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ABsSTRACT. The paper discusses new cubature formulas for classical integral operators
of mathematical physics based on the "approximate approximation” of the density with
Gaussian and related functions. We derive formulas for the cubature of harmonic,
elastic and diffraction potentials approximating with high order in some range relevant
for numerical computations. We prove error estimates and provide numerical results for
the Newton potential.

1. INTRODUCTION

The paper is devoted to the foundation of new cubature formulas for certain integral
operators of mathematical physics. It is well known that the numerical treatment of
potentials and other integral operators with singularities is an essential part of different
methods for the solution of many practical problems. However, the cubature of such
integrals is usually very time-consuming, especially in the multidimensional case, such
that it is of great importance to derive effective approximations. In this paper we propose
formulas which are very simple and provide in numerical computations very accurate ap-
proximations. They are based on "approximate approximations”, recently proposed by
the first author (see Maz’ya [4] and the survey paper Maz’ya [5]). This approximation
procedure is mainly directed to the numerical solution of partial integro-differential equa-
tions. The method provides simple formulas for quasi-interpolants, which approximate
functions up to a prescribed precision very accurately, but in general the approximants
do not converge. The lack of convergence, which is not perceptible in numerical compu-
tations, is offset by a greater flexibility in the choice of approximating functions. So it is
possible to construct multivariate approximation formulas, which are easy to implement
and have additionally the property that pseudodifferential operations can be effectively
performed. This allows to create effective numerical algorithms for solving boundary
value problems for differential and integral equations. :

Here we apply the approximation method to the cubature of harmonic, elastic and
diffraction potentials, where the obtained cubature formulas result from the approximate
approximation of the densities. Based on error estimates for the quasi-interpolation
in Sobolev norms we can show that they keep a high approximation rate in a certain
range relevant for numerical computations. And in addition, the smoothing properties of
the potentials ensure that the cubature formulas converge. For example, the harmonic
potential

L(z-1) u(y)
Loulx) =~ / oy, n23, (L1)
can be approximated by the cubature formula.
Cn,hu(x) =
ez ? M-2 r(n/2-1)
Dh? 1 2 L (lrm/?)
h tn/2—2 -t dt "'Irml J -

4(zD)n/2 ng;“u( m) (Irmln_z ~0/ e +e ; T+ 1 1(1.2)

where D > 0 is a fixed parameter, M is an arbitrary integer > 2,
X — hm

I'm = 7oh and L( )(y) = —eyy""( ) (e y’+°‘)

are the generalized Laguerre polynomials. The following estimate of the cubature error

holds.



Let 1 < p < n/2, ¢ = np/(n — 2p) and suppose that u € WEMH(R®), M > n/2q.
There exist positive constants not depending on u, h and D such that

[|£nu h ﬁn,hu”Lq(Rn) S (01 (\/ﬁh)ZM + ¢ h2 e—w’D) ”u||W3M+2(Rn) . (1.3)

Thus, in general £, gives a second order approximation of £,. But if the parameter D
is appropriately chosen, then in view of exp(—=2) = 0.51723... - 10~* the cubature L,
behaves in numerical computations like an approximation of the order 2M.

Let us note that (1.2) is a smooth approximation of £,u and that an estimate similar

to (1.3) holds also for the gradient of Lou — L, pu (see Thm. 3.2).

The underlying idea in obtaining cubature formulas of the form (1.2) consists in the
approximation of the density u by certain quasi-interpolants ‘

un(x) 1= D"/ Znu(hm)"?(x\—/—g:l)_

with fixed D > 0 and the generating function 7 is chosen such that the corresponding
potential with density n can be effectively determined. Then the cubature formula for
the integral operator is obtained by replacing the density u by its quasi-interpolant up.
The cubature error can be estimated by using mapping properties of the corresponding
integral operator and error estimations of the quasi-interpolation (1.4).

(1.4)

The outline of the paper is as follows. In Section 2 we estimate the approximation
error u—uy, of the density in L, and in weaker norms for general 7 satisfying certain decay
and moment conditions. In particular we derive the remarkable fact that approximate
approximations, which in general do not converge in L,, become converging in weaker
norms. In Section 3 we describe in detail for the example of the of harmonic potentials
how to obtain the cubature formula (1.2) and to prove the estimate (1.3). The last section
concerns high order explicit cubature formulas for elastic and diffraction potentials.

2. QUASI-INTERPOLATION ERROR IN L, AND WEAK NORMS

We consider the quasi-interpolant (1.4) with some generating function # satisfying the
decay condition

M| < A(L+ )K", teRe, (2.1)

for some natural number K and positive constants A and §, and the moment conditions

/n(t)dt =1, /t“n(t)dt= 0, foralla,1<|a|]<N<K. (2.2)

R™ R™
Here and henceforth we use the notations:
Let x = (z1,...,2,) € R and a = (a,...,an) € Z3, be a multiindex. We denote
lal=a1+ -4+ an, x2=z 2% al =l

) = — O )
dzt - - Oz ’

The usual scalar product in R™ is denoted by (x,y) and |x| = (x,x)¥/2. With the
abbreviation

ex(x) 1= e?mxA)



the Fourier transform of an L;-function is defined by
Fo(A) = /(p(x) eax(—x)dx .
R=

In the following we will use an expansion of the error w—uy, which follows immediately
form the Taylor expansion of the function u, the Poisson summation formula (see Stein-
Weiss [10]) and the moment conditions (2.2). Let u be a sufficiently smooth function and
denote

Un(x,y) = |a] / slel=19ay (sx + (1 — s)y) ds . @3

Lemma 2.1. Let 5 satisfy (2.1) and (2.2). Suppose that for given D > 0 the Fourier
transform of 1 is such that

{8%Fn(vD )} e (Z¥), 0<|a|<N. (2.4)
Then for any u € C(R") and L < K there holds a.e.
&3 /VDhy lal §%u(x) o B
w(x) —u(x) = Y (=) =2 N 8% Fy(VDv) ey (hx)

|aj=0 2mi o vezZm\{o0}

L-1 VD) 0%u(x) Dnl (x —hm\® /x—hm R
+ |Q|Z=N(— — m%ﬂ /Dh ) 77( ol ) + Rpn(x) ,

where

—n/2 " /x—hm
Ris) = 3 P 3 (m=x) (SR Ual ). (29)

Ja|=L " mezZn

This expansion is obtained for continuous generating functions in [8], a more special
result is also given in Beatson-Light [3]. Next we estimate the norm of Ry x(x) in the
function space L, = Ly(R").

Lemma 2.2. Suppose that the function u is such that 0%u € Ly, for all multiindeces a
with |a| = L, where 1 < p < o0 and n/p < L < K. Then the function Ry} defined in
(2.5) admits the estimate ’

| _—
IRzallz, < e (VDR)® Y I :'IIL,
o=z

with some constant ¢, not depending on u, h and D.

Proof. Let us define the functions

$i(s) = maxs™" %ﬂ L+l m—-x))7, >0,

which continuously depend on s € (0, c0) and for s — co we have
: 2772 T(n)L(j + §)
; 1 —inl gx = :
i) = [ I b e
R=

Hence for any t € (0, 00) there exist constants &;(t) such that
gbj(s) < @j(t) , ft<s<>. (26)




Further, the functions s"¢;(s) are increasing, thus
@i(s) < (t/s)" ®;(t), for 0<s<t. (2.7)
Note that the decay condition (2.1) implies in particular

o/ >-"zi< ) o (||, Aok VD). (9

for any s € (0,1] and |a| =
To estimate || Rz ||z, we introduce the functions

Sech p-n/zmén(x hm) (X2 \/_h;n) +(x, hm)

such that

1
I1BzAllz, < (VDR D — [ Sanllz, -

|a|=L

If 1 < p < oo we apply Holder’s inequality to

||Sah|le_/< Z ‘D—-n/Z(x hm) (x\/_h;'n)
< om0 () () e,

1/p+1/o0'

Ua(x, hm)l)pdx

where 1/p +1/p' = 1 and we used (2.8) with s = 1. We choose a number 8 satisfying
0 < 8 < L —n/p and apply once more the Holder inequality to get
. 1 ’ .

/‘sL"laau(.sx +(1- s)hm)dsl?

¢]

an(X, hm) |p = [P

1

1

: »/?’

< I? / sE-1-1P'=8p| g2y (s + (1 — s)hm)[Pds { /s““'aplds}

0 o
1

P
= -(-é-p—?-)—p-/—;/s(l"a)?"l|6°‘u(sx + (1 — s)hm)|Pds .
0

Hence it remains to estimate the expression

1
/D-n/zz l(x hm x hm I/S(L—O)p—llaau(3x+(1_3)hm)lpd3dx
0

1

- / SL-0p-1 / laau(t)|v(\/53)—ﬂmezzﬂl(t\/%’::) n( \/__hs)ldtds,

0. R=

where we changed several times the order of integrations and summation, which is justified
since the integrands are nonnegative, and substituted t = sx + (1 — s)hm. We apply



(2.8) to obtain

0/ S(L=6)p-1 /laau(t )P (VDs) -n ;ﬂl(t\/_%::l)an(%;)ldtds
13 —blp-l-ng4g 2u(t)|Pdt = A2x-1(VD) (VD) | 5o
< 48x5(VD) [ o0 R/ it = TEGEE o,

0
leading to

P A®k_L(VD) .
| Sell, < (Ar-n(VD)™ s T e)p( 1%z,
for arbitrary 6 € (0,L —n/p). But

. 1 : p
0<6<Lon/p (6p) 7" (L—8)p—n)ilfe ~ Lp—n’

therefore we obtain

| Sanllz, < A®x- L(‘/_) o

'U“L,, °

Using (2.8) with s = 1 and the inequality |Ua(x,y)| g |0%u||r., we obtain for p = oo
that

1Saplze < A®k-1(VD)[0%ul|z, -
If p =1 then clearly

[Sallz, < 2 / o / VB 3 () (L) et e

meZ™

AL®k_ L(\/‘)
L—

< AL®x_1(vD) / sEm1on g / 10°u(t)|dt < 16%]lz,
0 R=

Thus the assertion is proved for 1 < p < oo and we see that the constant ¢, is bounded

by

Lp

Lp—n ~

cn < A®k_1(VD)

For the following we introduce the semi—norm

M
ulws = > o 1%z,

|lel=k

equip the Sobolev space W} = W}(R®?), | € N, with the norm llullwg = Z |ulws and
k=0
denote

ox(n, D) := max ”D—n/z > ( ) <__T'Dm') “Lm ’

meer (2.9)

euln,D) = max Y [9%Fn(vDw)|

led vEZ"\{O}



Due to (2.6) there holds ox(n, D) < A@K_k(x/l_)). Now Lemmas 2.1 and 2.2 lead to the

following L,—estimate of approximate approximations.

Theorem 2.1. Suppose that n satisfies (2.1) and (2.2) and that for given D > 0 the
relations (2.4) hold. Then for any h > 0 and any function u € WL 1<p< oo, L>N
and n/p < L < K we have

lun —ullz, < Z( ) €k(17, )| |Wk

=0

|u|ng .

+ Z \/—h ak U,D) | l (\é?h)[l

k=N

Now we are going to estimate the error of u — up in negative norms.

Lemma 2.3. Letu € W2, 1 <p< oo, r €N, and {a,} € [y(Z"). Then there ezists a
constant ¢ depending only on n, r and p such that

o 3wl g b Y 2y

2
veZn\{0} VGZ"\{O}( w*w[?)
Proof. Obviously it suffices to estimate the norm of the multiplier
eo(h™1) W = W% .
Because of |v| # 0 we get
et Julhygr = sup | [ eu(hx)u(x) o) x|

v =1
by =1 g,

|IV||Wzr-1 !(WIVIZ) / )reu (7)) o) dxl

h?.r ., —
< G s R/ 1A (u(x) o) dx.
Since
1
AT(u) = Z 62"‘ Z Z Al g2aa) a) B8Py 5Py
IO‘I"' |a|—r ﬁ<2a

it is clear that there exists a constant depending only on n, r and p such that
f |A™(u(x) v(x))] dx < e [[ullwz- [[v]lwzr -

We note that in the special case r = 1 this constant is bounded by
¢ < max(2,n'?), p=min(p,p).
|

By simple interpolation arguments Lemma 2.3 can be generalized for arbitrary negative
norms in Besov and Bessel potential spaces. This leads to the following error estimation



for the quasi-interpolation formula (1.4), which we formulate for the example of the
Bessel potential space Hy = Hj(R") equipped with the norm

lullerg = 17721 + 4| - 1)/ F |z, = [[(1 - A)/uls, .

Theorem 2.2. Suppose that 1 satisfies (2.1), (2.2) and for given D > 0 the relations
(2.4) hold. Then for any u € Hf,", 1<p<oo, L >N withn/p <L < K and positive
s < L there ezist constants ¢, and c,, not depending on u and h such that

llu — uallgrye < e (VDR)Y |lufl

min(N-1,[L-s]) o o
beght YL (X2

o7 al
|ej=0 veZ™\{o}

3 |0*Fn(v'Dv)| .

(2m|v)e

Proof. Since || - [|gs < || - ||z for s < ¢ the estimate

_{_l;v \/_h)kalk(n:p)l [W"

3 (2EY L o gt

|ex|=0

| — un| gz+ <||Br, hlle

follows from Lemma 2.1 and Theorem 2.1, where we denote
Y 0 Fn(VDy)e,(x).
veZ™\{0}

| Obviously the first two summands can be bounded by ¢(vDh)¥ ||u]| HE With some con-

stant not depending on u, h and D. To estimate the last sum we use for ||+ s < L the
interpolated result of Lemma 2.3 to get

|0%uea(h™-) gz < cop b ||0%ul|m; Z
veZn\{o}

|0%Fn(vDy)|
)

If |a| + s > L we use Lemma 2.3 for u € H,f'—la' and obtain

|]6°‘u Ea(h_l . ) “H;' < CL-|al,p hL—Ial “u”H};' Z
vezZ™\{0}

|9°Fn(vDr)|

Erp)ET=

showing that

N-1
Dh\lal 1
2. (‘/2;) 1o uealm™ ) [l < (VDR [lullag -
|a|>L—s
|
Follws,

Since ||ul| g2 < By ||uflw;2 with the constant By = sup ;-=——<"—— we obtain for
vEW’2 “(I_ A)'U“L,,I
the special case s = 2

Proposition 2.1. Suppose that 7 satisfies (2.1), (2.2) and for given D > 0 the relations
(2.4) hold. Then for any u € WPL, L> N >2 withn/p < L < K there ezists a constant



c not depending on u, h and D such that
llu — unll g2 < c(VDR)Y [lullwg

N-3 ol 18%ulva o ”
TS (\/ﬁh)l H|18%ul|wz 3 |82 Fn(v/Dv)|

! 214,12
oo s ol o 4n?|y|

, N-3 c '
C(\/’Bh)N ”u”W} + Cphz Z (\/—h k 77,'.’7) Z IU!W"'H :

par (2m)k+2

where ¢, = By max (2,n'?) and ex(n, D) are defined in (2.9).

3. HARMONIC POTENTIALS

Here we justify the cubature formula (1.2) for the harmonic potential £,. It is well-
known that £, = (—A)"! and that forn > 3, 1 < p < n/2 and ¢ = np/(n — 2p)
the operator £, is a bounded mapping from L, into L, (cf. Stein [9]). The norm of
Ly : L, — L, we denote by 4,4

Let us deﬁn,e

_ | —1) [ _u(y)
L) i= Loun(x) = =2 / gy, (3.1)
‘where uy, is given by (1.4). Hence for any x € R™ we obtain the discrete formula
- h? ' X — hm ' :
Lopu(x) = Wménu(hm) Lan( Yo ) (3.2)

The cubature error can be estimated by the following

Theorem 3.1. Let 1 < p < n/2, ¢ = np/(n — 2p) and suppose that n satisfies (2.1),
(2.2) and for given D > 0 the relations (2.4) hold. Then for any function u € W7, where
L> N +2 withn/p < L < K, there ezists a constant ¢, not depending on u, h and D
such that

1£nu — Lapulz, < e (VDR)Y |lullwg

N-3 k c 2
+hY (VDA &4(n. ) Y (Ao lulgss + cqlulys) -

k
k=0 (27[') i k! =0

Proof. The assertion follows immediately from Proposition 2.1 and the mapping proper-
ties of the operator £,. Since L,u — Lnpu = Ln(u — up) we obtain

1 £au = Loptillz, = [(=A) (I = AYT = A (u — un)|z,
<(=A)YHT = A) M u — wn)lz, + (T — A) 7 (w — un)||z,
< Apg llu — unl| gz2 + {lv — ual g2 -

Using the continuous embedding W: C W;“z we have only to apply the estimate of
Proposition 2.1. L



Let us mention an interesting feature of the cubature formulas based on the approxi-
mate approximation of the density. As an example we consider the approximation of the
gradient V(L,u)(x) by the discrete formula

V(Lopt)) = s 3 w(hm) V(Ea) (=)

megZn

Theorem 3.2. Let 1 < p < n, g = np/(n — p) and suppose that n satisfies (2. 1), (2.2)
and for given D > 0 the relations (2.4) hold. Then for any function u € W where

L>N+1 withn/p < L < K, there ezist constants ¢, and ¢, not depending on u, h and
D such that

IV(£n u) - V(ﬁnhu)HLq < ¢ (VDR)Y |l g
VDh lel [|0%u|| b3 8*Fn(v/Dv
teh Z ( ) )3 [0°Fn(vDv)|

Jee|=0 al veZ~\{0} 27 |v|

Proof. It is well-known that ||Vul||, < ||(—A)Y%u||z,. Acting as in the proof of the
previous theorem we get

I(=A)*(Lnts = Lapu)llz, < Bpg llu— unllgz + llu — unl| gz

where B, denotes the norm of the bounded mapping (—A)~Y/2: L, — L, (cf. Stein [9]).
Hence by Theorem 2.2 the assertion follows immediately. : |

The previous theorems show, that if the generating function 7 and the parameter D are
chosen such that the values ex(n, D) are sufficiently small, then both the cubature £, pu
and its gradient V(L. xu) approximate with the order hN up to the prescribed accuracy.
" Moreover, due to the smoothing properties of the integral operators the corresponding
approximations converge with the rate A% and h, respectively, as h tends to zero. This
property holds, in general, also for other pseudodifferentia.l operators of negative order,
whereas for singular integral operators the corresponding cubatures approximate in some
range of h with the order N, but do not converge.

After having estimated the cubature error we choose now a generating function 7
such that the assumptions of Theorem 3.1 are satisfied, the values ex(n7, D) can be made
arbitrarily small by a proper choice of D and the 1ntegral L,n(x) can be determined
effectively.

An example of multivariate functions providing the desired properties is given by

nane(x) = w2 LA (x P e M M =1,2,..., (3.3)

having the Fourier transform
M=1, 51\ i2vs
—2pp N (TARY
Fro(A) = e PE Y (_J,_.
3=0
(see [5], [7]). Obviously the function 7.as satisfies (2.1) and (2.4) for any K > 0 and
the moment conditions (2.2) with N = 2M. It will be shown that the cubature formula
(1.2) is based on this function. Consequently, to prove the validity of the estimate (1.3)

it remains to bound the error

2M-3 ‘\/5}7, E c ’D 2
Z ((2,,)k32 k(ﬂz;:;f ) Z(Ap,q % |U|W;+t +¢cq IuIW;H) )
’ . =0

(3.4)

k=0



" In view of (3.4) we have

8% Fnana(X) = pans-a4jag(X) e P
with some polynomial of total degree 2M — 2 + |a|. Due to the rapid decay of the
Gaussian function there exist constants -y, such that say for all D > 1 we have
ex(nam, D) = lmla}: Z 6% Frame(VDV)| < 1 e P
7 vezr\{o}
implying

2L3 (VDR)F 2M,'D
3 (VDh)* ex(n )Z

= (2m)H

for any fixed D > 1 and all A < D~Y/2, Now Theorem 3.1 yields the estimate of the
cubature error

ApqCp |u|W"+‘ + ¢ IUIW"“) Scpe” ”u“Wp’M“,

|1 £nts = Lapullz, < e (VDRYM [ullaress + c3 b €7 [Jul|yasess (3.5)
with constants not depending on u, h and D > 1, where
h? X —hm
LnpulX) = momy > u(hm) ﬁnnm( Toh ) : (3.6)

mezZn

Remark: The estimate (3.5) indicates that asymptotically the optimal cubature error
can be obtained if the parameter D is coupled to the gridsize A such that (vDh)*M =
h? exp(—n*D). A similar coupling of D and h, depending of course on the generating
function 7, converts the quasi-interpolation (1.4) into a converging process. For example,
. if for given n we choose D = D(h) such that :

(ﬁh) Ek('r]:p) — (\/—h)N
2w

then Theorem 2.1 implies the convergence of the corresponding quasi-interpolant in the
norm of L, with the rate (h1/D(k))". Some special results in this direction are obtained
in Beatson-Light [3]. But we prefer to consider the case of fixed D which is advantageous
in numerical applications of the approximations (1.4) we are interested in. First of all
- one can fix D such that any prescribed accuracy can be reached with the approximation
rate Y. Further, the cubature of convolution operators .A requires similar to (3.2) the
evaluation of An((x — hm)/+/Dh). On the grid points hk, k € Z®, one has to determine
the values An((k — m)/+/D), which can be used for any gridsize k. Therefore it is very
efficient to precompute and store these values if the cubature is a part of some iterative or
multiscale algorithm. O

max
0<k<N

In order to derive an analytic expression for Ln,nam(x) we use the representation
L("/z)(|x| )e —x? _ Z ( 1) Ade—IxI? , XER®, (3.7)
=0
(see [7]), which together with the sumr;a.tmn formula
L) = L) - I W) (3.8)
(Abramowitz-Stegun [1], 22.7.30) leads to the equahty

(n/2-1) N G e .
LJ (IXIz)C Ix| = WAJG Ix| , XGR . (3.9)

10



Now we are in the position to determine the integral

n_ (n/2)(1112) o=IvP? |
(L(n/Z)(l ?)e - Iz)( )= (3 1)/LM—1(|Y|) vl dy (3.10)

47rn/2 ; |X _ yln-—z

Since L, A = —I the representations (3.7) and (3.9) lead to

La(ZGA(- ) el FY (%) = La(e P (x) Z( LY jict e

M-

= La(eP)( 1 (W

_ 5:4 3—1'471AJ e~ (3.11)
=1

M-2 r(nf2-1) 2
oxp - B ()
=L, e~ "P) (x -I-e"le I
e+ 3
Thus it remains to determine £, (e~!"")(x). We use that

e rz-1) e~ IvP? n e~ A7
Ln(e™ | )(x) = Ajrn/z x — y|2 dy == /2/ ex(x) dA
Re Rn

27rn/2+1 oce_"rzr? n/2 1 n/2—-2 —r
= |X|n/2-1 _/ A2p2 Jn/2—1(27!'7'|x|)1' / dr = 4|X|“‘2 /7- /2 2e dr,
0

(see Stein-Weiss [10], Th.IV.3.3, Bateman-Erdélyi [2], 8.6.11).
In particular,
e—Ivf? 1

£4(6_|'|2)(X) 47('2 |X ylz y—4| I2

(1— e';|x|2)

and

||

2 e~ vl
ﬁs(e“"')(x)=-1—— [ &y = 7 / 7 dr = T et ()

(3.12)

with the error function erf.
Noting the relation to Hermite polynomials

1/2 (1) ; d\i _
L) = gz Fain (V) Hi(w)i= (217 e () e

from (3.11) we obtain in the special case n =3

: 1 —sz_2 -1 jH2j‘ 1(|X

(3.13)

The described and related cubature formulas were tested in a large number of exam-
ples and partly included in numerical algorithms for solving partial integro-differential
equations (see [6]). Let us provide the results of two tests with the three~dimensional
cubature formula (3.6), (3.13). In Fig. 1 we have plotted the relative cubature error for

11



different generating functions 72 and sufficiently smooth densities. The corresponding
values of the approximation rate

(log | £5u(0) — La,25u(0)| — log [L£5u(0) — Ls,4u(0)])/ log 2

are contained in Table 1. It shows that pointwise the approximation rate can even be
higher than theoretically predicted. For example, in all numerical tests we obtained
an approximation rate near 6 for the density (1 — |x|?)] having discontinuous fourth
derivatives.

ettt LG NN T S L IO

0.01 | 4 o.01

le-06 - le-06

eoT
o

le-10 4 1e-10

e
T
QU b O N =

-

Lod 1e12

0.1 0.01 0.1 ' 0.01
meshwidth A meshwidth A

le-12 |-

FIGURE 1. Cubature error for the Newton potential using different gener-
ating functions 7j;ps and the fixed parameter D = 3.

pt La(A—1-13) L3((1-1-*)3)

M| 1 2 3 4 5 1 2 3 4 5
8 0.975 2.117 3.383 4.780 6.333 [1.525 3.088 4.817 6.830 9.227
16 1.619 3.354 5.176 7.087 9.098 | 1.857 3.750 5.722 7.764 8.282
32 1.893 3.826 5.787 7.775 9.810|1.963 3.937 5.933 7.819 6.344
64 1.973 3.956 5.947 7.946 9.033 | 1.991 3.984 5.983 7.639 7.024
128 1.993 3.989 5.986 7.851 2.124|1.998 3.996 6.009 3.727 0.715

TABLE 1. Approximation rate of the cubature at the point x = 0 for the
densities A((1 — [x|?)}) and (1 — [x|?)%, resp., using different functions
nop and D = 3.

In the case n = 2 we have

Lou(x) = 5 / log —— u(y)dy , (3.14)

Ix -yl

12



and one easily obtains

Ix|?

£a(e1P) ) = = Ballxl?) = g log = 3 (- [ 2= ar),

0

where E; is the exponentiai integral and -y is the Euler constant v = 0.577215 ..

from formula (3.11) we derive the analytic expression

1 1 M-2

Lamam(x) = = (2 log il By (|x[2) + e~ Z 1(3;(1ILX|12)) )

with the Laguerre polynomials L; = Lg-o), leading to the cubature formula

Conn) = 3 athm)(Come (% 75) - ELER)

mezZ?

4. ELASTIC AND DIFFRACTION POTENTIALS

(3.15)

.. Thus

(3.16)

In this section we derive analytic formulas of elastic and diffraction potentials applied
to the generating functions 72ps defined in (3.3). It is clear that analogously to the
preceding section these formulas can be used to construct high order cubature formulas for
the corresponding potentials. Based on the mapping properties of the integral operators
estimates of the cubature error can be obtained similar to those of Theorems 3.1 and 3.2.

4.1. 2d-elastic potential. A solution of the two-dimensional Lamé system
pAu+(A+p)Vdiva=f

is given by

w(x) = / Tu(x,y)fi(y) dy |

v R2
where for k,l = 1,2 ;
A+p ( A+ 3u 1 (zx — yr) (1 —yl))
P ’ o= — ]. ?
kl(x y) 47!'[1,(A+2[.L) kl A-{—[J og |X—y| + , |x—y|2

is the Boussinesq fundamental matrix. In the following we determine

/ Ti(x,¥)L§7 (Iy]?) e *Pdy .
R:
Note that
Out 1 Atp 0

Tu(x,y) = T onp log Ix —y| + 8ru(A + 2u) Ozl

12
(!X yl (log lx_y|

13
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From (3.14) and (3.16) it is clear that it remains to determine the integrals

=g [ o= yP (1o —— + 1) L8, (vP) ey
Oz 0zi Ix —y| 2/ M-
R2

N
—amkamz y 8 |X - y| 2 y

M 1

N Ll

) Aje_]ylzdy .

First we remark that

1 1 2
/ x—y|? 1og =3 + §) eV’ dy

(4.1)
— - -y 4
(22, + aml)/log x e Y,
R2
such that for the case M = 1 we derive
Ikl 2 0 2 e
o = 25k1£2(e =1+l ) (x) + (2:1r:16—w’c + Bmkamz)ﬁz(e Il )(x) ,
leading together with (3.15) to the formula
A+3
/sz(X,)’) n(y)dy = W:F;—ﬂ) u ( BE1(]x]?) + 21og |x])
g2 4 | (42)

+ At (mkmz 5kz) 1—e M gz
O \Uxp "2 TR T RE)
For the case M > 2 we use the relation
1 1 1
Alx —y|*(log ——— + =) = 4log ———— — 2
Ix —yI*( Byl 5) I

and Green’s second formula to get

1 2 1 2
2 —lvl — |1 -¥* g
I = 9220 l</|x | (log 2)e dy [.ogl |e y)

& ( 1) 1 j~lg=lyl?
Bwkamz E (41og =yl 2) AT te~ Wi dy
R

1 1 2 1 2
= x —y[*(lo + 2) e Mg —/1 e Vg )
Bmkﬁmz(/l yl ( & |x —y| 2)e y 8 |x —y| Y
R? R2
M-1 .
& Z (._1.)J /lo —1—Aj‘le'lyi2dy.

t Penda; 2a jTH1 | By
Jj=2 R2

14



Now relation (4.1) helps to s1mp11fy

1 1
—ly|? -lyl?
awkawz(f b=y (log o —sr +3) ¢y / log 1 yle dy)

= 2——:1:1/10g IX— ‘ —M dy =2 5kl -I-wz /1 g| —Iy]"’dy .
Since for 5 > 2 there holds

1 , 2 : 2
lo AFte WPy = _op AF2e~RI
/ Elx—vl Y

R2
we derive by using (3.9)

Lu=2($ log —IvP LY ([xP)e
K= (’“""” / Ex— y} Y T Bzror; Z 2+ )G +2)°

‘where of course the sum d1sappears if M = 2. Thus

2 é 2
/ Tu(x,y) L5, (ly[?) e PPy = —-ﬂﬁz (L5, 1) e Py(x)

R?

At p 1Py =22 LO(xP)e P
+2M(A+2IJ’) <(5kt+m1 )Ez(e )(x) — Z 5or05 8 + )G 1 2)
Now we use that |
d\™ [/ (4 _ (et B o
() (#Pe) = comr e, (0.3

which follows from the formula

(1—2) e /0= = 3" L& (y)e 27 ([1],22.9.15),

=0
to derive
8 2 ® —hx? (2) f?
Fogn L Y(x|2)e™ ™ = 26 L (|x[2)e™F + dapa L) (|x])e B |
which leads to the equality
[ Gty Py = akz(——cz(f:&}’ (PP
R2

A+ p 1P & L{(|x[?)e
eI CIGROR 2 A6+ 5)

=3 1(2) (|4 |2} o—Ix[?
A4 p 0 |12 = L; (Ix]?)e
L — ; - .
+ 200+ 28) (mzamk 2(6‘ ) (x) -z 2 2+ 1)(7 +2)>

Next we simplify the expressions enclosed in the brackets. Using (3.8) one easily
transforms

M-3 ()12 M=2 1 (0)(|p2y 7 (1)
(1x[?) L7 (|x%)  Lyf_o(1x]?)
Z4(J+1 )5 +2) 24(3 S AM-1)° (44)

7=0

15



such that from (3.11) we get
&2 L{(x[?)e

La(e™1P)( +J§_‘5 RS
M-2 7(0) 2 9
= La(e7 ) (x) + -IXI’ZZ (|X|) L4( lxll)) P

© (kP
= La(B. (1 ) e ) e )—%(—ﬁ(_'—l')—’e-'*! ,

implying for the first term

1 1) 2 [P Atp i 3 LM (|x|2) el
_EEZ(L&)_I(I'I)GH)(XH 203 + 2u) (2( ") HZ4(J+1)J+2))

)x—}-3p, (1) 1.2 /\+ 2(|X|) -—x’

Now we con31der the second expression. From the relation
o 1 - [+ 3 - [+ 3
) = - (G +e+ D L) - 6+ 1) L 0) (45)
(see Abramowitz-Stegun [1], 22.7.3V1) we get
1, .
L (xP") = o (G + D) - (G + DI (%)
and therefore

M-3 (2) 2 M-3 (. M 14l2 . ® ‘z
L7 (1x[?) _TkTY (7+2)L; " (|x[?) = (5 + 1) L5 (1x[?)
s ’Z GG+ W Z GG

_ mkmﬂg(Lﬁ”uxm L§21(1x12>) _ s Lﬁ?_zuxm)
x[? i N2 +1) 26 +2) /2P M-1 /-

Furthermore, (3.15) shows that

Ix[?

0 2 z; 0 l—eT™ TiT
il = _a Y (.,_ - — RS X
L CRRD R ("’ / : dT) 2 ok

0

hence we derive

5 ; 2 LPP) s (LR (%) e
9 r(eml] _ 3 _ za Ly L
2 asz:z (e )(x) TET] Jz:_; ( ( M e 1) .

20 +1)(7+2) 2x[? -1

Consequently, the integration of the generating function 7y results in

A+3
/sz(X, Y)mam(y)dy = — 2_/16——}-_;2{5 Skt Lanzn(x)
R? (4.6)
A+ p (wkmz B @) Mam-2(X) T
4p(X + 2p) M-1 =x2/°

x|* 2
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We note that by simple differentiation of the expressions (4.2) and (4.6) it is possible
to obtain effective approximations of the stress tensor

o = )\(Bul 8u2) + 9 B'LLk Bul 4 8u2

B2 T 0,) T %m0 =k T )

4.2. 3d-elastic potential. A solution of the Lamé system
pAu+(A+p)Vdivae=f

can be obtained from

w(x) = [ Tulx,y)i(v)d
RS
where the elements of the Kelvin-Somigliana fundamental matrix {T'x}} -, are given by

A+ p (/\ +3u O (o — y) (2 — yl))
8ru(A+2u)\ A+ p [x—y| Ifo|3 ,

Tu(x,y) = —
The integrals

/Fkl(X7Y)772M(Y) dy=7r'3/2/]f‘u(x,y) (3/2)(|y| )e ¥ gy
RS3 RS

can be determined quite similar to the preceding subsection. First we note that

Okt A+p 0?
drp |x -yl + 8mu(A + 2u) Ozl
Hence it remains to determine the integrals .

Tu(x,y)=- x—yl|.

52 e
Ty =55 Ix — y|L§/2)(ly[?) e PP dy
Ra
82 R o G % A
— —vle¥l — ig—lvl
Bexd1 f b —yle™* dy + Z IPE azkaz,/ b —ylaze™¥dy -
RS2 1=1 RS

Since for j > 2 there holds

;o e Ivi? _
f Ix -yl AJe—lylzdy =2AI" / dy — 8 AF~2e~xP :

R3 RS
the des1red integral equals
eIy
WPy — = [ —
“’wm(ﬂxﬂ dy Ixﬂd>
9 (21 pica
Ai—2— Il
-8 aﬂ:ka.’nz Z '4-7
Similar to (4.1) we have
10 e~
-'I)'l2 - 4.
5 /Ix yle ¥y = (o4 550) [ o=y (a7)
RS
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imp‘lying for M =1 the expression
_ A4+3u  erf([x])

RS
A+ p 0 0% | erf(]x|)
+ 47!'/1,(/\ + 2/.14) (23;‘8:::;6 + amkamz) 4‘){‘
_ Qa5 2eri(x) ey (4.8)
16mp(A + 2u) |x[® v |x[*

Skl 2e~ " erf(|x]) erf (|x|)
+ 16mu(A + 2p) ((A + “)(\/7?|x|2 P ) —200+34) x| ) ’

If M > 2 then (4.7) yields
) [ gy e SR

Iu=(6u+ ay — 8 T+ +2)°
ki ( Kl mlamk i Ix — y| Y Wamkamz s 16(] + 1)(-7 + 2)
such that
— 6 L
[ Pl G Py = - Hea (LA 1) et P )
Rs

’ ; - 12)( 5|2 e~ X2
A+ p 0 1P = e L§1 (Ix[*)e )
+ 520\ + 21) ((51:1 +$16$k)£3(e )(x) < 9zx0z 8(G + NG +2) )

From (4.3) we see that

52 | o
x40z L{A(x[2)e ™ = —28, LF (x|2)e ™™ + 4z, LD (1x?)e

which leads to

1 2
f T (%, y) L5 )y [?) e P dy = 5,4( — ke (L5220 Py e P x)
RS

Atp p M3 L (|x|2)e
2u(X + 2u) (‘3(‘“’ e+ ; 4G +1)G +2) ))

=3 r(5/2) (|, 12}~ |x]?
A+ p 0 -|-P _ % 3Lj (|x[*)e
* s 2 (3 ) — s X Sy )

=0
Again we consider the separate terms. Similar to (4.4) we derive
lf L) RSP L)
L AGHDG+D & dG+D) 40—

(4.9)
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such that from (3.11) we have
= L (e
A7+ +2)
M-2 L(_1/2)(|x|2) ‘ L(3/2)(

=545WXQ+KWZ;20+Q"iﬁﬁyéﬁﬁ

La(e ) (x) +

3=0

(/2 (1) .
= L(Z2( - P e ) () —%(_'—1')) e

which implies

M- 3L(3/2)(|Xl2) —|x?

_ L (ne .y et Atp -I-F)
L1 D)0+ s (e N0+ Y i)

7=0

b + 3/_[, (3/2) 9y —|.12 A -+ H L(s/_z)(|XI )e_lxl
La(L . ] _ M-2

To handle the second term we use (4 5) to write

L_S'S/Z)(lxlz) — l |2 (( + )L(3/2)(lx|2) (] + l)L_g:i_/f)(Ix|2)) )

hence we get

U8 1E(xp)

J

27 +1)(7 +2)
o (A IR IOy MR (k)
-5 (X G g+ ) P S 506 +9)

_m (L L= | R~ L8 () )
KE\2 T M -1) & AG+NG+9)

From (3.12) we have

TET1
7=0

x| x|

0 2 0 1 2 TrT TrT
- =11 —g—— | e dr = - [ 7 k2 = Ix?
ml@mkﬁs(e )(x) o 2|x| /e ar 2|x3 /e dr + x[2° ’
0 0
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~ therefore the second term transforms to
9 ; = L (e
- —|- I

‘”‘amkﬁs(e TR Z 27+ 1)(7+2)

TETy _ ThTL 2
ad.eld ™ dr Ix|
/ NET 2|x[2
0

_@(;_Lm(mm = L¥P(xP) G
27 2AM-1) T ZAG+1)G+2)

I M-2 p(1/2
(L [y Z L/ )(le) o LRy
4(7 + 4(M-1)

TrT (3/2) 1112 , » L
= |}’;|2 (3f(M_lll))e—lxl (L(/%(l I) ].|)(x))’

where we have used (3.11), (3.12) and (4.9). So we come finally to the expression

At TrT1 Nana-2(x)
/Fkl(x7Y)772M(Y) Y = 30+ 2) ( Ix]? 5’“’) M-1

A+ 3u Aty oz
- 0. L ,
(5007 35 5+ 35 7 307 o) e

which is valid for M > 2 and even s1mpler than the corresponding formula (4.8) for the
. cubature of second order. :

(4.10)

4.3. Diffraction potential. Consider the potential

etklx—yl
Su(x) = — /lx u)dy, Imk20, xeR", (4.11)
. R3
providing the solution of the Helmholtz equation
—(Av+ kzv) =u,

which satisfies Sommerfeld’s radiation condition

<%,V’u(x)> —tkv(x) = o(%) , |x| =00

From the equality

(A_I_kZ)—lAj ( )JkZJ(A+k2 1+Z rerAJ— —-r

r=0
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we derive

, M-1 (<1) .
S(LEA - 1) e (x) = —(A + 82 ( I Aae-le)
=0 7°
M- M-1 -1
2 1 sk?\3 (-1)9 i-
_I l Z == kz"AJ 1-r —[x|?
= '( ) e ]‘4.1 ;
M- M-2 j .
2 2 1 k2N G-
— S(e‘l | fe_|x| Z S — {2 L,(.l/z)({xlz)
— j=04(J+1)?; (4)
v =0
M-2 M-2-j

~ [P i Hajva (1) K
eIl i 2 (1x])
Z( Y e Z (7 4+ 7+ 1)1220G+r+1) -

7=0 r=0

Let Im &£ > 0. Using the Fourier transform
1 eik!xl p 1
el e e G el VR
B3

the convolution equals to

1 eik{x—y| " e—’n"{l[’
= WPy =¥ =
Py— e y=m /47r2|/\|2 — ea(x) dA
Rs

Rs
2

) 27['3/2 T pe““’zp . . ‘ .
T x| /47r2p2 k2 sin (2mp|x|) dp (4.12)

VT k2 ( ikix ik —ik ik
= me / (e Merfe (— [x| — —2—) — e~ *lerfe (|x| — )) ,
(Bateman-Erdélyi [2], 2.4.26), where the complementary error function is defined as
erfc(z) = 1 —erf(z). Thus we obtain

1 eik]x-yl —k?/4

Iy gy = © ikl ik
= | w—y] e~V dy pem (z sin(k|x|) + Re( erf (|x| + 5 ))) .
RS

For k£ > 0 the Fourier transform of the fundamental solution is the distribution

1 i k
wapp e Tar M- g)

Hence the convolution (4.12) is the sum of the principal value integral

—n2 AP , -k /4 , "
€ 2milx) g — & ik|x| e
/47r2|/\|2 T 4r]x| Re(e erf (jx| + 5 )) ’

where one has to apply the Sochotzkij-Plemelj formula, and of

W kN amit, ) _ t sin(RX]) ks
(1= 2 pumtn) - LD o
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Hence we derive also for £ > 0

7r_3/28( e_l'lz)(x) = L

47|x]

e~/ (zsm(k[x[)—i—Re( iklxlerf (|x| + Zk))) .

Summing up we get the analytic formula

Gt )

7=0

—x’ M-=2 M-2—-
=l Z (—1y Haja([x]) ZJ (K2 /4)
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