1

2, . . . ,Λ
N
2 as preimages of gr∇θ under affine linear

mappings. It follows that the intersection Λ1 ∩ Λ1
2 ∩ · · · ∩ ΛN

2 is also a finite union of polyhedra.
Consequently, grM is a finite union of polyhedra (recall that the projection of a polyhedron is a
polyhedron). Now, calmness of M at any point of its graph is a result of Robinson’s Theorem [12].

Combining Proposition 5.1 with Theorem 5.1 and Proposition 4.3, we may draw the following conclu-
sion for a simplified setting:
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Corollary 5.1. Let (p̄, x̄) ∈ grS, where x̄ ∈ X and p̄ :=
(
ξ̄1, . . . , ξ̄N

)
∈ RNs. Assume that

T (ξ) ≡ T , and h (ξ) = Aξ + b. Moreover, let T be surjective. Then,

D∗S (p̄, x̄) (x∗) ⊆


p∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃v∗∃u∗ ∈ D∗NX(x̄,−c− Cx̄+N−1T>
N∑
i=1

z(v̄i)) (v∗)

∃z∗i : Bz∗i + Tv∗ ∈ D∗NZ(z(v̄i), v̄i −Bz(v̄i))(−z∗i )
(i = 1, . . . , N)

N−1T>
N∑
i=1

z∗i = C>v∗ + x∗ + u∗

p∗i = N−1A>z∗i , v̄i = Aξ̄i + b− T x̄ (i = 1, . . . , N)


(25)

where z(v) is the unique element of (20).

Hence, D∗S (p̄, x̄) (x∗) is contained in a set which is given in terms of the data of the stochastic
program and of the Mordukhovich coderivative of the normal cone mappings to the polyhedra X and
Z , respectively. The latter may be computed by Proposition 4.2.

5.2 Application to conditioning in the case of simple recourse

We apply the result of the previous section to the special setting of so-called simple recourse. More
precisely, we assume that our two-stage stochastic optimization problem has the following (primal)
form:

min
x∈X
〈c, x〉+

σ

2
‖x‖2 +N−1

N∑
i=1

Φ(x, ξi),

where ξi ∈ Rs (i = 1, . . . , N) are realizations of the random vector ξ and where

X:= {x ∈ Rm|Dx ≤ f}
Φ(x, ξ):= sup

−q−≤z≤q+
〈Aξ + b− Tx, z〉 − τ

2
‖z‖2 .

Clearly, this problem fits the model (9) with

q :=
(
q+, q−

)
, W := (I| − I) , B := τI, C := σI, h(ξ) := Aξ + b, T (ξ) ≡ T.

in (6). As mentioned in the introduction, the matrix B−1 = τ−1I induces a penalty on violating the
constraint (7), hence we may interprete τ−1 as a penalty parameter. We assume that the second
stage costs are strictly positive (q+

j , q
−
j > 0 for all j) such that the rectangle [−q−, q+] satisfies our

basic assumption of Linear Independence Constraint Qualification. Our first observation relates to the
second conclusion in (25):

Lemma 5.1. Let T be surjective and let ξ, z∗ ∈ Rr, x, v∗ ∈ Rm be such that

Bz∗ + Tv∗ ∈ D∗NZ (z (v) , v −B z(v) (−z∗) .
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Here, v := Aξ + b− Tx and z(v) is the unique element of (20). Then,∣∣z∗j ∣∣ ≤ τ−1 ‖tj‖ ‖v∗‖ if j ∈ {1, . . . , r}
z∗j = 0 if j ∈ J1 ∪ J2

,

were, tj denotes the jth row of T and

J1 : =
{
j ∈ {1, . . . , r} |zj (v) = q+

j , 〈aj, ξ〉+ bj − 〈tj, x〉 > τq+
j

}
J2 : =

{
j ∈ {1, . . . , r} |zj (v) = −q−j , 〈aj, ξ〉+ bj − 〈tj, x〉 < −τq−j

}
,

with aj referring to the jth row of A.

Proof. Specifying the matrix W in Proposition 4.3 to our setting, we have that its columns are given
by wj = ej and wj+r = −ej for j = 1, . . . , r, where ej refers to the jth canonical vector in Rr.
Therefore, the index set I introduced in Proposition 4.3 takes in our setting the form

I =
{
j ∈ {1, . . . , r} |zj (v) = q+

j

}
∪
{
j ∈ {r + 1, . . . , 2r} |zj−r (v) = −q−j−r

}
.

Similarly, the index set J introduced in Proposition 4.3 takes the form

J = {j ∈ {1, . . . , 2r} |λj > 0} ,

where λ is the unique solution of∑
j∈I∩{1,...,r}

λjej −
∑

j∈I∩{r+1,...,2r}

λjej−r = v −B z (v) . (26)

Observe that one cannot have j ∈ I and j+r ∈ I simultaneously for the same index j ∈ {1, . . . , r}
due to q+

j > 0 > −q−j−r. Consequently, recalling that B = τI , (26) yields

λj = vj − τzj (v) = vj − τq+
j if j ∈ I ∩ {1, . . . , r}

−λj = vj−r − τzj−r (v) = vj−r + τq−j−r if j ∈ I ∩ {r + 1, . . . , 2r} .

It follows that

J =
{
j ∈ {1, . . . , r} |zj (v) = q+

j , 〈aj, ξ〉+ bj − 〈tj, x〉 > τq+
j

}
∪{

j ∈ {r + 1, . . . , 2r} |zj−r (v) = −q−j−r, 〈aj−r, ξ〉+ bj−r − 〈tj−r, x〉 < −τq−j−r
}

Now, by Proposition 4.3, 〈z∗, wj〉 = 0 for all j ∈ J . With respect to the index sets J1, J2 introduced
in the statement of this Lemma, the following holds true: If j ∈ J1, then j belongs to the first set in
the union above, hence j ∈ J . Then, 0 = 〈z∗, wj〉 = z∗j . Similarly, if j ∈ J2, then j + r belongs to
the second set in the union above, hence j + r ∈ J . Then, 0 = 〈z∗, wj+r〉 = −z∗j . This proves the
second statement in the assertion of this Lemma. Next, let j ∈ {1, . . . , r} be arbitrary. The relation
Bz∗ + Tv∗ ∈ D∗NZ (z (v) , v −B z(v) (−z∗) translates by Proposition 4.3 in our setting to

τz∗ + Tv∗ ∈ pos {wj|j ∈ I : 〈wj, z∗〉 < 0}+ span {wj|j ∈ I : 〈wj, z∗〉 = 0}

or to

τz∗+Tv∗ =
∑

k≤r,k∈I,z∗k<0

λakek−
∑

k≤r,k+r∈I,z∗k>0

λbkek+
∑

k≤r,k∈I,z∗k=0

µakek+
∑

k≤r,k+r∈I,z∗k=0

µbkek (27)
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for certain coefficients λak, λ
b
k ≥ 0 and µak, µ

b
k ∈ R. Now, if z∗j = 0, then the estimate in the first

statement in the assertion of our Lemma is trivially satisfied. Otherwise, if z∗j 6= 0, then by (27),

τz∗j + 〈tj, v∗〉 =


λaj ≥ 0 if j ∈ I, z∗j < 0,

−λbj ≤ 0 if j + r ∈ I, z∗j > 0,

0 else.

In the first case, one has that 0 > z∗j ≥ −τ−1 〈tj, v∗〉 which directly implies the asserted estimate∣∣z∗j ∣∣ ≤ τ−1 ‖tj‖ ‖v∗‖. The second case follows analogously. The third case is evident as well. This
proves the first statement in the assertion of this Lemma.

Observe that the index sets J1, J2 introduced in Lemma 5.1 represent those components j of the
solution z (v) of problem (20) for v := Aξ + b− Tx which are strongly active (i.e., which are active
with respect to the constraints −q− ≤ z ≤ q+ and for which the associated Lagrange multiplier
is strictly positive). This Lemma eventually allows us to calculate an upper estimate for the condition
number in case of simple recourse. To this aim, we fix some x̄ ∈ X and p̄ :=

(
ξ̄1, . . . , ξ̄N

)
∈ RNs

such that x̄ ∈ S (p̄), i.e., 0 ∈ ∇xΨ(x̄, p̄) +NX(x̄) for Ψ defined in (17). With di referring to the rows
of D in the description Dx ≤ f of the polyhedron X , this implies that

∇xΨ(x̄, p̄) =
∑

i∈I
λidi

(
Ĩ := {i| 〈di, x̄〉 = fi}

)
(28)

for certain λi ≤ 0
(
i ∈ Ĩ

)
. For each i = 1, . . . , N we put v̄i := Aξ̄i + b − T x̄ and introduce the

index sets

J1(i) : =
{
j ∈ {1, . . . , r} |zj

(
v̄i
)

= q+
j ,
〈
aj, ξ̄

i
〉

+ bj − 〈tj, x̄〉 > τq+
j

}
J2(i) : =

{
j ∈ {1, . . . , r} |zj

(
v̄i
)

= −q−j ,
〈
aj, ξ̄

i
〉

+ bj − 〈tj, x̄〉 < −τq−j
}
,

i.e., the same index sets characterizing strongly active components in the solution of problem (20)
as in Lemma 5.1 but now related to the different scenarios ξ̄i. This allows us to define the following
quantity

∆(T ) :=
∑N

i=1
∆i(T ), ∆i(T ) :=

 ∑
j∈{1,...,r}\(J1(i)∪J2(i))

‖tj‖2

1/2

(i = 1, . . . , N) .

Observe that ∆(T ) increases not only with increasing elements of the matrix T but also with decreas-
ing number of strongly active components in the scenario-dependent solutions z (v̄i) of the problems

max
−q−≤z≤q+

〈v̄i, z〉 −
τ

2
‖z‖2 . (29)

Clearly, 0 ≤ ∆i(T ) ≤ ‖T‖F , where ‖·‖F refers to the Frobenius norm. Here, the minimum is attained
if all components of z (v̄i) are strongly active (i.e., z (v̄i) equals a corner of the rectangle [−q−, q+]
and all Lagrange multipliers are strictly positive). In contrast, the maximum is attained if no component
is strongly active (e.g., z (v̄i) lies in the interior of the rectangle [−q−, q+] or it lies on the boundary
of this rectangle but all Lagrange multipliers equal zero). We have the following upper estimate for the
condition number:
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Theorem 5.2. In the setting specified above, assume that even λi < 0
(
i ∈ Ĩ

)
in (28) , i.e., strict

complementarity holds at x̄. Moreover, let T be surjective. Finally, let the parameters σ and τ (defining
the matrices C = σI and B = τI) satisfy the relation

τσ > N−1 ‖T‖∆(T ). (30)

Then, the condition number lipS (p̄, x̄) as introduced in (19), can be estimated by

lipS (p̄, x̄) ≤ ‖A‖(
[∆(T )]−1Nστ − ‖T‖

) .
Proof. In order to estimate lipS (p̄, x̄), fix an arbitrary x∗ with ‖x∗‖ ≤ 1 and an arbitrary p∗ ∈
D∗S (p̄, x̄) (x∗). Our assumptions allow us to apply Corollary 5.1. Accordingly, there exist u∗, v∗ and
z∗i satisfying the relations in (25). In particular,

u∗ ∈ D∗NX

(
x̄,−c− Cx̄+N−1T>

N∑
i=1

z(v̄i)

)
(v∗) .

The assumption of strict complementarity yields that v∗ ∈ KerDI and u∗ ∈ ImD>I , where DI is
the reduction of D to its active rows (see, e.g., [5, Corollary 3.7]). This entails that 〈u∗, v∗〉 = 0 which
may be exploited in order to reduce the first equation in (25) to

N−1T>
N∑
i=1

〈z∗i , v∗〉 = σ ‖v∗‖2 + 〈x∗, v∗〉 ,

where z∗i is such that

Bz∗i + Tv∗ ∈ D∗NZ(z(v̄i), v̄i −Bz(v̄i))(−z∗i ) (i = 1, . . . , N) .

From here, we get the estimate

σ ‖v∗‖ ≤ 1 +N−1 ‖T‖
N∑
i=1

‖z∗i ‖ . (31)

Now, for each such z∗i with components z∗i,j we have by Lemma 5.1, that

‖z∗i ‖
2 =

∑
j∈{1,...,r}\(J1(i)∪J2(i))

(
z∗i,j
)2 ≤ τ−2 ‖v∗‖2

∑
j∈{1,...,r}\(J1(i)∪J2(i))

‖tj‖2 ,

whence, with ∆i(T ) as introduced in the statement of this Theorem,

‖z∗i ‖ ≤ τ−1 ‖v∗‖∆i(T ) and
N∑
i=1

‖z∗i ‖ ≤ τ−1 ‖v∗‖
∑N

i=1
∆i(T ) ≤ τ−1 ‖v∗‖∆(T ).

Combining this with (31) leads along with (30) to ‖v∗‖ ≤ (σ −N−1τ−1 ‖T‖∆(T ))
−1

. Now, the
second equation in (25) may be exploited to derive

‖p∗i ‖ ≤ N−1 ‖A‖ ‖z∗i ‖ ≤ N−1τ−1∆i(T ) ‖A‖ ‖v∗‖

≤ N−1τ−1∆i(T ) ‖A‖
(
σ −N−1τ−1 ‖T‖∆(T )

)−1
.
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Hence,

‖p∗‖ =

(
N∑
i=1

‖p∗i ‖
2

)1/2

≤ ‖A‖
(Nστ − ‖T‖∆(T ))

(
N∑
i=1

∆2
i (T )

)1/2

≤ ‖A‖∆(T )

(Nστ − ‖T‖∆(T ))
.

Since x∗ with ‖x∗‖ ≤ 1 and p∗ ∈ D∗S (p̄, x̄) (x∗) were arbitrarily chosen, the asserted estimate for
the condition number follows.

The result of the Theorem can be roughly interpreted as follows: the condition number decreases with
σ but increases with the norms ‖T‖ , ‖A‖, with the penalty parameter τ−1 and with ∆(T ) (i.e., with a
decreasing number of strongly active components in the solutions of problems (29)). At the first glance
one might have the impression that the condition number decreases also with an increasing number
N of scenarios. One has to take into account, however, that the quantity ∆(T ) itself depends on N
(the number of terms in the sum), hence it is a better idea to interprete the expression [∆(T )]−1N =
[∆(T )/N ]−1 as a mean number of non strongly active components in the solutions of problems (29).

Appendix

Equivalence between (4) and (6): We consider the second-stage costs as given in (4) with Z = {z ∈
Rk : W>z ≤ q}. From [15, Example 11.43], one derives by duality that

Φ(x, ξ) = sup
W>z≤q

{
〈h(ξ)− T (ξ)x, z〉 − 1

2
〈z,Bz〉

}
= sup

z

{
〈h(ξ)− T (ξ)x, v〉 − 1

2
〈z,Bz〉 −

{
supy≥0

〈
W>z − q, y

〉}}
Consequently, we may rewrite Φ(x, ξ) as

Φ(x, ξ) = inf
y≥0

{
〈q, y〉+ sup

z

{
〈h(ξ)− T (ξ)x−Wy, z〉 − 1

2
〈z,Bz〉

}}
.

If one assumes that B is positive definite, it follows

sup
z

{
〈h(ξ)− Tξ)x−Wy, v〉 − 1

2
〈z, Bz〉

}
=

1
2
〈h(ξ)− T (ξ)x−Wy,B−1 (h(ξ)− T (ξ)x−Wy)〉

and, hence,

Φ(x, ξ) = inf
y≥0

{
〈q, y〉+ 1

2
〈h(ξ)− T (ξ)x−Wy,B−1(h(ξ)− T (ξ)x−Wy)〉

}
.
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