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Abstract

This paper is concerned with the inverse scattering of time-harmonic elastic waves from rigid

periodic structures. We establish the factorization method to identify an unknown grating surface from

knowledge of the scattered compressional or shear waves measured on a line above the scattering

surface. Near-field operators are factorized by selecting appropriate incident waves derived from

quasi-periodic half-space Green’s tensor to the Navier equation. The factorization method gives rise

to a uniqueness result for the inverse scattering problem by utilizing only the compressional or shear

components of the scattered field corresponding to all quasi-periodic incident plane waves with a

common phase-shift. A number of computational examples are provided to show the accuracy of

the inversion algorithms, with an emphasis placed on comparing reconstructions from the scattered

near-field and those from its compressional and shear components.

1 Introduction

The inverse scattering problem of recovering an unknown grating profile (periodic structure) from the

scattered field is of great importance, e.g., in diffractive optics, quality control and design of diffractive

elements with prescribed far-field patterns [7, 32]. Consequently, there is a vast literature on the re-

construction of grating interfaces modeled by the Maxwell equations or the two-dimensional Helmholtz

equation (see e.g. [1, 5, 6, 20, 22, 19, 16, 28, 30, 33, 34]). The inverse elastic scattering by periodic

structures has also a wide field of applications, particularly in geophysics, seismology and nondestructive

testing. For instance, identifying fractures in sedimentary rocks can have significant impact on the pro-

duction of underground gas and liquids by employing controlled explosions. The sedimentary rock under

consideration can be regarded as a homogeneous transversely isotropic elastic medium with periodic

vertical fractures that can be extended to infinity in one of the horizontal directions. Using an elastic plane

wave as an incoming source, we thus get an inverse problem of shape identification from the knowledge

of near-field data measured above the periodic structure; see [29]. Analogous inverse problems also arise

from using transient elastic waves to measure the elastic properties or to detect flaws and cracks in con-

crete structures. Moreover, the problem of elastic pulse transmission and reflection through the earth is

fundamental to both the investigation of earthquakes and the utility of seismic waves in search for oil and

ore bodies ([17, 18]).

This paper is concerned with the inverse elastic diffraction problem (IP) of recovering a two-dimensional

rigid grating profile from scattered near-field, which can be regarded as a simple model problem in elas-

ticity. The direct scattering problem (DP) can be formulated as a Dirichlet boundary value problem for

the time-harmonic Navier equation in the unbounded domain above the scattering surface. We refer to

[3, 4, 12, 13, 15] or Section 2 of this paper concerning existence and uniqueness results to the forward

scattering. We shall establish the factorization method for (IP), generalizing the inversion algorithms in

the acoustic scattering from bounded obstacles [6, 11, 26, 24] and diffraction gratings [6, 5, 28] to the

current situation. The factorization method was firstly put forward by Kirsch [24] to reconstruct bounded
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obstacles from spectral data of the far-field patterns. It requires neither computation of direct solutions nor

initial guesses, and provides a sufficient and necessary condition for precisely characterizing the shape

of unknown scatterers. We refer to [25, 30, 31] for the factorization method applied to inverse electromag-

netic medium scattering from bounded obstacles and diffraction gratings. Schiffer’s uniqueness theorem

for (IP) was already justified in [10]. It was proved that a smooth grating surface (C2) can be uniquely

determined from incident pressure waves for one incident angle and an interval of wave numbers. Further-

more, a finite set of wave numbers is enough if a priori information about the height of the grating curve

is known. This extends the periodic version of Schiffer’s theorem by Hettlich and Kirsch (see [20]) to the

case of inverse elastic diffraction problems. The application of the Kirsch-Kress optimization scheme to

(IP) with one or several incident elastic plane waves can be found in [14].

Compared to the diffraction of acoustic waves, the elastic scattering is more complicated in view of the

coexistence of compressional (also called longitudinal or dilatational) waves and shear (also called trans-

verse or distortional) waves that propagate at different speeds. We divide our inverse problems into two

classes, based on the phase-shifts of the incident elastic plane waves for a fixed incident angle. For

each class, we study inverse problem by utilizing scattered compressional waves, shear waves or the

entire scattered near-field. As a corollary, we obtain a uniqueness result using only the information of the

scattered compressional or shear waves corresponding to all incident elastic plane waves with a com-

mon phase-shift. Such a result is in analogy with the one in [21] for bounded rigid obstacles using only

compressional or shear waves.

Inspired by the existing factorization methods for diffraction gratings [5, 28] as well as for bounded obstacle

scattering in a half-space [26, Chapter 2.6], we choose two admissible sets of incident waves based on

the form of the quasi-periodic elastic Green’s tensor in a half-plane. Such a Green’s tensor is derived

from the general (non-quasi-periodic) half-plane Green’s function (see [4]) through Poisson’s formula.

The admissible sets of incident waves enable us to factorize the near-field operators in a standard way. To

apply appropriate range identities, we investigate properties of the middle operator for small frequencies;

see Remark 4.12. This differs from the factorization method established in [5, 28], where the role of the

positive part of the middle operator is played by a single layer operator whose kernel is the quasi-periodic

fundamental solution to the Helmholtz equation with the wave number k = i or k = 0. The injectivity of

the middle operator is justified under the assumption that the frequency of the incidence waves is not the

quasi-periodic Dirichlet eigenvalue of the Lamé operator over a periodic strip.

The paper is organized as follows. In Section 2, we formulate the direct and inverse elastic scattering

problems for diffraction gratings and collect some solvability results for the forward problem. Section 3 is

devoted to describing the half-space quasi-periodic Green’s tensor and two admissible sets of incident

elastic waves with distinct phase-shifts. In Section 4 we provide a theoretical justification of the factoriza-

tion method, following the spirit of [5, 21]. Numerical experiments are reported in Section 5 to test validity

and stability of the factorization method, with an emphasis placed on comparing reconstructions from

utilizing the scattered near-field and those from its compressional and shear components.

2 Direct and inverse diffraction problems

Let the diffraction grating profile be given by the graph Λ of a C2-smooth 2π-periodic function f lying

above the x1-axis, i.e., Λ = {x2 = f(x1) > 0, x1 ∈ R}. Denote by ΩΛ the unbounded region above Λ,

and for simplicity assume that ΩΛ is occupied by a linear isotropic and homogeneous elastic material with
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mass density one. Suppose that an incident pressure wave (with the incident angle θ ∈ (−π/2, π/2))

given by

uin
p = θ̂ exp(ikpx · θ̂), θ̂ := (sin θ,− cos θ)T

(1)

is incident on Λ from the region above. Here, kp := ω/
√

2µ+ λ is the compressional wave number, λ
and µ denote the Lamé constants satisfying µ > 0 and λ+µ > 0, ω > 0 is the angular frequency of the

harmonic motion, and the symbol (·)T stands for the transpose of a vector in R
2. The shear wave number

is defined as ks := ω/
√
µ. The direct problem for pressure wave incidence aims to find the scattered

field usc ∈ H1
loc(ΩΛ)2 such that

(∆∗ + ω2)usc = 0 in ΩΛ, ∆∗ := µ∆ + (λ+ µ) grad div , (2)

usc = −uin
p on Λ.

Recall that a function u is called quasi-periodic with phase-shift α (or α-quasi-periodic) if

u(x1 + 2π, x2) = exp(2iαπ)u(x1, x2) , (x1, x2) ∈ ΩΛ (3)

Obviously, the incident pressure wave uin
p is α-quasi-periodic with α = kp sin θ over the periodic domain

ΩΛ. If the scattered field usc is also supposed to be quasi-periodic with the same phase-shift as the

incident wave, then problem (2) admits a unique solution that satisfies the outgoing Rayleigh expansion

usc(x) =
∑

n∈Z

{
Ap,nWp,n

(
αn

βn

)
eiαnx1+iβnx2 + As,nWs,n

(
γn

−αn

)
eiαnx1+iγnx2

}
(4)

for x2 > h ≥ Λ+ := max(x1,x2)∈Λ x2. Here, the constants Ap,n, As,n ∈ C are called the Rayleigh

coefficients, the weights Wp,n and Ws,n are defined by

Wp,n :=

{
1, if |αn| < kp ,
exp(−iβnh), if |αn| ≥ kp ,

Ws,n :=

{
1, if |αn| < ks ,
exp(−iγnh), if |αn| ≥ ks

(5)

and

αn := α+ n , βn = βn(θ) :=

{ √
k2

p − α2
n if |αn| ≤ kp ,

i
√
α2

n − k2
p if |αn| > kp.

(6)

The parameter γn := γn(θ) is defined similarly as βn with kp replaced by ks. Concerning the proof of

uniqueness and existence, we refer to [3] via integral equation methods for smooth (C2) grating profiles

and to [12, 13] where the variational approach is applied to case of general Lipschitz graphs in R
n

(n = 2, 3). It is recently proved in [15] that such an α-quasiperiodic solution is the unique solution to (2)

in the weighted Sobolev space

H1
%(Sh) := {u : u = (1 + x2

1)
−%/2v, v ∈ H1(Sh)} , Sh := ΩΛ\{x = (x1, x2) : x2 > h}

for every h > Λ+ and −1 < % < −1/2. This implies that non-quasi-periodic or other α′-quasi-periodic

(α′ 6= kp sin θ) solutions to (2) does not exist in the space H1
%(Sh). These solvability results in periodic

structures extend those in acoustics (see [23, 8, 9]) to the case of elasticity. Moreover, they remain valid

for a large class of quasi-periodic incident elastic waves as considered in the subsequent sections of this

paper, provided the scattering surface is given by the graph of a periodic function. For non-graph grating

profiles, existence of solutions to the problem (1)-(2) can be proved by applying the Fredholm alternative

(see [12, 13]).
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Since βn and γn are real for at most a finite number of indices n ∈ Z, only a finite number of plane

waves in (4) propagate into the far field, with the remaining evanescent waves (or surface waves) decaying

exponentially as x2 → +∞. The above expansion converges uniformly with all derivatives in the half-

plane {x ∈ R
2 : x2 ≥ h} and the Rayleigh coefficients {Ap,n}n∈Z, {As,n}n∈Z ∈ `2. The scattered

field can be decomposed into its compressional and shear parts,

usc = usc
p + usc

s , usc
p := −1/k2

p grad div usc, usc
s := 1/k2

s

−−→
curl curlusc

where curlu := ∂1u2 − ∂2u1 for a vector function u = (u1, u2)
T and

−−→
curlw = (∂2w,−∂1w)T for a

scalar function w. Particularly, the P - and S-waves admit respectively the expansions

usc
p :=

∑

n∈Z

[
Ap,nWp,n (αn, βn)T exp(iαnx1 + iβnx2)

]
,

usc
s :=

∑

n∈Z

[
As,nWs,n (γn,−αn)T exp(iαnx1 + iγnx2)

] (7)

for x2 > h, which satisfy the equations

(∆ + k2
p)u

sc
p = 0, curlusc

p = 0, (∆ + k2
s)u

sc
s = 0, div usc

s = 0 in ΩΛ

The uniqueness and existence results for a pressure wave can all be extended to an incident shear wave

uin
s of the form

uin
s = θ̂⊥ exp(iksθ̂), θ̂ := (sin θ,− cos θ)>, θ̂⊥ := (cos θ, sin θ)> (8)

which is ks sin θ-quasi-periodic. Note that, the phase-shift of the (unique) scattered field corresponding

to (8) is α = ks sin θ, which differs from the case of P -wave incidence given in (1).

In this paper we are interested in the inverse problem of identifying an unknown rigid scattering surface

Λ from knowledge of the scattered near field measured on a line above Λ. We always assume that

this unknown scattering surface lies between the lines Γ0 := {x2 = 0} and Γh for some h > 0.

Let I1(α) and I2(α) be two admissible sets of elastic waves that are α-quasi-periodic. Given a fixed

incident angle θ ∈ (−π/2, π/2), this paper is devoted to studying the following inverse problems (Pj)
and (Sj), j = 1, 2, 3, by using kp sin θ-quasi-periodic and ks sin θ-quasi-periodic elastic waves.

(P1) Determine Λ from the Rayleigh coefficientsAp,n, n ∈ Z, of the compressional part of the scattered

near-field on Γh corresponding to each incident elastic wave from the set I1(α) with α = kp sin θ.

(P2) Determine Λ from the Rayleigh coefficientsAs,n, n ∈ Z, of the shear part of the scattered near-field

on Γh corresponding to each incident elastic wave from the set I2(α) with α = kp sin θ.

(P3) Determine Λ from the Rayleigh coefficients Ap,n, As,n, n ∈ Z, of the scattered near-field on Γh

corresponding to each incident elastic wave from the set I1(α) ∪ I2(α) with α = kp sin θ.

The inverse problems (Sj) are formulated similarly as (Pj) with the quasi-periodicity parameter replaced

by α = ks sin θ. Obviously, the scattering surface will be recovered by selecting appropriate incident

waves depending on the source of the measurement data, that is, the component of the elastic waves

providing us the information of the near-field data on Γh. Our aim is to establish the factorization method

for (Pj) and (Sj) and compare the numerical results by using quasi-periodic incident waves with differ-

ent phase-shifts and by using different components of the scattered field. The admissible sets Ij(α) of

incident waves will be explicitly defined in the next section.
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3 The admissible sets of incident elastic waves

In contrast to the inverse scattering from bounded obstacles, the angle of incidence has to be restricted

to (−π/2, π/2) in order to identify the scattering surface from above. However, it seems not suitable to

employ incident waves with distinct angles ranging from (−π/2, π/2), since the quasi-periodicity of the

scattered field varies with the angle of incidence. In the acoustic case, [5]) suggests using the following

set of incident waves having a common phase shift

{
uin

n(y) :=
i

4πβn

[
ei(αny1−βny2) − ei(αny1+βny2)

]
, n ∈ Z

}
(9)

where βn is defined as in (6) with kp replaced by k. In (9), it is assumed that βn 6= 0 for all n ∈ Z, that is,

the Rayleigh frequencies are excluded. Consequently, the periodic analogue version of the factorization

method can be justified by using the single-layer potential whose kernel is the α-quasi-periodic Green’s

function to the Helmholtz equation (∆ + k2)u = 0 in a half-plane. Note that each function uin
n in (9)

satisfies the Dirichlet boundary condition on Γ0 and consists of both upward and downward waves modes,

using only the downward modes cannot lead to a desired factorization of the near-field operator to which

an appropriate range identity can be applied. Recall the following α-quasi-periodic Green’s function to the

Helmholtz equation ∆u+ k2u = 0 (see e.g. [27])

Gk(x, y) =
i

4π

∑

n∈Z

1

βn

exp(iαn(x1 − y1) + iβn|x2 − y2|), x− y 6= n(2π, 0)T

Then, the difference Gk(x, y) − Gk(x, y
′), with (y1, y2)

′ = (y1,−y2), is just the α-quasi-periodic

Green’s function in the half space x2 > 0 satisfying the Dirichlet boundary condition on the boundary

x2 = 0. Observe further that, the incident wave uin
n (y) coincides with the conjugate of the n-th Rayleigh

coefficient of the function x→ Gk(x, y)−G(x, y′) for x2 > y2. Inspired by these facts in acoustics, we

introduce the following two admissible sets of incident elastic waves for (Pj) and (Sj), j = 1, 2, 3:

Ij(α) := {uin
j,n(y), n ∈ Z}, j = 1, 2

where uin
1,n(y) (or uin

2,n(y)) is defined as the conjugate of the n-th Rayleigh coefficient of the compres-

sional (or shear) part of the function x → ΠD(x, y) (or multiplied by some constant) for x2 > y2 > 0.

Here, ΠD(x, y) stands for the α-quasi-periodic half-space Green’s tensor to the Navier equation with

the Dirichlet boundary condition on Γ0. The expression of ΠD(x, y), which seems unknown by far in the

literature, will be derived from the free-space elastic Green’s tensor in the remaining part of this section.

We first recall the free space fundamental solution to the Navier equation (2) (see e.g., [4]),

Γ(x, y) =
1

µ
Φks(x, y) I +

1

ω2
grad xgrad T

x

[
Φks(x, y) − Φkp(x, y)

]

where I , Φk stand for the 2 × 2 unit matrix and the free space fundamental solution to the Helmholtz

equation, respectively. Then, the α-quasi-periodic fundamental solution (Green’s tensor) to the Navier

equation takes the form

Π(x, y) :=
∑

n∈Z

exp(−iα2πn) Γ(x+ n(2π, 0), y), x− y 6= n(2π, 0), n ∈ Z.
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See [3, Section 6] for the convergence analysis of the above series. Similarly to the form of Γ(x, y), the

tensor Π(x, y) can be written as (see [12])

Π(x, y) =
1

µ
Gks(x, y) I +

1

ω2
grad xgrad T

x

[
Gks(x, y) −Gkp(x, y)

]

=
1

µ

(
Gks(x, y) 0

0 Gks(x, y)

)
+

1

ω2

(
∂2

x1
∂x1

∂x2

∂x2
∂x1

∂2
x2

)[
Gks(x, y) −Gkp(x, y)

]
.(10)

To split the function x→ Π(x, y) into its compressional and shear parts, we rewrite Π(x, y) as

Π(x, y) =
∑

n∈Z

{
(αn, βn)T P (n)(y)Wp,n exp(i(αnx1 + βnx2))

}

+
∑

n∈Z

{
(−γn, αn)T S(n)(y)Ws,n exp(i(αnx1 + γnx2))

} (11)

for x2 > y2, where P n(y), Sn(y) ∈ C
1×2 will be referred to as the Rayleigh coefficients of the com-

pressional and shear parts of Π(x, y), respectively. Inserting the representation of Gk(x, y) to (10), we

find

P n(y) =
i

4πω2Wp,n βn

(αn, βn) exp(−iαny1 − iβny2),

Sn(y) =
i

4πω2Ws,n γn

(−γn, αn) exp(−iαny1 − iγny2)
(12)

for x2 > y2. It is worthy pointing out that the difference Π(x, y)−Π(x, y′) is not the half-space Green’s

tensor to the Navier equation since it does not vanish on Γ0 by virtue of the derivative with respect to

x2 acting on Gks and Gkp . In [4], making use of the Fourier transform, Arens has derived the non-quasi-

periodic half-plane Green’s tensor of the form

ΓD(x, y) = Γ(x, y) − Γ(x, y′) + U(x, y), x 6= y, x2, y2 > 0 (13)

where the correction term U(x, y) is defined as the integral

U(x, y) := − i

2πω2

∞∫

−∞

(
Mp(t, ηp(t), ηs(t); x2, y2) +Ms(t, ηp(t), ηs(t); x2, y2)

)
e−i(x1−y1)t

dt,

Mp(t, ηp(t), ηs(t); x2, y2) :=
eiηp(t) (x2+y2) − ei(ηp(t) x2+ηs(t) y2)

ηp(t) ηs(t) + t2

(
−t2ηs(t) t3

tηp(t) ηs(t) −t2ηp(t)

)
,

Ms(t, ηp(t), ηs(t); x2, y2) :=
eiηs(t) (x2+y2) − ei(ηs(t) x2+ηp(t) y2)

ηp(t) ηs(t) + t2

(
−t2ηs(t) −tηp(t) ηs(t)
−t3 −t2ηp(t)

)

with

ηp(t) :=

{ √
k2

p − t2, t2 ≤ k2
p,

i
√
t2 − k2

p, t2 > k2
p,

ηs(t) :=

{ √
k2

s − t2, t2 ≤ k2
s

i
√
t2 − k2

s , t2 > k2
s

Motivated by this, we define the half-space α-quasi-periodic Green’s tensor in the following way

ΠD(x, y) :=
∑

n∈Z

exp(−iα2πn) ΓD(x+ n(2π, 0), y) = Π(x, y) − Π(x, y′) + Uα(x, y)

6



for x− y 6= n(2π, 0), n ∈ Z, where

Uα(x, y) :=
∑

n∈Z

exp(−iα2πn)U(x+ n(2π, 0), y) (14)

From Poisson’s summation formula, we see

∑

n∈Z

[exp(−iα2πn) exp(−i(x1 + 2nπ − y1)t)] = exp(−i(x1 − y1)t)
∑

n∈Z

δ(t+ αn)

where δ(·) denotes the Dirac delta function. Inserting the previous identity back to (14) yields an alterna-

tive expression of Uα:

Uα(x, y) :=
i

2πω2

∑

n∈Z

{[
ei(αnx1+βnx2)(e−i(αny1−βny2) − e−i(αny1−γny2))

(
αnγn α2

n

βnγn αnβn

)

+ei(αnx1+γnx2)(e−i(αny1−γny2) − e−i(αny1−βny2))

(
αnγn −γnβn

−α2
n αnβn

)]
αn

α2
n + βnγn

}

for x2 > y2. Hence, the n-th Rayleigh coefficients of the compressional and shear parts of the function

x→ Uα(x, y) can be formulated as (cf. (7)):

P̃ (n)(y) =
i αn

2πω2

e−i(αny1−βny2) − e−i(αny1−γny2)

Wp,n (α2
n + βnγn)

(γn, αn)T ,

S̃(n)(y) = − i αn

2πω2

e−i(αny1−βny2) − e−i(αny1−γny2)

Ws,n (α2
n + βnγn)

(−αn, βn)T

for x2 > y2 with Wp,n,Ws,n given by (5).

To introduce our admissible sets of incident waves, as mentioned at the beginning of this section, we

define uin
1,n(y) and uin

2,n(y) as the conjugate of the n-th Rayleigh coefficient of the compressional and

shear part of the function x→ ΠD(x, y), respectively. That is, after changing variables,

uin
1,n(x) := P (n)(x) − P (n)(x′) + P̃ (n)(x), uin

2,n(x) := S(n)(x) − S(n)(x′) + S̃(n)(x) (15)

for n ∈ Z, where P (n) and S(n) are defined as in (12). More precisely, we can write uin
1,n and uin

2,n as

uin
1,n(x) =

−i
4πω2βnW p,n

(
uin

1,n,d(x) + uin
1,n,u(x)

)
,

uin
2,n(x) =

−i
4πω2γnW s,n

(
uin

2,n,d(x) + uin
2,n,u(x)

) (16)

with uin
j,n,d and uin

j,n,u, j = 1, 2, n ∈ Z, denoting the downward and upward propagating modes, respec-

tively, given by

uin
1,n,d(x) =





α2
n−βnγn

α2
n+βnγn

(
−αn

βn

)
ei(αnx1−βnx2) − 2αnβn

α2
n+βnγn

(
γn

αn

)
ei(αnx1−γnx2), |αn| ≤ kp,

(
αn

−βn

)
ei(αnx1−βnx2) + 2αnβn

α2
n−βnγn

(
γn

αn

)
ei(αnx1−γnx2), kp < |αn| < ks,

(
αn

−βn

)
ei(αnx1−βnx2), |αn| ≥ ks

7



uin
1,n,u(x) =





(
αn

βn

)
ei(αnx1+βnx2), |αn| ≤ kp,

−α2
n+βnγn

α2
n−βnγn

(
αn

βn

)
ei(αnx1+βnx2), kp < |αn| < ks,

−α2
n−βnγn

α2
n+βnγn

(
αn

βn

)
ei(αnx1+βnx2) − 2αnβn

α2
n+βnγn

(
γn

−αn

)
ei(αnx1+γnx2), |αn| ≥ ks

and

uin
2,n,d(x) =





α2
n−βnγn

α2
n+βnγn

(
γn

αn

)
ei(αnx1−γnx2) − 2αnγn

α2
n+βnγn

(
αn

−βn

)
ei(αnx1−βnx2), |αn| ≤ kp,

α2
n+βnγn

α2
n−βnγn

(
γn

αn

)
ei(αnx1−γnx2), kp < |αn| < ks,

−
(
γn

αn

)
ei(αnx1−γnx2), |αn| ≥ ks

uin
2,n,u(x) =





(
γn

−αn

)
ei(αnx1+γnx2), |αn| ≤ kp,

(
γn

−αn

)
ei(αnx1+γnx2) − 2αnγn

α2
n−βnγn

(
αn

βn

)
ei(αnx1+βnx2), kp < |αn| < ks,

α2
n−βnγn

α2
n+βnγn

(
−γn

αn

)
ei(αnx1+γnx2) + 2αnγn

α2
n+βnγn

(
αn

βn

)
ei(αnx1+βnx2), |αn| ≥ ks.

It can be readily checked that uin
j,n are α-quasi-periodic solutions to the Navier equation with the Dirichlet

boundary condition on Γ0. Note that, for the inverse problems (Pj) and (Sj), j = 1, 2, both compressional

and shear waves are involved in the incident elastic wave uin
j,n, n ∈ Z although the measurement data

only come from the compressional part when j = 1 or the shear part in the case j = 2.

Since the upward modes occurring in uin
j,n (j = 1, 2) are not physically meaningful incoming waves

from ΩΛ, the scattered field usc
j,n due to uin

j,n cannot be generated straightforwardly. Denoting by ũsc
j,n the

scattered field corresponding to uin
j,n,d, we have

usc
1,n =

−i
4πω2βnW p,n

(ũsc
1,n − uin

1,n,u), u
sc
s,n =

−i
4πω2γnW s,n

(ũsc
2,n − uin

2,n,u), n ∈ Z

due to the linearity of the scattering solution with respect to incident waves. As a consequence, the m-th

Rayleigh coefficients Aj,n
p,m, A

j,n
s,m of usc

j,n can be written as

Aj,n
p,m =

−i
4πω2βnWp,n

(Ãj,n
p,m − Âp,n

p,m), Aj,n
s,m =

−i
4πω2γnWs,n

(Ãj,n
s,m − Âp,n

s,m)

for m,n ∈ Z, j = 1, 2, where Ãj,n
p,m and Âj,n

p,m (resp. Ãj,n
s,m and Âj,n

s,m ) denote the m-th Rayleigh

coefficients of the compressional (resp. shear) part of ũsc
j,n and uin

j,n,u, respectively.

We end up this section by introducing several single-layer potentials. With the Green’s tensor Π, we define

the periodic single-layer potential

(SLϕ)(x) :=

∫

Λ

Π(x, y)ϕ(y)ds(y), x ∈ ΩΛ (17)

and the corresponding single-layer operator Sϕ(x) = SLϕ(x)|Λ. Similarly, one can define integral op-

erators SLD and SD with the kernel Π replaced by the half-space Green’s tensor ΠD. In what follows,

we sometimes employ the notation SL(ω),SL
(ω)
D , S(ω) and S(ω)

D to indicate their dependence on the fre-

quency ω.
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4 The factorization method

Since the inverse problems (Pj) and (Sj) (j = 1, 2, 3) are quite similar, we will only investigate the

factorization method for the inverse problems (Pj). With necessary changes on the quasi-periodicity the

mathematical argument automatically carries over to the second class problems (Sj). Hence, unless

otherwise stated we always assume α = kp sin θ for some fixed θ ∈ (−π/2, π/2). The unknown

scattering surface will be retrieved from the information of the Rayleigh coefficients of the scattered P - or

S-waves due to each incident elastic wave from the admissible set I1(α) or I2(α) of α-quasi-periodic

functions proposed in Section 3.

Thanks to the periodicity of the grating profile and the α-quasi-periodicity of the solutions, our discussions

can be restricted to one periodic cell. Consequently, we redefine the region and the boundary as

Ω := {x ∈ R
2 : x1 ∈ (0, 2π), x2 > f(x1) > 0}, Λ := {x ∈ R

2 : x1 ∈ (0, 2π), x2 = f(x1)}

Introduce the finite line Γh := {x ∈ R
2 : x1 ∈ (0, 2π), x2 = h} for some h > Λ+ on which the

near-field data are measured, and set Ωh := Ω+
h ∪ Λ ∪ Ω−

−h, where

Ω+
h := {x ∈ R

2 : x1 ∈ (0, 2π), 0 < f(x1) < x2 < h},
Ω−

−h := {x ∈ R
2 : x1 ∈ (0, 2π), −h < x2 < f(x1)}

For s ∈ R, letHs
α(·) denote the Sobolev spaces of scalar functions on the domain (·) which are α-quasi-

periodic with respect to x1. Analogously to the factorization method for bounded obstacle scattering prob-

lems, we define the periodic version of the so-called data-to-pattern operator Gj , the Herglotz operator

Hj and the near-field operator Nj for (Pj), j = 1, 2, 3.

Definition 4.1. The data-to-pattern operators Gj : H
1/2
α (Λ)2 → l2, j = 1, 2, are defined as

G1(ϕ) = {Ap,n : n ∈ Z}, G2(ϕ) = {As,n : n ∈ Z}, ϕ ∈ H1/2
α (Λ)2

where Ap,n and As,n denote the n-th Rayleigh coefficients of the compressional and shear part of the

unique scattered field usc to the problem (2) with the boundary value data usc = ϕ on Λ. The operator

G3 : H
1/2
α (Λ)2 → l2 × l2 is defined as the product of G1 and G2, that is, G3 := G1 ×G2.

Definition 4.2. With the incident waves uin
j,n given in (16), the Herglotz operators Hj : l2 → H

1/2
α (Λ)2

for j = 1, 2 and H3 : l2 × l2 → H
1/2
α (Λ)2 are defined as

[Hj(b)](x) :=
∑

n∈Z

bn u
in
j,n(x), j = 1, 2, H3(a, b) := H1(a) +H2(b), x ∈ Λ

for a = (an)n∈Z, b = (bn)n∈Z ∈ l2.

Definition 4.3. Define the near-field operators Nj : l2 → l2, j = 1, 2, and N3 : l2 × l2 → l2 × l2 as

Nj = −GjHj, j = 1, 2, 3

The Herglotz operatorH3 is a supposition of kp sin θ-quasi-periodic incident waves uin
1,n and the ks sin θ-

quasi-periodic ones uin
2,n with different weights. The near field operator Nj (j = 1, 2) maps the suppo-

sition of the incident waves uin
j,n to the Rayleigh coefficients of the compressional part (j = 1) or shear

part (j = 2) of the associated scattered field.

9



In view of the Green’s tensor Π(x, y) given in (11), we can explicitly formulate the Rayleigh coefficients

Cp,n(y), Cs,n(y) of the compressional and shear parts of the function x→ Π(x, y)C, where C ∈ C
2×1,

as

Cp,n(y) =
i

4πω2βnWp,n

exp(−iy · (αn, βn)T ) [(αn, βn)T · C],

Cs,n(y) =
i

4πω2γnWs,n

exp(−iy · (αn, γn)T ) [(−γn, αn)T · C]
(18)

for x2 > y2 > 0. The sequences Cp,n and Cs,n can be utilized to characterize the region beneath the

scattering surface.

Lemma 4.4. For any fixed non-zero complex vector C, the sequence {Cp,n(y)}n∈Z (resp. {Cs,n(y)}n∈Z)

lies in the range of G1 (resp. G2) if and only if y ∈ R
2\Ω. Consequently, the sequence {Cp,n(y)}n∈Z ×

{Cs,n(y)}n∈Z lies in the range of G3 if and only if y ∈ R
2\Ω.

Proof. We only need to consider the sequence {Cp,n(y) : n ∈ Z} since the other cases can be dealt

with similarly. Obviously, we have {Cp,n(y) : n ∈ Z} ∈ l2 whenever y2 < h. If y ∈ R
2\Ω, then

{Cp,n(y) : n ∈ Z} = N1(ϕ) with ϕ = (Π(x, y)C)|Λ ∈ H
1/2
α (Λ)2.

Assume that {Cp,n(y) : n ∈ Z} = N1(ϕ̃) for some ϕ̃ ∈ H
1/2
α (Λ)2 and y ∈ Ω

+

h . Denote by ΠC
P (x)

the pressure part of the function Π(x, y)C restricted to Γh and by usc the scattered field to the problem

(2) with the boundary data usc = ϕ̃ on Λ. The coincidence of ΠC
P (x) with the compressional part usc

p of

usc on Γh implies that ΠC
P (x) = usc

p in x2 > h, due to the uniqueness of the Dirichlet boundary value

problem in a half plane. Together with the unique continuation of solutions to the Helmholtz equation,

this further yields the fact that ΠC
P (x) = usc

p in Ω+
h \{y}. On one hand, we have div usc

p = div usc ∈
L2

loc(Ω
+
h ). On the other hand, div ΠC

P (x) = div x[Π(x, y)C] /∈ L2
loc(Ω

+
h ) since the shear part of usc is

divergence-free and div x[Π(x, y)C] ∼ O(|x − y|−1) as x → y in Ω+
h \{y}. This contradiction gives

that y ∈ R
2\Ω.

By Lemma 4.4, the periodic profile Λ can be identified theoretically from the range ofGj , which, however,

cannot be numerically implemented. The essence of the factorization method is to connect the range of

Nj with that of Gj so that the scattering surface can be retrieved from the spectral of Nj . To that end, we

will factorize Nj in terms of Gj as shown in the following lemma, and then apply proper range identities.

In the following, H∗
j (j = 1, 2, 3) denotes the adjoint operator of Hj , and the single-layer operator SD is

defined at the end of Section 3.

Lemma 4.5. It holds that H∗
j = GjSD and the factorization Nj = −GjS∗

DG
∗
j for j = 1, 2, 3.

Proof. For ϕ ∈ H
−1/2
α (Λ)2, let (GjSDϕ)n represent the n-th Rayleigh coefficient of GjSD(ϕ), j =

1, 2. From the definitions of SD, Gj and uin
j,n we deduce that (cf. (15))

(GjSDϕ)n =

∫

Λ

uin
j,n · ϕds, j = 1, 2

The relations H∗
j = GjSD, j = 1, 2, then follow directly from the previous identity and the definition of

Hj , which further yield the factorizations Nj = −GjHj = −GjS∗
DG

∗
j . From the definitions of H3 and

G3, we arrive at the result that H∗
3 = H∗

1 ×H∗
2 = G3SD and thus N3 = −G3H3 = −G3S∗

DG
∗
3.
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We now introduce the concept of the Dirichlet eigenvalue for quasi-periodic Lamé operators over a peri-

odic domain.

Definition 4.6. The frequency of incidence ω is called a Dirichlet eigenvalue of the α-quasi-periodic

Lamé operator over the periodic layer Ω−
0 := {x : 0 < x2 < f(x1), 0 < x1 < 2π}, if there exists a

non-trivial α-quasi-periodic solution u to the Navier equation (2) on Ω−
0 such that u = 0 on Λ and Γ0.

Accordingly, u is called the Dirichlet eigenfunction with phase-shift α.

Using variational arguments and standard spectral theory for compact operators, one can show that the

Dirichlet eigenvalues form a countable set and the positive eigenvalues can be represented in terms of

a min-max principle (see [10]). A further investigation of the monotonicity of these eigenvalues in [10]

leads to Schiffer’s uniqueness theorem for the inverse elastic scattering by rigid periodic surfaces. For the

inverse problems (Pj), we make the following assumption:

Assumption (A): The frequency ω is not the Dirichlet eigenvalue of the quasi-periodic Lamé operator

over the periodic region Ω−
0 with phase-shift α = kp sin θ.

This assumption will be used to verify the injectivity of the single-layer operator SD; see Lemma (4.7) (iii)

and Remark 4.8 below. Before describing properties of the middle operator S∗
D involved in the factoriza-

tion Nj = −GjS∗
DG

∗
j , we recall that the real and imaginary parts of an operator T on a Hilbert space

are defied as

Re (T ) := (T + T ∗)/2, Im (T ) := (T − T ∗)/(2i)

Let the dual form 〈·, ·〉 denote the dual pair between H
−1/2
α (Λ)2 and H

1/2
α (Λ)2 which extends the inner

product of L2(Λ)2.

Lemma 4.7. (i) There exist an angle φ ∈ (0, π/2) and a sufficiently small frequency ω0 > 0 such

that the real part of the operator exp(−iφ)S(ω) is self-adjoint and positive definite when ω ∈ (0, ω0].
Particularly, there exists a constant c > 0 such that

Re 〈ϕ, exp(−iφ)S(ω)ϕ〉 ≥ c ω ‖ϕ‖2

H
−1/2

α (Λ)2
∀ϕ ∈ H−1/2

α (Λ)2, ∀ω ∈ (0, ω0] (19)

(ii) For any ω′ ∈ (0, ω0], the operator SD
(ω) −S(ω′) is compact from H

−1/2
α (Λ)2 to H

1/2
α (Λ)2, and thus

SD is a Fredholm operator with index zero.

(iii) Under the assumption (A), the middle operator −S∗
D : H

−1/2
α (Λ)2 → H

1/2
α (Λ)2 is injective.

(iv) −Im (S∗
D) is non-negative over H

−1/2
α (Λ)2, that is,

−〈ϕ, Im (SD
∗)ϕ〉 ≥ 0 for all ϕ ∈ H−1/2

α (Λ)2

Proof. (i) Define u(x) := SL(ω)ϕ(x), x ∈ R
2. Then u satisfies the Navier equation in R

2\Λ, the upward

Rayleigh expansion (4) for x2 > Λ+ and an analogous downward Rayleigh expansion in x2 < Λ− :=
minx∈Λ{x2}. From the first Betti’s formula and the jump relations for periodic single-layer potentials, it

follows that

〈ϕ,S(ω)ϕ〉 =

∫

Λ

(∂νu
+ − ∂νu

−) · u ds

=

∫

Ωh

[
E(u, u) − ω2|u|2

]
dx−

∫

Γh

T +
ω u · u ds−

∫

Γ−h

T −
ω u · u ds

11



where E(·, ·) is the bilinear form defined by

E(u, v) = (2µ+ λ)(∂1u1∂1ϕ1 + ∂2u2∂2ϕ2) + µ(∂2u1∂2ϕ1 + ∂1u2∂1ϕ2)

+µ(∂2u1∂1ϕ2 + ∂1u2∂2ϕ1) + λ(∂1u1∂2ϕ2 + ∂2u2∂1ϕ1)

and T ±
ω are the Dirichlet-to-Neumann maps defined on Γ±h, respectively, and given by (see [12])

T ±
ω v = −

∑

n∈Z

Mn,ωv̂n exp(iαnx1) for v =
∑

n∈Z

v̂n exp(iαnx1) ∈ H1/2
α (Γ±h)

2
(20)

with the matrices Mn,ω ∈ C
2×2 of the form

Mn,ω :=
1

i

(
ω2βn/tn 2µαn − ω2αn/tn

−2µαn + ω2αn/tn ω2γn/tn

)
, tn = α2

n + βnγn (21)

Consequently,

Re 〈ϕ, exp(−iφ)S(ω)ϕ〉 = cosφ

∫

Ωh

[
E(u, u) − ω2|u|2

]
dx

−Re

{
exp(iφ)

∫

Γh∪Γ−h

T ±
ω u · u ds

}
. (22)

We claim that there exist φ ∈ (0, π/2) and ω∗ > 0 such that for all u ∈ H
1/2
α (Γ±h)

2 and ω ∈ (0, ω∗]
there holds the inequality

−Re

{
exp(iφ)

∫

Γ±h

T ±
ω u · u ds

}
≥ c ω‖u‖2

H
1/2

α (Γ±h)2
(23)

with some constant c > 0 independent of ω and u; see Lemma (A.1) (i) in the appendix for the proof.

By the Friedrich-type inequality for the Navier equation (see, e.g. [12, Remark 2]), it follows from (22) and

(23) that

Re 〈ϕ, exp(−iφ)S(ω)ϕ〉 ≥ c̃ ω ‖u‖2
H1(Ωh)2 − ω2‖u‖2

L2(Ωh)2 , c̃ > 0 (24)

Now the estimate (19) follows from (24) for some sufficiently small positive number ω0.

(ii) We write S(ω)
D −S(ω′) = S(ω)

D −S(ω) + S(ω) −S(ω′). From the definitions of S(ω)
D and S(ω), we see

that the kernels of S(ω)
D −S(ω) and S(ω) −S(ω′) are both smooth. Hence, S(ω)

D −S(ω′) is compact from

H
−1/2
α (Λ)2 to H

1/2
α (Λ)2, so by (i), S(ω)

D is a Fredholm operator with index of zero.

(iii) Since SD is a Fredholm operator with index zero, we have dim(Ker(SD)) = dim(Ker(S∗
D)). Hence it

suffices to prove the injectivity of SD. Define the single-layer potential u(x) = SLDϕ(x) for x ∈ R
2. If

SDϕ = 0 on Λ, then u = 0 on Λ. Moreover, we have u = 0 in Ω+
h due to the uniqueness of the forward

scattering problem. Observing that u satisfies the Navier equation on Ω−
0 and vanishes on Λ and Λ0, we

get u = 0 in Ω−
0 by Assumption (A). The jump relations for SLϕ finally yield ϕ = 0 on Λ.

(iv) For ϕ ∈ H
−1/2
α (Λ)2, there holds

−〈ϕ, Im (S∗
D)ϕ〉 = Im 〈ϕ,S∗

Dϕ〉 = Im 〈SDϕ, ϕ〉 = −Im 〈ϕ,SDϕ〉.
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Thus we only need to prove that −Im 〈ϕ,SDϕ〉 ≥ 0 To this end, define u(x) := SL
(ω)
D ϕ(x), x ∈ R

2.

Arguing similarly as in (i) with Γ−h replaced by Γ0 and using the fact that u vanishes on Γ0, we obtain

−Im 〈ϕ,SDϕ〉 = Im

∫

Γh

T u · u ds = 2πω2



∑

|αn|<kp

βn|Ap,n|2 +
∑

|αn|<ks

γn|As,n|2

 ≥ 0

where the last equality was proved in [12], and Ap,n, As,n denote the Rayleigh coefficients of the com-

pressional and shear parts of u, respectively.

Remark 4.8. To prove the injectivity of SD, we think it is necessary to make the assumption (A); see the

proof of Lemma 4.7 (iii). Note that the single-layer potential (17) consists of both upward and downward

modes in the region −f(x1) < x2 < f(x1) and is non-analytic not only on the curve x2 = f(x1) but

also on x2 = −f(x1). An analogous assumption to Assumption (A) above could be used to close a gap

in the proof of [5, Lemma 2.5 (i)], where a half-space quasi-periodic Green’s function for the Helmholtz

equation is involved.

Before stating the range identity, we need the following compactness and denseness results of the data-

to-pattern operators Gj , that is,

Lemma 4.9. The operators Gj for j = 1, 2, 3 are all compact and have a dense range.

Lemma 4.9 can be proved in a standard way; see [28, Chapter 2] for a proof in the inverse acoustic

scattering from penetrable diffraction gratings, which can be readily adapted to the Navier equation case.

Lemmas 4.7 and 4.9 allow us to directly apply the range identity of [30, Theorem 3.4.1] to the factorization

of the near-field operatorsNj established in Lemma 4.5. The following abstract range identity generalizes

the one contained in [28, Chapter 1], the proof of which is essentially based on the approach of Kirsch

and Grinberg [26, Theorem 2.15] (cf. [30]).

Lemma 4.10 (Range Identity). Let X ⊂ U ⊂ X∗ be a Gelfand triple with Hilbert space U and reflexive

Banach space X such that the embedding is dense. Furthermore, let Y be a second Hilbert space and

F : Y → Y , G : X → Y and T : X∗ → X be linear and bounded operators with F = GTG∗.

Suppose further that

(a) G is compact and has a dense range.

(b) There exists t ∈ (0, 2π) with cos t 6= 0 such that Re [exp(it)T ] has the form Re [exp(it)T ] =
T0 + T1 with some compact operator T1 and some coercive operator T0 : X∗ → X , that is there

exists c > 0 with

〈ϕ, T0ϕ〉 ≥ c‖ϕ‖2
for all X∗

(25)

(c) Im (T ) is non-negative on X , that is, 〈Im (T )ϕ, ϕ〉 ≥ 0 for all ϕ ∈ X . Moreover, we assume that

one of the following conditions is fulfilled.

(d) T is injective.

(e) Im (T ) is positive on the finite dimensional null space of Re [exp(it)T ], that is, for all ϕ 6= 0 such

that Re [exp(it)T ]ϕ = 0 we have〈Im (T )ϕ, ϕ〉 > 0.

13



Then the operator F] := |Re [exp(it)F ]| + Im (F ) is positive definite, and the ranges of G : X → Y

and F
1/2
] : Y → Y coincide.

Making use of Lemma 4.10, we can characterize the region beneath the periodic scattering surface in

term of the spectrum of the near-field operators Nj , j = 1, 2, 3.

Theorem 4.11. Let the assumption (A) hold and define the sequences {Cp,n(z)}n∈Z, {Cs,n(z)}n∈Z as

in (18). Then the point z ∈ R
2\ΩΛ if and only if one of the following conditions holds:

(i) {Cp,n(z)}n∈Z ∈ R[(N1])
1/2],

(ii) {Cs,n(z)}n∈Z ∈ R[(N2])
1/2],

(iii) {Cp,n(z)}n∈Z × {Cs,n(z)}n∈Z ∈ R[(N3])
1/2].

where Nj] := |Re [exp(it)Nj]| + Im (Nj), j = 1, 2, 3, and R[·] denotes the range of an operator.

Proof. By Lemma 4.4, it suffices to verify the coincidence of the ranges of (Nj])
1/2 and Gj for j =

1, 2, 3. To do this, we shall apply Lemma 4.10 to the factorizations Nj = −GjS∗
DG

∗
j by verifying the

conditions (a), (b), (c) and (d) with T = −S∗
D, F = Nj and G = Gj for j = 1, 2, 3. The condition (a)

follows from Lemma 4.9, while the conditions (c) and (d) follow from Lemma 4.7 (iv) and (iii), respectively.

It remains to verify the condition (b). Indeed, letting ω1 ∈ (0, ω0] and φ ∈ (0, π/2) be given as in Lemma

4.7, we get

−Re 〈ϕ, exp(it)S(ω1)∗ϕ〉 = −Re 〈exp(−it)S(ω1)ϕ, ϕ〉 = Re 〈ϕ, exp(−i(t− π))S(ω1)ϕ〉 (26)

for all ϕ ∈ H
−1/2
α (Λ)2. Taking t = π + φ ∈ (π, 3/2π) in (26), we then conclude from (19) and the

previous identity that

−Re 〈ϕ, exp(it)S(ω1)∗ϕ〉 ≥ c ‖ϕ‖2

H
−1/2

α (Λ)2
, c > 0

This, together with Lemma 4.7 (ii), implies the condition (b) in Lemma 4.10 with T0 = −Re [exp(it)S(ω1)∗].

Let (σ
(j)
n , e

(j)
n ) be the eigensystem of Nj]. By Picard’s range criterion, the scattering surface Λ can be

reconstructed by first selecting sampling points from the set {(z1, z2) ∈ R
2 : 0 < z2 < h} and then

computing one of the following indicator functions:

(i) W1(z) :=
∑∞

n=1

{
|〈{Cp,n(z)}n∈Z, {e(1)

n }n∈Z〉l2|2/σ(1)
n

}
,

(ii) W2(z) :=
∑∞

n=1

{
|〈{Cs,n(z)}n∈Z, {e(2)

n }n∈Z〉l2|2/σ(2)
n

}
,

(iii) W3(z) :=
∑∞

n=1

{
|〈{Cp,n(z)}n∈Z × {Cs,n(z)}n∈Z, {e(3)

n }n∈Z〉l2|2/σ(3)
n

}
.

The values of the indicator function Wj(z) for z lying above the scattering surface should be relatively

larger than those below the surface. In this way we establish the factorization method in elastic scattering

by rigid surfaces, using the kp sin θ-quasi-periodic incident elastic waves uin
1,n. By the proof of Theorem

4.11, the parameter t entering intoNj] will be selected depending on the choice of the angle φ ∈ (0, π/2)
given explicitly in the appendix.
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Remark 4.12. In inverse acoustic scattering by diffraction gratings, the role of the positive coercive

operator is usually played by the single-layer operator whose kernel is the quasi-periodic fundamental

solution to the Helmholtz equation with the wavenumber k = i or k = 0. This gives rise to an analogous

inversion algorithm to Theorem 4.11 with the parameter t = 0. In the elastic case, more mathematical

arguments would be involved in analyzing the D-to-N map and the middle operator when ω = i or

ω = 0. This is the reason why we turn to investigate properties of the middle operator with small

frequencies as shown in Lemma 4.7 (i). However, our numerical experiments illustrate that the inversion

algorithms with t = 0 still work well although a theoretical justification for that is not available yet.

The factorization method using ks sin θ-quasi-periodic incident plane waves for the problems (Sj) can be

established analogously.

Corollary 4.13. Suppose

(i) ω is not a Dirichlet eigenvalue of the quasi-periodic Lamé operator in the periodic layer Ω−
0 with

phase-shift α = ks sin θ,

(ii) either sin2 θ < µ/(λ+ 2µ) or | sin θ| > 1/2 holds.

Then, the results of Theorem 4.11 for (Pj) apply to the corresponding inverse problems (Sj), j = 1, 2, 3.

Note that the second condition in Corollary 4.13 ensures the inequality (19) for α = ks sin θ; see Lemma

A.1 (ii). Combining Theorem 4.11 and Corollary 4.13, we obtain the following uniqueness results for the

inverse problem by utilizing only the compressional or shear part of the scattered field due to incident

elastic waves with a common phase-shift. Define

I(α) := {(αn,−βn)T exp(i(αnx1 − βnx2)) : n ∈ Z} ∪ {(γn, αn)T exp(i(αnx1 − γnx2)) : n ∈ Z}

Corollary 4.14. Given an incident angle θ ∈ (−π/2, π/2). Under the conditions in Theorem 4.11 (resp.

Corollary 4.13), a rigid diffraction grating surface can be uniquely determined from the knowledge of the

compressional or shear part of the scattered field corresponding to each incoming wave from the set

I(α) with α = kp sin θ (resp. α = ks sin θ).

5 Numerical experiments

In this section we report numerical experiments to test the validity and accuracy of the factorization

method for the inverse problems (Pj) and (Sj), j = 1, 2, 3. To generate the synthetic scattered data for

downward incoming waves uin
j,n,d(n ∈ Z) from the set Ij(α), we solve an equivalent first-kind integral

equation on Λ to (2) by using the discrete Galerkin method given in [14]. The n-th Rayleigh coefficients

Aj,m
p,n , A

j,m
s,n corresponding to the incident wave uin

j,m can be computed through the analysis at the end of

Section 3. Define (2M + 1) × (2M + 1) matrix N
(M)
j,τ :

N
(M)
j,τ :=




Aj,−M
τ,−M Aj,−M+1

τ,−M · · · Aj,0
τ,−M · · · Aj,M

τ,−M

Aj,−M
τ,−M+1 Aj,−M+1

τ,−M+1 · · · Aj,0
τ,−M+1 · · · Aj,M

τ,−M+1
...

...
...

...
...

...

Aj,−M
τ,M Aj,−M+1

τ,M · · · Aj,0
τ,M · · · Aj,M

τ,M


 , j = 1, 2, τ = p, s (27)

15



for some M > 0. Then the near-field operators Nj (j = 1, 2) can be approximated by the matrices

N
(M)
1 := N

(M)
1,p and N

(M)
2 := N

(M)
2,s , respectively, whereas discretizing N3 leads to the (4N + 2) ×

(4N + 2) matrix

N
(M)
3 :=

(
N

(M)
1,p N

(M)
2,p

N
(M)
1,s N

(M)
2,s

)

Let the singular value decomposition of Re [eiφN (M)] be given by

Re (eiφN (M)) = V DV −1

with D being the matrix of eigenvalues and V being the matrix of the corresponding eigenvectors of

Re (eiφN (M)). Then the operator N] can be approximated by

N
(M)
] = V DV −1 + Im (N (M))

Suppose we have the singular value decomposition of N
(M)
] :

N
(M)
] = USU−1

with S being the diagonal matrix of singular values σl and U = (ψn,l) being the matrix of the left singular

vectors. Hence the Picard’s range criterion can be approximated by the cut-off series

W̃1(z) :=
[ 2M+1∑

l=1

1

σl

∣∣
M∑

n=−M

Cp,n(z)ψn+M+1,l

∣∣2
]−1/2

,

W̃2(z) :=
[ 2M+1∑

l=1

1

σl

∣∣
M∑

n=−M

Cs,n(z)ψn+M+1,l

∣∣2
]−1/2

,

W̃3(z) :=
[ 4M+2∑

l=1

1

σl

∣∣
M∑

n=−M

(Cp,n(z)ψn+M+1,l + Cs,n(z))ψn+M+2,l

∣∣2
]−1/2

We will consider the following three grating profiles in our numerical experiments (see Figure 1):

(i) f(x) = 0.6 + 0.5 sin(x), x ∈ (0, 2π), h = 1.3,

(ii) f(x) = 0.5 + 0.3 sin(x) + 0.2 sin(2x), x ∈ (0, 2π), h = 1.2,

(iii) f(x) = 0.2 + 0.2 exp(sin(3x)) + 0.3 exp(sin(4x)), x ∈ (0, 2π), h = 1.8.

In Figure 1 the red horizontal line indicates the detecting position Γh of our measurement for the scattered

data.

Experiment 1: We apply the factorization method to the inverse problems (Pj) and (Sj), j = 1, 2, 3 with

fixed parameters ω = 5, λ = 1, µ = 2,M = 30 for distinct incident angles θ = π/6, π/3. With these

parameters we have the compressional wavenumber kp =
√

5 and the shear wavenumber ks = 5/
√

2,

implying that most of our measurement data (Rayleigh coefficients) are from the surface waves with only

16
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(c) Surface (iii)

Figure 1: Test surfaces

a few from the propagating modes. We used unpolluted scattered near-field taken on Γh to reconstruct

surfaces (i), (ii) and (iii). It can be seen from Figures 2, 3 and 4 that the factorization method gives

satisfactory reconstructions particularly for mild surfaces (surface (i)), although poor reconstructions occur

when the surface has deep grooves (e.g., surface (ii)) or oscillates heavily (e.g., surface (iii)). Evidently,

using the entire near-field data gives better images than using only P-part or S-part data. In Figure 2, the

reconstructions for (Pj) and (Sj) are nearly the same using different types of incident waves and Rayleigh

coefficients, but those for (P3) and (S3) appear more reliable (see also Figures 3 and 4). However, in our

settings it is not easy to conclude which one is superior by using P-part data and S-part data. The incident

angles seem to have little effect on the quality of reconstructions.

Experiment 2: We take surface (ii) as an example to investigate the sensitivity of the factorization method

to the noisy data. We only consider problems (Pj), j = 1, 2, 3 for the incident angle θ = 0 and take the

other parameters as shown in Experiment 1. The Rayleigh coefficients are perturbed by the multiplication

of (1 + δ%ξ) with the noise level δ%, where ξ is an independent and uniformly distributed random

variable generated between −1 and 1. Figure 5 illustrates the reconstructions from different noise levels

at δ% = 2%, 5%, 8%, respectively. It is seen that the factorization method with synthetic data is not very

sensitive to the noise, and using the full near-field data seems more stable than using only compressional

or shear waves.

Experiment 3: In the final experiment, we want to explore possible approaches to improve the recon-

structions. At first, we consider the problem (P1) for recovering surface (ii) with fixedM = 30, θ = 0 and

different incidence frequencies at ω = 5, 10, 20. Figure 6 shows that higher frequency waves provide

more accurate images than using lower frequencies. This can be explained by the fact that the number of

propagating modes for ω = 20 (kp ≈ 8.9) is much more than that for ω = 5 (kp ≈ 2.24). The propagat-

ing wave modes contain more information of the scattering surface than the surface (evanescent) modes,

because the latter propagates only along the grating profiles and decays exponentially in the x2-direction.

This is confirmed again in Figure 8 for recovering surface (iii) with different detecting positions. Since sur-

face waves nearly cannot be measured at locations far away from the profiles, lowering the height of the

measurement position contributes to better imaging quality. To see the effects of evanescent waves, we

fix ω = 5, θ = 0 and compare the numerical results with different M . From Figure 7 we conclude that

increasing the number of evanescent waves will enhance the imaging quality.
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(a) (P1), θ = π/6 (b) (P2), θ = π/6 (c) (P3), θ = π/6

(d) (S1), θ = π/6 (e) (S2), θ = π/6 (f) (S3), θ = π/6

(g) (P1), θ = π/3 (h) (P2), θ = π/3 (i) (P3), θ = π/3

(j) (S1), θ = π/3 (k) (S2), θ = π/3 (l) (S3), θ = π/3

Figure 2: Experiment 1, surface (i)

18



(a) (P1), θ = π/6 (b) (P2), θ = π/6 (c) (P3), θ = π/6

(d) (S1), θ = π/6 (e) (S2), θ = π/6 (f) (S3), θ = π/6

(g) (P1), θ = π/3 (h) (P2), θ = π/3 (i) (P3), θ = π/3

(j) (S1), θ = π/3 (k) (S2), θ = π/3 (l) (S3), θ = π/3

Figure 3: Experiment 1, surface (ii)
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(a) (P1), θ = π/6 (b) (P2), θ = π/6 (c) (P3), θ = π/6

(d) (S1), θ = π/6 (e) (S2), θ = π/6 (f) (S3), θ = π/6

(g) (P1), θ = π/3 (h) (P2), θ = π/3 (i) (P3), θ = π/3

(j) (S1), θ = π/3 (k) (S2), θ = π/3 (l) (S3), θ = π/3

Figure 4: Experiment 1, surface (iii)
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(a) (P1), δ = 0 (b) (P2), δ = 0 (c) (P3), δ = 0

(d) (P1), δ = 2 (e) (P2), δ = 2 (f) (P3), δ = 2

(g) (P1), δ = 5 (h) (P2), δ = 5 (i) (P3), δ = 5

(j) (P1), δ = 8 (k) (P2), δ = 8 (l) (P3), δ = 8

Figure 5: Experiment 2

21



(a) ω = 5 (b) ω = 10 (c) ω = 20

Figure 6: Experiment 3 for different ω. θ = 0,M = 30, h = 1.2.

(a) M = 5 (b) M = 15 (c) M = 30

Figure 7: Experiment 3 for different M . ω = 5, θ = 0, h = 1.2.

(a) h = 1.6 (b) h = 1.8 (c) h = 2.0

Figure 8: Experiment 3 for different h. ω = 5, θ = 0,M = 30.
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Appendix

The following properties of the Dirichlet-to-Neumann (DtN) maps at small frequencies were used in the

proof of Lemma 4.7 (i).

Lemma A.1. (i) Let the Dirichlet-to-Neumann map Tω be given by (20) with α = kp sin θ. Then, there

exist an angle φ ∈ (0, π/2) and a sufficiently small frequency ω0 > 0 such that

−Re

{
exp(iφ)

∫

Γ±h

Tωu · u ds
}

≥ c ω ‖u‖2

H
1/2

α (Γ±h)2
, c > 0 (A.1)

uniformly for u ∈ H
1/2
α (Γ±h)

2 and ω ∈ (0, ω0].

(ii) In the case α = ks sin θ, the first assertion remains valid provided either sin2 θ < µ/(λ + 2µ) or

| sin θ| > 1/2.

Proof. (i) We prove (A.1) only for the DtN map defined on Γh. By the definition of Tω, we have

−
∫

Λh

T +
ω u · u ds =

∑

n∈Z

(Mn,ωun, un)C2 , ∀u ∈ H1/2
α (Γh)

2

where {un}n∈Z stands for the Fourier coefficients of exp(−iα)u|Γh
. Thus it suffices to prove the exis-

tence of φ ∈ (0, π/2) and ω0 > 0 such that

Re
(
exp(iφ)Mn,ω z, z

)
C2

≥ c ω (1 + |n|) |z|2, for all ω ∈ (0, ω0], n ∈ Z, z ∈ C
2

(A.2)

Observe that

Re
(
exp(iφ)Mn,ω

)
= cosφRe(Mn,ω) − sinφ Im(Mn,ω) (A.3)

and that for α = kp sin θ,

{n : |αn| < kp} = {0}, {n : |αn| > ks} = {n : n 6= 0}, {n : kp ≤ |αn| ≤ ks} = ∅ (A.4)

if ω → 0. For notational convenience we write (cf. 21)

Mn,ω =

(
ian icn
−icn ibn

)
, an =

−ω2βn

tn
, bn =

−ω2γn

tn
, cn =

αn

tn
(ω2 − 2µtn) (A.5)

We first prove (A.1) in the case n 6= 0. Elementary calculation shows that

tn = α2
n −

√
α2

n − k2
p

√
α2

n − k2
s =

k2
p + k2

s

2
+ O(ω4) as ω → 0 (A.6)

Combining (A.4) and (A.6) then yields

ian = −iω2βn/tn ≥ c1ω(1 + |n|) > 0, ImMn,ω = 0,

det(ReMn,ω) = (4α2
nµ(ω2 − µtn) − ω4)/tn ≥ c2 ω

2(1 + |n|)2 > 0
(A.7)

as ω → 0, with some constants c1, c2 > 0 independent of u and ω. The estimate (A.2) then follows from

(A.7) and (A.3) for all φ ∈ (0, π/2) and n 6= 0.
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We next consider the case n = 0, which implies that a0, b0, c0, t0 ∈ R,

Re(M0,ω) =

(
0 ic0

−ic0 0

)
, Im(M0,ω) =

(
a0 0
0 b0

)

Consequently,

Re
(
exp(iφ)M0,ω

)
=

(
−a0 sinφ ic0 cosφ
−ic0 cosφ −b0 sinφ

)

Moreover, the (1, 1)-th entry and the determinant of the above matrix can be more precisely reformulated

in terms of λ, µ, ω and φ as

−a0 sinφ = ω
√

2µ+ λ cos θ sinφ/H0(θ, λ, µ),

det[Re
(
exp(iφ)M0,ω

)
] = ω2(2µ+ λ)(tan2 φ−H1(θ, λ, µ))/H2

0 (θ, λ, µ)

where

H0(θ, λ, µ) := sin2 θ + cos θ
√

(2µ+ λ)/µ− sin2 θ > 0,

H1(θ, λ, µ) :=
sin2 θ

[
1 − 2µ( sin2 θ

2µ+λ
+ 1√

2µ+λ
cos θ

√
1
µ
− sin2 θ

2µ+λ
)
]2

cos θ
√

(2µ+ λ)/µ− sin2 θ
≥ 0

Taking φ ∈ (0, π/2) such that tan2 φ > H1(θ, λ, µ), we get

−a0 sinφ ≥ c ω, det[Re
(
exp(iφ)M0,ω

)
] ≥ cω2, ∀ω ∈ (0, ω0]

for some constant c > 0 independent of ω ∈ (0, ω0]. From this the estimate (A.1) follows when n = 0.

The first assertion is thus proven.

(ii) Let α = ks sin θ. If sin2 θ < µ/(λ+ 2µ) (or equivalently k2
p > k2

s sin2 θ), then the relations in (A.4)

remain valid for small ω. Hence, repeating the same arguments in proving (i) gives the estimate (A.1) for

this case. Next, under the assumption that sin2 θ ≥ µ/(λ + 2µ) and sin2 θ > 1/4 we will verify the

estimate (A.2) by arguing similarly as in (i).

For n 6= 0 and small ω, we have βn = i|βn|, γn = i|γn| and tn = α2
n−|βn||γn| if sin2 θ ≥ µ/(λ+2µ).

Consequently, by (A.5) we have Im (Mn,ω) = 0 and (Re (Mn,ω)z, z) ≥ c ω|n||z|2 for z ∈ C
2, n 6=

0, ω ∈ (0, ω0]. Therefore, for any φ ∈ (0, π/2) one can verify the inequality (A.2) again whenever

n 6= 0.

Additional arguments are needed in the case n = 0, for which we have β0 = i|β|, γ0 = γ, t0 =
α2 + i|β|γ and

M0,ω =
i

t0
N0, N0 :=

(
−iω2β c0
−c0 −ω2γ

)
, c0 = α(ω2 − 2µt0)

By elementary calculations, the matrix Re (eiφM0,ω) takes the form

Re (eiφM0,ω) =
cosφ

α4 + |β|2γ2
Ñ0,ω, Ñ0,ω :=

(
(α2 + tanφ|β|γ)ω2|β| id

−id (tanφα2 − |β|γ)ω2γ

)
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where d = (tanφα2 − |β|γ)2µα|β|γ + (α2 + tanφ|β|γ)α(ω2 − 2µα2). For small ω, the (1, 1)-th

entry of the matrix Ñ0,ω is bounded below:

(α2 + tanφ|β|γ)ω2|β| ≥ c1 ω
5, ∀φ ∈ (0, π/2), c1 = c1(φ) > 0

The determinant of Ñ0,ω can be written as det(Ñ0,ω) = tanφ I1(θ, λ, µ, ω) − I2(θ, λ, µ, ω), where

I1 = (α2 + |β|2γ2)|β|γ(4 sin2 θ − 1)ω2,

I2 =
(
α3(ω2 − 2µα2) − 2µα|β|2γ2

)2
+ ω4|β|2γ2α2 > 0

Obviously, I1 > 0 if | sin θ| > 1/2. Now, choosing φ ∈ (0, π/2) such that tanφ > I2/I1 > 0, we

deduce that det(Ñ0,ω) ≥ c2 ω
6 as ω → 0 for some constant c2 = c2(φ) > 0. Finally, making use of

the asymptotic behavior α4 + |β|2γ2 ∼ ω4 as ω → 0, we obtain (A.2) for n = 0 in the case when

sin2 θ ≥ µ/(λ + 2µ) and sin2 θ > 1/4. Note that det(Ñ0,ω) < 0, so the matrix Re (eiφM0,ω) is not

definite when | sin θ| < 1/2.
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