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Abstract

We present the most general multi-parameter family of a soliton on a background solu-
tions to the Sasa-Satsuma equation. The solution contains a set of several free parameters
that control the background amplitude as well as the soliton itself. This family of solutions
admits nontrivial limiting cases, such as rogue waves and classical solitons, that are con-
sidered in detail.

1 Introduction

Sasa-Satsuma equation [16] (SSE) is one of the integrable extensions of the nonlinear Schrö-
dinger equation (NLSE) which has a wider applicability than the NLSE itself. It includes higher
order terms, that contain contributions important in describing pulse propagation in optical fibres
[15, 5]. In particular, it contains the term with third order dispersion, the term with self-frequency
shift and the term describing self steepening [17]. These are the most general terms that have
to be taken into account when extending the applicability of the NLSE. According to the original
work of Sasa and Satsuma [16] the equation can be written as:

iψτ +
ψxx
2

+ |ψ|2ψ + iε
[
ψxxx + 3(|ψ|2)xψ + 6|ψ|2ψx

]
= 0. (1)

Here, an arbitrary real parameter ε scales the integrable perturbations of the NLSE. When
ε = 0, Eq. (1) reduces to the standard NLSE which has only the terms describing lowest
order dispersion and self-phase modulation. This form of equation has been used in the series
of works by Mihalache et al [13, 11, 12]. There is a number of publications dealing with the
solutions of SSE [7, 8, 9]. Solutions with nonzero boundary conditions have been presented by
Wright III [14] although the form of the SSE in his work and the technique used are different
from the original version [16] and from the technique presented in [13, 11, 12].

Here, we are interested in solutions on a background. Thus, we start with the plane-wave solu-
tions of the Sasa-Satsuma equation in the form

ψ0(x, τ) =
c

2ε
exp

[
− i

2ε

(
kx− ω

4ε
τ
)]

(2)

where the amplitude c, the wavenumber k and the frequency ω are related through

ω = 6c2k + 2c2 − k3 − k2. (3)

This solution looks singular at the limit ε→ 0. However, the correct choice of parameters c ∼ ε,
ω ∼ ε2 and k ∼ ε eliminates this singularity and in the ε → 0 limit, we obtain the plane wave
of the NLSE with finite amplitude.
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The stability issues of these solutions have been discussed in [14], [3], showing, that the plane-
waves become unstable under the condition

4(1 + 3k)2 > 9c2. (4)

In such cases the plane waves evolve into modulated patterns, which we call solitons on a
background. Mathematically, these patterns represent heteroclinic connections between plane
waves in the initial and the final state, firstly described in [14] for the SSE.

Below, we present such solutions of the SSE in the form of a soliton on a background. This
is a multi-parameter solution with variable background, arbitrary velocity for arbitrary real ε. As
a result, there are several limiting cases that can be calculated using the general expression.
Usually, solitons on a background are pulsating formations for the NLSE. This happens due to
the nonlinear interference between the soliton and the background that have different propaga-
tion constants [2]. The same can be said about the solitons on a background for SSE. They are
oscillating along the direction of propagation. This particular oscillation usually disappears in the
limit of zero background. Such special limit contains soliton solutions that have been obtained
earlier [16]. We provided this correspondence explicitly in [4]. However, for the case of SSE this
is not the only possibility. It has been shown in [11] that there is a class of oscillating solitons in
the case of zero background, which contain the former ones [16] as a special case. In this paper,
we provide the correspondence of these oscillating solitons to a limit case of soliton solutions of
the SSE on a background.

2 Soliton on a background

The technique we use is similar to the one employed in [14]. We omit this cumbersome part
and just present the most general solution to the SSE (1) of the class discussed above. We
are more concerned about the physical applications and illustrations of these solutions. The
solutions themselves can be checked using any modern software with symbolic computation
facilities. Thus, we start with the solution in general form:

ψ(x, τ) = ψ0(x, τ)

[
1 +

i(ζ − ζ̄)G(x, τ)

c|ζ|2f3(x, τ)

]
(5)

with

G(x, τ) = (ζ̄f1(x, τ) + ζf̄2(x, τ))(ζ|f1(x, τ)|2 + ζ̄|f2(x, τ)|2)

+
1

2
(ζ + ζ̄)(ζf1(x, τ) + ζ̄ f̄2(x, τ))

where

f1(x, τ) =
r11 + r12Γ1e

iM1x+iN1τ + r13Γ2e
iM2x+iN2τ

1 + Γ1eiM1x+iN1τ + Γ2eiM2x+iN2τ

(6)

f2(x, τ) =
r21 + r22Γ1e

iM1x+iN1τ + r23Γ2e
iM2x+iN2τ

1 + Γ1eiM1x+iN1τ + Γ2eiM2x+iN2τ

M1 = (m2 −m1)/2ε (7)

M2 = (m3 −m1))/2ε (8)
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and

rnj =
−i3c

3mj + (−1)nK − ζ
,

where indices n = 1, 2, j = 1, 2, 3, and K = 1 + 3k. Complex conjugation is denoted
by ”z̄” throughout this paper. The parameter ζ ∈ C is the complex eigenvalue of the spec-
tral problem, while Γ1, Γ2 are complex numbers which are related to translations xi and τi
of the solution along the x and τ -axes. This can be seen if we write Γi in the form Γi =
exp (−iMxi − iNτi). Each Γi can also be equal to zero. Then the solution takes a simpler
form.

The spatial eigenvalues mj in (6) and (7) are the solutions of the 3-rd order polynomial

m3 −m

[
2c2 +

ζ2

3
+

(
K

3

)2
]

+
2

3
ζ

(
c2 −

(
K

3

)2
)

+
2ζ3

27
= 0, (9)

such that each mj depends on the free parameters i.e. mj = mj(ζ, c, k). We sort them in the
following way:

m1 =
i
[

3
√

3
(
−
√

3 + i
)
u1 +

(√
3 + i

)
u2

9

]
6 32/3u9

(10)

m2 =
i
[

3
√

3
(√

3 + i
)
u1 +

(
−
√

3 + i
)
u2

9

]
6 32/3u9

(11)

m3 =
u2

9 + 3
√

3u1

3 32/3u9

(12)

where

u1 = 18c2 + 3ζ2 +K2

u2 = 9c2 + ζ2 −K2

u5 = 18c2 +
1

3

(
4−K2

)
u6 = 36c2 −K2 + 3

u7 = 18
(
1− 9c2

)
ζ3 + 2ζu6

(
18c2 +K2

)
− 54ζ5

u9 =
3

√
√

3
√

27ζ2u2
2 − u3

1 − 9ζu2

u4 = 27ζ4 − 27ζ2u5 + u2
6

u0 = u6 − 6ζ2.

Using these expressions, we can specify the two spatial frequencies Mi = (mi+1 −m1)/2ε:

M1 = −
i
(
u2

9 −
3
√

3u1

)
6 6
√

3u9ε
(13)

M2 =
3 6
√
−3u1 − (−3)5/6u2

9

18u9ε
, (14)
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and the two temporal frequencies Ni:

N1 =
(3ζu7 − u0u4)M1

72ε2 (u0 − 9ζm2) (u0 − 9ζm1)
(15)

N2 =
(3ζu7 − u0u4)M2

72ε2 (u0 − 9ζm3) (u0 − 9ζm1)
. (16)

The solution ψ(x, τ ; c, k, ζ; Γ1,Γ2, ε) (5) is thereby completely determined by the parameters
of the plane wave ψ0 (2) with c, ω and k, restricted by (3), as well as ζ ∈ C, and Γ1,Γ2 ∈ C.

A few examples of the solution are shown in Fig. 1. In each case, the background plane wave
is controlled by the amplitude c/(2ε) which is equal to 1 in these examples. The complexity
of the solitonic part of the solution is defined by other parameters. We can choose one of the
parameters Γi to be zero. In this case, we obtain a soliton with periodicity along its propagation
direction that can be clearly seen in Figs.1a and 1b. From the form of exponential functions in
(6) and (7) it follows, that the solution (5) is periodic along each of the parallel set of lines

=[M1x+N1τ + const] = 0 (17)

for Γ2 = 0, and periodic along each of the parallel set of lines

=[M2x+N2τ + const] = 0 (18)

for Γ1 = 0, i.e. along the direction of propagation, where the imaginary part, denoted by ”=[z]”,
of the above expressions vanishes. The phase and the location of the periodic function is given
by Γ1 and Γ2 in either case. The shape of the maxima in each period also varies. Each period
may have a double peak structure as in Fig.1a. The value of the period as well as the direction
of propagation can also be controlled by the parameters of the solution. The case when both
parameters Γi are nonzero is shown in Fig.1c. This case can be considered as a nonlinear
superposition of the two previous solutions. The background stays the same as before, i.e. 1.
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Figure 1: Soliton solutions on a background defined by Eq.(5). Parameters are: ε = 1/2, ζ =
1. − 2i, k = 1 (K = 4), c = 1, resulting in M1 = 0.6483 − 0.04i, 2N1 = −2.56767 −
4.39656i, M2 = 3.2365 − 0.7i, 2N2 = −16.32 − 0.4232i. Top: Γ1 = 1, Γ2 = 0. Middle:
Γ1 = 0, Γ2 = 1. Bottom: a composite solution when Γ1 = 1, Γ2 = 1.
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3 Temporal periodic breather on a background

The soliton solution with Γ2 = 0 has been investigated in detail in [4]. Analogous considera-
tions can be given for the case Γ1 = 0 and Γ2 6= 0. For solutions of this branch which are
periodic along the τ -axis, the period is defined by 2π/N2, where N2 has to be real. We give an
example in Fig. 2, with the same parameters as chosen in Fig. 1, but where ζ has been adjusted
numerically to fulfill the condition of periodicity.

Figure 2: Soliton solution on a background of SSE (1) periodic along the τ -axis when Γ1 =
0 and Γ2 = 1. The other parameters are: c = 1, ε = 1/2, ζ = 1. − 2.0326i, k = 1
(K = 4). This choice produces: M1 = 0.55826 − 0.0346i, 2N1 = −2.28153 − 3.8442i,
M2 = 3.1862− 0.7115i and 2N2 = −16.3839.
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4 Spatially periodic breather on a background.

For solutions of the branch Γ1 = 0 and Γ2 6= 0 which are periodic along the x-axis the period
is defined by 2π/M2, where M2 has to be real. The condition of zero imaginary part of M2

leads to the eigenvalues of inverse scattering ζ being given by [4]:

ζ = ±
√
α± β (19)

with M = M2

α =
c4 + 10c2

[(
K
3

)2 − 3M2

10

)
+ 2Q

(
M2 +

(
K
3

)2
]

2Q

β =
2w

3Q

[
1

4

(
c2 +M2

)
−
(
K

3

)2
]
,

where w =
√

9c4 +K2 (M2 − 4c2) and Q = M2

4
−
(
K
3

)2
.

Any choice of signs in (19) provides us with a valid complex eigenvalue. In all four cases ζ is
a function of c, k and M . In [4] we have choosen both signs in (19) to be positive, to obtain,
explicitly:

ζ1 =

√
−162c4 − 18c2 (3 (w − 9M2) + 10K2) + (4K2 − 9M2) (6w + 9M2 +K2)

9(4K2 − 9M2)
. (20)

The breather solution of branch Γ2 = 0, Γ1 6= 0 is periodic in x in the case ζ = ζ1 and has a
single growth-decay cycle along the τ -axis. It starts with modulation instability, grows to maxi-
mum amplitude and decays the same way as it grew. This solution is similar to the Akhmediev
breather solution of the NLSE [6, 10, 1]. However, there are more parameters involved in the
SSE case.

For the branch Γ2 6= 0, Γ1 = 0 considered here the breather solution is periodic in x and has
a single growth-decay cycle along the τ -axis if we choose ζ = −ζ1. We give two examples in
Fig. 3. As can be seen from the figure, a double peak structure appears, which is characteristic
for many SSE solutions. Typically, the double peak structure disappears for larger values of k.
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Figure 3: Spatially periodic solutions on a background of SSE (1) for Γ1 = 0, Γ2 = −1
(c = 1, ε = 1/2). Top: ζ = −0.957906 − i1.81754, k = 1 (K = 4), resulting in M2 = 1,
2N2 = −3. + i6.245. Bottom: ζ = −2.11903 − i1.75897, k = 2. (K = 7), resulting in
M2 = 1 and 2N2 = 8.+ i11.7473.
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5 Rogue wave solution

We have demonstrated the existence of rogue wave solutions to the SSE for the branch Γ1 6= 0,
Γ2 = 0 in [4]. In order to do this, we took the long period limit of the spatially periodic breather
solution and used the specific value of Γ1 = −1 required to keep the central maximum close
to the origin, such that we have been left with just one infinite period. This way, we obtained the
solution describing the rogue wave of the SSE (1). Furthermore, in [3], we have demonstrated
a proper NLSE limit ε→ 0 for these rogue waves which is the Peregrine soliton.

Here, we found similar solutions for the branch Γ1 = 0, Γ2 6= 0. To see this we put Γ1 = 0 and
Γ2 = −1, ζ = −ζ1, and take the limit M2 → 0 for given c and ε. This choice gives a different
family of rogue wave solutions, compared to those in [3]. The analytic form for this rogue wave
is given by a rational function containing 4th-order polynomials in x and τ :

ψ(x, τ) =
1

2ε

[
1 + 12i=[ζ]µ2

1ν
2
2

pmod(x, τ)

qmod(x, τ)

]
(21)

with

pmod(x, τ) = ζξχ2M2
1 |V2| 2

(
ζµ2

2VW1 + ν2
1V2Wz

)
+ µ2

2VW1z + ζν2
1V2W

+ξχ2zM2
2 |V1| 2

(
ζµ2

2VW1 + ν2
1V2Wz

)
,

and

qmod(x, τ) = 2M2ξ
(

2χ2
(
−2η2<

(
µ2

1µ
2
2V

2Ω̄
)

+M2
1 |V ζV2| 2 +M2

2 |V ζV1| 2
)

+ |V |2
(
ξ2χ4

∣∣z |V2| 2M2
1 + ζ |V1| 2M2

2

∣∣ 2 + 1
) )
,

where

ξ = <(ζ), η = =(ζ), χ =
3c

Mξ |V |
, Ω = V1V2,

M =M1M2, M1 = |K − µ|2 , M2 = |K + µ|2

V1 = V µ1 − 24iε2, W1 = V̄1,

V2 = V µ2 + 24iε2, W2 = V̄2,

V = vτ + 4xε, w = v̄

µ = 3m1 − ζ, ν = ν̄

µ1 = K − µ; ν1 = µ̄1

µ2 = K + µ; ν2 = µ̄2

v =
3ζu7 − u0u4

9 (u0 − 9m1ζ)2

and

ζ = −
i

√
81c4 + 90c2K2 − 2K4 + 3c (9c2 − 4K2)3/2

3
√

2K
.
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Figure 4: Rogue wave solutions of SSE (1) for the branch Γ1 = 0, Γ2 = −1. Parameters are
as in Fig. 3: c = 1, ε = 1/2. ζ has been chosen for each k such that M2 = 0, resulting also
in N2 = 0. Top: k = 1 (K = 4), ζ = −1.00088 − i2.12256. Bottom: k = 2, (K = 7),
ζ = −4.84676− i0.897292.
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These rogue waves are similar to those found in [3], except for a different localization in the x, τ -
plane. Two examples are shown in Fig. 4. Just like for soliton solutions in Fig. 3, the characteristic
double peak structure disappears for larger values of k.

We will show now, that for these new rogue waves proper NLSE-limits ε → 0 do exist, if they
are taken carefully. For this we scale k → 2εk and choose c = 2ε. In the limit ε → 0 the
solution (21) becomes

ψ(x, τ) = exp

(
−1

2
i
((
k2 − 2

)
τ + 2kx

))
× (22)(

1− 4 ((k2 + 1) τ 2 + τ(k(2x− 1)− i) + (x− 1)x)

2 (k2 + 1) τ 2 + 2kτ(2x− 1) + 2x2 − 2x+ 1

)
which is a one-parameter family of rational solutions to the NLSE. The degree of the involved
polynomials has reduced from four to two, compared to (21). The parameter k tilts and shifts
the solution along the x, τ -plane. In particular, by choosing k = 0 we obtain

ψ(x, τ) = eiτ
(

1− 4 (τ 2 − iτ + (x− 1)x)

2τ 2 + 2x2 − 2x+ 1

)
. (23)

A shift of this solution along x by 1/2, x → x + 1/2, finally provides the Peregrine solution to
the NLSE

ψ(x, τ) = eiτ
(

1− 4 + 8iτ

4τ 2 + 4x2 + 1

)
(24)

as a correct limit of the family (21). When Γ1 6= 0 and Γ2 6= 0, it is difficult to find rogue wave
solutions, because M1 and M2 do not vanish simultaneously. This case needs further studies.

6 Zero background limit.

The background of the solution (5) c/(2ε) is controlled by the parameter c. The limit of zero
background is obtained when c → 0. Despite being seemingly simple, this limit is far from
being trivial. The difficulty is in finding the limits for the mj-values that enter the expressions for
rnj coefficients. These can be calculated using a series expansion of mj at small c:

rnj =
−ic

m
(0)
j + (−1)nK

3
− ζ

3
+m

(2)
j c2

(25)

where m(0)
j = limc→0mj and m

(2)
j =

∂2mj
∂c2

∣∣∣
c=0
.

In the limit c→ 0, the mj coefficients become:

m
(0)
1 = −

(√
3 + i

)
R+ + (

√
3− i)(σ)2/3σ2

2R

6
√

3 3
√
σσ2

m
(0)
2 = i

(R+ − (σ)2/3σ2
2R)

3
√

3 3
√
σσ2

m
(0)
3 =

R+ + σ2/3σ2
2R

3
√

3 3
√
iσσ2
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where
R =

(
K − i

√
3ζσ

)
, R+ =

(
K + i

√
3ζσ

)
σ = sgn

[
=
(
ζ2K

)]
(26)

σ2 =


e

2iπ
3 ⇔ −π

3
> Arg(w3r) > −π

e−
2iπ
3 ⇔ π > Arg(w3r) >

π
3

1 else.

(27)

w3r =
6
√

3
3
√
iσR. (28)

It follows from the expressions above that various branches should be considered. Each of them
provides a different limit for the rnj-coefficients. Here, we restrict ourselves in one of these
branches given by σ = +1 and σ2 = +1. This requires the following two conditions:

1. sgn
[
=
(
ζ2K

)]
= 1

2. −π/3 < arg
(

6
√
−3K − (−3)2/3ζ

)
< π/3.

In this case, the 2-nd order coefficients m(2)
1 , m(2)

2 in the expression (25) are

m
(2)
1 = − 3

K − 3ζ
, (29)

m
(2)
2 =

18ζ

K2 − 9ζ2
, (30)

m
(2)
3 =

3

K + 3ζ
. (31)

The spatial frequencies M (0)
i = m

(0)
i+1 −m

(0)
1 then become

M
(0)
1 = K/3− ζ, M

(0)
2 = 2K/3. (32)

The corresponding temporal frequencies N (0)
i = N

(0)
i+1 −N

(0)
1 are

N
(0)
1 =

K

6

(
K2

9
− 1

3

)
− ζ

2

(
ζ2 − 1

3

)
(33)

N
(0)
2 =

1

27
K
(
K2 − 3

)
. (34)

For brevity, we denote the exponents appearing in (5) as A and B:

A = i (M1x+N1τ) =
i

2ε

(
M

(0)
1 x+

N
(0)
1

ε
τ

)
(35)

B = i (M2x+N2τ) =
i

2ε

(
M

(0)
2 x+

N
(0)
2

ε
τ

)
. (36)
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Along the branch considered here these functions take the form

A =
x

2ε

[
η + i

(
K

3
− ξ
)]
− τ

8ε2

[
η

(
η2 − 3ξ2 +

1

3

)

−iξ
(

3η2 − ξ2 +
1

3

)
− iK

3

(
K2

9
− 1

3

)]
,

B =
iK ((K2 − 3) t+ 36xε)

108ε2
,

with the real and the imaginary parts of A given explicitly by setting ζ = ξ + iη. The leading
contributions at small c are:

r11 =
3ic

2K
, r12 = 3ic

3ζ+K
, r13 = −i(3ζ +K)

3c
, (37)

r21 =
i(K − 3ζ)

3c
, r22 = 3ic

3ζ−K , r23 = − 3ic

2K
. (38)

Motivated by these expressions we introduce the following notations

Y = (3ζ −K)/3, W = (3ζ +K)/3, S = WY,

which will be used in the formulae below.

Within the approximations considered above, the form of the solution can be written explicitly in
terms of c:

ψ(x, τ) =
1

2ε
exp

[
− i

2ε

(
kx− ω

4ε
τ
)] [

c+
i(ζ − ζ̄)

|ζ|2
G(x, τ)

f3(x, τ)

]
(39)

where in the lowest order of c:

G(x, τ)

f3(x, τ)
= −2icKY W̄ |ζ|2 G0

f30 + f32c2
(40)

with the coefficientsG0, f30, f32 given in the appendix. This solution is shown for Γ1 = 1, Γ2 =
0 and Γ1 = 1, Γ2 = 1, in Figs. 5(a) and 5(b) respectively. When decreasing c, the shape and
the height of the soliton doesn’t change. However, it moves in the (x, τ )-plane, as shown in
Fig. 6.

This can be understood if we replace c by c = e−ρ and notice, that the variable ρ adds up to
the real part of the exponent A, causing the shift in the (x,τ )-plane.

In the next order of c we include the term∼ G2c
2 in the nominator and the term∼ f34c

4 in the
denominator:

G(x, τ)

f3(x, τ)
= −2ic|ζ|2KW̄Y

G0 +G2c
2

f30 + f32c2 + f34c4

with coefficients G2, f34 also given in the appendix. The solution then becomes:

ψ(x, τ) =
1

2ε
exp

[
−i
(
k

2ε
x− ωτ

8ε2
τ

)][
c− 2ic|ζ|2KW̄Y (G0 + c2G2)

f30 + f32c2 + f34c4

]
. (41)
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Figure 5: Soliton solutions on a small background with c = 10−2, defined by Eq.(39). Pa-
rameters are: ε = 1/2, ζ = 1.5 + i0.5, k = 0.1 (K = 1.3), resulting in M1 =
−1.06687− i0.499915, 2N1 = −1.81338− i3.08331, M2 = 0.866638 + i0.0000234777,
2N2 = −0.126675 + i5.377 · 10−6. Fundmental Soliton for (a) Γ1 = 1, Γ2 = 0. (b) Γ1 = 1,
Γ2 = 1.
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Figure 6: Soliton solution defined by Eq.(39) on a smaller background c = 10−3 than in Fig.5(b).
The parameters are the same as in Fig. 5, and Γ1 = 1, Γ2 = 1.

Figure 7: Exact soliton solution (42) of the SSE (1) on zero background c = 0. The parameters
are the same as in Fig. 5 and Γ1 = 1, Γ2 = 1.

15



To obtain the zero background limit analytically we set c = e−ρ and shift accordingly the real
part of the exponent A by ρ. This arrangement moves the solution back to the origin, thus
removing the dependence of A on ρ. Taking the limit ρ→∞ in (41) we obtain:

ψ(x, τ) = − i
ε
=(ζ)e

 
i(1−K)((K2+K−2)t+36xε)

216ε2

!
P

Q
(42)

with

P = Γ2W Γ̄1e
Ā+B

(
ζ̄2 |Y |2 + ζe2<(A)<(ζ) |Γ1|2 + |Γ2ζW |2

)
−

eAΓȲ
(
ζ̄e2<(A)<(ζ) |Γ1| 2 + ζ2 |Γ2W | 2 + |ζY |2

)
and

Q = 4=(ζ)2<
(

Γ2SΓ̄2
1e

2Ā+B
)

+
∣∣ζ̄ |Γ2W | 2 + ζ |Y |2

∣∣ 2 +

e4<(A)<(ζ)2 |Γ1| 4 + 2e2<(A) |Γ1ζ|2
(
|Γ2W | 2 + |Y |2

)
.

We end up with the same solution (42) if we repeat the limiting process c → 0 including all
higher order terms G4c

4, G6c
6, f36c

6, and f38c
8 6= 0 in the expressions above. Solution (42)

is therefore the exact zero background (c = 0) limit of the solution (5) along the branch σ = 1,
σ2 = 1. Thus, it is a particular exact solution of the SSE (1). It is illustrated in Fig. 7 for the same
set of parameters as in Fig. 6.

7 The limit of Mihalache soliton solution.

If we replace the real and imaginary parts of the eigenvalue ζ using the following transformations

η = 2εηM and ξ = 2εξM (43)

and choose in particular

K = 0, (implies B = 0)

A = −A0 + iB0

Ā = −A0 − iB0

Γ1 = −2iε(ξM + iηM)/ā

Γ2 = b̄/ā

we obtain the following exact solution to the SSE:

ψ(x, τ) = 2ηMe
A0− i(t−18xε)

108ε2
1

4̃
× (44)[

b̄e2A0−iB0
((
η2

M + ξ2
M

)
|b|2 − (ηM + iξM)2 |a|2

)
+ b̄e−iB0ξM(ξM + iηM)

+aeiB0ξM(ξM − iηM) + ae2A0+iB0
((
η2

M + ξ2
M

)
|a|2 + (ξM + iηM)2 |b|2

) ]
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with

4̃ = −2η2
Me

2A0
(
abe2iB0 + āb̄e−2iB0

)
+ 2e2A0

(
η2

M + ξ2
M

) (
|a|2 + |b|2

)
+e4A0

(
η2

M

(
|a|2 − |b|2

)2
+ ξ2

M

(
|a|2 + |b|2

)2
)

+ ξ2
M.

This solution still depends on arbitrary parameters ξM, ηM ∈ R, and a, b ∈ C. By introducing
the coordinates

T = τ (45)

X = x− τ

12ε
(46)

and defining

u(X,T ) =
2i

∆

(
iΩ0

ηM

(
aeiB0 + b∗e−iB0

)
− aΩ

2λ∗0
+
b∗Ω∗

2λ0

)
Ω0 = eA0(|a|2 + |b|2) + e−A0

Ω = 2āb̄eA0−iB0 + e−A0+iB0

A0 = ηM

(
X − Tε

(
η2

M − 3ξ2
M

))
B0 = ξM

(
Tε
(
ξ2

M − 3η2
M

)
+X

)
λ0 =

1

2
(−ξM + iηM)

∆ =
|Ω|2

4|λ0|2
+

Ω2
0

(λ∗0 − λ0)2

we arrive at the solution obtained by Mihalache et al. [13, 11, 12]. This solution has been pre-
sented in [11] in the form:

ψ(x, τ) = u(X,T ) exp

(
i

6ε

(
x− τ

18ε

))
. (47)

It appears to be a special case of the solution (42). Due to presence of Γ1 and Γ2 it has an
oscillating structure, even with zero background. We give two examples in Fig. 8 and in Fig. 9.

Mihalache et al. have obtained their solutions using the Riemann problem method [11]. It is
different from the usual inverse scattering theory, used in [16]. The solution (47) is still more
general than the solution of Sasa and Satsuma [16]. In particular, solution (47) contains the
latter as the special case when b = 0. This is clearly the branch Γ2 = 0 in our case. The
connection between the zero background limit along the branch Γ2 = 0 and the solution of
Sasa and Satsuma [16] has been proven in [4].

For convenience we give this solution in explicit form:

ψ(x, τ) = 2ηSe
A0+iB0 exp

[
−i
6ε

(
x− τ

18ε

)] a
(
e2A0|a|2 (η2

S + ξ2
S) + ξS(ξS − iηS)

)
e2A0|a|2 (η2

S + ξ2
S) (e2A0|a|2η2

S + 2) + ξ2
S

. (48)

We can also rewrite the latter expression in the original form as given in [16]:

ψ(x, τ) = ηSe
iB 2 coshA+ (c− 1)e−A

cosh(2A− log |c|) + |c|
(49)
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Figure 8: Solution (47) for a = 1, ε = 1/2, ξM = 1/2, ηM = 1.5, a = b.

Figure 9: Solution (47) for a = 1, ε = 1/2, ξM = 1/2, ηM = 1.5. This is a special limit (49) of
the solution (47) when b = 0.
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with

A = ηS

(
x− x0 −

(
ξS + ε

(
η2

S − 3ξ2
S

))
τ
)

B = ξS

(
x− x1 +

(
η2

S − ξ2
S

2ξS

+ ε
(
ξ2

S − 3η2
S

))
τ

)

c = 1− iηS

ξS − 1
6ε

; |c| =

√
1 +

36η2
Sε

2

(1− 6ξSε)2
.

One characteristic example of solution (49) is shown in Fig. 9. This solution is more compli-
cated than a sech-shaped solution. Namely, it exhibits a double peak structure [4]. The peak
separation and the velocity can be adjusted via the free parameters ξS and ηS. For ε → 0 the
solution (49) has the NLSE limit which is the fundamental soliton of the NLSE, and, in addition,
a singular limit when |c| → ∞, see [4].

As a final remark we note, that Mihalache et al. [11] gave a breather-type solution for the case
a = b:

ψ(x, τ) =
2ηM

D
eA0+iB0 exp

(
−i
6ε

(
x− τ

18ε

))
× (50)(

a|aζ|2 − ā3ηM(ηM − iξM) + aξM(ξM − iηM)e−2A0

+e−2iB0 āξM

(
2|a|(ξM − iηM) + (ξM + iηM)e−2A0

) )
D = −4e2A0η2

M

(
ā4 − |a|4|ζ|2

)
+ 4

(
|a|2|ζ|2 − ā2η2

M cos(2B0)
)

+ ξ2
Me
−2A0

which has indeed an oscillating behavior. In fact, such oscillations naturally occur if a 6= 0 and
b 6= 0, i.e. Γ1 6= 0 and Γ2 6= 0 in our setting.

8 Conclusions

In this paper, we considered the most general case of a soliton on a background solutions to the
Sasa-Satsuma equation. The solution has rich structure and admits several limiting cases that
are important for applications. Among them, rogue waves and classical solitons. The zero back-
ground limit is also found. It contains, as particular cases, previously known soliton solutions.

A Expressions for Coefficients

In this Appendix, we provide the coefficients used in Eq.(39):

G0 = −8e2BK3WȲ |S|2
(
ζ̄|Y |2 + ζ |Γ2| 2|W |2

)
×{

Γ2Wζ̄
(

Γ̄1e
Ā+B + Γ̄2 + eB

)
− ζȲ

(
eAΓ1 + eBΓ2 + 1

)}
f30 = 16e2BK4

∣∣|S|2 (ζ̄|Y |2 + ζ |Γ2| 2|W |2
)∣∣2
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f32 =

−8eBK3|S|2 ×{
2Γ1KȲ e

A+B |W |2
(
2ζ3S̄ |Γ2| 2 + 2|ζ|2

(
W̄ |Γ2| 2

(
ζ̄Ȳ − 2Y <(ζ)

)
− 2i|Y |2=(ζ)

))
+

2KY Γ̄1e
Ā+B |W |2

(
2W |Γ2| 2

(
|ζ|2

(
ζY − 2Ȳ <(ζ)

)
+ Y ζ̄3

)
+ 4i=(ζ)|ζY |2

)
+

4Γ2SΓ̄1e
Ā+2B |Y |2

(
Sζ̄3 + |ζ|2

(
2i|W |2=(ζ) |Γ2| 2 − 2Y W̄<(ζ) + ζS

))
−

4Γ2KSΓ̄2
1=(ζ)2e2(Ā+B)|S|2 −

4KeĀ+A+B |Γ1ζS|2
(
|Γ2|2 |W |2 + |Y |2

)
+

2eAΓ1KΓ̄2S̄Y
(
2ζ3S̄ + 2|ζ|2

(
Ȳ
(
ζ̄W̄ − 2W<(ζ)

)
− 2i|W |2=(ζ) |Γ2| 2

))
−

4e2AΓ2
1Γ̄2KS̄=(ζ)2|S|2 +

e2BΓ2|S|26
(
Ȳ
(
<[ζ2]

(
S − |WΓ2|2

)
−W |ζY |2

)
+W |Γ2ζW |2

)
−

e2BΓ2|S|24K
(
=[ζ]2

(
S̄ |Γ2| 2 + S

)
+ |ζ|2

(
|WΓ2|2 + |Y |2

))
−

4eBK|S|2
(
|Γ2|2

(
4=[ζ]2<[S] +

(
|W |2 + |Y |2

)
|ζ|2
)

+ |W |2 |Γ2|4 |ζ|2 + |Y ζ|2
)
−

Γ̄2|S|2
(
|Γ2| 2

(
W̄
(
6S<[ζ2] + |ζ|2

(
4S − 6|W |2

))
+ 4KS=(ζ)2

)
−
(
S̄
(
6Y <[ζ2]− 4K=(ζ)2

)
− 4K|Y ζ|2

) )
+ Γ̄2|S|26Y |Y ζ|2

}
where ”<[z]” means the real part of z.

The following set of coefficients is used in Eq.(41):
G2 =

4eBK2WȲ ×

(
3eA+2BW |ζ|2 Ȳ

(
ζ̄2 − ζ2

)
Γ1Γ2 |W |2 + 2e2A+B+ĀK |S|2 Ȳ ζ̄<(ζ)Γ2

1Γ̄1

−eB |S|2 |Γ2| 2
(
K2

3

(
ζ2 + |ζ|2 |Γ2| 2 + ζ̄2

)
+ 16i=(ζ)<(ζ)2K − 3 |ζ|2

(
2 |ζ|2 + ζ2 |Γ2|2

))
+2e2B |S|2

(
3
(
Ȳ − 3ζ

) (
ζȲ −W |Γ2| 2ζ̄

)
+K

((
|Γ2| 2 + 2

)
Ȳ ζ̄ −Wζ

(
2 |Γ2| 2 + 1

)))
<(ζ)Γ2

+eB+Ā
(
|Y |2

(
K2 − 4ζK + 3ζ̄2

)
|ζ|2 + S |Γ2| 2ζ̄

(
−4Kζ2 + 3 |ζ|2 W̄ +Kζ̄

(
ζ̄ −K

)))
Γ̄1 |W |2

−2eA+2(B+Ā)KWζ |S|2 |Γ1| 2<(ζ)Γ2Γ̄1 + eB |S|2 3W̄ Ȳ |ζ|2

+eBKW
(

2ie2A=(ζ)Ȳ 2ζ̄Γ2
1 + eB+2ĀY

(
2Y ζ̄2 − 2ζȲ <(ζ)

)
Γ2Γ̄2

1

)
|W |2

+6 |S|2
(
W 2ζ̄ |Γ2| 2 + ζȲ 2

)
<(ζ)Γ̄2 − 2eA+BKW̄Ȳ Y ζ2 |Γ2|2

(
W 2 + S̄

)
Γ1

+2eA+B+ĀK |Γ1| 2
(
|S|4

(
Ȳ −

(
W − 2W̄

)
|Γ2| 2 − 2Y

)
|ζ|2 + 2|ζY |2S̄ζ̄ − 2Sζ2 |WΓ2|2 ζ̄

)
+2eA+BKW̄Ȳ |ζ|2

(
S
(
3ζ̄ − ζ

)
|Γ2|2 + 2i=[Y ]WȲ + 2

(
W |Γ2| 2 + Y

)
Ȳ ζ̄
)

Γ1

+2eA+2B+ĀKW |Γ1| 2Ȳ
(
Y |ζ|2 W̄

(
Ȳ −W

)
− 2i=

(
Sζ22ζ̄

))
Γ2

+3e3B+ĀW |Y |2 |ζ|2 Ȳ
(
ζ2 − ζ̄2

)
Γ2

2Γ̄1 + 2e2B+ĀKSW̄
(
Ȳ 2 + S

)
ζ̄2Γ2Γ̄1

+2e2B+ĀKS
(
|ζ|2 Ȳ

(
W2i=[W ] |Γ2|2 − W̄

(
3ζ − ζ̄

)
− 2Wζ̄

(
W̄ |Γ2|2 + Ȳ

)
ζ2
))

Γ2Γ̄1

+eA |Y |2 W̄
(
W |ζ|2

(
3S + 4KW̄

)
|Γ2| 2 + ζȲ

(
3Ȳ ζ2 −K

(
K + ζ̄

)
ζ + 4Kζ̄2

))
Γ1Γ̄2

+K |Y |2 Ȳ
(
e2AW̄

(
2Wζ̄<(ζ)− 2ζ2W̄

)
Γ̄2Γ2

1 + 2ie3B+2ĀW 2ζ=(ζ)Γ2
2Γ̄2

1

))
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f34 =

4e2BK2 ×

(
4e2(A+Ā)K2 |S|4 |Γ1|4<(ζ)2 − 32K2 |S|2 |Γ1| 2<

(
eA+2ĀY ζ=(ζ)2W̄ 2Γ̄1

)
+ |S|4

(
9
(
ζ2 + ζ̄2

) ∣∣Ȳ −W |Γ2| 2
∣∣2 + 36

(
|W |2 + |Y |2

)
|ζ|2 |Γ2| 2

)
+4K2 |S|4

(
|Γ2|4 + 4 |Γ2| 2 + 1

)
<(ζ)2

+48 |S|4=
(
eBK=(ζ)

(
ζ |Γ2|2 + ζ̄

)
<(ζ)Γ2

)
+4K |S|4

(
3<[Y ]

(
1− |Γ2|4

)(
<[ζ2]− |ζ|2

)
− 4K |ζ|2 |Γ2| 2

)
+2K<

(
e2AȲ 2

(
K
(

4
(
Ȳ 2 − 2 |Y |2

)
|ζ|2 + 4Y 2<(ζ)2

)
− 12Y |Y |2=(ζ)2

)
Γ2

1

)
|W |4

+48eA+ĀK |S|2 |ζ|2 |Γ1| 2=(ζ)=
(
eBW 2Ȳ 2Γ2

)
+16eA+ĀK2 |S|2 |Γ1| 2=

(
ζ2
)
=
(
eB+ĀWζȲ 2Γ2Γ̄1

)
+8eA+ĀK2 |S|2 |ζ|2 |Γ1| 2

((
−2<[Y 2] + 3 |Y |2

(
|Γ2|2 + 1

)
+ |Γ2|2

(
2
(
ζ2 + ζ̄2

)
− Y W̄

))
|W |2

− |Y |2
(
|Γ2| 2W̄ 2 + Y W̄ +WȲ − 2

(
ζ2 + ζ̄2

))
− 2W 2 |Γ2| 2Ȳ <(ζ)

)
+4K |S|2<

(
eĀS

( (
ζ2 + ζ̄2

) ((
6ζ̄ − 3W |Γ2| 2

)
|Y |2 + 2K

(
2W̄ |Γ2|2 + Ȳ

)
ζ̄
)

−2 |ζ|2
(

3W̄ |Y |2 +K
(
Ȳ 2 − W̄ Ȳ + 2Y W̄

)
+ |Γ2|2

(
4KWζ̄ + 3W̄ Ȳ

(
ζ̄ − 3ζ

))) )
Γ̄1

)
−16K2 |Y |2<

(
eB+2ĀS=(ζ)2

(
−ζ2 + 4 |ζ|2 + ζ̄2 + 3S

)
Γ2Γ̄2

1

)
|W |2

+8K |S|2<
(
eA−BW̄ Ȳ

(
3
(
Y |ζΓ2|2 +

(
Ȳ − 2ζ |Γ2| 2

)
<[ζ2]

)
|W |2

− |ζ|2
(

2K
(
Y W̄ |Γ2|2 + 2<[Y W̄ ]

)
+ 3S

(
3ζ̄ − ζ

))
+4KY

(
W<(ζ)2 − Y =(ζ)2

)
+ 2KW |Γ2|2

(
Y <(ζ)2 −W=(ζ)2

) )
Γ1Γ̄2

)
+2K |Y |4<

{
e2A−2BW̄ 2

(
12W |W |2=(ζ)2 +K

(
4
(
W̄ 2 − 2 |W |2

)
|ζ|2 + 4W 2<(ζ)2

))
Γ2

1Γ̄2
2

})
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