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Abstract

We consider a paradigmatic spatially extended model of non-locally coupled phase

oscillators which are uniformly distributed within a one-dimensional interval and interact

depending on the distance between their sites modulo periodic boundary conditions. This

model can display peculiar spatio-temporal patterns consisting of alternating patches with

synchronized (coherent) or irregular (incoherent) oscillator dynamics, hence the name

coherence-incoherence pattern, or chimera state. For such patterns we formulate a gen-

eral bifurcation analysis scheme based on a hierarchy of continuum limit equations. This

gives us possibility to classify known coherence-incoherence patterns and to suggest di-

rections for searching new ones.

1 Introduction

Emergence of collective behavior (synchrony) in large groups of oscillators plays an important

role in a wide variety of significant applications. Examples are synchronization of neuronal os-

cillations in brain [1, 2, 3], entrainment in coupled Belousov-Zhabotinsky chemically reacting

cells [4, 5], Josephson junction circuits [6] and mode-locked lasers [7], other references also

can be found in [8]. It is well-known that in the context of N weakly coupled oscillators [9, 10],

main features of synchronization phenomenon can be adequately reproduced by a correspond-

ing phase reduced model

dθk
dt

= ωk −
1

N

N
∑

j=1

GkjF (θk(t) − θj(t)), k = 1, . . . , N, (1)

where the state of the k-th oscillator is represented solely by its scalar phase θk ∈ R. Further,

natural frequencies ωk ∈ R reflect the individual differences between oscillators, and a coupling

matrix Gkj ∈ R
N×N together with a 2π-periodic function F : R → R determine the details

of interaction between oscillators. To get a qualitative insight into model (1) it is often enough

to replace a particular function F with its leading Fourier harmonics of the form sin(θ + α)
where α ∈ R is referred to as phase lag parameter. In the case of global coupling (when

all Gkj are equal) and natural frequencies ωk drawn from a certain probability distribution,

this simplification gives a paradigmatic Kuramoto-Sakaguchi model [11] that describes synchro-

nization transition in a homogeneous bulk. However, bulk approximation is not always suitable.

For many spatially extended systems, it appears more natural to assume that coupling coeffi-

cients Gkj vary depending on real physical distance between oscillators. To mimic this feature

Kuramoto and Battogtokh suggested in [12] another kind of model (1) that reads

dθk
dt

= ω − 2π

N

N
∑

j=1

Gkj sin(θk(t) − θj(t) + α), k = 1, . . . , N. (2)
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Here all oscillators have the same natural frequency ω ∈ R and are equipped with additional

spatial labels xk denoting their positions within the one-dimensional reference interval [−π, π],
hence the normalization prefactor 2π at the sum. Assuming that xk are uniformly distributed

over [−π, π] (typical choice is xk = −π + 2πk/N ), one defines

Gkj = G(xk − xj), (3)

where G : R → R is a continuous even and 2π-periodic coupling function introducing a sym-

metric ring coupling topology between oscillators. If G is constant and non-zero then Eq. (3)

determines global coupling. On the other hand, any non-constant function G produces a qual-

itatively different coupling topology which according to established tradition is called non-local

coupling. The non-local coupling is defined on a macroscopic level, hence using a particular

function G one obtains a sequence of systems (2)–(3) with different sizes N . Nevertheless for

sufficiently large N all these systems demonstrate macroscopically similar long-term dynam-

ics. In particular, starting from randomly chosen initial conditions and simulating system (2)–(3)

one typically obtains either a completely synchronized solution, Fig. 1 (a), or a twisted phase-

locked solution, Fig. 1 (b). However, it was an exciting discovery that in spite of apparent struc-

tural symmetry, for some parameter values system (2)–(3) can also support unexpected spatio-

temporal patterns shown in Fig. 1 (c) where synchronized (coherent) and irregular (incoher-

ent) oscillator dynamics is observed simultaneously but at different sites xk. Such coherence-

incoherence patterns attracted great interest and have been the subject of numerous studies in

last decade [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. In most

of above publications they are referred to as chimera states. This name sounds attractive but

is very loosely defined. For example, it was used to denote asymmetric partially synchronized

states in two or three interacting groups of globally coupled oscillators [31, 32], or to denote

non-trivial fixed points in networks of non-locally coupled maps [33, 34]. Therefore, in order to

identify more precisely the main object of our study we intentionally use the name coherence-

incoherence pattern instead of chimera state.

To the best of our knowledge, all previous studies of coherence-incoherence patterns were

concerned with a particular choice of coupling functionG. Kuramoto and Battogtokh considered

an exponential coupling [12] of the form

G(x) ∼ e−κ|x| with κ > 0

motivated by adiabatic elimination of fast diffusive variable in a multi-component oscillatory

chemical system. A few years later, the cosine coupling

G(x) =
1

2π
(1 + A cosx) with A ∈ (0, 1) (4)

was suggested [14, 15] in order to simplify the mathematical complexity of the problem. Finally,

the piecewise-constant coupling with a radius r ∈ (0, 1)

G(x) =

{

(2πr)−1 for |x| ≤ πr,

0 for |x| > πr
(5)

was used in [23, 25, 26] to study the dynamical nature of coherence-incoherence patterns in

the context of finite size systems.
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Figure 1: Solutions observed in numerical simulations of Eqs. (2)–(3): (a) completely synchro-

nized state, (b) twisted state, and (c) coherence-incoherence pattern. Top and bottom panels

display time dynamics of oscillators and corresponding instantaneous snapshots, respectively.

Translational symmetry of Eqs. (2)–(3) was used to center the resulting plots. Parameters:

N = 200, ω = 0, α = π/2−0.1, and piecewise-constant coupling (5) with r = 0.8. Each so-

lution can be approached with a nonvanishing probability starting from randomly chosen initial

data.

In contrast, this work focuses on the systematic description of coherence-incoherence patterns

and other dynamical regimes observed in system (2)–(3) after an initial transient for arbitrary

choice of coupling function G. For this we employ the large N limit formalism explained in Sec-

tion 2. There, applying the ideas of the Ott-Antonsen invariant manifold theory we show that

on a macroscopic level the effective dynamics of system (2)–(3) can be described in terms

of a complex-valued function — local order parameter, that evolves according to some ex-

plicitly known equation in Banach space of continuous functions. It turns out that coherence-

incoherence patterns as well as completely synchronized and twisted solutions can be repre-

sented as standing wave solutions of the latter equation. Moreover, spatially dependent ampli-

tudes of these waves and their rotational frequencies satisfy a nonlinear integral equation with

O(2) × S1-symmetry, which has a form of the infinite-dimensional nonlinear eigenvalue prob-

lem (NEVP). In Section 3 we perform a detailed analysis of the solution set to this NEVP. In

particular, we show that every non-zero harmonics in the Fourier series of coupling function G
gives rise to several solution curves (modulo the symmetry group action) organized as primary

an secondary branches bifurcating from the trivial solution. All the branches can be interpreted

either as coherence-incoherence patterns or as phase-locked solutions of system (2)–(3). Re-

markably, only a few of them are stable and can be observed in numerical simulations. The

underlying stability analysis with respect to the evolution equation for local order parameter is

addressed in Section 4. Discussion and concluding remarks are presented in Section 5.
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Notations. Throughout this paper we assume the following notations. For any integer k ≥ 0,

by Ck
per([−π, π]; R) and Ck

per([−π, π]; C) we denote the Banach spaces of 2π-periodic, real-

and complex-valued functions, respectively, which are continuous together with their derivatives

up to the k-th order. These spaces are equipped with their usual supremum norms

‖u‖k := ‖u‖Ck
per([−π,π];R) = ‖u‖Ck

per([−π,π];C) = max
x∈[−π,π]

k
∑

j=0

|u(j)(x)|.

Instead of C0
per([−π, π]; R) and C0

per([−π, π]; C) we use notations Cper([−π, π]; R) and

Cper([−π, π]; C), respectively.

In some cases we identify function u ∈ Ck
per([−π, π]; C) with a vector-function of its real and

imaginary parts

(Reu, Imu)T ∈ Ck
per([−π, π]; R2)

that simultaneously provides a natural definition of the latter Banach space. Then for a mapping

F : R
2 3 (u1, u2)

T 7→ (f1(u1, u2), f2(u1, u2))
T ∈ R

2

where f1 and f2 are given smooth functions, we use an equivalent complex notation

u = u1 + iu2 7→ f(u) = f1(u1, u2) + if2(u1, u2) with f : C → C.

This notation implies a simple formula for derivative of F (in the R2-topology) that reads

F ′(u)v =
d

dt
f(u+ tv)

∣

∣

∣

∣

t=0

. (6)

Finally, for any u, v ∈ Cper([−π, π]; C) we define the inner product

〈u, v〉 :=

∫ π

−π

u(x)v(x)dx, (7)

where u denotes the complex conjugate of u.

2 Continuum limit approach

Completely synchronized and twisted solutions of Eqs. (2)–(3) are known explicitly, therefore

their dynamical properties can be analyzed in the framework of this finite-dimensional sys-

tem [35, 36]. In contrary, numerical simulations demonstrate [26] that coherence-incoherence

patterns are hyper-chaotic trajectories with the number of positive Lyapunov exponents being

proportional to the system size N . For increasing N such patterns seem to become tremen-

dously complicated objects. However, this is not the case. In fact their macroscopic dynamics

for N → ∞ turns out to be in a certain sense equivalent to the dynamics of a periodic orbit of

some deterministic infinite-dimensional evolution equation.

4



2.1 Continuum limit equation

If N → ∞ then instead of looking for individual phases θk(t) we may look for their probability

distribution f(θ, x, t), which for fixed time t gives a relative number of oscillators with θk(t) ≈ θ
and xk ≈ x. Evolution equation for distribution f can be derived phenomenologically as we

explain below. Its rigorous justification is more involved and can be found somewhere else, see

for example recent work of Luçon and Stannat [37].

First, we rewrite Eq. (2) in a local form

dθk
dt

= ω + Im
(

Zk(t)e
−i(θk(t)+α)

)

, k = 1, . . . , N, (8)

where each phase θk is coupled solely with the averaged driving force

Zk(t) =
2π

N

N
∑

j=1

Gkje
iθj(t).

For N → ∞, the latter sum can be formally replaced with a value of integral

Z(x, t) =

∫ π

−π

G(x− y)

∫ 2π

0

f(θ, y, t)eiθ dθ dy (9)

evaluated at the position of the k-th oscillator x = xk. Suppose for a moment that all Zk(t) =
Z(xk, t) are known, then dynamics of f corresponding to Eq. (8) has to obey a continuity

equation
∂f

∂t
+

∂

∂θ
(fJ) = 0, (10)

where

J(θ, x, t) = ω + Im
(

Z(x, t)e−i(θ+α)
)

(11)

is the right-hand side of Eq. (8). However in our case Z(x, t) is not given rather depends

on f , see (9). Hence self-consistent dynamics of probability distribution f is governed by the

nonlinear integro-differential equation (10)–(11) whereZ(x, t) is expressed by formula (9). Note

the integral term of Eq. (10) is hidden in formula (9) whereas quadratic nonlinearity appears

from the product fJ . Following established tradition we call Eqs. (10)–(11) the continuum limit

equation.

2.2 Ott-Antonsen invariant manifold and local order parameter

Direct study of continuum limit equation is quite a difficult task, in particular because its solutions

typically are generalized functions, or measures. Already in the case of bulk synchronization,

bifurcation analysis of continuum limit equation is so complicated [38, 39] that most of interesting

facts about the qualitative behaviour of its solutions turn out to be hidden behind mathematical

details. Fortunately, the fact that phase interaction in Eq. (2) is given by a pure sinusoidal term

allows us to simplify the analysis of Eqs. (10)–(11) significantly. To this end, we use the Ott-

Antonsen method suggested in [40, 41]. Roughly speaking it says that Eqs. (10)–(11) have an

explicitly known attracting invariant manifold that contains all relevant dynamics of Eqs. (2)–(3)

for large N . Exact form of this manifold is described in the following lemma.
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Lemma 1 Suppose that:

(i) z(x, ·) : [0,∞) → Cper([−π, π]; C) satisfies the inequality |z(x, t)| < 1,

(ii) z(x, t) is a solution of the equation

dz

dt
= iωz(x, t) +

1

2
e−iαGz − 1

2
eiαz2(x, t)Gz, (12)

where G : Cper([−π, π]; C) → Cper([−π, π]; C) is an integral convolution operator defined

by

(Gϕ)(x) :=

∫ π

−π

G(x− y)ϕ(y)dy. (13)

Then, probability distribution f given by

f(θ, x, t) =
1

2π

(

1 +

∞
∑

n=1

[

zn(x, t)einθ + zn(x, t)e−inθ
]

)

, (14)

is a solution of the continuum limit equation (10)–(11).

Proof: For |z| < 1 the series in the right-hand side of (14) converges absolutely. Substituting

this into Eqs. (10)–(11) and reordering terms appropriately we obtain

∂f

∂t
+

∂

∂θ
(fJ) =

1

2π

(

dz

dt
− iωz − 1

2
e−iαGz +

1

2
eiαz2Gz

) ∞
∑

n=1

nzn−1e−inθ

+
1

2π

(

dz

dt
+ iωz − 1

2
eiαGz +

1

2
e−iαz2Gz

) ∞
∑

n=1

nzn−1einθ.

Clearly, if z satisfies Eq. (12) then each expression in parenthesis vanishes and hence Eq. (10)

is fulfilled. •

Remark 1 Eq. (12) was first obtained by Laing in [20]. Later on, we pointed out [26] an al-

ternative way to derive it using the Watanabe-Strogatz ansatz in the context of hierarchical

populations of coupled oscillators, see [42, 43] for detail.

Distribution f defined by formula (14) has a clear interpretation with respect to the complex-

valued function z. Indeed for any |z(x, t)| < 1, summation in (14) yields

Pz(θ) =
1

2π

1 − |z|2
1 − 2|z| cos(θ − arg z) + |z|2

that is a Poissonian distribution in the phase θ (see Fig. 2). In particular, arg z indicates the

location of its center, whereas |z| characterizes the degree of non-uniformity of this distribution.

For |z| = 1, distribution (14) degenerates into a delta function

Pz(θ) = δ(θ − arg z),

6
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Figure 2: Poissonian distributions Pz(θ) for (a): |z| = 0, (b): 0 < |z| < 1, and (c): |z| = 1.

therefore we call oscillators with sites xk ≈ x coherent. In contrary, oscillators with posi-

tions xk ≈ x and |z(x, t)| < 1 are referred to as incoherent.

For any f given by (14) it holds

z(x, t) =

∫ 2π

0

f(θ, y, t)eiθdθ.

This formula resembles the well-known Kuramoto’s order parameter [44] with the only difference

that |z(x, t)| measures the synchronization of oscillators around point x rather than the global

synchronization of all oscillators, therefore we call function z the local order parameter. Note

the concept of local mean filed is consistent with Eq. (12). Indeed, Eq. (12) defines a smooth

dynamical system on the Banach space Cper([−π, π]; C). Moreover next lemma shows if we

take an initial data z0 such that ‖z0‖0 ≤ 1 and trace its evolution according to Eq. (12) then at

every time moment t we get |z(x, t)| ≤ 1.

Lemma 2 Eq. (12) has an invariant set of the form

U := {z ∈ Cper([−π, π]; C) : ‖z‖0 ≤ 1} .

Proof: The complex conjugate of Eq. (12) reads

dz

dt
= −iωz(x, t) +

1

2
eiαGz − 1

2
e−iαz2(x, t)Gz,

hence

d|z|2
dt

= z
dz

dt
+ z

dz

dt
=

1 − |z|2
2

(

eiαzGz + e−iαzGz
)

=
(

1 − |z|2
)

Re
(

eiαzGz
)

.

Taking into account that z(x, t) is a continuous function of its arguments, for any fixed x ∈
[−π, π] we get either |z(x, t)| = 1 for all t ∈ R, or |z(x, t)| 6= 1 for all t ∈ R. This implies the

invariance of set U . •
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2.3 Standing wave solutions and self-consistency equation

For particular examples of coherence-incoherence patterns considered in [19, 20] it was shown

that they have periodic orbit counterparts lying in the Ott-Antonsen manifold. Assuming this

correspondence as general conjecture, we develop a strategy for analysis of periodic solutions

of Eq. (12).

We remark that Eq. (12) has two continuous symmetries. It is equivariant with respect to:

� spatial translations z(x, t) 7→ z(x + s, t), s ∈ R,

� and complex phase shifts z(x, t) 7→ eiϕz(x, t), ϕ ∈ R.

Moreover, since coupling function G is even, the equation is also symmetric with respect to

� spatial reflections z(x, t) 7→ z(−x, t).

These symmetries suggest us to seek periodic solutions of Eq. (12) in the following form

z(x, t) = a(x)eiΩt, (15)

where Ω ∈ R is a collective frequency, and a ∈ Cper([−π, π]; C) is a spatial profile. In

accordance with the probabilistic interpretation of local order parameter z, we have to ensure

that |a(x)| ≤ 1 for all x ∈ [−π, π]. Then, we refer to points x ∈ [−π, π] with |a(x)| = 1 and

|a(x)| < 1 as to the coherent and incoherent regions, respectively. In such a way we divide all

the solutions described by ansatz (15) into three groups:

Name of solution Description

Coherent (or phase-locked) state |a(x)| = 1 for all x ∈ [−π, π]

Incoherent state |a(x)| < 1 for all x ∈ [−π, π]

Coherence-incoherence pattern Both coherent and incoherent regions

are non-empty

For coherent and incoherent states, we also distinguish spatially uniform (if a(x) is constant)

and spatially modulated (otherwise) forms of these states. Finally, we call trivial solution z ≡ 0
the completely incoherent state.

Substituting ansatz (15) into Eq. (12) we obtain a self-consistency equation

eiαa2(x)Ga− 2i(ω − Ω)a(x) − e−iαGa = 0. (16)

To clarify its nature we perform a series of transformations. Assuming that Ω 6= ω we define a

new unknown function

w(x) := (ω − Ω)−1 (Ga) (x), (17)
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which is an analog of the local mean field in [12]. Then we rewrite Eq. (16) in the following form

e−iβw(x)a2(x) − 2a(x) + eiβw(x) = 0, (18)

where

β :=
π

2
− α. (19)

For fixed w(x), quadratic Eq. (18) has two solution branches

a±(x) =



















1 ±
√

1 − |w(x)|2
e−iβw(x)

for |w(x)| < 1,

1 ± i
√

|w(x)|2 − 1
e−iβw(x)

for |w(x)| ≥ 1,

(20)

which satisfy |a−(x)||a+(x)| = 1. If |w(x)| < 1 then it holds |a−(x)| < 1 and |a+(x)| >
1. Therefore in order to be consistent with the requirement |a(x)| ≤ 1 we have to assume

a(x) = a−(x). On the other hand, if |w(x)| ≥ 1 we get |a−(x)| = |a+(x)| = 1, and

both branches a−(x) and a+(x) are appropriate candidates for a(x). Taking into account the

above definition of coherent and incoherent regions, we characterize them with the help of

function w(x) as follows

Scoh(w) := {x ∈ [−π, π] : |w(x)| ≥ 1} ,

Sincoh(w) := {x ∈ [−π, π] : |w(x)| < 1} . (21)

Now, to make definition (17) consistent with Eq. (18) we have to assume that function w(x)
satisfies

w(x) = (ω − Ω)−1







∫

Sincoh(w)

G(x− y)
1 −

√

1 − |w(y)|2
e−iβw(y)

dy

+

∫

Scoh(w)

G(x− y)
1 ± i

√

|w(y)|2 − 1

e−iβw(y)
dy






. (22)

Note that depending on the choice a(x) = a−(x) or a(x) = a+(x) in the coherent re-

gion Scoh(w), we obtain two different equations (22)− and (22)+. Defining a complex parameter

µ := (ω − Ω)e−iβ = (ω − Ω)e−i(π/2−α) (23)

and a complex-valued function

h(s) :=















1 −
√

1 − s
s = 1

1 +
√

1 − s
for 0 ≤ s < 1,

1 − i
√
s− 1
s = 1

1 + i
√
s− 1

for s ≥ 1,

(24)

9



we rewrite Eqs. (22)− and (22)+ as

µw(x) =

∫ π

−π

G(x− y)h
(

|w(y)|2
)

w(y)dy, (25)

and

µw(x) =

∫ π

−π

G(x− y)h
(

|w(y)|2
)

w(y)dy, (26)

respectively. These Eqs. (25) and (26) are nonlinear eigenvalue problems (NEVP) to be solved

with respect to µ ∈ C and w ∈ Cper([−π, π]; C) simultaneously. Obviously they are not

independent: Every solution (µ, w) of Eq. (25) gives a solution (µ, w) of Eq. (26) and vice

versa.

The way we derived Eqs. (25) and (26) implies that every solution (µ, w) of Eq. (25) or Eq. (26)

corresponds to a solution of Eq. (12), which is given by ansatz (15) with collective frequency Ω
and spatial profile a(x) determined by formulas (20) and (23). Note that for any µ 6= 0 iden-

tity (23) has two equivalent forms

(ω − Ω)e−iβ = µ = |µ|ei arg µ = −|µ|ei(π+argµ),

and hence two possible choices of (Ω, β). This fact together with the relationship between

solutions of Eqs. (25) and (26) results in the following

Proposition 1 Suppose that pair (µ, w) ∈ C×Cper([−π, π]; C) solves Eq. (25), then Eq. (12)

has four solutions of the form (15):

(i) Ω = ω − |µ|, a(x) = h (|w(x)|2)w(x) for β = − argµ,

(ii) Ω = ω + |µ|, a(x) = h (|w(x)|2)w(x) for β = −π − argµ,

(iii) Ω = ω − |µ|, a(x) = h (|w(x)|2)w(x) for β = argµ,

(iv) Ω = ω + |µ|, a(x) = h (|w(x)|2)w(x) for β = π + argµ.

Remark 2 If pair (µ, w) is real, e.g. µ ∈ R and w ∈ Cper([−π, π]; R), then solutions defined

in lines (iii) and (iv) are identical to those from lines (i) and (ii), respectively.

Proposition 1 claims that every solution of Eq. (25) or (26) corresponds to some standing wave

solution of Eq. (12). But the opposite, in general, is not true. Indeed, deriving Eq. (22) we as-

sumed that either a(x) = a−(x) or a(x) = a+(x) uniformly for all x ∈ Scoh(w). Now suppose

that the set Scoh(w) consists of several disjoint intervals. Then, in each of those intervals we

may select between branches a−(x) and a+(x) independently, without violating the continuity

of the resulting profile a(x). Every such choice produces a different, more complicated form of

Eq. (22). Solving it we obtain standing waves, which are described neither by Eq. (25) nor by

Eq. (26). Fortunately, these ’exotic’ standing wave solutions turn out to be unstable, see Propo-

sition 2. Therefore, we may expect that solving Eq. (25) and applying Proposition 1 we find all

solutions relevant to observable states of system (2)–(3).

10



  

0

  

-π

π
θ k

(a)

  

  (b)

  

  (c)

0

0

0.5

1.0

-π

π

|a
(x

)|
ar

g 
a

(x
)

0

0

0.5

1.0

-π 0 π
x

-π

π

|w
(x

)|
ar

g 
w

(x
)

-π 0 π
x

-π 0 π
x

Figure 3: Continuum limit representation of two coherence-incoherence patterns (a) and (b), and

completely synchronized state (c). Top panels display snapshots of the states found in numerical

simulation of system (2)–(3) with N = 500, ω = 0, α = π/2 − 0.1, and cosine coupling (4)

where A = 0.9. Other panels beneath display the amplitude a(x) of corresponding standing

wave, and the corresponding complex profile w(x) = (ω − Ω)−1(Gw)(x).

11



Now we can outline our program for bifurcation analysis of coherence-incoherence patterns in

system (2)–(3). Fig. 3 illustrates our main tools. Instead of looking for generalized solutions of

continuum limit equation (10)–(11) we look for continuous functions z(x, t) solving Eq. (12). We

focus on standing wave solutions described by ansatz (15) with a ∈ Cper([−π, π]; R) and Ω ∈
R. The coherent and incoherent regions of such waves are fixed by conditions |a(x)| = 1
and |a(x)| < 1, respectively. Therefore spatial amplitude a is usually continuous but not

smooth. Replacing Eq. (16) by Eq. (25) we typically get a smooth unknown functionw such that

coherent and incoherent regions are determined by conditions |w(x)| ≥ 1 and |w(x)| < 1, re-

spectively. In the next section we will try to characterize complete solution set of Eq. (25). Then

applying Proposition 1 we transform each of found solutions (µ, w) into standing waves (15).

Finally performing stability analysis of these waves with respect to Eq. (12) we will select really

observable coherence-incoherence patterns.

3 Nonlinear eigenvalue problem

Defining a nonlinear substitution operator

H : Cper([−π, π]; C) → Cper([−π, π]; C), H(w) := h
(

|w|2
)

w, (27)

where h is given by (24), and recalling that G denotes the integral convolution operator (13), we

rewrite Eq. (25) in the abstract form

F(µ, w) := µw − GH(w) = 0. (28)

This is a nonlinear eigenvalue problem to be solved with respect to pair of unknowns (µ, w) ∈
C × Cper([−π, π]; C). Its infinite-dimensional nonlinearity GH(w) has comparatively sim-

ple mathematical nature since for coupling function G relevant to present study, correspond-

ing operator G is usually compact in Cper([−π, π]; C) or even in C1
per([−π, π]; C). However,

NEVP (28) inherits all continuous and discrete symmetries of Eq. (12), therefore its analysis re-

quires new approaches going beyond the classical paradigm of NEVP formulated by M. A. Kras-

noselskii [45] and P. H. Rabinowitz [46].

Above we have seen that typical dynamical regimes observed in large N system (2)–(3) can

be described as standing wave solutions of Eq. (12). In order to find such periodic solutions we

use NEVP (28) and the correspondence between its solutions and standing waves of Eq. (12)

given by Proposition 1. In Section 3.1, we address some auxiliary questions concerned with

Fourier representation of integral operator G and differentiability of substitution operator H.

Then, in Section 3.2 we show that in general case solution set of NEVP (28) is locally organized

as a curve (modulo the symmetry group action) in the Banach space C × Cper([−π, π]; C).

Some explicitly known solutions of NEVP (28) are described in Section 3.3. These solutions

are counterparts of completely synchronized and twisted solutions in original system (2)–(3). In

Section 3.4 we analyze primary solution branches bifurcating from the trivial solution w = 0.

Then, in Section 3.5 we describe a sequence of secondary solution branches which appear

from the primary branch of spatially uniform solutions. At the end we present two illustrative

examples for piecewise-constant and cosine coupling.
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3.1 Auxiliary facts about operators G and H

Generalizing examples from [12, 14, 23], let us suppose that coupling function G satisfies the

following conditions

� it is piecewise-smooth, that means it is C1-smooth on a finite number of disjoint intervals,

obtained as a partition of the interval [−π, π],

� it is non-constant,

� it is even, i.e. G(−x) = G(x),

� it is 2π-periodic.

These conditions in particular imply that G has an absolutely converging Fourier series

G(x) =

∞
∑

k=−∞

gke
ikx, with coefficients gk =

1

2π

∫ π

−π

G(x)e−ikx dx. (29)

Since G is even, all gk ’s are real and it holds gk = g−k. Formula (29) also implies that opera-

tor G is diagonizable in the Fourier space and can be represented in the form

(Gw) (x) =
∞
∑

k=−∞

gke
ikx

∫ π

−π

e−ikyw(y)dy.

Applying this we easily get

(

Geikx
)

(x) = 2πgke
ikx for any k ∈ Z. (30)

Moreover, using identity gk = g−k it is easy to verify that for any integer k ≥ 0 and any function

u ∈ Cper([−π, π]; C) it holds

〈cos(kx),Gu〉 = 2πgk〈cos(kx), u〉,

〈sin(kx),Gu〉 = 2πgk〈sin(kx), u〉,

where inner product 〈·, ·〉 is defined by (7).

Presence of integral operator G usually makes Eq. (28) infinite-dimensional. However, perform-

ing its numerical evaluation we often can replace this operator with a finite-rank approximation

obtained via truncating the Fourier series (29). For example, if we define

(GKw)(x) :=

∫ π

−π

GK(x− y)w(y)dy, K = 1, 2, . . . ,

where

GK(x) =

K
∑

k=−K

gke
ikx = g0 +

K
∑

k=1

2gk cos(kx), (31)
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then using the Hölder inequality and the L2-convergence of Fourier series (29) we easily obtain

lim
K→∞

‖G − GK‖ = 0, (32)

where convergence takes place in the strong operator norm of Banach spaceCper([−π, π]; C).

Infinite-dimensional range of operator G is not the only difficulty concerned with NEVP (28). In

principle, we could expect that local structure of its solution set can be revealed via the Implicit

Function Theorem. But, for this we must know the derivative

∂wF(µ, w) = µI − GH′(w), (33)

which is not correctly defined on Cper([−π, π]; C) because definition of operator H contains

the absolute value |w|. To avoid this problem let us identify Banach space Cper([−π, π]; C)
with its real counterpart Cper([−π, π]; R2). In other words, let us consider Eq. (28) as a system

of two equations for real and imaginary parts separately. After such a reformulation, we easily

calculate

H′(w)v =
d

ds

[

h(|w + sv|2)(w + sv)
]

∣

∣

∣

∣

s=0

= h(|w|2)v + 2wh′(|w|2) Re(wv), (34)

where

h′(s) =











1
2(1 +

√
1 − s)2

√
1 − s

for 0 ≤ s < 1,

− i
2(1 + i

√
s− 1)2

√
s− 1

for s ≥ 1.
(35)

Note that derivative h′(s) has a singularity at s = 1, therefore operator H still fails to be

differentable on the whole space Cper([−π, π]; R2). On the other hand, within the ball
{

w ∈ Cper([−π, π]; R2) : |w(x)| < 1 for all x ∈ [−π, π]
}

it has derivatives of arbitrary order. In particular,

H′′(w)v2 = 4vh′(|w|2) Re(wv) + 2wh′(|w|2)|v|2

+ 4wh′′(|w|2) Re2(wv), (36)

H′′′(w)v3 = 6h′(|w|2)|v|2v + 12wh′′(|w|2)|v|2 Re(wv)

+ 12vh′′(|w|2) Re2(wv) + 8wh′′′(|w|2) Re3(wv). (37)

Above we have seen that for coherence-incoherence patterns both inequalities |w(x)| < 1
and |w(x)| ≥ 1 occur at different positions x. Therefore nondifferentiability of H is unavoidable.

Fortunately this makes no problem if we take into account the smoothening effect of integral op-

erator G. Indeed, suppose that (µ, w) is a solution of NEVP (28), then for any piecewise-smooth

coupling function G it holds w ∈ C1
per([−π, π]; R2). Hence, without loss of generality we may

restrict NEVP (28) to the subspace of smooth functions w. After we did this, we can prove the

local differentiability of product operator GH, what in most cases is enough for application of

the Implicit Function Theorem.
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Lemma 3 Suppose thatG is a piecewise-smooth function, then for anyw0 ∈ C1
per([−π, π]; R2)

satisfying

κ(w0) := inf
x∈[−π,π]

(

∣

∣

∣
|w0(x)| − 1

∣

∣

∣
+

∣

∣

∣

∣

d|w0(x)|2
dx

∣

∣

∣

∣

)

> 0, (38)

there exists δ > 0 such that operator GH(w) is differentiable at any w ∈ C1
per([−π, π]; R2)

within the ball ‖w − w0‖1 < δ.

Proof: Due to assumption (38) equation |w0(x)| = 1 has at most a finite number, say L, of

simple roots ξ0
1, . . . , ξ

0
L ∈ [−π, π]. Moreover, for each ξ0

k there exists δk > 0 such that

∣

∣

∣
|w0(x)| − 1

∣

∣

∣
≥ κ

2
|x− ξ0

k| for all |x− ξ0
k| < δk.

Hence, choosing δ > 0 small enough, we ensure that for all w ∈ C1
per([−π, π]; R2) within the

ball ‖w − w0‖1 < δ the following properties are fulfilled:

(i) The equation |w(x)| = 1 has exactly L simple roots ξ1(w), . . . , ξL(w), which continuously

depend on w, and ξk(w0) = ξ0
k , k = 1, . . . , L.

(ii) For all |x− ξk(w)| < δk/2 it holds

∣

∣

∣
|w(x)| − 1

∣

∣

∣
≥ κ

4
|x− ξk(w)| .

The latter inequality together with formula (35) imply

∣

∣

∣
f ′
(

|w(x)|2
)

∣

∣

∣
≤ C0

∣

∣

∣
|w(x)| − 1

∣

∣

∣

−1/2

≤ 4C0

κ
|x− ξk(w)|−1/2

for all |x − ξk(w)| < δk/2, where C0(δ) > 0 is a constant independent of w. Now, from

formula (34) we easily see that the substitution operator

H : C1
per([−π, π]; R2) → L1

per([−π, π]; C)

is differentiable at any w ∈ C1
per([−π, π]; R2) within the ball ‖w − w0‖1 < δ. On the

other hand, for any smooth coupling function G the corresponding convolution operator G is

a bounded linear operator from L1
per([−π, π]; C) into C1

per([−π, π]; R2). Hence, the assertion

of lemma is proved. •

Roughly speaking, Lemma 3 claims that product operator GH is differentiable everywhere

in C1
per([−π, π]; R2) except of the zero measure set

Σ0 :=
{

w ∈ C1
per([−π, π]; R2) : κ(w) = 0

}

. (39)

Thus we may expect that local behavior of the solution set of NEVP (28) is generically de-

termined by properties of the linearized operator ∂wF(µ, w). However, a particular singular

behaviour may happen if w passes through the set Σ0.
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3.2 Local structure of the solution set of NEVP

Suppose that we know a particular solution (µ0, w0) of NEVP (28). Then, what can we say

about the local structure of its solution set close to this point? Below we provide a constructive

answer on this question.

We assume that µ0 6= 0 and w0 6= 0 (the case of trivial solution w0 = 0 is considered in

Section 3.4), then we choose a nonvanishing function ψ ∈ C1
per([−π, π]; R) such that

p0 =

∣

∣

∣

∣

〈ψ,w0〉
〈ψ, ψ〉

∣

∣

∣

∣

6= 0 (40)

(such ψ can always be found for example among the Fourier harmonics cos(kx) and sin(kx),

k = 0, 1, . . .). Let us define a Fourier projection of the form

Pψw :=
〈ψ,w〉
〈ψ, ψ〉ψ,

with the kernel

Πψ :=
{

w ∈ C1
per([−π, π]; R2) : Pψw = 0

}

.

Applying operators Pψ and I − Pψ to Eq. (28) and omitting the non-zero factor ψ/〈ψ, ψ〉 in

the former result, we rewrite Eq. (28) as an equivalent system

µ〈ψ,w〉 = 〈ψ,GH(w)〉, (41)

µ(I − Pψ)w = (I − Pψ)GH(w). (42)

Then taking into account assumption (40), we divide Eq. (42) by Eq. (41) and obtain

(I − Pψ)w

〈ψ,w〉 =
(I − Pψ)GH(w)

〈ψ,GH(w)〉 . (43)

System of two equations (41) and (43) is equivalent (at least in a vicinity of point (µ0, w0)) to

original Eq. (28). On the other hand, Eq. (43) is decoupled from Eq. (41) and does not contain

complex unknown µ. In order to solve Eq. (43) we represent w in the form

w = v + pψ, where v ∈ Πψ and p ∈ R+. (44)

Such a decomposition is uniquely determined due to the phase-shift symmetry of original Eq. (28).

Substituting ansatz (44) into Eq. (43) we get

v =
(I − Pψ)GH(v + pψ)

〈ψ,GH(v + pψ)〉 〈ψ, ψ〉p =: Eψ(v, p). (45)

This is an equation to be solved with respect to v ∈ Πψ, for a given p ∈ R+ close to p0. As

soon as Eq. (45) is solved, formulas (41) and (44) determine the corresponding pair (µ, w).

Hence, we have established a one-to-one correspondence between solutions of Eq. (45) and

solutions of Eq. (28) which obey the phase-pinning condition 〈ψ,w〉 = |〈ψ,w〉|.
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Remark if ψ is not identically constant, then Eq. (45) generically does not inherit continuous

symmetries of Eq. (28). That means, Eq. (45) is not equivariant either with respect to spatial

translations, or with respect to phase-shifts (the latter symmetry has gone after we had fixed p
to be real). This observation clarifies the true nature of Eq. (28) and opens the way for computing

its approximate solutions with the help of classical numerical schemes. Indeed, suppose that for

a given w0 6= 0 there exists bounded derivative GH′(w0), then for appropriate choice of ψ
satisfying (40), we can linearize reduced Eq. (45) around v0, where v0 is uniquely determined

from the decomposition w0 = v0 + p0ψ with v0 ∈ Πψ and p0 ∈ R+. Corresponding linearized

operator I − ∂vEψ(v0, p0) is Fredholm of index zero (as a sum of invertible I plus compact

operator), and hence it has at most a finite dimensional kernel. Therefore solving Eq. (45) we

generically meet one of the following three situations:

� the derivative GH′(w0) is well-defined and ker(I − ∂vEψ(v0, p0)) = {0}, then there

exists a unique, locally determined solution curve v = v(p) such that v(p0) = v0;

� the derivative GH′(w0) is well-defined but ker(I − ∂vEψ(v0, p0)) 6= {0}, then point

(v0, p0) is a bifurcation point of Eq. (45) with finite codimension;

� operator GH is not differentiable at w0, then analysis gets more involved but it is possbile

to demonstrate that close to point w0 we typically observe a particular transformation of

coherence-incoherence pattern when the pattern gets/loses a coherence region.

If operator GH(w) is differentiable at w0, then reduced Eq. (45) can be solved locally by apply-

ing a variant of Galerkin’s method. For the sake of completeness we recall general framework

of this approach. Suppose that we chose ψ for decomposition (44) and look for solution v of

Eq. (45) in a Banach space X ⊂ Πψ which has an orthogonal basis {vk}. This solution can be

found approximately as a sum of the form

v ≈
K
∑

k=1

v̂kvk, (46)

where coefficients v̂k ∈ C are determined from the projected system

〈vn, vn〉v̂n =

〈

vn, Eψ
(

K
∑

k=1

v̂kvk, p

)〉

, n = 1, . . . , K. (47)

In all cases relevant to present study, operator Eψ(v, p) is compact on X . Therefore for suf-

ficiently large integer K, sum (46) approximates all exact solutions of Eq. (45) that exist in a

small vicinity of v0 = w0 − Pψw0. More precisely, solving system (47) we distinguish all local

bifurcations occurring in the non-reduced Eq. (28).

But what shall we do with singular points (µ0, w0) where operator GH is not differentiable? In

principle, we may look for appropriate substitution revealing bifurcation scenario there. However,

we choose another, simpler way. Let us define Hε(w) = hε(|w|)w where

hε(s) =
1

1 +
√

1 − s+ iε
and ε > 0.
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For any fixed ε > 0 operator Hε(w) is differentiable in Cper([−π, π]; R2) and satisfies

lim
ε→+0

Hε(w) = H(w).

Hence, if in Eqs. (46) we replace operator GH by its regularized analog GHε and solve the

resulting system, then we obtain an ε-dependent solution curve which passes through the ’dan-

gerous’ vicinity of point (µ0, w0). Now restoring operator GH in Eqs. (46) and taking the ε-
dependent solution as initial guess for the Newton’s scheme, we can calculate two parts of true

solution curve (for ε → +0) approaching singular point from two different directions. Typically

we obtain a solution curve that bends at the singular point, see Figs. 5 and 6, therefore we refer

to this singularity as to the bending bifurcation point. Such behaviour may look strange, but if

we recall that solving Eq. (18) we obtained two complex-conjugate equations (25) and (26) it

becomes clear that bending bifurcation is nothing else but a reminiscence of complex fold.

3.3 Explicit solutions of NEVP

Some solutions of Eq. (28) can be found explicitly. They have a form

w(x) = peikx where k ∈ Z and p ∈ (0,∞). (48)

Indeed, substituting ansatz (48) into Eq. (28) and taking into account identity (30) we get

(

µ− 2πgkh(p
2)
)

peikx = 0

where function h was defined above, see (24). Hence for every k ∈ Z formula (48) determines

a nontrivial solution of Eq. (28), provided

µ = 2πgkh(p
2). (49)

Applying definition of function h we rewrite this equation more explicitly distinguishing two par-

ticular cases:

p < 1 and µ =
2πgk

1 +
√

1 − p2
, (50)

p ≥ 1 and µ =
2πgk

1 − i
√

p2 − 1
. (51)

In the former case, µ is real, see Fig. 4. Therefore definition (23) implies that all solutions (48)

with p ∈ (0, 1) correspond to two particular phase lags only, α = π/2 and α = −π/2. In

contrary, for p ≥ 1 formulas (48) and (51) connect different values p with different values α.

Moreover according to the local order parameter interpretation, see Section 2, we may consider

solutions (48) with p ≥ 1 as counterparts of the completely synchronized state (for k = 0) or

twisted states (for k 6= 0) observed in original system (2)–(3).
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Figure 4: Explicit solution of NEVP (28) determined by Eq. (50) (dashed line) and Eq. (51) (solid

line) for gk = 1.

3.4 Primary solution branches

We start off with a more systematic approach for describing the solution set of NEVP (28). To

this end, we linearize this equation around its trivial solution w = 0 and look for such values µ
where conditions of the Implicit Function Theorem are violated. Applying formulas (33) and (34)

we obtain

∂wF(µ, 0) = µI − GH′(0) = µI − 1

2
G. (52)

Spectrum of operator G is known explicitly, see Section 3.1, therefore we easily demonstrate

that derivative ∂wF(µ, 0) is not invertible if

µ = µk := πgk, k = 0, 1, 2, . . . . (53)

Moreover, in generic case for each non-zero µk it holds

ker ∂wF(µk, 0) = span
{

eikx, e−ikx
}

.

Remark that Eq. (49) implies 2πgkh(0) = µk, hence all solutions of NEVP (28) described by

formula (48) bifurcate from zero exactly at critical values of operator ∂wF(µ, 0). However, there

is also another sequence of primary branches bifurcating at the same values µk.

Lemma 4 Suppose that gk, k ≥ 1, is a non-zero Fourier coefficient of G.

Then, for all sufficiently small µ − µk ∈ R such that (µ − µk)gk > 0, generically there exists

a non-trivial solution of Eq. (28) with an asymptotic

w(x) = 4

√

1

3πgk
(µ− µk) sin(kx) +O(|µ− µk|) for µ→ µk. (54)
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Proof: We restrict Eq. (28) to its invariant subspace

(µ, w) ∈ R × Cper,odd([−π, π]; R)

where

Cper,odd([−π, π]; R) :=
{

w ∈ Cper([−π, π]; R) : w(−x) = −w(x)
}

.

Then derivative ∂wF(µ, 0) is degenerate at µ = µk with one-dimensional kernel spanned

by sin(kx). Note the latter claim is not true if some other Fourier coefficient of G coincides

with gk, but such situation is non-generic. We proceed further with a standard Lyapunov-Schmidt

reduction. For this, we define ε2 = µ− µk > 0 and substitute an ansatz

w = εw1 + ε2w2 + ε3w3 + . . . (55)

into Eq. (28). Then expanding nonlinearity GF(w) with the help of asymptotic formula

GF(w) =
1

2
Gw +

1

8
Gw3 +O(‖w‖5

0) for ‖w‖0 → 0,

and collecting the same order terms, we obtain a sequence of equations determining wk. In

particular,
(

µkI − 1

2
G
)

w1 = 0 and

(

µkI − 1

2
G
)

w2 = 0.

This implies w1(x) = p1 sin(kx) and w2(x) = p2 sin(kx) where real constants p1 and p2 are

not known at this step. For the next order we get
(

µkI − 1

2
G
)

w3 = −w1 +
1

8
Gw3

1.

According to the Fredholm alternative, this equation has a solution if and only if its right-hand

side satisfies the solvability condition
∫ π

−π

sin(kx)

(

−w1(x) +
1

8

(

Gw3
1

)

(x)

)

dx = πp1

(

3

16
πgkp

2
1 − 1

)

= 0.

For gk > 0, this algebraic equation has a pair of opposite sign solutions p1 resulting in the

leading term of asymptotics (54) (in the case gk < 0 we have to assume ε2 = −(µ − µk)
and then to repeat all above arguments). As soon as we know the leading term, we prove the

existence of corresponding solution applying the Implicit Function Theorem. •

In general case, all Fourier coefficients gk with k ≥ 0 are non-zero and different. Hence,

Lemma 4 defines infinite number of primary branches bifurcating from the trivial solution. All

these branches can be numerically continuated as explained in Section 3.2. More precisely, for

each k ∈ N we choose ψ = sin(kx) and solve Galerkin’s system (47) in a Banach subspace

X ⊂ Cper([−π, π]; C) corresponding to the isotropy group of sin(kx). This Fourier harmonics

is invariant with respect to transformations

w(x) 7→ w

(

x+
2π

k

)

, w(x) 7→ −w(−x), w
(

x+
π

2k

)

7→ w
(

−x+
π

2k

)

,
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therefore we fix X to be a subspace of Cper([−π, π]; C) with orthogonal basis

sin((2m− 1)kx), m = 2, 3, . . . .

Particular examples considered below reveal that all primary branches have similar qualitative

behaviour. Each of them initially lies in the ball Σ0, see definition (39), but later approaches its

boundary, undergoes bending bifurcation and gives rise to a curve of coherence-incoherence

patterns with equidistant coherent regions, e.g. |w(x)| ≥ 1, emerging in the incoherent back-

ground, e.g. |w(x)| < 1.

3.5 Secondary solution branches

Performing numerical continuation of primary branches we may encounter other (secondary)

bifurcation points. For example, let us consider the simplest of explicitly known solutions (48)

with k = 0. For p ∈ [0, 1] these solutions are determined by Eq. (50) which can be rewritten in

the form

w(x) ≡ p0(µ) :=

∣

∣

∣

∣

2πg0

µ

∣

∣

∣

∣

√

µ

πg0

− 1 where
1

2
≤ µ

2πg0

< 1. (56)

Applying formulas (34)–(35) we easily calculate

∂wF(µ, p0(µ)) = µI − GH′(p0(µ)) = µI − µ2

|2πg0(µ− 2πg0)|
G.

Hence critical values of ∂wF(µ, p0(µ)) again can be found from the point spectrum of opera-

tor G. Indeed operator ∂wF(µ, p0(µ)) is not invertible for every µ ∈ R which satisfies at least

one of the following equations

|2πg0(µ− 2πg0)|
µ2 = 2πgk, k = 1, 2, . . . ,

which are equivalent to equations

2πg0

µ

∣

∣

∣

∣

µ

2πg0

− 1

∣

∣

∣

∣

=
gk
g0

, k = 1, 2, . . . . (57)

It is easy to verify that each Eq. (57) has a unique solution µ/(2πg0) ∈ [1/2, 1) provided

gk/g0 ∈ (0, 1], and has no solution from this interval otherwise. If this solution exists, it is given

by

νk :=
2πg2

0

g0 + gk
. (58)

Remark that ν0 = πg0 is identical to the bifurcation value µ0 where primary branch of spatially

uniform solutions (48), e.g. branch with k = 0, appears from the trivial solution. Next lemma

shows that all other νk with k ≥ 1 are points of secondary bifurcation.
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Lemma 5 Suppose that g0 6= 0 and gk/g0 ∈ (0, 1] for some k ≥ 1.

Then for sufficiently small µ− νk ∈ R such that (µ− νk)C0/C1 > 0, generically there exists

a non-trivial solution of Eq. (28) with an asymptotic

w(y) = p0(νk) +

√

C0

C1
(µ− νk) cos(kx) +O(|µ− νk|) for µ→ νk, (59)

where

C0 = 1 − 2πgkc2p
′
0(νk),

C1 =
1

4
πgk

(

c3 +
4πg0c

2
2

νk − 2πg0c1
+

2πg2kc
2
2

νk − 2πg2kc1

)

,

and

cm := H(m)(p0(νk)) =
dk

duk

(

u

1 +
√

1 − u2

)∣

∣

∣

∣

u=p0(νk)

.

Proof: The proof is a more technical version of that in Lemma 4. We restrict Eq. (28) to its

invariant subspace

(µ, w) ∈ R × Cper,even([−π, π]; R)

where

Cper,even([−π, π]; R) :=
{

w ∈ Cper([−π, π]; R) : w(−x) = w(x)
}

.

Then we denote ε2 = µ− νk > 0 and look for solutions of the form

w = p0(νk + ε2) + εw1 + ε2w2 + ε3w3 + . . . .

This ansatz implies

µw = (νk + ε2)w = νkp0(νk) + ενkw1

+ ε2
(

νkw2 + p0(νk) + νkp
′
0(νk)

)

+ ε3
(

νkw3 + w1

)

+O(ε4)

and

H(p0(µ) + w) = H(p0(νk + ε2) + w) = H(p0(νk)) + εH′(p0(νk))w1

+ε2

(

H′(p0(νk))(w2 + p′0(νk)) +
1

2
H′′(p0(νk))w

2
1

)

+ε3

(

H′(p0(νk))w3 + H′′(p0(νk))w1(w2 + p′0(νk)) +
1

6
H′′′(p0(νk))w

3
1

)

+O(ε4).

Thus expanding Eq. (28) with respect to small parameter ε and collecting the same order terms,

we obtain equations

(νkI − c1G)w1 = 0, (60)

(νkI − c1G)w2 =
1

2
c2Gw2

1, (61)

(νkI − c1G)w3 = −w1 + c2Gw1(w2 + p′0(νk)) +
1

6
a3Gw3

1. (62)

22



Note that to simplify the right-hand sides of Eqs. (61)–(62) we used identity F(µ, p0(µ)) = 0
and its full derivative with respect to µ.

Eqs. (60) and (61) can be solved explicitly. Thus we obtain

w1(x) = p1 cos(kx),

w2(x) = p2 cos(kx) +
1

4
c2p

2
1

(

2πg0

νk − 2πg0c1
+

2πc2k
νk − 2πg2kc1

cos(2kx)

)

,

where p1, p2 ∈ R are not known at this step. Remark that in generic case denominators in

formula for w2 do not vanish. Now writing solvability condition for Eq. (62) and inserting there

expressions for w1 and w2, we get

∫ π

−π

cos(kx)

(

−w1(x) + c2

(

Gw1(w2 + p′0(νk))
)

(x) +
1

6
c3

(

Gw3
1

)

(x)

)

dx

= πp1(C1p
2
1 − C0) = 0.

For C0/C1 > 0 this algebraic equation has a pair of nontrivial solutions p1 (for C0/C1 < 0
one has to repeat all arguments with ε2 = −(µ − νk)). Hence applying the Implicit Function

Theorem we can justify asymptotics (59). •
Similar to Section 3.4, we may suggest that in general case Lemma 5 defines infinite number

of secondary solution branches. However, this is only a part of the story. In fact, appearance of

secondary branches is more sensitive to the signs and absolute values of Fourier coefficients gk.

In particular, bifurcation corresponding to gk occurs only if gk/g0 ∈ (0, 1] and does not take

place otherwise. This is the main difference between primary branches and secondary branches

described here.

In order to continuate a secondary branch given by asymptotics (59) we again apply approx-

imate method of Section 3.2. Taking into account that solutions w(x) corresponding to gk
with k ≥ 1 are even and 2π/k-periodic, we choose ψ = cos(kx) and solve Galerkin’s sys-

tem (47) in a Banach subspace X ⊂ Cper([−π, π]; C) with orthogonal basis

1 and cos(mkx), m = 2, 3, . . . .

Particular examples considered below reveal that each secondary branch is born in the ball Σ0,

see definition (39), then extends to the ball’s boundary where it undergoes bending bifurcation

and gives rise to a curve of coherence-incoherence patterns with equidistant coherent regions,

e.g. |w(x)| ≥ 1, in the incoherent background, e.g. |w(x)| < 1.

We want to emphasize that our analysis of secondary branches is far from being complete.

For example, we did not consider k-twisted solutions described by formula (48) with k 6= 0.

Some secondary (or even higher order) bifurcation points may also occur along numerically

continuated curves of coherence-incoherence patterns, see for example recent work [30]. We

plan to address these questions in our future studies.
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3.6 Example: Piecewise-constant coupling

Let us consider a particular example of NEVP (28) with piecewise-constant coupling function (5).

This function can be written in the form of complex Fourier series (29) with coefficients

g0 =
1

2π
and gk = g−k =

sin(πkr)

2π2kr
, k = 1, 2, . . . .

First we fix coupling radius to be r = 0.6 and apply analytical results and numerical algorithms

of Sections 3.2–3.5 to obtain a part of the NEVP’s solution set that corresponds to leading

Fourier coefficients g0, g1, g2 and g3. The result is shown in Fig. 5. For each solution (µ, w) ∈

||w||
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Im µ
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µ2
µ3

ν1 1
0
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-π 0 π
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0

1

-π 0 π
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x

0

1
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Figure 5: Solution of NEVP (28) for piecewise-constant coupling function (5) with coupling ra-

dius r = 0.6. Primary branches (black,blue,purple and orange thick lines) bifurcate from the

trivial solution w = 0 at µ = µk := πgk where gk are Fourier coefficients of coupling func-

tion G. The only secondary branch (red thick line) bifurcates from the primary branch of spa-

tially uniform solutions (black thick line) at µ = ν1, see (58). Each branch first lies in the plane

Im µ = 0 (dashed lines), but after approaching a bending bifurcation point (empty circle) it

turns and proceeds with complex values µ (solid lines). Thin lines show projections on the bot-

tom plane ‖w‖ = 0 of the corresponding thick solid lines with the same color. Additional panels,

using color-code of the main plot, demonstrate |w(x)|-profiles typical for each solution branch

before (left panel) and after (right panel) the bending bifurcation point. Inequalities |w(x)| ≥ 1
and |w(x)| < 1 correspond to coherent and incoherent regions, respectively. Thus all thick

solid lines in the main plot (except black one) denote coherence-incoherence patterns.

C×Cper([−π, π]; C) we show its 3D-projection where function w is replaced by its L2-norm.
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Thick black line (dashed and solid) displays primary branch of spatially uniform solutions (49)

which bifurcates at µ = µ0, see (53), and is described by Eqs. (50)–(51) with k = 0. Dashed

part of the line lies within the plane Im µ = 0. When the line approaches bending bifurcation

point (empty circle), it abruptly turns and leaves the plane Im µ = 0 becoming a solid line of

the same color. For the convenience of 3D-perception, we plot the projection of solid black line

on the plane ‖w‖ = 0 as a thin black line. Other k-twisted solutions defined by Eqs. (50)–(51)

are not shown.

In a similar way, we represent other primary (blue, purple and orange curves) and secondary

(red curve) solution branches discussed in Sections 3.4 and 3.5, respectively. The primary

branches bifurcate at values µ = µk, see (53), and the secondary branches bifurcate at val-

ues µ = νk, see (58). Remark an important role of the Fourier coefficients’ signs. Branches ap-

pearing at µ2, µ3 < 0 have different location compared to those appearing at µ0, µ1 > 0. This

means that they are observed for different values of phase lag parameter α, see formula (23).

Moreover, only positive Fourier coefficient g1 gives rise to a secondary solution branch bifur-

cating from the branch of spatially uniform solutions. Negative coefficients g2, g3 do not satisfy

condition gk ∈ (0, g0), therefore due to Lemma 5 they do not define bifurcation points νk.

Taking into account that Fourier coefficients of piecewise-constant coupling function (5) change

their signs for varying coupling radius r, we conclude that each secondary branch can be found

for particular interval (or intervals) of r only, whereas primary branches exist for all values of

coupling radius r.

Insert panels around the main plot are arranged in pairs. Using the same color-code they display

typical |w(x)|-profiles observed along each solution branch before (left panel) and after (right

panel) the corresponding bending bifurcation point marked as empty circle in the main plot.

Along dashed lines (which lie in the plane Im µ = 0) we obtain |w(x)|-profiles with |w(x)| < 1,

hence incoherent states. In contrary, every thick solid line of the main plot (except black one!)

denotes coherence-incoherence patterns since corresponding |w(x)|-profiles comprise both

patches of coherence |w(x)| ≥ 1 and incoherence |w(x)| < 1.

3.7 Example: Cosine coupling

Let us consider another example of NEVP (28) with cosine coupling function (4). A particular

feature of this function is its complex Fourier series (29) which has only three nonvanishing

coefficients

g0 =
1

2π
and g1 = g−1 =

A

4π
.

This means that applying results of Sections 3.4 and 3.5 we obtain only two primary solution

branches bifurcating at µ = µ0 and µ = µ1, and at most one secondary solution branch

bifurcating at µ = ν1, see formulas (53) and (58), respectively. We recall that due to Lemma 5

secondary branch exists for g1 ∈ (0, g0) only, that is equivalent to condition A ∈ (0, 2).

Remarkably, simple form of cosine coupling (4) allows us to write more explicitly primary branch

bifurcating at µ = µ1. Indeed, simple check demonstrates that function

w(x) = p sin x where p ∈ (0,∞)
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satisfies NEVP (28), provided

µ =
A

2π

∫ π

−π

h
(

p2 sin2 y
)

sin2 y dy.

Hence this branch is completely known without any numerical continuation.

The solution set of NEVP (28) for cosine coupling function with A = 0.9 is shown in Fig. 6.

Here we used the same color-code representation as in Fig. 5. Again thick black line denotes a

||w||
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Figure 6: Solution of NEVP (28) for cosine coupling function (5) with parameter A = 0.9.

Notations and color-code are the same as in Fig. 5.

branch of spatially uniform solutions, whereas thick blue and red lines are another primary and

secondary branches, respectively. Solid parts of the curves represent dynamical regimes from

Fig. 3 in accordance with the color-code of their snapshots. Thus solid blue and red lines de-

note two different types of coherence-incoherence patterns. Remark the anti-phase alternation

between phases of neighbouring coherent regions in the coherence-incoherence pattern corre-

sponding to primary branch, see panel with arg a(x) in Fig. 3(a). This feature is not observed

in the secondary coherence-incoherence pattern, see Fig. 3(b), and apparently can be used to

distinguish primary and secondary patterns in numerical simulations of system (2)–(3).

4 Stability analysis

Suppose that z(x, t) = a(x)eiΩt is one of the standing waves corresponding to a solu-

tion (µ, w) of NEVP (28), see Proposition 1. Below we consider stability properties of this

standing wave within the Ott-Antonsen manifold. To this end, we use an ansatz

z(x, t) = (a(x) + v(x, t))eiΩt

with a small perturbation v. Substituting this into Eq. (12) and linearizing the result with respect

to v, we obtain
dv

dt
= η(x)v − i

2
eiβ
(

Gv +
(

e−iβa(x)
)2 Gv

)

(63)
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where

η(x) = i
(

ω − Ω − e−iβa(x)Ga
)

. (64)

Applying formulas (17), (19) and (20), we rewrite coefficient η as follows

η(x) =

{

i(ω − Ω)
√

1 − |w(x)|2 for |w(x)| < 1,

±(ω − Ω)
√

|w(x)|2 − 1 for |w(x)| ≥ 1,
(65)

where in the second line we use sign ’+’ or ’−’ depending on the choice a(x) = a+(x) or

a(x) = a−(x) in the coherent region. Eq. (12) contains complex conjugated terms therefore

one has to consider it not as a single complex equation, but as a short form of system of two real

equations. Respectively, we have to rewrite complex Eq. (63) as a system for a two component

vector-function

v(t) =

(

Re v(x, t)

Im v(x, t)

)

∈ Cper([−π, π]; R2).

Then equivalent form of Eq. (63) reads

dv

dt
= Lv where L := M + K, (66)

and M : Cper([−π, π]; R2) → Cper([−π, π]; R2) is a multiplication operator

(Mv)(x) := M(x)v with M(x) :=

(

Re η(x) −Im η(x)

Im η(x) Re η(x)

)

, (67)

whereas K : Cper([−π, π]; R2) → Cper([−π, π]; R2) is an integral operator

(Kv)(x) :=

∫ π

−π

K(x, y)v(y)dy

with a matrix kernel given by

K(x, y) =
1

2
QP(x)G(x− y) (68)

where for the sake of shortage we used notations

P(x) =







Re
(

1 +
(

e−iβa(x)
)2
)

−Im
(

1 −
(

e−iβa(x)
)2
)

Im
(

1 +
(

e−iβa(x)
)2
)

Re
(

1 −
(

e−iβa(x)
)2
)






(69)

and

Q =

(

sin β cosβ

− cos β sin β

)

.

Linear operator L is time-independent, hence based on the location of its spectrum σ(L) we

can make a conclusion about the stability of corresponding standing wave a(x)eiΩt. It is easy to
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see that for piecewise-smooth coupling function G and continuous wave amplitude a both op-

erators M and K are bounded linear operators in Cper([−π, π]; R2). Moreover, definition (68)

implies that integral operator K is compact in Cper([−π, π]; R2). Following general spectral

theory of linear operators in Banach space [47], we distinguish two parts in the spectrum σ(L).

The point spectrum σpt(L) ⊂ σ(L) consists of all complex numbers λ such that λI − L is a

Fredholm operator of index zero. In other words, each λ ∈ σpt(L) is an isolated eigenvalue of

finite multiplicity. The complement of discrete spectrum we call essential spectrum and denote

it as σess(L).

For multiplication operator M, it is known [48] that it has only essential spectrum consisting of

all λ ∈ C such that

det

(

λ− Re η(x) Im η(x)

−Im η(x) λ− Re η(x)

)

= 0 for some x ∈ [−π, π], (70)

therefore

σ(M) = σess(M) =
{

η(x) : −π ≤ x ≤ π
}

∪ {c.c.} , (71)

where {c.c.} denotes the complex conjugate of the previous set. Essential spectrum is in-

variant under compact perturbations [49], hence σess(L) = σess(M). The remaining point

spectrum σpt(L) has no simple representation but can be calculated numerically as we explain

below. Anyhow for bounded compact operator K it is always known [48] that

σpt(L) ⊂
{

λ ∈ C : dist(λ, σess(M)) ≤ ‖K‖
}

. (72)

For every coherence-incoherence pattern found as a solution of NEVP (28), formula (65) gives

either real or pure imaginary values of η(x). Hence according to formula (71) such coherence-

incoherence pattern has a T -shaped essential spectrum σess(L) with a symmetric interval of

neutral eigenvalues corresponding to incoherent region. Another interval corresponds to coher-

ent region and consists solely of real eigenvalues, which all lie either in the left or in the right

complex half-plane, see Fig. 7(a) and (b). On the other hand, sign of Re η(x) is determined by

the choice of a = a+ or a = a− in coherent region. Therefore we easily verify that only two of

four standing waves given by Proposition 1 have stable essential spectrum.

Proposition 2 Suppose that (µ, w) is a solution of NEVP (28) which has coherent |w(x)| ≥ 1
as well as incoherent |w(x)| < 1 regions. Then standing waves (15) given by

Ω = ω − |µ|, a(x) = h
(

|w(x)|2
)

w(x) with β = − arg µ

and

Ω = ω + |µ|, a(x) = h
(

|w(x)|2
)

w(x) with β = π + arg µ

have stable essential spectrum, whereas the other two standing waves mentioned in Proposi-

tion 1 are always unstable (at least because of the location of their essential spectrum).
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Figure 7: Two forms of essential spectrum calculated by formulas (65) and (71) for a coherence-

incoherence pattern. The interval along real axis and the other one along imaginary axis are

due to coherent |w(x)| ≥ 1 and incoherent |w(x)| < 1 parts, respectively. The real part of the

spectrum is stable (a) or unstable (b) depending on the choice of sign ’−’ or ’+’ in the second

line of Eq. (65).

Remark 3 Most of classical bifurcations can be inferred from the spectrum of corresponding

linearized operator. For example, Hopf bifurcation occurs when a pair of complex-conjugate

eigenvalues crosses the imaginary axis. Similar criterion exists for Turing bifurcation when one

looks for an intersection between the imaginary axis and continuous spectrum. In this context,

formulas (65) and (71) clarify spectral behaviour typical for the bending bifurcation defined at

the end of Section 3.2. At this bifurcation point a new coherent region, e.g. |w(x)| ≥ 1, ap-

pears in the incoherent surrounding, e.g. |w(x)| < 1. Respectively, due to Eq. (65) essential

spectrum σess(L) gets a new portion of stable/unstable spectrum protruding at the zero from its

neutral part.

Stability analysis of standing wave (15) also relies on the analysis of corresponding point spec-

trum σpt(L). The latter consists of all λ ∈ C such that equation

(λI −M−K)v = 0 (73)

has a non-trivial solution v ∈ Cper([−π, π]; R2). Note for λ /∈ σess(L), spectral equation (73)

can be rewritten in a more convenient form

v = (λI− M(x))−1(Kv)(x) (74)

where I is the two-dimensional identity matrix and M is given by (67). In order to solve Eq. (74)

we apply the following approximate scheme. Taking into account operator convergence (32) we

replace compact operator K with its finite-rank approximation of the form

(Kv)(x) ≈
∫ π

−π

1

2
QP(x)GK(x− y)v(y)dy

=
1

2
QP(x)

K
∑

k=−K

gke
ikx〈eikx,v〉 (75)
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where GK is given by a truncated Fourier sum (31) with sufficiently large K, and for every

v = (v1, v2)
T we use a notation

〈eikx,v〉 =

(

〈eikx, v1〉
〈eikx, v2〉

)

.

Then substituting (75) into Eq. (74) and calculating 2K + 1 non-vanishing Fourier projections

we obtain a system

〈eijx,v〉 =
K
∑

k=−K

Bjk(λ)〈eikx,v〉, j = −K, . . . , K, (76)

where

Bjk(λ) :=
1

2
gk
〈

eijx, eikx(λI −M(x))−1QP(x)
〉

.

Obviously, Eqs. (76) have a nontrivial solution 〈eikx,v〉, k = −K, . . . , K, if and only if λ
satisfies a characteristic equation

χ(λ) := det (I − B(λ)) = 0 (77)

with a (4K + 2)-dimensional square matrix given by

B(λ) :=













B(−K)(−K)(λ) B(−K)(−K+1)(λ) . . . B(−K)K(λ)

B(−K+1)(−K)(λ) B(−K+1)(−K+1)(λ) . . . B(−K+1)K(λ)
...

...
. . .

...

BK(−K)(λ) BK(−K+1)(λ) . . . BKK(λ)













.

It is easy to see that each matrix Bjk(λ) is an analytic function of λ in C\σess(L). Hence

the same is true for function χ(λ) from Eq. (77). Thus taking into account spectral radius es-

timate (72) and the fact that the zeros of an analytic function are always isolated, we may

expect to find at most a finite number of solutions to Eq. (77). These solutions determine only

approximate point spectrum. However, operator convergence (32) insures that using in (75)

functions GK with larger K we obtain increasingly better approximations of σpt(L).

4.1 Example: Cosine coupling

Let us consider two coherence-incoherence patterns, see Fig. 6, which were obtained as pri-

mary and secondary solution branches of NEVP (28) with cosine coupling function (4). Then ap-

plying Proposition 2 for each (µ, w) we construct standing waves (15) corresponding to these

patterns. Such waves have stable essential spectrum, Fig. 7(a), but may have stable or un-

stable point spectrum. Note that Fourier series of cosine coupling function contains only three

nonvanishing harmonics therefore in order to calculate the point spectrum we don’t need to

approximate G. Indeed already for K = 1 characteristic equation (77) is exact. Solving this

equation numerically we found only a finite number of eigenvalues in point spectrum. Based on
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Figure 8: Bifurcation diagram (a) for two coherence-incoherence patterns corresponding to pri-

mary (inset panel with blue dots) and secondary (inset panel with red dots) solution branches

of NEVP (28) with cosine coupling function (4), see Fig. 6. The former solution is stable in blue

region, and the latter is stable in hatched region. Black line denotes fold bifurcation. Red and

blue stability boundaries correspond to the cases when a single real (b) or a pair of complex

conjugate (c) eigenvalues appear from essential spectrum (T -shaped purple line).

their analysis we found stability regions of primary (blue) and secondary (hatched) coherence-

incoherence patterns. As expected (recall Fig. 3(a) and (b)) there is a considerable overlap of the

regions indicating parameter values where multistability is favoured. The boundaries of stability

regions are of two qualitatively different types. Red line corresponds to the case of single real

eigenvalue appearing from essential spectrum, whereas blue lines denote Hopf-like boundaries

where a pair of complex conjugate eigenvalues bifurcates from essential spectrum.

5 Discussion

In present work we formulated a general approach for bifurcation analysis of coherence-incoherence

patterns observed in system (2)–(3). We rely on the assumption that in the large N limit such

patterns are described by standing wave solutions of Eq. (12). The assertion is based on the

continuum limit representation and the Ott-Antonsen invariant manifold reduction available in

the case of sinusoidally coupled phase oscillators. Importantly, each standing wave solution of

Eq. (12) has clear interpretation in terms of local order parameter which demarcates coherent

and incoherent regions of corresponding pattern.

Our approach includes two main steps. First, given a coupling function G we solve NEVP (28),

which plays the role of self-consistency equation for spatial amplitude of unknown standing

wave and its collective frequency. Second, applying Proposition 2 we transform every solution of

NEVP (28) into two standing waves and perform their stability analysis with respect to Eq. (12).

The waves are always neutrally stable due to the location of their essential spectrum, but may
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be stable or not with respect to the location of their point spectrum. Both spectral components

are determined by time-independent operator L appearing in the right-hand side of linearized

Eq. (66). More precisely, essential spectrum of L is known explicitly, whereas point spectrum

of L can be calculated using approximate algorithm of Section 4.

Already in the first step we obtain a plethora of useful information about standing wave solu-

tions of Eq. (12) from the Fourier series of coupling function G. In particular, we showed that

every non-zero Fourier coefficient gk, k ≥ 1, is responsible for appearance of two qualitatively

different primary branches in the solution set of NEVP (28). The first branch describes so-

called k-twisted solutions of original system (2)–(3), while the second branch includes standing

waves corresponding to (2π/k)-periodic coherence-incoherence patterns. Note that moving

along the latter branch we find coherence-incoherence patterns only beyond a particular point

which we refer to as bending bifurcation point. Another interesting fact is, that sign of gk in-

dicates whether corresponding coherence-incoherence pattern exists for α ∈ (−π/2, π/2),

if gk > 0, or for α ∈ (π/2, 3π/2), if gk < 0. However, the pattern’s stability is still determined

by point spectrum of corresponding linearized operator L.

The primary branch corresponding to the leading Fourier coefficient g0 6= 0 describes spatially

uniform solutions of Eq. (12). Its larger part represents the completely coherent state of orig-

inal system (2)–(3). If for some gk, k ≥ 1, we get gk/g0 ∈ (0, 1], then along this primary

branch there exists a bifurcation point giving rise to a secondary branch in the solution set of

NEVP (28). Moving along the secondary branch beyond its bending bifurcation point we ob-

tain another (2π/k)-periodic coherence-incoherence pattern. Particular examples considered

above illustrate a series of qualitative differences between primary and secondary coherence-

incoherence patterns. The solution curve of NEVP (28) corresponding to secondary patterns

looks as a half-loop starting and ending at the primary branch of spatially uniform solutions,

therefore one usually finds on it a fold bifurcation point, see red lines in Figs. 5 and 6. In contrast,

the solution curve of NEVP (28) corresponding to primary patterns simply extends to infinity, see

all lines except red in Figs. 5 and 6. Another difference refers to the fact that |w(x)|-profile of

primary pattern approaches zero for some x ∈ [−π, π], see insert panels in Figs. 5 and 6. As

a result, neighbouring coherent regions turn out to be in anti-phase, see panel with arg a(x) in

Fig. 3(a).

It is a surprising fact that almost all previous studies related to the topic reported only on the

secondary coherence-incoherence pattern corresponding to the first Fourier coefficient g1, see

for example [12, 14, 15, 19, 20]. The primary pattern corresponding to g1 was found much

later in [28]. Therefore we conjecture that most of the patterns described above still wait for

their observation. A good illustration for them could be coherence-incoherence patterns found

numerically by Y. Maistrenko [50] in system (2)–(3) with piecewise-constant coupling function (5)

and α ≈ π (so-called repulsive coupling case). However their classification goes beyond the

scope of this paper.

For effective numerical search of new coherence-incoherence patterns one also has to know

their stability boundaries, e.g. the second step of our bifurcation analysis scheme. In this paper

we calculated such boundaries in the simplest case of cosine coupling only, see Fig. 8. Even

this particular result turns out to be instructive, since we encounter two new types of stability

boundaries, see Fig. 8(b) and (c), which to the best of our knowledge were not reported before.
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This and other facts clearly demonstrate how far is our knowledge of coherence-incoherence

patterns from being complete. In this context, we believe that our work helps to understand

better this complex phenomenon and shows promising directions for future research.
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