
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 0946 – 8633

TetGen, towards a quality tetrahedral mesh generator

Hang Si1

submitted: March 5, 2013

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: hang.si@wias-berlin.de

No. 1762

Berlin 2013

2010 Mathematics Subject Classification. 65M50, 65N50, 65D18, 68U05, 68N99.

Key words and phrases. tetrahedral mesh generation, Delaunay tetrahedralization, constrained Delaunay, boundary recovery, mesh refinement,
mesh quality, flips, edge removal.

This work was supported by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, Germany.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Abstract

TetGen is a C++ program for generating quality tetrahedral meshes aimed to support numeri-
cal methods and scientific computing. It is also a research project for studying the underlying
mathematical problems and evaluating algorithms. This paper presents the essential mesh-
ing components developed in TetGen for robust and efficient software implementation. And it
highlights the state-of-the-art algorithms and technologies currently implemented and devel-
oped in TetGen for automatic quality tetrahedral mesh generation.

1 Introduction

A tetrahedral mesh is a partition of a three-dimensional geometric domain into a set of non-
overlapping tetrahedra. This type of partitions has many favorable properties. For instances,
it is able to easily represent domain boundaries with arbitrarily complicated shape, it can be
refined and coarsened locally, and it can be created fully automatically.
Meshes find use in many areas. The development of TetGen is mainly motivated by the nu-
merical solution of partial differential equations, such as the finite element and finite volume
methods. The first step of these methods is to obtain an appropriate mesh of the simulation
domain. The quality of the mesh will tremendously affect the accuracy and convergence of
these methods.
The term “mesh quality"depends on the physical problems and the applied numerical meth-
ods. Frey and George [31] gave a nice exposition on various meanings of mesh quality.
Numerically, the mesh quality can be assessed by taking into account several measures
on element shape, size, and orientation, see e.g. [37]. Following the definition of Bern and
Eppstein [6], an optimal mesh is a partition of the domain, that is best according to some
criterion that measures the size, shape, or number of elements. The corresponding problem,

1

Towards a Quality Tetrahedral Mesh Generator 2

referred as the quality mesh generation problem, can be generally formulated as:
how to create an optimal mesh with respect to a given mesh quality measure?
It is a complex problem which requires an interdisciplinary research combing
topics in mathematics, computer science, and engineering [26].

Technologies for mesh generation (or synonymously called grid generation)
have been greatly advanced in recent decades. Relatively comprehensive sources
are found in the book edited by Thompson, Soni, and Weatherill [78] and
the book of Frey and George [31]. There are established methods for tetra-
hedral mesh generation, such as Octree [82] , Advancing-Front [47, 46] , De-
launay [4, 35, 80], and combination of them [48]. Great achievements have
been made by engineering techniques in automatically tetrahedralizing com-
plex three-dimensional configurations. However, most of the early methods are
heuristic and lack of theoretical background. Robust software implementations
are rare and may not be freely available. Now it is commonly acknowledged
that the construction of efficient and robust mesh generation techniques can
only be achieved through algorithms with solid theoretical justification. Prov-
able algorithms for mesh generation are evolving in the field of computational
geometry [6] and related mathematical areas [26].

In two dimensions, Ruppert’s algorithm [62], extending an algorithm of
Chew [19], provably generates a triangular mesh with a bounded smallest angle,
and the total number of triangles is optimal. Shewchuk provided a robust and
efficient implementation of Ruppert’s algorithm in the freely available program
Triangle [66]. The original development of TetGen (from 2000 to 2001) was
largely inspired by the program Triangle and aimed to extend it into three
dimensions. However, many theoretical questions as well as algorithmic issues
in tetrahedral mesh generation are not settled yet, an extending into three di-
mensions is far from straightforward.

It turns out that one of the fundamental difficulties is to preserve an arbitrary
edge or face in a tetrahedral mesh. This issue ubiquitously appears in almost
all tetrahedral meshing problems, regardless of the method used. Although
a quality tetrahedral mesh can be generated through various mesh refinement
and mesh improvement techniques, there is no theoretically sound guarantee
on some useful mesh quality measures, such as the minimum and maximum
dihedral angles.

TetGen has been a research project of WIAS since 2002. The goal of de-
veloping TetGen is two-fold: First, it provides a research tool for evaluating
state-of-the-art algorithms and technologies for quality tetrahedral mesh gen-
eration; Second, it provides a robust, efficient, and easy-to-used software for
various applications. It is one of the meaningful ways to combine researches
and applications. TetGen’s source code is freely available through the website
http://www.tetgen.org.

The current library of TetGen includes efficient algorithms for generating De-
launay tetrahedralizations, constrained Delaunay tetrahedralizations, and good
quality isotropic tetrahedral meshes. These algorithms can tetrahedralize three-
dimensional objects with arbitrary complexity. Specific input constraints, such
as edges and triangles, can be preserved in the generated tetrahedral meshes.
TetGen implements extensive local mesh operations to efficiently refine and
improve the mesh quality and the mesh adaptivity. TetGen uses advanced
techniques in computational geometry to improve its robustness. Figure 1 il-
lustrates the workflow of TetGen to generate a quality tetrahedral mesh of a

Towards a Quality Tetrahedral Mesh Generator 3

(a) (b)

(c) (d)

Figure 1: The workflow of generating a quality tetrahedral mesh in TetGen:
(a) the mesh domain (cami1a) – a three-dimensional piecewise linear complex
(PLC), (b) the Delaunay tetrahedralization of the input vertices, (c) a con-
strained Delaunay tetrahedral mesh, and (d) a quality tetrahedral mesh. A cut
view is made in (c) and (d) to visualize the internal tetrahedra.

three-dimensional domain.

Outline

The rest of this paper is organized as follows. Section 2 briefly describes the
input objects of TetGen. The mesh data structure of TetGen is explained in Sec-
tion 3. Section 4 describes the important local mesh operations (flips) including
a new edge removal algorithm that is first implemented in TetGen. Section 5
describes the techniques for robustly implementing geometric algorithms. The
algorithms and techniques used by TetGen are described in the following sec-
tions: Delaunay tetrahedralizations (in Section 6), boundary conformity (in
Section 7), and quality tetrahedral mesh generation (in Section 8). Finally, a
summary and outlook of future works are given in Section 9.

2 Piecewise Linear Complexes

The input of TetGen is a three-dimensional piecewise linear complex (PLC) X ,
introduced by Miller et al. [51]. It is relatively simple and is able to model a
domain with internal boundaries (non-manifolds). A PLC is a set of vertices,
edges, polygons, and polyhedra, collectively called cells, that satisfies the fol-
lowing properties: (1) The boundary of each cell in X is a union of cells in X .
(2) If two distinct cells F,G ∈ X intersect, their intersection is a union of cells

Towards a Quality Tetrahedral Mesh Generator 4

in X , all having lower dimension than at least one of F or G. Figure 1 (a)
illustrates a three-dimensional PLC.

The underlying space of a three-dimensional PLC X , denoted |X |, is the
union of all cells of X . The boundary complex of X , denoted ∂X , is the subset
of cells of X whose dimensions are less than 3. It is a two-dimensional PLC.
Any geometric domain Ω ⊂ R3 can be modeled by a PLC X such that |X | is
homeomorphic to Ω, and the geometric shape of Ω is approximated by |∂X|.

A PLC is eligibly represented by a Boundary Representation (B-Rep) solid
with only linear facets. That is, the input only contains a list of vertices, edges,
and polygons of the PLC and their incidence relations, such as a surface mesh
of the boundary complex of the PLC. B-Rep solids are generally supported by
most of CAD softwares. The definition of PLC requires that a valid B-Rep input
must contain no self-intersections between its cells and it must be water-tight.

3 Tetrahedral Mesh Data Structure

A tetrahedralization T is a three-dimensional simplicial complex. It decomposes
its underlying space |T | ⊆ R3, where |T | is not necessarily convex, and it may
have an arbitrary topology [26]. We say that T is a tetrahedral mesh of a three-
dimensional PLC X if: (1) every cell of X is represented by a union of simplices
of T , and (2) |X | = |T |.

There are many mesh data structures can be used for representing tetra-
hedral meshes, see e.g., [25, 32, 7]. For mesh generation purpose, two equally
important considerations are the memory usage and computational efficiency,
which are however contradict to each other. The data structure used in TetGen
is specialized for tetrahedral mesh generation. It is a trade-off between fast
local navigations and modifications (by storing extra incidence informations)
and a compact space usage (by reducing the additional informations as small as
possible).

3.1 Representation

A tetrahedralization T in TetGen is represented by a common tetrahedron-
based data structure. It stores the set of tetrahedra and vertices of T . The
basic structure of a tetrahedron contains four pointers to its neighbors and
four to its vertices. To distinguish the common faces/edges in the neighbors
of a tetrahedron, each neighbor contains an extra 4-bit integer (explained in
Section 3.2). An additional 16-bit integer is included in the structure for setting
flags on faces, edges, and the tetrahedron itself. These flags are used to speed up
various algorithms like the vertex insertion and flips (in Section 4.3). In total, a
tetrahedron basically uses 8 pointers and 32 bits. Each vertex contains its x-, y-,
and z-coordinates, and a pointer to a tetrahedron to which it belongs. TetGen
stores the input index of this vertex. It is used by a symbolic perturbation
algorithm (in Section 6.1). Both structures for tetrahedra and vertices can
include user data.

TetGen always maintains an extended tetrahedralization which includes fic-
titious tetrahedra formed by joining exterior boundary faces of the original tetra-
hedralization to a dummy“point at infinity”. Hence every face in the extended

Towards a Quality Tetrahedral Mesh Generator 5

0

2

1

3

face 2

face 1

face 3

face 0

1

3

0

2

0

8

2

6

10

7

11

1

9

5

4

3

5
9

7

1
311

(t2, v2)

(t1, v1)

Figure 2: Left: A numbering of the vertices and faces of a tetrahedron. Middle:
A numbering of the 12 versions (directed edges) in a tetrahedron. Right: A
neighbor query on the handle (t1, v1) returns the handle (t2, v2). In this example,
v1 = 11, v2 = 9, and v0 = 5.

tetrahedralization belongs to two tetrahedra. This property simplifies the im-
plementation of tetrahedralization algorithms. This concept was used by Guibas
and Stolfi [36] for modeling 2-manifolds and their duals.

When T is a tetrahedral mesh of a three-dimensional PLC X , TetGen stores
additionally the set of subfaces and subsegments of T . A triangle-based data
structure is used to represent the subfaces and their connections. The struc-
ture of a subface basically contains nine pointers to its neighbors, vertices, and
subsegments. Since the boundary of X may be non-manifold, the pointers to
neighbors of the subfaces form a loop of singly linked list at their common edges.
Extra pointers are allocated in tetrahedra, surfaces, and segments to point each
others.

3.2 Primitives Operations

Navigating and manipulating a tetrahedralization in TetGen are accomplished
through a set of primitives. They are conceptually similar to those proposed
in [36, 25]. While the implementation of these primitives is specialized for
tetrahedron-based data structure.

The atomic unit on which these primitives are operated is a structure, called
a “handle”, which is a pair (t, v), where t is a pointer to a tetrahedron and v is an
integer, called version, which refers to a specific face of the tetrahedron, and a
specific edge of this face. There are 12 versions in a tetrahedron, corresponding
to the 12 even permutations of its 4 vertices. They can be uniquely represented
by the 12 directed edges shown in Figure. 2. Every three edges form an edge
ring in an oriented face of the tetrahedron, and there are four distinct edge
rings (oriented faces). We number the 12 versions of a tetrahedron from 0 to 11.
They can be encoded into a 4-bit integer such that the two lower bits encode
the index (from 0 to 3) of the oriented face to which this edge belongs, and the
two upper bits encode the index (from 0 to 2) of this edge in this oriented face.
Figure 2 shows such a numbering.

Moving within the same edge ring of a handle (t, v) is a simple arithmetic
operation on its version, i.e., (t, (v + i) modulo 12), where i ∈ {4, 8}. Moving
between two edge rings can be done by using a global lookup table, L[0...11],
such that (t, v) and (t, L[v]) refer to the same edge of t, while they are in two

Towards a Quality Tetrahedral Mesh Generator 6

oriented faces of t.
When traveling from one tetrahedron to one of its adjacent tetrahedra, it

is desired that the neighbor query on a handle (t1, v1) will return the handle
(t2, v2), such that they both refer to the same edge of the same face shared by
t1 and t2, see Figure 2. The data structure already stores the pointer to t2 in
t1. It remains to determine v2 from v1. Since an edge of an oriented face in t1
may be anyone of the three edges of the oriented face in t2, the data structure
stores the handle (t2, v0) in t1, such that (t2, v0) corresponds to the 0-th edge
in the oriented face of t1, see Figure 2 for an example. It is easy to verify, that

v0 := (v2 and 3) + (((v1 and 12) + (v2 and 12)) modulo 12).

Then the neighbor query of (t1, v1) is accomplished in two steps: first the handle
(t2, v0) is obtained, then the wanted version v2 is calculated, where

v2 := (v0 + 12− (v1 and 12)) modulo 12.

Note that the values of v0 and v2 in the above formulae can all be previously
calculated and stored by using two-dimensional tables of size 12× 12.

In order to quickly access the versions during the neighbor queries, TetGen
uses the same trick of Triangle [66], i.e., a version is encoded in the pointer
(in the low 4 bits) to each neighbor. This requires that the addresses of the
memory allocated to tetrahedra records are 16-byte-aligned.

4 Local Mesh Transformations

A local mesh transformation (also referred as topological transformation) re-
places a set of tetrahedra with a set of different tetrahedra such that they
occupy the same space (referred as cavity). It can be just an elementary flip
which only interchanges two minimal sets of tetrahedra, or a combination of
elementary flips, or a complicated algorithm like inserting a vertex. It is ques-
tionable whether or not the deletion of a vertex is a local mesh transformation.
It is not always possible to re-fill the cavity resulted by removing a vertex with
a set of tetrahedra only using the vertices of the cavity.

Local mesh transformations are essential functionalities needed in almost all
kinds of meshing problems. A comprehensive design and realization of these
operations will produce not only an efficient program but also a succinct code.

4.1 Elementary Flips

According to Radon’s theorem [57], there are four elementary flips in R3, per-
formed within the convex hull of five non-coplanar points. These are respec-
tively: 1-to-4, 4-to-1, 2-to-3, and 3-to-2 flips, where the numbers indicate the
number of tetrahedra before and after each flip, see Figure 3. The 1-to-4 as
well as its reverse 4-to-1 flips are the simplest cases of inserting and deleting a
vertex, respectively. The 2-to-3 flip removes a face and creates an edge. It is
also referred as a face-to-edge flip. The 3-to-2 flip, which reverses the 2-to-3 flip,
is also referred as the edge-to-face flip. It is the simplest case of removing an
edge.

TetGen implemented all the elementary flips except the 1-to-4 flip which
is done within the vertex insertion routine (in Section 4.4). Each routine,

Towards a Quality Tetrahedral Mesh Generator 7

e

a

bc

d d

a

bc

e a

b

a

b

p1

p0

p3

p2

p1

p0

p3

p2

1-to-4 and 4-to-1 2-to-3 and 3-to-2 4-to-4 = 2-to-3 “+′′ 3-to-2

Figure 3: Left: the four types of elementary flips in R3. Right: a 4-to-4 flip
which interchanges two coplanar edges is a combination of a 2-to-3 and a 3-to-2
flips.

flipij, takes an array of i ∈ {2, 3, 4} tetrahedra (handles) as input and returns
j ∈ {3, 2, 1} new tetrahedra (handles) by the same array. Fictitious tetrahedra
may be involved in each flip. The implementation must accordingly create new
fictitious tetrahedra. For example, if one of the two input tetrahedra of flip23
is fictitious, then all three resulting tetrahedra are fictitious, i.e., they all contain
the “point at infinity”.

4.2 Combinations of Flips

One can combine elementary flips to form more complex local transformations.
For an instance, the 4-to-4 flip which interchanges two coplanar edges can be
regarded as the combination of a 2-to-3 flip and a 3-to-2 flip, see Figure 3.
Note that the first 2-to-3 flip will temporarily create a degenerate tetrahedron
(whose volume is zero). It is removed immediately by the followed 3-to-2 flip.
For this reason, TetGen does not have a routine for doing 4-to-4 flip. Also, by
maintaining an extended tetrahedralization, the 2-to-2 flip which occurs on the
exterior mesh boundaries becomes a 4-to-4 flip.

Indeed, the 4-to-4 flip is a special case of a more general n-to-m flip, where
n ≥ 3 and m = 2n − 4, which removes an edge in tetrahedralization. It is a
combination of flips of a sequence of (n− 3) 2-to-3 flips followed by a final 3-to-
2 flip. The orders of the 2-to-3 flips determine the set of resulting tetrahedra.
This n-to-m flip was studied in [33] and has been applied in various meshing
purposes.

Some other types of combinations of flips were reported. In particular, sev-
eral operations described in [38] can be viewed as a combination of two n-to-m
flips with the restriction that n is either 3 or 4. Experimental evidences were
shown that these special operations performed effectively in improving mesh
quality [38] and in recovery of specific boundaries in tetrahedral meshes [44].

An edge in a tetrahedralization may belong to an arbitrary number of tetra-
hedra. Unless the number of tetrahedra is 3, it is not obvious whether or not
this edge can be removed by flips. In particular, an edge belongs to n ≥ 4
tetrahedra can not be removed by the n-to-m flip when no face at this edge can
be flipped, i.e., none of the required 2-to-3 flip is possible. However, it may be
removed if some edges near it are removed first. This may be a combination of
two or more n-to-m flips.

Towards a Quality Tetrahedral Mesh Generator 8

In TetGen, an algorithm which attempts to remove an edge by flips is de-
veloped. It is able to combine an arbitrary number (as long as it is possible)
of n-to-m flips. Moreover, the sequence of performed flips is remembered. It
can be used to restore the original tetrahedralization as if no flip has been ever
performed. Here only the basic version of this algorithm is described.

4.3 Edge Removal

Let e be the edge to be removed in a tetrahedralization T . Let A[0...n−1] be the
array of n tetrahedra (handles) in T sharing at e, where n ≥ 3. These handles
(tetrahedra) in A are all aligned at the edge e with the same direction, and they
are ordered cyclicly such that the two tetrahedra A[i] and A[(i + 1) modulo n]
share a common face. The idea of the algorithm is similar to the n-to-m flip. It
tries to reduce the size of A by performing elementary flips until either the size
is 3 or it can not be reduced. While not only tetrahedra containing e but also
tetrahedra which do not contain e may be flipped.

The algorithm consists of two subroutines, denoted as flipnm and flipnm post,
respectively. flipnm takes the array A (whose size is n) as input. It does the
“forward” flips to reduce the size of A. It returns the current size m of A,
where m may be 2 which means e has been removed, otherwise, m ≥ 3, e is not
removed. flipnm post must be called immediately after flipnm. It basically
frees the memory used by flipnm. In addition, it is able to do the “backward”
flips to restore the original tetrahedralization before doing flipnm.

Let F be the set of faces containing e, and E be the set of edges of the faces
in F except e (|F | = n and |E| = 2n). We say that a face in F (or an edge in
E) is A-reducible if the removal of this face (or edge) will reduce the size of A
by 1. Not all faces in F (or edges in E) are A-reducible (explained later).

The subroutine flipnm(A[0...n− 1]) does the following three steps:
Step (1): If n = 3, then either e is removed by a flip32, or it is not flippable.

It returns the current size m of A. Otherwise, it goes to step (2);
Step (2): (n > 3) It tries to remove an A-reducible face in F . Let f ∈ F

be such a face. If f is flippable, it is removed by a flip23. The array A is
shrunk by 1. The last entry, A[n − 1], is re-used to store the information of
flip23, refer to Figure 4. It then recursively calls flipnm(A[0...n − 2]). If no
A-reducible face in F can be removed, it goes to step (3);

Step (3): (n > 3) It tries to remove an A-reducible edge in E. Let e1 ∈ E
be such an edge. It first initializes an array B[0...n1 − 1] of n1 tetrahedra
sharing at e1, where n1 ≥ 3, then it calls flipnm(B[0...n1 − 1]). If e1 has been
removed, then the array A is shrunk by 1. The last entry, A[n − 1], is re-used
to store the information of flipnm(B[0...n1 − 1]), refer to Figure 4. It then
recursively calls flipnm(A[0...n − 2]). Otherwise, e1 is not removed, it calls
flipnm post(B[0...n1 − 1], m1) to free the memory. If no edge in E can be
removed, it returns the current size m of A.

Which faces or edges are not A-reducible? Note that flipnm may have two
arrays of tetrahedra at the same time, such as A and B in above. Let FA∩B be
the set of faces shared by A and B, then the removal of any face in FA∩B does
not reduce the size of A. Hence faces in FA∩B are not A-reducible. Similarly,
the set EA∩B of edges of faces in FA∩B except e are not A-reducible.

Each saved flip (in array A and B) contains informations of that flip which
enable us to undo this flip. It turns out that the only information we need to

Towards a Quality Tetrahedral Mesh Generator 9

cc

d

e e

d

[n−1]

[n−2]

[i+1]

[a,b,c,d]

[a,b,e,c]

...

[i]

...

[0]

[i−1]

A

b

[n−1]

[n−2]

[i+1]

[a,b,c,d]

[a,b,e,c]

...

[i]

...

[0]

[i−1]

A
b

[n−1]

[n−2]

[i+1]

[a,b,e,d]

...

[i]

...

[0]

[i−1]

i, 2−to−3

A

b

[0]

B

[e,d,a,b]

[d,e,a,c]

...

[n1−1]

[1]

flip n−to−m

flip 2−to−3

b

remove face [a,b,c]

remove edge [b,c]

[n−1]

[n−2]

[i+1]

[a,b,e,d]

...

[i]

...

[0]

[i−1]

i,

A

a a

dd
c c

e e

a a

Figure 4: The contents of array A before and after flips. e = [a, b] is the
edge to be removed. Before the flip (Left), the face [a, b, c] is shared by two
tetrahedra A[i− 1] = [a, b, e, c] and A[i] = [a, b, c, d]. After the flip (Right), the
face [a, b, c] is removed by either a 2-to-3 flip (Top) or by a n-to-m flip on one
of its edges (here is [b,c]) (Bottom). In both cases, the array A is shrunk by 1,
and A[i − 1] = [a, b, c, d] is the new created tetrahedron containing [a, b]. The
last entry of A is used to save the informations of the flip which removes the
face [a, b, c].

save a flip23 is the index i in the array A, such that A[i − 1] and A[i] were
the two flipped tetrahedra. For saving a flipnm (to remove an edge shared by
A[i− 1] and A[i]), in addition to the index i, the address of the array (e.g., B)
need to be saved. It is assumed that the handle structure has enough space to
save these informations.

The complexity of this algorithm can be exponential with respect to the
number of total flipped edges in the process. TetGen adds a ‘level’ (> 0) pa-
rameter into flipnm to limit the maximal number of recursions in flipnm.

4.4 Vertex Insertion

In principle, vertex insertion is just a combination of elementary flips. A 1-to-4
flip inserts a vertex lies in the interior of a tetrahedron. If a vertex lies on a face
shared by two tetrahedra t1 and t2, it can be inserted by first doing a 1-to-4 flip
in t1, this creates a degenerated tetrahedron t3 which is removed immediately
by second doing a 2-to-3 flip on t3 and t2. This is equivalent to a 2-to-6 flip. If a
vertex lies on an edge which is shared by n tetrahedra, where n ≥ 3, then it can
be inserted by doing a combination of a first 1-to-4 flip, followed by (n−2) 2-to-3
flip(s), and a final 3-to-2 flip. Several degenerated tetrahedra are temporarily
involved in these flips. This is equivalent to an n-to-2n flip.

TetGen unifies the above special cases into one routine, insertpoint. Let C
be the set of tetrahedra which intersect the new vertex v. |C| ∈ {1, 2, n}. Delete
all tetrahedra in C creates a cavity inside the tetrahedralization. The cavity is

Towards a Quality Tetrahedral Mesh Generator 10

star-shaped with respect to v. Hence it can be filled by a set of new tetrahedra
formed by the boundary faces of the cavity and v. This process does not create
any intermediate tetrahedra and is general faster than performs a combination
of flips.

5 Robust Geometric Predicates

Geometric predicates are simple tests of spatial relations of a set of geometric
objects, such as points, lines, planes, and spheres. Two predicates used in
generating Delaunay tetrahedralizations are the orient3d which decides the
orientation of four points and the in sphere which decides if a point lies inside
the circumscribed sphere of a tetrahedron given by its four vertices. Each of
these tests is performed by evaluating the sign of a determinant of a matrix
whose entries are the coordinates of the involved points, i.e.,

orient3d(a,b, c,d) = sign(det(A)) and in sphere(a,b, c,d, e) = sign(det(B)),

where

A =

ax ay az 1
bx by bz 1
cx cy cz 1
dx dy dz 1

 and B =

ax ay az, a2

x + a2
y + a2

z 1
bx by bz, b2

x + b2
y + b2

z 1
cx cy cz, c2

x + c2
y + c2

z 1
dx dy dz, d2

x + d2
y + d2

z 1
ex ey ez, e2

x + e2
y + e2

z 1

 .

If the computation is performed by using the floating-point numbers, e.g.,
the float or double numbers in C/C++, which only have finite precisions,
roundoff errors may occur and may be accumulated. Geometric algorithms are
very sensitive to numerical rounding errors. They may either lead to a wrong
result or eventually cause a crash of the program. Computing the predicates
exactly will avoid the rounding error and make the program robust [81].

5.1 Filtered Predicates

Exact arithmetics are usually expansive to compute. For predicates like orient3d
and in sphere, where only the sign of the computation is of interested, a rea-
sonably fast approach is to use the so-called arithmetic filters [29, 11] which
are upper bounds of the rounding errors. One can evaluate the polynomial in
floating-point first, together with some estimation of the rounding error, and
fall back to exact arithmetic only if the error is too big to determine the sign.

Depending on how the error bounds are computed, filters can be classified
into static, semi-static, and dynamic filters [11]. The static filters are the most
efficient. They can safely and quickly answer many “easy cases”, while they
are less accurate and may fail often. The dynamic filters are more accurate but
require more computational time. Devillers and Pion [23] studied the perfor-
mances of various combinations of filters for the two predicates.

TetGen used the robust implementation of the two predicates by Shewchuk [65].
It is built upon the techniques of arbitrary precision floating-point arithmetics [56]
(based on the IEEE standard) and an adaptive scheme to automatically extend
the precisions. Shewchuk’s predicates use dynamic filters. TetGen takes the

Towards a Quality Tetrahedral Mesh Generator 11

advantage of knowing the range of the input data at runtime. It adds a static
filter in each of Shewchuk’s predicates computed from the bounding box of the
input point set [23]. This further improves the performances of TetGen.

TetGen can alternatively use other available robust implementations of these
predicates, such as those in the CGAL library [12], which include efficient dy-
namic filters based on interval arithmetics [11].

6 Delaunay Tetrahedralizations

Delaunay triangulations, and their dual Voronoi diagrams, are the most well
studied structures in computational geometry. A Delaunay triangulation of a set
of d-dimensional point set V is a d-dimensional simplicial complex D such that
every simplex inD has the empty sphere property [22], i.e., it has a circumscribed
sphere whose inside contains no other vertex of V , and the underlying space |D|
is the convex hull of V . Any simplex whose vertices are in V and it satisfies the
empty sphere property is called a Delaunay simplex. If V is in general position,
i.e., no d + 2 vertices of V share a common sphere, then all Delaunay simplices
form the unique Delaunay triangulation of V .

According to McMullen’s Upper Bound Theorem [49], a Delaunay tetrahe-
dralization of a set of n points in R3 may have O(n2) tetrahedra. This bounds
the optimal worst-case runtime for any algorithm which constructs Delaunay
tetrahedralizations. While many data sets appear in applications have linear-
sized Delaunay tetrahedralizations, which can be constructed efficiently. A num-
ber of different algorithms have been proposed [10, 79, 20, 5, 28].

6.1 Incremental Construction

Two well-known algorithms for constructing Delaunay tetrahedralizations are
the Bowyer-Watson algorithm [10, 79] and the incremental flip algorithm [28].
Both are incremental, i.e., inserting one point at a time. Each point is first
located, then inserted. The only difference between these two algorithms is the
way to recover the Delaunay tetrahedralization which includes the new vertex,
either by growing a cavity and re-tetrahedralizing it, or by doing a sequence of
elementary flips. Both algorithms guarantee the correctness.

The Bowyer-Watson algorithm appears simpler and empirically it behaves
more efficiently than the incremental flip algorithm does. Therefore it is com-
monly used. An efficient implementation of the Bowyer-Watson algorithm is
given in detail by Borouchaki et al [9]. On the other hand, Mücke [53] pre-
sented a detailed implementation of the incremental flip algorithm.

Liu and Snoeyink [45] provided a comparison of several implementations of
incremental algorithms. They pointed out that the performance of an incre-
mental algorithm is very much affected by the speed of point location. They
showed that the speed of point location can be significantly improved if the
points are previously sorted. Their method first sorts the points into subgroups
(using bit-leveling), then orders points within each subgroup along a space-filling
curve, such as the Hilbert curve. By this ordering, two near points in space are
likely close in their insertion orders. This allows the simple stochastic walk al-
gorithm [24] quickly locates the point by starting its search from a tetrahedron
containing the previous inserted point.

Towards a Quality Tetrahedral Mesh Generator 12

Boissonnat et al [8] presented an efficient implementation of incremental
construction which is available in the library CGAL [12]. They pre-sorted the
points similarly as Liu and Snoeyink [45] while the Biased Randomized Insertion
Order (BRIO) of Amenta et al [1] is used to group the points. The hope is to
keep the geometric locality while ensures the randomized feature of the points
in the point set.

TetGen implemented both of the Bowyer-Watson and the incremental flip
algorithms in the routine incrementaldelaunay. The points are pre-sorted
into an array as described by Boissonnat et al [8], then inserts the points in
this order. The simple stochastic walk algorithm [24] is used for point location.
Robustness is fully guaranteed by using the two robust geometric predicates,
i.e., orient3d (for point location) and in sphere (for updating the Delaunay
tetrahedralization).

TetGen used a simplified symbolic perturbation scheme [27] to handle the
degenerate cases, i.e., 5 or more points share a common sphere, so that the
in sphere test never returns a zero. Thus there is always one canonical Delau-
nay tetrahedralization of any point set. It perturbs the weights of the weighted
points in the fourth dimension. Let a′ = (ax, ay, az, a

2
x + a2

y + a2
z − aw) ∈ R4

be the weighted point of a = (ax, ay, az) ∈ R3, where aw ∈ R+ is the weight of
a′. The wights are chosen in such a way that the weights of any two weighted
points a′ and b′ are in different magnitudes, e.g., aw >> bw. Then if five
points a,b, c,d, e ∈ R3 are co-spherical, i.e., in sphere(a,b, c,d, e) = 0, the
test in sphere(a′,b′, c′,d′, e′) 6= 0 and the sign of this test is used. It is easy
to verify that,

in sphere(a′,b′, c′,d′, e′) = aw orient3d(b, c,d, e)− bw orient3d(a, c,d, e)
+ cw orient3d(a,b,d, e)− dw orient3d(a,b, c, e)
+ ew orient3d(a,b, c,d).

Then the sign of the right hand side of the above equation is solely determined
by one of the orient3d tests whose preceding weight has the largest magnitude.
TetGen used the indices of the points to determine which term to be evaluated.

7 Boundary Conformity

A fundamental problem in mesh generation is how to enforce (or recover) a set
of non-existing constraints, such as edges or triangles, in a given triangulation
or tetrahedralization. These constraints usually describe the special features in
the domain boundaries, such as the boundary complex of a PLC, and they are
required to be represented in the generated meshes. It is generally referred as
the boundary conformity or boundary recovery problem.

The two-dimensional problem has been well solved. A triangulation T which
contains a set L of line segments can always be transformed from the Delaunay
triangulation of its vertices by a modified edge flip algorithm [41]. Moreover, T
is called a constrained Delaunay triangulation of L if it is as close as possible to
the Delaunay triangulation [42]. Chew proposed an algorithm [18] which can
construct a constrained Delaunay triangulation in optimal O(n log n) time.

In three dimensions, however, boundary recovery is far from solved. There
exist (non-convex) polyhedra which have no tetrahedralization with its own
vertices [64, 58]. Any algorithm for tetrahedralizing polyhedra must be able to

Towards a Quality Tetrahedral Mesh Generator 13

judiciously create additional points, so-called Steiner points, at locations where
they are needed. However, it is NP-complete [63] to determine whether a simple
polyhedron can be tetrahedralized without Steiner points. On the other hand,
there are polyhedra which may require a large number of Steiner points to be
tetrahedralized [13]. These facts make the design of theoretical and efficient
algorithms difficult.

In many engineering problems, a pre-discretized surface mesh is used as
input, and it is required that this surface mesh be exactly preserved in the
generated tetrahedral mesh, i.e., no subdivision of the surface mesh is allowed.
This requirement makes boundary recovery much harder.

Nevertheless, boundary recovery has been long addressed in the literatures.
There are various established methods based on the requirements of how the
constraints should be represented in the tetrahedralizations, i.e., either they
must be strictly preserved or they are allowed to be subdivided. TetGen has
developed efficient methods which support both options for boundary recovery.

7.1 Subdividing Constraints

When the constraints are allowed to be subdivided, theoretical algorithms are
available.

Chazelle and Palios [14] proposed an algorithm for tetrahedralizing a simple
polyhedron with n vertices and r reflex edges into O(n+r2) tetrahedra. Besides
the theoretical upper bound for the number of Steiner points, this algorithm is
too complicated and generally adds Steiner points far more than necessary.

Another approach constructs a conforming Delaunay tetrahedralization for
a set of constraints [54, 21]. Edges (or triangles) which are non-Delaunay are
subdivided into smaller ones by placing Steiner points directly in them, until
they are represented by a union of Delaunay edges (or triangles). However,
this approach may require an unnecessarily large number of Steiner points.
Especially, when there are sharp features (small angles) in the domain boundary.

TetGen constructs a constrained Delaunay tetrahedralization (CDT) [67, 72],
which is a generalization of the constrained Delaunay triangulation [42, 18]
into three dimensions. CDTs have many optimal properties similar to those
of Delaunay tetrahedralizations [72]. A crucial difference between a CDT and
a (conforming) Delaunay tetrahedralization is that triangles in the constraints
are not required to be Delaunay, which frees the CDT to better respect the
constraints, refer to Figure 5 for an example. A CDT usually uses much less
Steiner points than a conforming Delaunay tetrahedralization does. Hence it
can be created more efficiently. Moreover, sharps features are well preserved by
CDTs.

7.2 CDT Construction

Shewchuk proved a condition [67] which guarantees that a three-dimensional
PLC X has a CDT (with no Steiner point). A segment e ∈ X is strongly
Delaunay if there exists a circumscribed sphere of e, such that no other vertex
of X lies in and on that sphere. If every segment of X is strongly Delaunay, then
it has a CDT [67]. If a PLC X does not satisfy this condition, it can always
be transformed into another PLC Y by adding a number of Steiner points on
segments of X , such that Y does have a CDT which is called a Steiner CDT of

Towards a Quality Tetrahedral Mesh Generator 14

Figure 5: Polygon recovery. Left: inserting a rectangle (shaded) into the De-
launay tetrahedralization of a random vertex set. Right: the resulting CDT
including the triangulated rectangle.

X . Note that if the point set of X is in general position, Shewchuk’s condition
is simplified to require that every segment of X is Delaunay.

Existing CDT algorithms [69, 71, 75, 76] all make use of this condition. A
(Steiner) CDT of a PLC X is generated in three steps: (1) create the Delaunay
tetrahedralization of the vertices of X ; (2) recover the segments of X ; and (3)
recover the polygons of X . Steiner points are only inserted in the step of segment
recovery to ensure that Shewchuk’s condition is satisfied.

Polygon recovery is the key step in creating CDTs. TetGen implemented two
algorithms, a flip algorithm [71] and a cavity re-tetrahedralization algorithm [76]
to incrementally recover the polygons, see Figure 5 for an example. A compari-
son of this two algorithms is given in [77]. It shows that both algorithms behave
efficiently. The cavity-retetrahedralization algorithm is more robust in practice.

Although it is theoretically guaranteed that no Steiner point is needed in
the polygon recovery, it is based on the PLC assumption: the vertices of a
polygon must be co-planar. When the vertex coordinates are represented by
the finite precision floating point numbers, the vertices of a polygon are usually
not exactly co-planar. This deviation may cause both algorithms [71, 76] fail
to recover a polygon. It is shown that this failure can be remedied by adding
Steiner points [77]. TetGen’s implementation of these two algorithms is able to
cope with a polygon that is not perfectly flat. It is described in detail in [77].

7.3 Preserving Constraints

The requirement that no constraint is allowed to be subdivided imposes a
stronger restriction to the freedom of placing Steiner points, i.e., they can only
be added in the interior of the domain. Neither conforming Delaunay tetrahe-
dralizations nor CDTs are suitable objects for this problem. It is not clear which
“Delaunay-like” tetrahedralization is a suitable structure for this problem, and
which condition can certify the existence of such tetrahedralization.

Beside the theoretical questions, this problem has been long addressed in
mesh generation literatures. The most popular methods are those proposed
in [35, 80, 34]. These methods have been shown successful in applications.
However, the main technologies used in these methods, such as edge/face swaps
(a synonyms for flips), vertex deletions and suppressions are not well-addressed.
More sophisticated and heuristics methods to deal with these issues are pro-
posed [44, 34, ?, ?]. In practice, these methods are usually hard to implement

Towards a Quality Tetrahedral Mesh Generator 15

(a) tdpg192 (b) Begining (1308 edges) (c) level = 2 (114 edges)

(c) level = 4 (88 edges) (b) level = 7 (46 edges) (c) level = ∞ (14 edges)

Figure 6: An example of the edge recovery algorithm. The PLC model (432
vertices, 872 triangles) is shown in (a). All edges (1308) to be recovered are
highlighted in (b). From (c) - (e), the missing edges after different levels are
highlighted. 14 unrecovered edges are shown in (f).

robustly.
TetGen implemented a constructive method for this purpose. It combines

the simple ideas in the papers of George et al [35], Weatherill et al [80], and
George et al [34]. This method works in three steps: (1) recover edges, (2)
recover triangles, and (3) vertex suppression. In (1) and (2), constraints are
recovered by an iterative process combined by flips and Steiner points insertion.
Constraints may be subdivided. In step (3), all those Steiner points added in
constraints are either deleted or repositioned into the interior of the mesh (as it
is proposed in [34]).

TetGen developed a simple algorithm to recover edges and triangles. It
first uses the edge removal algorithm (described in Section 4.3). This typically
leads to a fast recovery and less number of Steiner points. The edge recovery
algorithm is described below. The face recovery algorithm is basically done in
the same spirit.

7.4 Edge Recovery

The edge recovery algorithm initializes an array of all edges to be recovered,
then recovers them one by one. Let e be an edge to be recovered. Let F be
the set of faces in current tetrahedralization T whose interior intersect e, and
F 6= ∅. The algorithm tries to reduce the size of F by removing a face in F one
at a time. If all faces in F are removed, e is recovered.

Let f be a face in F . If it is flippable, i.e., by a 2-to-3 flip, it is removed by
flip23, and the size of F is reduced by 1. Otherwise, there must be an edge

Towards a Quality Tetrahedral Mesh Generator 16

e′ of f which causes f not flippable. The algorithm then tries to remove e′ by
the routine flipnm. If e′ is removed, thenf is also removed, and the size of
F is reduced by 1. To ensure that the size of F does not increase during the
removal of edge e′, we make sure that no new face in T whose interior intersects
e is created. A call back function is fed to the routine flipnm to reject flips
which violate this condition. (Note that this requirement might be too strong.
It might be relaxed.) If e can not be recovered by the above process, we split
e by adding a Steiner point in it. A simple choice is just its midpoint. The
two resulting edges will be recovered by the same process. Once an edge is
recovered in T , it is “locked” in T and will never be flipped away. This process
must terminate with possibly Steiner points added in edges.

The use of flipnm is indeed very effective to recover constraints. However,
it may run very slow if the number of recursions in flipnm becomes large. We
introduced a ‘level’ parameter (> 0) to the routine flipnm. It limits the number
of recursions in flipnm. The edge and face recovery processes are all iterated
on the increasing number of ‘level’s starting at ‘level = 1’. An example of edge
recovery by increasing the levels in the routine flipnm is shown in Fig. 6.

8 Quality Tetrahedral Mesh Generation

Once the boundary can be properly represented by a tetrahedral mesh, the next
problem considered by TetGen is how to generate a tetrahedral mesh with good
quality.

8.1 Mesh quality

The actual meaning of mesh quality depends on the potential applications. In
the context of numerical solution for partial differential equations, it generally
means a combination of several measures on the element shape, size, and orien-
tation, see e.g. [37, 70].

Geometrically, a well-shaped tetrahedron should have no very small and
very large angles and dihedral angles. By this criterion, the regular tetrahedron
(whose edge lengths are all equal) is ideal. There are applications which are
best solved by anisotropic elements whose shapes are elongated and oriented,
see e.g. [2, 60]. In these cases, it is necessary to have some small angles in the
tetrahedra, but no small dihedral angles.Nevertheless, large angles and dihedral
angles should always be avoided [3, 40], such as the sliver, which is a type of
very flat tetrahedron, it may have good face angles but have dihedral angles
arbitrarily close to 0o and 180o. Slivers should always be avoided in finite
element methods.

On the other hand, it is shown that a regular triangulation [83] (or equiv-
alently a weighted Delaunay triangulation [26]) minimizes the linear interpo-
lation error in Lp(1 < p < ∞) norm for a given convex function among all
triangulations with the same set of vertices [15]. For example, the Delaunay
triangulation is optimal for piecewise linear interpolation to the quadratic func-
tion ‖x‖2. However, it is well known that in a Delaunay tetrahedralization may
contain slivers. Interestingly, it has been shown that the dual Voronoi diagram
of a Delaunay tetrahedralization is the most appropriate partition for a finite
volume method [50, 74].

Towards a Quality Tetrahedral Mesh Generator 17

TetGen currently supports several common geometric shape measures, in-
cluding the smallest face angle, the minimum and maximum dihedral angles. In
addition, it is intended to have the Delaunay-Voronoi property for the resulting
meshes.

Besides the shape of elements, a control on their sizes is also important.
It is essential in adaptive numerical methods whose aim is to seek the best
approximated solution at a low computational cost. Typically, a mesh sizing
function is provided, e.g., through a priori or a posteriori error estimators. It
specifies the desired element size (such as the edge lengths) on the domain.

8.2 Mesh Refinement

TetGen considers the following mesh refinement problem: given a three-dimensional
PLC X and an initial tetrahedral mesh of T of X , a mesh quality measure, and
a mesh sizing function H defined on |X |, how to generate a tetrahedral mesh of
X with good mesh quality and the mesh size conforms to H? Currently only
isotropic mesh sizing functions are considered.

A central question in this problem is how to efficiently generate and dis-
tribute Steiner points so that a tetrahedral mesh of these points simultaneously
satisfies the desired properties. Various approaches have been developed for this
purpose, such as, Octree [52], sphere packing [51], Longest-Edge Propagation
Path (LEPP) [61], and Delaunay refinement [19, 62, 68].

Delaunay refinement is one of the few methods which provide theoretical
guarantees on mesh quality and mesh size. It is developed by Chew [19] , Rup-
pert [62], and Shewchuk [68]. Its main idea is relatively simple, i.e., it updates a
conforming Delaunay mesh by inserting the circumcenters of bad-quality trian-
gles or tetrahedra. Delaunay refinement guarantees that the smallest angle of
the mesh elements is bounded. Moreover, it also guarantees that the resulting
mesh size well-conforms to the local feature size [62]. However, Delaunay re-
finement may produce slivers, i.e., it has no guarantee on the smallest dihedral
angle. A number of approaches have been proposed to remove slivers [16, 43].

The main limitation of Delaunay refinement is that it may not terminate if
the input contains sharp features, which are small angles and dihedral angles
formed by input cells of the PLC. Handling sharp features remains a challenging
problem in Delaunay refinement. Several methods have been proposed [17, 55,
59]. However, they are usually very complicated and may introduce a large
number of Steiner points.

TetGen’s mesh refinement algorithm [73] is a simple variant of Shewchuk’s
algorithm [68]. Instead of updating a conforming Delaunay mesh, it updates a
constrained Delaunay mesh (CDT). A distinguished advantage of maintaining a
CDT is that the sharp features are always presented and can be easily protected.

8.3 Constrained Delaunay Refinement

TetGen estimates for each vertex p in the initial CDT a real value p such that
no Steiner point is allowed to be placed inside the ball B(p, p) which is centered
at p with radius p. B(p, p) is called the protecting ball of the vertex p. Default,
only vertices on sharp features have protecting balls. Other vertices are not
protected (by setting their radii be zero). This is sufficient for termination.

Towards a Quality Tetrahedral Mesh Generator 18

Figure 7: From left to right: A refined tetrahedral mesh (m1249), a highlight of
the remaining bad quality tetrahedra, and the distribution of the dihedral angles
of the mesh. In this example, min. dihedral angle = 0.27o, max. dihedral angle
= 168.7o.

min. dihedral angle = 5o min. dihedral angle = 20o

max. dihedral angle = 165o max. dihedral angle = 154o

8, 322 points, 35, 584 tetrahedra 68, 158 points, 374, 296 tetrahedra

Figure 8: The distributions of dihedral angles in two refined tetrahedral meshes
using different minimum dihedral angle measures.

Badly quality tetrahedra may exist on termination, they are all located around
the sharp features, see an example shown in Figure 7.

The question is how to efficiently calculate the most appropriate radii for
the vertices. Delaunay refinement uses implicitly the local feature sizes [62]
as the mesh sizing function. They are the most appropriate values for the
radii of protecting balls. However, to exactly calculate the local feature size is
difficult and may be very slow. The initial CDT provides a fairly good structure
for calculating an approximated local feature size at each vertex. It is only
calculated locally and thus is very efficient. TetGen calculates the approximated
local feature sizes at all vertices of the initial CDT. We thus obtain a discrete
mesh sizing function G on the initial CDT.

Delaunay refinement only bounds the face angles but not the dihedral angles.
Hence slivers are not removed. TetGen provides an option to impose a smallest
dihedral angle bound. When it is specified, TetGen will remove those tetrahedra
which have dihedral angles lower than this bound. The actual value of this
bound is purely empirical. Since the algorithm always checks the face angle
bound first, it is sufficient to use a small value (say 5o) to distinguish slivers. In
practice, we observed that Delaunay refinement algorithm may terminate on a
smallest dihedral angle bound as larger as 20o, see Figure 8 for examples.

TetGen takes an optional isotropic mesh sizing function H as input. When it
is available, TetGen first unifies H and G, such that H ′(p) := min{H(p), G(p)}
for all vertices of the initial CDT (here we assume H(p) > 0). This algorithm

Towards a Quality Tetrahedral Mesh Generator 19

Figure 9: Adaptive mesh generation. The input (Top) is an aircraft egads
(courtesy of Bob Haimes) placed inside a large sphere. The applied mesh sizing
function is defined directly on the input vertices, such that a small mesh size
(0.05) is given to the surface points of egads, and a big size (8.0) is given to the
points on the sphere. Two views of the generated tetrahedral meshes (387, 511
points, 2, 429, 987 tetrahedra) are shown (Bottom).

then can generate an adaptive mesh whose mesh size is conformed to H ′. Well
conformity can be achieved for smoothed sizing functions, see Figure 9 for an
example.

8.4 Mesh Improvement

It is necessary to further improve the mesh quality after the constrained Delau-
nay refinement. There are mainly two reasons: The first is the possible existence
of slivers. The second is due to the use of protecting balls, bad-quality tetrahe-
dra may not be removed if their circumcenters lie inside some protecting balls.
An example is shown in the left of the Figure 10.

Mesh improvement (also referred as mesh optimization) is an important
subject in mesh generation. There exists a whole branch of works on this topic.
TetGen only focuses on the removal of tetrahedra which have the worst quality,
such as slivers. It does not intend to improve the average quality of the mesh.
For this purpose, only the local mesh operations are needed. It can then be
done efficiently.

There are two local operations to improve the mesh quality, (1) topologi-
cal transformation, i.e., face/edge flips and vertex insertion/deletion, and (2)
vertex smoothing, i.e., relocating vertices without changing the mesh topology.
Previous works have shown that the combination of these two operations is very
effective to improve the mesh quality, see e.g. [30, 39].

Towards a Quality Tetrahedral Mesh Generator 20

Figure 10: Left: Before the mesh improvement, a highlight of the bad quality
tetrahedra of the mesh in Figure 9. Each plot tetrahedron has either its mini-
mum dihedral angle < 3o or its maximum dihedral angle > 179o. Right: after
the mesh improvement, a highlight of remaining bad quality tetrahedra. They
are all clustered near the sharp features of the input.

TetGen uses a simple “hill climbing” scheme to improve the mesh quality,
i.e., a local operation is only performed if the resulting tetrahedra all have better
quality than the worst quality of current tetrahedra.

TetGen initializes a list of bad quality tetrahedra whose qualities are less than
a given objective value (currently the maximal dihedral angle is used). It then
uses the local operations: edge/face flips and vertex smoothing to remove them.
These operations are combined to iteratively to replace bad quality tetrahedra
by improved ones. New low quality tetrahedra are added back into the list.
This process stops either the list is empty or the maximum iteration number is
reached.

Figure 10 illustrates an exmaple of TetGen’s mesh improvement on the tetra-
hedral mesh shown in Figure 9. It is shown that most of the bad quality tetra-
hedra are successfully removed. The remaining bad quality tetrahedra are all
clustered near the sharp features of the input.

9 Summary and Outlook

In this paper, the fundamental tetrahedral meshing problems treated by TetGen,
i.e., local mesh transformations (flips), Delaunay tetrahedralizations, boundary
recovery, and quality mesh refinement and improvement, are introduced, and
the state-of-the-art algorithms and technologies used by TetGen are reported.
Practice experiments show that TetGen behaves robustly and is able to effi-
ciently generate isotropic tetrahedral meshes with high quality.

Tetrahedral mesh generation is an active ongoing research topic. It still faces
many challenges in designing provable and efficient algorithms and in robust
software implementation. Two fundamental issues which worth to be deeply
investigated are the edge recovery and the vertex deletion. So far, no condition
which can certify these operations is known. In the problem of CDT construc-
tion, a lower bound on the minimum number of Steiner points is not known
yet. Our experiments shows that the number is almost linear with respect to
the input vertices and segments. Can it be quadratic? Furthermore, what is
the optimal number of Steiner points for constructing a CDT? In quality mesh

Towards a Quality Tetrahedral Mesh Generator 21

generation, a proof of a non-trivial minimum or maximum dihedral angle bound
for Delaunay refinement is still missing. Progress in any of these problems may
greatly improve the performance of TetGen.

We firmly believe that understanding of the fundamental mathematical prob-
lems will lead to a fruitful contributions in algorithms and applications. On the
other hand, engineering practice is equally important. It provides opportuni-
ties to validate algorithms and to discover issues not yet covered by our current
knowledge. The future development of TetGen will persistently follow these two
guidelines.

Acknowledgments

The author wish to thank WIAS for the long-term support of the research
and development of TetGen. In particular, thanks to Jürgen Fuhrmann, Klaus
Gärtner, Eberhard Bänsch for their perspective in the subject of numerical mesh
generation and their numerous help in developing TetGen. Thanks to Volker
John for his support during the writing of this article.

References

[1] N. Amenta, S. Choi, and G. Rote, Incremental construction con BRIO,
in Proceedings of the 19th ACM Symposium on Computational Geometry,
2003, pp. 211–219.

[2] T. Apel, Anisotropic Finite Elements: Local Estimates and Applications,
Teubner, Stuttgart, 1999.

[3] I. Babuška and A. K. Aziz, On the angle condition in the finite element
method, SIAM J. Numer. Anal., 13 (1976), pp. 214–226.

[4] T. J. Baker, Automatic mesh generation for complex three-dimensional
regions using a constrained Delaunay triangulation, Engineering with Com-
puters, 5 (1989), pp. 161–175.

[5] C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa, The Quickhull
algorithm for convex hulls, ACM Trans. Math. Software, 22 (1996), pp. 469–
483.

[6] M. W. Bern and D. Eppstein, Mesh generation and optimal triangula-
tion, in Computing in Euclidean Geometry, D.-Z. Du and F. K.-M. Hwang,
eds., no. 4 in Lecture Notes Series on Computing, World Scientific, sec-
ond ed., 1995, pp. 47–123.

[7] D. K. Blandford, G. E. Blelloch, D. E. Cardoze, and C. Kadow,
Compact representations of simplical meshes in 2 and 3 dimensions, Inter-
nat. J. Comput. Geom. Appl., 15 (2005), pp. 3–24.

[8] J.-D. Boissonnat, O. Devillers, and S. Hornus, Incremental con-
struction of the Delaunay triangulation and the Delaunay graph in medium
dimension, in Proceedings of the 25th Annual Symposium on Computa-
tional Geometry, 2009.

Towards a Quality Tetrahedral Mesh Generator 22

[9] H. Borouchaki, P. L. George, and S. H. Lo, Optimal Delaunay point
insertion, Internat. J. Numer. Methods Engrg., 39 (1996), pp. 3407–3437.

[10] A. Bowyer, Computing Dirichlet tessellations, Comp. Journal, 24 (1987),
pp. 162–166.

[11] H. Broennimann, C. Burnikel, and S. Pion, Interval arithmetic yields
efficient dynamic filters for computational geometry, in Proceedings of the
14th Annual Symposium on Computational Geometry, 1998, pp. 165–174.

[12] CGAL, User and Reference Manual, release 4.1, October 2012.

[13] B. Chazelle, Convex partition of polyhedra: a lower bound and worst-case
optimal algorithm, SIAM J. Comput., 13 (1984), pp. 488–507.

[14] B. Chazelle and L. Palios, Triangulating a non-convex polytope, Dis-
crete Comput. Geom., 5 (1990), pp. 505–526.

[15] L. Chen and J.-C. Xu, Optimal Delaunay triangulations, J. Comput.
Math., 22 (2004), pp. 299–308.

[16] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-
H. Teng, Sliver exudation, J. Assoc. Comput. Mach., 47 (2000), pp. 883–
904.

[17] S.-W. Cheng, T. K. Dey, E. A. Ramos, and T. Ray, Quality mesh-
ing for polyhedra with small angles, Internat. J. Comput. Geom. Appl., 15
(2005), pp. 421–461.

[18] L. P. Chew, Constrained Delaunay triangulations, Algorithmica, 4 (1989),
pp. 97–108.

[19] , Guaranteed-quality triangular meshes, Tech. Report TR 89-983,
Dept. of Comp. Sci., Cornell University, 1989.

[20] K. L. Clarkson and P. W. Shor, Applications of random sampling in
computational geometry, II, Discrete Comput. Geom., 4 (1989), pp. 387–
421.

[21] D. Cohen-Steiner, É. C. De Verdière, and M. Yvinec, Conforming
Delaunay triangulation in 3D, in Proceedings of the 18th Annual Sympo-
sium on Computational Geometry, 2002.

[22] B. N. Delaunay, Sur la sphère vide, Izvestia Akademii Nauk SSSR, Ot-
delenie Matematicheskikh i Estestvennykh Nauk, 7 (1934), pp. 793–800.

[23] O. Devillers and S. Pion, Efficient exact geometric predicates for De-
launay triangulations, in 5th Workshop on Algorithm Engineering and Ex-
periments, 2003, pp. 37–44.

[24] O. Devillers, S. Pion, and M. Teillaud, Walking in triangulation,
Internat. J. Found. Comput. Sci., 13 (2002), pp. 181–199. INRIA Tec.
Report No. 4120, 2001.

[25] D. P. Dobkin and M. J. Laszlo, Primitives for the manipulation of
three-dimensional subdivisions, Algorithmica, 4 (1989), pp. 3–32.

Towards a Quality Tetrahedral Mesh Generator 23

[26] H. Edelsbrunner, Geometry and topology for mesh generation, Cam-
bridge University Press, Cambridge, England, 2001.

[27] H. Edelsbrunner and E. P. Mücke, Simulation of simplicity: A tech-
nique to cope with degenerate cases in geometric algorithm, ACM Transac-
tions on Graphics, 9 (1990), pp. 66–104.

[28] H. Edelsbrunner and N. R. Shah, Incremental topological flipping
works for regular triangulations, Algorithmica, 15 (1996), pp. 223–241.

[29] S. Fortune and C. J. Van Wyk, Static analysis yield efficient exact inte-
ger arithmetic for computational geometry, ACM Transactions on Graphics,
15 (1996), pp. 223–248.

[30] L. A. Freitag and C. Ollivier-Gooch, Tetrahedral mesh improvement
using swapping and smoothing, Internat. J. Numer. Methods Engrg., 40
(1997), pp. 3979–4002.

[31] P. J. Frey and P. L. George, Mesh Generation - Application to Finite
Elements, Hermes Science Publishing, Oxford, UK, 1st ed., 2000. ISBN
1-903398-00-2.

[32] R. V. Garimella, Mesh data structure selection for mesh generation and
FEA applications, Internat. J. Numer. Methods Engrg., 55 (2002), pp. 451–
478.

[33] P. L. George and H. Borouchaki, Back to edge flips in 3 dimensions,
in Proceedings of the 12th International Meshing Roundtable, 2003.

[34] P. L. George, H. Borouchaki, and E. Saltel, Ultimate robustness
in meshing an arbitrary polyhedron, Internat. J. Numer. Methods Engrg.,
58 (2003), pp. 1061–1089.

[35] P. L. George, F. Hecht, and E. Saltel, Automatic mesh generator
with specified boundary, Comput. Methods Appl. Mech. Engrg., 92 (1991),
pp. 269–288.

[36] L. Guibas and J. Stolfi, Primitives for the manipulation of general
subdivisions and the computation of Voronoi diagrams, ACM Transactions
on Graphics, 4 (1985), pp. 75–123.

[37] W. Huang, Measuring mesh qualities and application to variational mesh
adaption, SIAM J. Sci. Comput., 26 (2005), pp. 1643–1666.

[38] B. Joe, Construction of three-dimensional improved-quality triangulations
using local transformations, SIAM J. Sci. Comput., 16 (1995), pp. 1292–
1307.

[39] B. M. Klinger and J. R. Shewchuk, Aggressive tetrahedral mesh im-
provement, in Proceedings of the 16th International Meshing Roundtable,
2007, pp. 3–23.

[40] M. Kř́ıžek, On the maximum angle condition for linear tetrahedral ele-
ments, SIAM J. Numer. Anal., 29 (1992), pp. 513–520.

Towards a Quality Tetrahedral Mesh Generator 24

[41] C. L. Lawson, Software for c1 surface interpolation, Mathematical Soft-
ware III, Academic Press, (1977), pp. 164–191.

[42] D. T. Lee and A. K. Lin, Generalized Delaunay triangulations for planar
graphs, Discrete Comput. Geom., 1 (1986), pp. 201–217.

[43] X.-Y. Li and S.-H. Teng, Generating well-shaped Delaunay meshes in
3D, in Proc. 12th ann. ACM-SIAM Symp. on Disc. Algo., 2001, pp. 28–37.

[44] A. Liu and M. Baida, How far flipping can go towards 3D conform-
ing/constrained triangulation, in Proceedings of the 9th International
Meshing Roundtable, 2000, pp. 307–315.

[45] Y. Liu and J. Snoeyink, A comparsion of five implementations of 3D De-
launay tessellation, in Combinatorial and Computational Geometry, J. E.
Goodman, J. Pach, and E. Welzl, eds., vol. 52, MSRI publications, 2005,
pp. 439–458.

[46] S. H. Lo, Volume discretization into tetrahedra - II. 3D triangulation by
advancing front approach, Computers & Structures, 39 (1991), pp. 501–511.

[47] R. Löhner and P. Parikh, Three-dimensional grid generation by the
advancing-front method, Internat. J. Numer. Methods Fluids, 8 (1988),
pp. 1135–1149.

[48] D. L. Marcum and N. P. Weatherill, Unstructured grid generation
using iterative point insertion and local reconnection, AIAA Journal, 33
(1995), pp. 1619–1625.

[49] P. McMullen, The maximum number of faces of a convex polytope, Math-
ematika, 17 (1970), pp. 179–184.

[50] G. Miller, D. Talmor, S.-H. Teng, and N. Walkington, On the
radius-edge condition in the control volume method, SIAM J. Numen. Anal.,
36 (1999), pp. 1690–1708.

[51] G. L. Miller, D. Talmor, S.-H. Teng, N. Walkington, and
H. Wang, Control volume meshes using sphere packing: Generation, re-
finement and coarsening, in Proceedings of the 5th International Meshing
Roundtable, 1996, pp. 47–61.

[52] S. A. Mitchell and S. A. Vavasis, Quality mesh generation in higher
dimensions, SIAM J. Comput., 29 (2000), pp. 1334–1370.

[53] E. P. Mücke, Shapes and Implementations in Three-Dimensions Geome-
try, PhD thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, Illinois, 1993.

[54] M. Murphy, D. M. Mount, and C. W. Gable, A point-placement
strategy for conforming Delaunay tetrahedralizations, in Proceedings of the
11th annual ACM-SIAM Symposium on Discrete Algorithms, 2000, pp. 69–
93.

Towards a Quality Tetrahedral Mesh Generator 25

[55] S. E. Pav and N. Walkington, Robust three dimensional Delaunay re-
finement, in Proceedings of the 13th International Meshing Roundtable,
2004.

[56] D. M. Priest, Algorithms for arbitrary precision floating point arithmetic,
in 10th Symposium on Computer Arithmetic, 1991, pp. 132–143.

[57] J. Radon, Mengen konvexer Körper, die einen gemeinschaftlichen Punkt
enthalten, Math. Ann., 83 (1921), pp. 113–115.

[58] J. Rambau, On a generalization of Schönhardt’s polyhedron, in Combina-
torial and Computational Geometry, J. E. Goodman, J. Pach, and E. Welzl,
eds., vol. 52, MSRI publications, 2005, pp. 501–516.

[59] A. Rand and N. Walkington, Collars and intestines: practical conform-
ing Delaunay refinement, in Proceedings of the 18th International Meshing
Roundtable, 2009, pp. 481–497.

[60] S. Rippa, Long and thin triangles can be good for linear interpolation,
SIAM J. Numer. Anal., 29 (1992), pp. 257–270.

[61] M.-C. Rivara, New longest-edge algorithms for the refinement and/or im-
provement of unstructured triangulations, Internat. J. Numer. Methods En-
grg., 40 (1997), pp. 3313–3324.

[62] J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional
mesh generation, Journal of Algorithms, 18 (1995), pp. 548–585.

[63] J. Ruppert and R. Seidel, On the difficulty of triangulating three-
dimensional nonconvex polyhedra, Discrete Comput. Geom., 7 (1992),
pp. 227–253.

[64] E. Schönhardt, Über die zerlegung von dreieckspolyedern in tetraeder,
Math. Ann., 98 (1928), pp. 309–312.

[65] J. R. Shewchuk, Robust adaptive floating-point geometric predicates, in
Proceedings of the 12th Annual Symposium on Computational Geometry,
1996.

[66] , Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator, in Applied Computational Geometry: To-
wards Geometric Engineering, M. C. Lin and D. Manocha, eds.,
vol. 1148 of Lect. Notes in Comput. Sci., Springer, 1996, pp. 203–222.
http://www.cs.cmu.edu/ quake/triangle.html.

[67] , A condition guaranteeing the existence of higher-dimensional con-
strained Delaunay triangulations, in Proceedings of the 14th Annual Sym-
posium on Computational Geometry, 1998, pp. 76–85.

[68] , Tetrahedral mesh generation by Delaunay refinement, in Proceedings
of the 14th Annual Symposium on Computational Geometry, 1998, pp. 86–
95.

Towards a Quality Tetrahedral Mesh Generator 26

[69] , Constrained Delaunay tetrahedralizations and provably good bound-
ary recovery, in Proceedings of the 11th International Meshing Roundtable,
2002, pp. 193–204.

[70] , What is a good linear element? interpolation, conditioning, and
quality measures, in Proceedings of 11th International Meshing Roundtable,
2002, pp. 115–126.

[71] , Updating and constructing constrained Delaunay and constrained reg-
ular triangulations by flips, in Proceedings of the 19th Annual Symposium
on Computational Geometry, 2003, pp. 86–95.

[72] , General-dimensional constrained Delaunay and constrained regular
triangulations, I: combinatorial properties, Discrete Comput. Geom., 39
(2008), pp. 580–637.

[73] H. Si, Adaptive tetrahedral mesh generation by constrained delaunay re-
finement, Internat. J. Numer. Methods Engrg., 75 (2008), pp. 856–880.

[74] H. Si, J. Fuhrmann, and K. Gärtner, Boundary conforming Delaunay
mesh generation, Comput. Math. Math. Phys., 50 (2010), pp. 38–53.

[75] H. Si and K. Gärtner, Meshing piecewise linear complexes by con-
strained Delaunay tetrahedralizations, in Proceedings of the 14th Interna-
tional Meshing Roundtable, 2005, pp. 147–163.

[76] , 3D boundary recovery by constrained Delaunay tetrahedralization,
Internat. J. Numer. Methods Engrg., 85 (2011), pp. 1341–1364.

[77] H. Si and J. R. Shewchuk, Incrementally constructing and updating
constrained Delaunay tetrahedralizations with finite precision coordinates,
in Proceedings of the 21th International Meshing Roundtable, 2012.

[78] J. F. Thompson, B. K. Soni, and N. P. Weatherill, eds., Handbook
of Grid Generation, CRC Press, 1998.

[79] D. F. Watson, Computing the n-dimensional Delaunay tessellations with
application to Voronoi polytopes, Comput. Journal, 24 (1987), pp. 167–172.

[80] N. P. Weatherill and O. Hassan, Efficient three-dimensional Delau-
nay triangulation with automatic point creation and imposed boundary con-
straints, Internat. J. Numer. Methods Engrg., 37 (1994), pp. 2005–2039.

[81] C.-K. Yap, Towards exact geometric computation, Comput. Geom., 7
(1997), pp. 3–23.

[82] M. A. Yerry and M. S. Shephard, Automatic 3D mesh generation
by the modified-octree technique, Internat. J. Numer. Methods Engrg., 20
(1984), pp. 1965–1990.

[83] G. M. Ziegler, Lectures on Polytopes, vol. 152 of Graduate Texts in
Mathematics, Springer-Verlag, New York, second edition ed., 1997.

Towards a Quality Tetrahedral Mesh Generator 27

Figure 11: Bowyer-Watson vs Incremental Flip. Counts of the four operations
performed on the random data sets (Top) from sizes 10, 000 to 120, 000 and on
the line-and-circle data sets (Bottom) from sizes 1, 000 to 12, 000.

10 Experimental Results

In this section, some experiments regarding the behavior and efficiency of the
implemented algorithms in TetGen are reported. All experiments have been
performed on a 2.2 GHz Intel Cire i7 with 8 GB of 1333 MHz DDR3 memory
(MacOSX 10.7.5). TetGen version 1.5 (pre-lease version, 2011) was used. It
was compiled using GCC/G++ version 4.2.1 with optimization level -O3.

10.1 Bowyer-Watson vs Incremental Flip

Although these two algorithms have the same optimal complexity, it is observed
that the Bowyer-Watson algorithm behaves more efficiently in practice. It is
obvious that the incremental flip algorithm may create and delete some tempo-
rary tetrahedra. While the Bowyer-Watson algorithm needs an extra process
to search the tetrahedra in order to form the cavity. We compared these two
algorithms by counting four key operations they have performed, which are (1)
the orient3d test, (2) the insphere test, (3) the encode primitive, and (4) the
decode primitive. Where an encode connects two adjacent tetrahedra, and a
decode performs a neighbor query. The results are shown in Figure. 11.

Two types of data sets are used: random, points are randomly distributed
inside a unit cube; and line-and-circle, points are evenly distributed on a
line and a circle where the line passes through the center of the circle. The
Delaunay tetrahedralization of a line-and-circle has a quadratic complexity.
Our comparisons (in Figure 11) showed that the Incremental flip algorithm

Towards a Quality Tetrahedral Mesh Generator 28

Neptune Filigree Oilpump

Figure 12: Point sets used for experiments. Available from
http://shapes.aim-at-shape.net

performs orient3d and encode about 2 to 3 times more than the Bowyer-
Watson algorithm does. This is due to the amount of temporary tetrahedra
created by the incremental flip algorithm. The numbers of insphere tests are
similar in the two algorithms. While the Bowyer-Watson algorithm performs
slightly more neighbor queries than the incremental algorithm due to the need
of searching tetrahedra to form the cavity.

10.2 Comparison with Other Delaunay Codes

To experiment the efficiency of our implementation, we compared TetGen with
two public Delaunay codes: qhull and CGAL.

qhull is a C program to compute convex hulls of point sets in general dimen-
sions using the Quickhull algorithm [5]. It computes Delaunay tetrahedraliza-
tions through 4-dimensional convex hulls. We used the 2003 version of qhull.
It is compiled using GCC version 4.2.1 with the default optimization level -O2
-fPIC -ansi.

CGAL is a C++ geometric algorithm library. It includes an efficient implemen-
tation of the Bowyer-Watson algorithm for incremental construction of Delaunay
tetrahedralizations [8]. It uses spatial sorting for preprocessing the points, and
it implements its own filtered predicates which is more efficient than Shewchuk’s
predicates. We tested CGAL version 4.1, released 2011. The libraries of CGAL
was compiled using the default cmake options (CMAKE BUILD TYPE=Release).
We used the example delaunay 3.cpp provided by CGAL. It uses the kernel

CGAL/Exact predicates inexact constructions kernel.h.

It is compiled using the options -O3 -DCGAL NDEBUG.
Five data sets are used for comparison, 500k and 2m are two randomly dis-

tributed point sets in the unit cube, Neptune, Filigree, and Oilpump are three
data sets obtained from the AIM@SHAPE Repository, see Figure 12.

Table 1 reports the running times of these programs. TetGen (using the
Bowyer-Watson algorithm) ran at lease as efficient as CGAL. Both ran fast than
qhull.

Towards a Quality Tetrahedral Mesh Generator 29

Table 1: Comparing TetGen with qhull and CGAL.

500k 2m N F O

points 500, 000 2, 000, 000 499, 417 514, 302 570, 018
tetrahedra 3, 371, 591 13, 503, 890 3, 445, 298 3, 540, 956 4, 052, 388
qhull (2003) 20.54 107.50 12.60 20.31 25.49

CGAL (4.1) 3.54 14.46 3.83 14.79 4.39
TetGen (1.5) 3.39 13.91 3.81 4.86 4.54

mohne Begin (8, 304 edges) After (36 edges)

monster Begin (4, 129 edges) After (47 edges)

Figure 13: Two examples of the edge recovery algorithm.

10.3 Experiments with Boundary Recovery

Recovering constraints (edges and triangles) in tetrahedralization is still a re-
search problem. There are many questions to be investigated. The use of the
edge removal algorithm (developed in Section ??) with an increasing ‘level’ has
been shown very effective in recovering boundaries in practice. Table 2 further
reports the experiments of the edge recovery algorithm on various inputs.

The inputs: cami1a (in Figure 1), mohne, and monster (in Figure 13) are
freely available from INRIA’s Mesh Repository. These experiments showed that
the majority of the edges can be recovered after the search of first level (‘level’
= 1). As the search level increases, more and more edges have been recovered.
Only few edges remain unrecovered after the full search (‘level’ = ∞).

Remark: Since we used a relatively strong condition (i.e., no creation of new
intersecting faces of the removing edge) in the current edge recovery algorithm,
it is not clear whether or not these remaining edges can be recovered by flips.
Further investigations are to be done in the future.

Towards a Quality Tetrahedral Mesh Generator 30

Table 2: Experiments with the edge recovery algorithm. The in-
puts are freely available, cami1a (in Figure 1), mohne, and monster
are from INRIA’s GAMMA group (http://www-roc.inria.fr/gamma/
gamma/gamma.php), Neptune and Filigree are from the AIM@SHAPE repos-
itory (http://shapes.aim-at-shape.net).

cami1a anc101 monster mohne Neptune Filigree

points 460 1, 378 1, 392 2, 760 499, 416 514, 300
triangles 884 2, 772 2, 784 5, 560 998, 840 1, 028, 856

edges 1, 349 4, 158 4, 176 8, 340 1, 498, 260 1, 543, 284
‘level’ = 1 90 273 299 266 123 138
‘level’ = 2 40 139 135 134 33 23
‘level’ = 3 34 67 98 102 17 8

...
‘level’ = ∞ 13 21 49 36 10 6

