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ADAPTIVE HYPOTHESIS TESTING USING WAVELETS 

ABSTRACT. The present paper continues studying the problem of minimax 
nonparametric hypothesis testing started in Lepski and Spokoiny (1995). 

The null hypothesis assumes that the function observed with a noise is iden-
tically zero i.e. no signal is present. The alternative is composite and minimax: 
the function is assumed to be separated away from zero in an integral ( L2 - ) 
norm and also to possess some smoothness properties. · 

The minimax rate of testing for this problem was evaluated by Ingster for the 
case of Sobolev smoothness classes. Then this problem was studied by Lepski 
and Spokoiny in the sutiation of an alternative with inhomogeneous smoothness 
properties that leads to considering Besov smoothness classes. 

But for both cases the optimal rate and the structure of optimal (in rate) 
tests depends on smoothness parameters which are usually unknown in practical 
applications. 

In this paper the problem of adaptive (assumption free) testing is considered. 
It is shown that the adaptation without loss of efficiency is impossible. An extra 
(log log)-factor is nonsignificant but unavoidable payment for the adaptation: 

A simple adaptive test based on wavelet technique is constructed which is 
nearly minimax for a wide range of Besov classes. 

1. Introduction 

l 

The present paper continues the study started in Lepski and Spokoiny (1995) on 
· minimax nonparametric hypothesis testing. The reader is referred to that paper 

and to Ingster (1993) for the detailed historical background to this problem. We 
recall only the main points. 

vVe suppose that we are given data 

dX(t) = f(t)dt + cdltV(t), 0 ~ t ~ 1, (1.1) 

where f is an unknown function and W is a standard Wiener process. 
We wish to test the null hypothesis Ho : f = 0 against the composite nonpara-

metric alternative that the function f is separated away from zero in L2 -norm, 
llJll 2:: r(c), and also f possesses some smoothness properties. 

The problem is to describe the minimal (optimal) rate for the distance r(c) 
for which testing with prescribed error probabilities is still possible. The result 
depends heavily on which kind of smoothness assumption we impose. For the case 
of Sobolev-type functional classes this problem was explicitly solved by Ingster 
(1982, 1993) and Ermakov (1990). It turned out that the optimal rate r(c) for 
testing differs from the rate for estimation: if a is the smoothness parameter, then 

4<7 r( c) = c 4u+l • 

The case of Besov functional classes B;,q with p < 2 was considered in Lepski and 
Spokoiny (1995). This case is not only of theoretical interest. It corresponds to the 
situation when functions from the alternative set are of inhomogeneous smoothness 
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properties that is very important both for theory and practice. The optimal rate 
was proved to be 

4c/1 

r(c:) =c4"""+1 

where 0"11 = O" - 1 / (2p) + 1/4. The rate-optimal test constructed in that paper 
makes heavy use the pointwise adaptive procedure proposed in Lepski et al.(1994) 
and developed in Lepski and Spokoiny (1995). 

But the practical applications of this test or that of proposed by Ingster meet 
the crucial problem: the structure of the test uses knowledge of the smoothness 
parameters O", p which are typically unknown. 

The present paper treats the problem of adaptive (assumption free) testing. The 
goal is to propose a test which does not use any information about smoothness 
properties of the function f but which is at least nearly optimal. 

The problem of adaptive nonparametric estimation is now well developed. We 
mention here the paper by Efroimovich and Pinsker (1984), Poljak and Tsybakov 
(1990), Golubev (1987), Lepski (1990). The reader is referred to Donoho and 
Johnstone (1992) and Marron (1987) for further information on this problem in 
the considered context. Note that global adaptive estimation is possible without 
loss of efficiency and can be performed even in an optimal way (up to constant). 

Another interesting phenomena was discovered by Lepski ( 1990) and then Brown 
and Low (1992): for some statistical estimation problem an adaptive estimation 
without loss of efficiency is impossible. Such a problem is, for instance, the esti-
mation of a function f at a given point t0 • The optimal .adaptive rate was also 
calculated in Lepski (1990) which appeared to be worse by an extra log-factor. 

Then in Lepski and Spokoiny (1995) an optimal adaptive tisk was calculated and 
optimal adaptive procedure was constructed to this problem. 

In the present paper it is shown that adaptive testing also leads to some loss 
of efficiency but in this case with an extra (log log)-factor. The difference with 
the preceding case is explained mostly by the structure of the loss function (it is 
bounded in the hypothesis testing problem). But the related consideration seems 
to be more involved. 

The rate-optimal adaptive test is also presented. We use.for the construction the 
wavelet technique which provides very useful tools for studying the problem under 
consideration. 

Finally we describe one more test which has a slightly worse performance but 
which of relatively simple and obvious structure. The consideration of this test 
is motivated by the fact that it is a direct analogue of the nonlinear thresholding 
wavelet procedure, see Donoho et al. (1994). 

The paper is organized as follows. In the next section we state the testing 
problem for the model "signal + white noise'.'. Then we translate this problem 
into the sequence space and restate the problem in terms of empirical wavelet 
coefficients. 

In Section 3 we present the results on the minimax rate of testing and propose 
a test which is rate optimal. This test is based on wavelet decomposition and its 
construction involves only one external parameter. But the value of this external 
parameter is determined by the smoothness assumptions on the alternative set. 
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In the next section the problem of adaptive testing is discussed. We define the 
notion of adaptive rate of testing and describe the structure of adaptive tests which 
are rate optimal or nearly optimal. 

In Section 5 we translate the results back into the nonparametric function model. 
The proofs are postponed to the last sections. 

2. Hypothesis testing problem 
In this section we recall the definition of the minimax hypothesis testing problem. 
We assume the model (1.1). Our goal is to test the null hypothesis H0 that the 
function f is identically zero, 

Ho: f = 0. 
The alternative is composite and nonparametric. First we assume that the al-

ternative set is separated away from null in the L 2 -norm, 

llJll 2:: r(c:) 
1 

where 11!11 2 = J f2(t)dt and the radius r(c) qualifies sensitivity of testing. 
0 

(2.1) 

Notice, however, that only the assumption (2.1) is not enough for testing for any 
r( c). Thi~ fact was stated by Ingster (1982) but it is intuitively clear: without 
special assumptions one is not able to distinguish between a function and a noise. 

To bypass this problem, some smoothness assumptions are additionally imposed 
on the function f. Together with (2.1) these assumptions allow to test H0 con-
sistently or with prescribed error probabilities. 

In the papers by Ingster, Ermakov, Suslina, it is assumed that f belongs to 
some ellipsoidal body in the space of coefficients for some orthonormal system in 
the function space. 

In the present paper, similarly to the paper by Lepski and Spokoiny ( 1995), we 
treat the case of Besov balls B;,q(J\!I) = {f: llJllB:,q ~ 1\11} where 

l llJllP + [} h-uqllosc f(·, h)ll~d:] l/q .if q < oo, 
llJllBu = o 

p,q llJllP + sup h-ullosc f(·, h)llP if q = +oo. 
O~h9 

Here llJllP is the Lp-norm, llJll~ = JJ lflP. The local oscillation osc f(x, h) off is 
defined as 

osc J(x, h) = inf sup IJ(y) - P(y)j 
jy-xj~h. 

the infimum is taken over all polynomials of order r, where r is an integer greater 
or equal to a and sup in x, y is restricted to the interval [O, l]. 

This leads to the following nonparametric alternative 
H1 : ll!llBP",q ~ Jvf, II! II 2:: r(c:) · 
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2.1. A test and its power function. Minimax rate of testing 
Let cp be a test i.e. a function of observation process X(t), t E [O, l] with two 
values. The event cp = 0 is treated as accepting the hypothesis Ho and cp = 1 
means that the hypothesis is rejected. 

vVe measure the quality of the test cp by its error probabilities. Given positive 
nimbers a0 and /30 with a0 + /30 < 1 , we search for a test cp such that 

Po(cp = 1) :::; ao 

and 

P1( cp = 0) :::; /30 
for all J from the alternative set H1 • 

We treat this problem in an asymptotic sense as c-+ 0. The goal is to describe 
the optimal rate r( c) for which testing with the prescribed error probabilities is 
still possible. 

3. Translation into Sequence Space 

3.1. Wavelet basis and Model in Sequence Space 
Below we pass from the original nonparametric problem to the parametric problem 
of high dimension, namely to the problem in ·terms of wavelet coefficients. We 
follows Donoho and Johnstone ( 1992). 

Assume we are given an orthonormal basis of compactly supported wavelets .of 
L2 [0, l]. One may use the construction from Meyer (1991) or Cohen, Daubechies 
and Vial (1993). 

Let </>j,k, 'l/;j,k be a system of compactly supported orthogonal wavelets (sup</> ~ 
[-0,A] and sup'lj; ~ [-0,A]). We suppose that</> and 'ljJ E cm, m = [s] (here[·] is 
an integer part). This implies ( cf. Daubechies, 1992, eh. 7) that 'lf;( x) has at least 
m vanishing moments. 

Let j0 be such that 2i0 > A + 1. It has been shown in Cohen, Daubechies and 
Vial (1993) and Cohen et al. (1993) that an orthogonal wavelet basis on (0, 1] 
can be constructed by retaining 'l/;j,k and </>j,k as the interiour wavelets and scaling 
functions and adding adapted edge wavelets and scaling functions. These edge 
elements are tailored so that the total number is exactly 2i at resolution j. For 
the sake of simplicity we use the same notation for the edge corrected and original 
functions. 

This construction provides an unconditional basis for the B;,q [O, 1] space for 
s > m, sp > 1. 

It is useful to use for </>jo,k also the notation 'lfJk, k = 1, ... , 2io. 
Denote by J the set of resolution levels for the considered wavelet basis, 

J = {j 2: io} 
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and let Ii be the index set for j th level, 

Ij0 {k: k == 1, ... , 2j0
} LJ{(jo, k): k == 1, ... , 2j0 }, 

Ii { (j, k) : k == 1, . . . , 2i}. 

By I we denote the global index set for the considered basis, I== {Ij, j E J"}. 
Let now X1, I EI be empirical wavelet coefficients for the model (1.1), 

Xr = l 'if;r(t)dX(t). 

The decomposition (1.1) is reduced to 

Xr =Or+ c { 'if;r(t)dW(t) 

Now the original functional model ( 1.1) is translated into the sequence space 
model 

!EI (3.1) 

where ~I == J 7/J1dW are standard normal and independent for different I. 
This translation is justified by the following two (isometric) properties, cf. Triebel, 

1992, p. 240: 

(ISOl) For any function J E L2[0, 1] 

11111 2 == 11011~ :. I: e;, (3.2) 
I 

(IS02) If m 2:: O" _, then there are two constants C1 and C2 such that 

where 

q < oo, 
(3.3) 

q == oo, 

s being O" + ~ - 1 / p . 

3.2. Hypothesis Testing Problem in Sequence Space 

Now we reformulate the hypothesis testing problem for the sequence space model. 
We wish to test the null hypothesis 

Ho : BI = 0, I E I. 
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The alternative is also expressed in term of wavelet coefficients. The condition on 
the distance between the null and the alternative is of the form 

llBll ~ r(s) 

where 11011 2 = L: OJ. 
!EI 

Next, given r = (O',p, q, NI), the smoothness condition llJllB;,q ~ NI is trans-
ferred into 

vVe define the alternative set for the sequence space model as follows. 
H1 : llBllbp,q ~NI, llBll ~ r(s) · 
Let now <.p be a test i.e. a two-valued function of the observations X1, I E I. 

As usual, the event { <.p = O} is treated as accepting the null and { <.p = 1} means 
that the null is rejected. We measure the quality of a test <.p by the corresponding 
error probabilities. 

The first kind error probability is defined by 

a(c.p) = Po(<.p = 1). 

Here P0 means the distribution of observations· under the null i.e. if 81 = 0, 
I E I , in ( 3 .1). 

The behavior of the test on the alternative s.et is described by the properties of 
the corresponding power function f3g ( <.p) , · 

f3e( <.p) = Pe( <.p = 0). 

Namely, for the alternative H1 we consider the maximal value of the power function 
on the corresponding alternative set, 

(3( c.p; r, r( c)) = sup Pe( <.p = 0). (3.4) 
fJE0T, llBll~r(e) 

\Ne are interested in tests <.p for which 

f3 ( <.p; r, r ( c)) ~ (30 , (3.5) 

with a prescribed a0 , (30 E (0, 1) . 
. The problem of minimax hypothesis testing can be defined as follows: to describe 

the optimal rate for r( c) for which testing with the prescribed error probabilities 
is still possible i.e. the set of tests satisfying (3.5) (at least in an asymptotic sense) 
is nonempty. 

3.3. Minimax rate 
Now we .present the results which describe the minimax rate of testing fo.r the 
problem in the sequence space. 
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Theorem 3.1. Let) given T = ( O", p, q, 1\!I) with O"p > 1 ) 

(3.6) 
where 

If ( 1 1) { O" = O" - 2p - 4 + = min O", O" - l/(2p) + 1/4}. (3.7) 

Then for any ao > 0 and /30 > 0 there exist a constant c1 = c1(0",p,q,a0,f30) and 
a test <.p* such that 

(3.8) 
and 

sup Pe(<.p* = 0) ~ /30 + oe(l). 
BE8r, llBll~c1 rr(e) 

Here oe(l) means a sequence temding to zero as c --7 0. 
The structure of the test <.p* is explained below in this section. Now we present 

the lower bound which states rate optimality of this test. 

Theorem 3.2. Let T and r r( c), a0 , /30 be as above. Then there exists a constant 
c2 = c2 ( O", p, q, a0 , /30 ) such that for any test <.p satisfying (3.8) 

·sup Pe( <.p = 0) ·~ /30 - oe(l ). 
BE8r, llBll~c2rr(e) 

3.4. Minimax test 
First we restrict the considered set of wavelet coefficients I by some subset Ie. 
This procedure is typical for statistical analysis based on wavelet technique, see 
e.g. Donoho and Johnstone (1992). 

Define the level je as the minimal integer with 
2ie ~ c-2. 

Set now 

Je {jE.J:j~je}, 

Ie LJ Ii. 
jE.:le 

It is convenient to introduce also the "normalized" observations Y1 = C 1 X1 i.e. 
due to (3.1) 

Denote for each j E J 
Si= c-2 L(XJ - c2

) = L(Y/ - 1). 
IJ IJ 
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Given /\ > 0 , set also 

Sj(A) = c- 2 2)Xjl(IX1I > cA) - c2 b(A)] = L[Y/l(IY1I >A) - b(A)]. 
I3 I3 (3.10) 

Here 

and ~ means the standard normal variables. 
Given r = ( O", p, q, JV!), define the level J E .:! by 

-J - (!__)~ 2 - J\il 
(3.11) 

i.e. 

J ~ ( 0"
11 + 1/4) log2 ( M / c). 

We assume without loss of generality that the right hand-side of this equality is an 
integer. Otherwise one can take its integer part. Obviously J depends on c and 
J tends to infinity as c tends to zero. In what follows we assume c to be small 
enough and J > j 0 • 

Let .:!+ and .:J_ be. the partition of the level set :le: into two parts over and 
below J 

.:!+ = {j: jo ~ j < J}, 
Now put for j E :J_ 

Ai = 4V (j - J + 8) ln 2, j 2:: J 
and introduce the test statistics T( J) by 

T(J) = 2-J/2 
[ L Sj +. L Sj(Aj)] . 
jE.J"+ jE:l- · 

The test r.p* is defined by 

r.p* = 1 (T(J) > v(J)q>-1 (ao)) 

where 

v2 (J) = 2-JH [2io + L 2j + L 2jd(Aj)] 
jE.J"+ jE:T-

and 

d(,\) = ~E [e1(1e1 > ,\) - b(,\)r. 

We finish describing the test r.p* with a few remarks. 

(3.12) 

(3.13) 

(3.14) 

Remark 3.1. The test r.p* depends on r = ( O", p, q, NI) and c but this dependence 
is only through the value J. 
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Rernark 3.2. Easy to check that v( J) converges as c -t 0 to the value v with 

Hence this universal constant v can be used in place of v( J) for the test cp* . 

Remark 3.3. The choice of the "thresholds" Aj of the form CJJ - Jmin was pro-
posed for the estimation problem in Delyon and Juditsky (1995), see also Donoho 
et al. (1994). 

4. Adaptive testing 
In the present section we consider the problem of adaptive testing when the pa-
rameters T = ( a,p, q, .l\11) are unknown. · · 

vVe consider again the model (3.1) in the se~uence space. First we state the 
phenomenon "lack of adaptability" for this problem i.e. we show that adaptive 
testing with the same rate is impossible. 

Then we describe the optimal adaptive rate of testing. For this w~ use the notion 
of "adaptive factor". 

vVe start with the definition of the problem of adaptive testing. Let again. the 
alternativ~ set H 1 be described as above but let· the parameter T be unknown. 
We assume only that T belongs to some set T. For each T E T the power of 
a test <p is determined by the value ,B(cp;r,r(c)) due to (3.4) with r(c) = rAc) 
from (3.6). 

The results from the preceding section state that for each T there is c1 > 0 and 
a test 'Pr such that a( 'Pr) = Po( 'Pr = 1) < ao and ,8( <pr; r, c1 rr( c)) :::; ,Bo (at least 
in an asymptotic sense). But now for the problem of adaptive testing we search 
for an universal test 'Pe such that a( <p) :::; ao and ,8( <pe; r, cr7 ( c)) :::; ,80 for some 
c > 0 and all r E T . 

We say that a set T is nontrivial if there are such p, q, M and a* < (}'* that 

{ (J',p, q, M} ET, 

The first result shows that adaptive testing is impossible (without loss of power) 
for any nontrivial set T. 

Theorem 4.1. Let T be nontrivial. Then for any c > 0 and any test <p such 
.that 

( 4.1) 

one has 

sup ,B(cp; r, cr;(c)) ~ 1 - ao - oe(l). 
rE'T 
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The next question is how to define the optimal adaptive rate. One way to do 
this was proposed for the similar situation for the estimation problem by Lepski 
(1990), see also Lepski and Spokoiny (1995) where the problem of an optimal 
adaptive estimation at a point was solved up to an optimal constant. 

VVe use below another approach based on the notion of adaptive factor. 
Namely, we search for a sequence te -T co such that testing with the rate rT(cte) 

will be possible adaptively in T E T . 
The next results state that for the problem under consideration the minimal 

adaptive factor is (ln ln c;-2 ) 114 • 

Theorem 4.2. Let 

(4.2) 

Let then a set T be of the form 

T = { T = ( O", p, q, M) : ()" ::::; ()"*' 1 ::::; p ::::; p*' JVI* ::::; NI ::::; JVI*' O"p > 1} 

with some prescribed positive O"*, p*, NI* ::::; J\.1* . 
Then t~ere exist a constant c3 = c3 ( O"*, p*, JVI*, M*) and a test 'Pe such that 

and 

sup sup . Pe( 'Pe = 0) = os(l ). 
TET eeer, 11e11;:::c3rr(et~) 

Theorem 4.3. Let te be as above and T is nontrivial. Then there exists a con-
stant c4 such that for any test r.p satisfying ( 4.1) 

sup sup Pe(r.pe = 0) ~ 1 - ao - oe(l). 
TET eeer, 11e11;:::c4rr(et~) 

Remark 4.1. Here we meet the degenerate behavior of the adaptive test. One can 
observe from Theorems 4.2 and 4.3 that the adaptive power of the optimal test 'Ps 
is close to zero or to 1 depending on the constant factor in the distance between 
the null and the alternative set. 

The similar degenerate behavior appeared in the problem of adaptive estimation 
at a point, see Lepski and Spokoiny (1995). 
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4.1. Optimal Adaptive Test 
Now we describe the structure of the test <pe from Theorem 4.2. 

The idea of the test is quite clear. Each set r == { O", p, q, 1\!I} determines a 
procedure with the corresponding value J. Hence one can construct the family of 
the tests for all feasible values of this parameter (i.e. for all J from :T ). Then 
each test can be applied independently and the whole procedure rejects the null 

. hypothesis if at least one test does. The problem here is that each test has a finite 
error probability of the first kind and this composite procedure has a large value 
for this error probability. To avoid this problem one has to take the threshold vaiue 
with an extra growing factor. 

More precisely, let T( J) and v( J) be defined by (3.12) and (3.14) respectively. 
Define the following test 

<pe == 1 (sup T( J)v-1 
( J) > 2t;) ( 4.3) 

Je:f* 

where te is from ( 4.2). The index set :T* is determined by the adaptation range 
T. Roughly speaking, if J( r) is the level for the set r due to (3.11 ), then :T* 
has to contain all J(r), r ET. Let J* == J(O"*,p*, l\!l*) by (3.11). The choice 

:T* == {J E Je: J 2: J*} (4.4) 
is a proper one. 

4.2. Adaptive test. II 
Below we present one more adaptive test which is nearly optimal. The reason to 
consider this test is twofold. First, this new test is of relatively simple structure. 
Second, this test is a direct analog of the famous wavelet thresholding estimator 
with the log-threshold, see Donoho et. al. (1994). · 

The whole test consists of three subtests. The first one operates locally i.e. for 
each wavelet coefficient. 

Let Ie be the index set of cardinality c:-2 containing the first c:2 elements of 
I. Define the local test <pe,1 by 

!.ploc == 1 (sup IX1l > 2c:Vln c:-2) • 
lEit: 

This "local test" rejects the null if at least one coefficient X1 is too large to be 
explained by noise fluctuation. 

The two remaining tests are global. They can be naturally treated in terms of 
"gross and detail" structure.· vVe associate the'.' gross" terms with the wavelet levels 
below J* (see ( 4.4)) and "detail" terms with levels above J* . 

The second test analyses all "gross" terms simultaneously and the last test anal-
yses the "detail" terms within each wavelet level. Namely, set 

<pgross == 1 (2-J* 12 L S'j > 2vot;) 
jE.:l,j<J* 
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where 

and 

- 1 ( 2-i/2- 1l 2s 2t2) l.Pdetail - :r:nax j > e · 
JE.J'* 

Finally, the whole test <.p~ rejects the null if at least one of l.Ploc, <.p9 ross and 'Pdetail 

does, 

The properties of this test are described by the following result. 

Theorem 4.4. Let 

t: = (ln c:-2 ) 112 . (4.5) 

Let then a set T be as in Theorem 4.2. 
Then there exist a constant c9 = c9 (T) such that 

Po('P~ = 1) = oe(l) 
and 

slip sup PB( <.p: = 0) = oe(l). 
-rET BE8r, llBll~c9rr(etD 

5. Translation into the Function Space 
The results of the previous section for the model in the sequence space and the 
isometric properties (ISOl) and (IS02) from Section 3 allow to state the results 
for the original function model ( 1.1). 

Theorem 5.1. Let 

(5.1) 

Let then a set T be of the form 

T = { T = (a, p, q, 1\/1) : a ~ a*, 1 ~ p ~ p*, 1\11* ~ 1\/1 ~ 1\/1*, ap > 1} 

with some prescribed positive a*, p*, 1\/1* ~ 1\/1* . 
Let the adaptive test 'Pe from the previous section be applied to the system of the 

empirical wavelet coefficients X1 for an wavelet basis of regularity m > a* . Then 
there e:"Eists a constant c7 = c7 ( a*, p*, Jvl*, l\11*) such that 
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and 

sup sup P1(rpe: = 0) = oe:(l). 
rET fEBr, llJll~c7rr(e:te) 

where Br = {f : llJllBp:q ::; J\!I} for r = ( rJ, p, q, Jvl) . 

Theorem 5.2. Let te: be as above and let T be nontrivial. Then there exists a 
constant c8 > 0 such that for any test <p satisfying ( 4.1) 

sup sup P1('Pe = 0) ~ 1 - ao - oe(l). 
rET f EBr, llBll~csrr(ete) 

The similar result can be formulated for the test <p~ from the above. 

Theorem 5.3. Let 

t: = (ln c--2 ) 1! 2 • 

Let then a set T be as in Theorem 5.1. 
Then there exist a constant c5 = c5 (T) such that 

Po(<p: = 1) = Oe(l) 

and 

5.1. Results for other nonparametric statistical models 

(5.2) 

In the present section we focus ourselves on the "ideal" model "signal + white 
noise". 

Of course, the statistical practice needs in consideration more realistic models 
such that density or spectral density function model, regression model with het-
eroskedastic nongaussian errors etc. 

We believe that the idea proposed in the present paper are well applicable to 
these realistic models but the exact theoretical study beyond the scope of the 
present paper. 

We mention only a few papers which can be helpful for these developments. 
Brown and Low (1990) stated the equivalence in the Le Cam sense of the "white 
noise" model and Gaussian regression model. Nussbaum (1993) stated the similar 
result for density model. Neumann and Spokoiny (1995) showed the equivalence 
in the estimation problem between the regression model with heteroskedastic non-
gaussian error and the white noise model. Ingster (1984a, 1984b, 1993) treated the 
hypothesis testing problem for the L 2 -ellipsoidal bodies but for the density and 
spectral density models. Kerkyacharian and Picard (1993) studied the optimal 
properties of the wavelet shrinkage procedure for the density model. 

Hardle and Mammen studied the problem of testing parametric versus nonpara-
metric regression fit for the case of heteroskedastic errors. 
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6. Proofs 
In this section we give the proofs of Theorems 4.2, 4.3 and 4.4. Theorem 3.2 was 
stated for the Besov function classes in Lepski and Spokoiny (1995). The result 
of Theorem 3.1 for the proposed test <p* can be easily deduced from the proof of 
Theorem 4.2. 

6.1. Proof of Theorem 4.2 

First we study the behavior of the test 'Pe under Ho i.e. for (} = 0. 
Let the level sets Je = {j : io :::; j :::; ie} and .:J* = {J : J* :::; J :::; je} be 

introduced in Section 4. In the next lemma we identify Si from (3.9) with Sj{,\) 
from (3.10) for ,\ = 0. 

Lemma 6.1. The following conditions hold true under H 0 : 

(i) For any ,\ 2: 0 and each j E Je 
E Si(,\) = 0, 
ES}(,\) = 2id(,\) 

where d(,\) is from (3.15) and particularly d(O) = 1; 
(ii) The randorn variables Sj ( Aj) are independent for different j 

(iii) Uniformly in j E .:!* and It I :::; 2 ln c-2 

P0 (2-il 2 S· > t) 
____ J __ -+ 1 € -+ 0. 

l-1>(t) ' 

and any ,\ · · J ) 

Proof. The first two statements follow directly from the definition (3.9). The last 
statement is an easy consequence of the central limit theorem for i.i.d. random 
variables. Only the fact is important here that 2i -+ oo uniformly in j E .:!* . D 

The next technical result describes the behavior of the test statistics T( J) under 
Ho. 

Lemma 6.2. The following statements are fulfilled uniformly in J E .:!* : 
(i) 

ET(J) - 0, 
ET2(J) - v 2 (J); 

(ii) Uniformly in ltl:::; 2lnc-2 

P0 (v- 1(J)T(J) > t) -+ 
1 

1-<I>(t) ' 
c-+ 0. 
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Proof. The first statement of the lemma can be readily checked using (i) and (ii) 
of Lemma 6.1. The second statement is again an application of the central limit 
theorem for indepe.ndent random variables (see Petrov, 1975). D 

The last lemma yields the desirable property of the test <.pe: under Ho . In fact, 
by (ii) 

Po(<.pe: = 1) < L P (T(J) > 2v(J)vflnlnc:-2) :::; 
JE.J'* 

1 L exp{-24 lnlnc:2
} 

JE.J'* . 

#(:le:) < ln c-2 
-t 0 (In c;-2)2 - (In c;-2)2 

c -7 0. 

Now we turn to studying the power. of the test <.pe: . Let us fix some T 

( O", p, q, .NI) E T and some fJ E 81" i.e. llfJllbi,q ::; .NI. 
Define the level J = J( T) by the equality 

4 

rJ = (c;; )'""+1 
(6.1) 

where, recall, ie: = (ln lnc:-2 ) 1/ 4 and 0"11 = O" - (1/(2p) - 1/4)+. We will examine 
the behavior of the statistic T( J) under Po . The goal is to state that for () 
from the alternative set one has with a large P0 -probability T( J) > 2v( J)t; that 
obviously yields the desirable assertion. 

For the proof we use the following decomposition 

T( J) = EoT( J) + T( J)"- EoT( J). 

Denote 
1 

I= fJ. r ?"( cie:) 
The condition 11()11 2 ~ clr1"(cte:)l 2 can be rewritten as 

11111 2 ~ c. 

We will show that for () E 81" one has 

EeT(J) ::'.: [~11111 2 - c1(r)] t~ (6.2) 

with some constant c1 ( T) depending only on T and uniformly bounded for T E T. 
Also we state that for c small enough 

VareT(J) := Eo[T(J) - EoT(J)] 2
::; 4+11111 2

- (6.3) 

Finally we prove that T( J), being centered and normalized, is asymptotically 
normal under Pe . Namely, if 

((J) = T(J) - EeT(J) 
Jva.roT(J) 
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then uniformly in jt I < ln e-2 

P(-(( J) > t) = 1 - (1) 
1 - <I>(t) Oc; • 

(6.4) 

Before to prove these statements we explain how they imply the assertion of the 
theorem. Indeed 

Pe( 'Pc: = 0) < Pe(T( J) < 2v( J)t;) :::;; 

< Po ( EoT( J) + (( J).jVaroT( J) < 2v( J)t~) 

< Pe (-((J) > E8T(J) - 2v(J)t;) . 
Jvar8T(J) 

To state the result, by (6.4), it suffices to check that 

EeT( J) - 2v( J)t; 
JvareT( J) --+ 

00
' 

e--+ 0. 

But if B E eT is such that 

then by (6.2) and (6.3) 

lbll2 = ~IBll2 ~ 3c1(r) ·+ 6v(J) 
rT(etc:) 

EeT(J) - 2v(J)t; t;(lbll 2 /2 - c1(r) - 2v(J)) > -+oo, 
JVar8T(J) - 2 + lbll e--+ 0. 

To state (6.2) and (6.3) we use the following consequence of the "smoothness" 
condition llBllbp-,q :::;; JV!. 

Lemma 6.3. Let B E 8r and p" = min{2,p} and let Aj be defined by (3.12}, 
j E .:J . Then the following conditions hold 

(i) 

(ii) 

2-J/2 L L e-2 BJI(IB1I:::;; Aje):::;; c2(r)t(; 
jE.:l- Ij 

where c3 ( r) :::;; 2. 

2-J/2 L L l(IB1I ~ Aje):::;; c3(r)t~"; 
jE.:l- Ij 

(iii) Uniformly in J E .:J* 

e-22-J/2 [11e11 2 
- I: I: e;] :::;; 21w22-J12 --+ o 

jE.:li:. I 1 
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Proof. Consider first the case p ::; 2. The condition B E 0r yields for each j E .:J 
(see (3.3) 

s being O' + 1/2 - 1/p. 
Now 

L I e I Ip ::; 2- j sp J\IJP' 
Ij 

(6.5) 

2-1
/

2 :L :L c-2eit(IB1I::; .Xjc:) < 
je:r_ Ij 

2-112 :L :L c-PIB1IP.X~-PI(IB1I::; .Xjc:)::; 
jE.:1- Ij 

Note that 

< 2-1/ 2 L c-p _x~-p L IB1IP ::; 
)E.:1- Ij 

< c:-p2-112 :L .x~-p2-jsp 

jE.:1-

L .x~-p2-jsp ::; 2-Jsp t ( 4v'k + sr-p 2-ksp ::; c2( T )2-Jsp 
jE.:1- k=O 

where c2 (r) is the latest sum and very roughly c2 (r)::; 48 as s 2 1/2. 
Next, using the definition (6.1) of J and the equality s + 1/(2p) = a+ 1/2 -

1/ (2p) = 0'
11 + 1/ 4, one gets 

· sp+l/2 

(IV! I E. )prJ /2rJ sp = (1\tl I E. )P ( c:;;) .11 +I /4 = t~ 

and ( i) is proved for p ::; 2 . 
The case p > 2 is treated in the same way, substituting everywhere 2 in place 

of p. · 
To state (ii) we note that for each j by (6.5) 

L l(IBrl 2 Ajc) ::; L (.Xic:tPIB1IP::; (.Xic:tP MP2-isp 
IJ Ij 

and further we proceed as above and, moreover, one can easily calculate c3 ( r) ::; 2. 
It remains to check (iii). Let }e be the latest resolution level in :le. Using again 

(6.5) we obtain for any j > }e 

' [ ] 2/p 
~:o~ :::; f llhlP :::; M2r2i•. 

Recall that by definition 2-ie ::; c2 and also the condition O'p > 1 gives s > 1/2. 
Hence 

e-22-112 (110112 - .:L I: e7] ::; 1\1122-112€-2 ~ 2-2js ::; 21v122-112 --+ o. (6.6) 
JE:le Lj J>Je 

This completes the proof of the lemma. D 
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Now we are ready to state (6.2). One has 

EeT(J) = 2-J/2 [.L L Ee(Y/ - 1) + .L L Ee[Y/l(IYII > Aj) - b(--\j)]] 
JE:T+ Ij JEJ- Ij 

where Yr= c-1er + 6. 
The random errors er are standard normal and obviously 

Ee(Yl - 1) = c-2e;. 
To estimate the second sum in ( 6. 7) we use the following property of the standard 
normal law. 

Lemma 6.4. For any ,,\ > 0 and each y 

1 
B(y, ,\) := E(y + e) 2 l(IY +~I > --\) - E e2t(l~I > --\) ~ 2y2 l(IYI > ,\). 

Proof. We assume without loss of generality that y ~ 0 . Easy to see that 

and 

This yields 
. 1 

B(y, ,\) ~ y2 P(ly + el > ,\) ~ 2y2l(Jyl > ,\). 

D 

By this lemma for each j E :J_ 

LEo[Y/I(IYrl >Ai) - b(Aj)] 2': ~ Lc-20~I(I01I > Aic) = 
~ ~ 
-2 -2 

c 2 L fJJ - c 2 L OJl(IBrl < Ajc) 
Ij Ij 

Now applying Lemma 6~3 we obtain 

ET(J) > 2-J/2c-2 [.L LO~+~ L LO~ - ~ .L LO~I(IOrl < Ajc)] ~ 
JE:T+ Ij JE:T- Ij JE.:1- Ij 

> ~ [2-Jf2c-2 llOll 2 - M 2rJf2 - c2 (r)t;J. 

The definition (6.1) of J gives by (3.6) 
2 

J/2 ? 2 (cie)4u11
+1 . -8u

11 
2 2 2 2- c-- = c- l\!J = (cte)4u11 +1j\;f4u11

+1 t; = lrr(cie)I- te 

that completes the proof of (6.2). 
The next step is estimating VareT( J). 
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Since e1 and hence Y1 are independent for different I one gets 

VarBT(J) = 2-J [.L 2: VarBY/ + .L 2: Vare(Y/l(IYrl > ,\i))] . 
JE.:l+ Ij JE.:l- Ij 

Obviously 

VarBY/ E (lc-181+612 - Elc-1fh + e1l2)2 = 
E (2c-1B16 + ei -1)2 = 

- 4c-2 BJ + 2. 

19 

To estimate the value VarB(Y/l(IY1I > Aj)) we use the following technical asser-
tion. 

Lemma 6.5. For each y and any ,\ 2:: 2 

Var (IY + e1 21(jy + el > ,\)) :::; 4y2 + 2l(IYI > ,\/2) + ,\4 e->-
2 
/s. 

Proo f. First we note that for any y, ,\ 

Var (IY + e1 21(jy + el > ,\)) :::; Va~IY + e1 2 = 4y2 + 2. 

Next, one has readily for ,\ 2:: 2 and IYI < ,\/2 

Var (IY + el 2l(IY + el > ,\)) < Ely+ el4 l(jy + el > ,\) 
< El,\/2 + e1 41(1,\/2 + e1 > ,\) :::; 
< ,\4e->.2;s 

and the lemma follows. D 

A pp lying this result, we get 

VarBT(J) :::; 2-J [ L L (4c-2e; + 2) + 
jE.:J+ Ij 

+ .L L (4c-2BJ + 2l(IB1I > Ajc/2) + ,\]e->.]fs)] :::; 
JE.:l- Ij 

< 4c-22-JllBll2 + 2-J+io + 2-J L 2i+i + 
jE.:J+ 

+ 2-J+l [.L L l(llhl > Ajc/2) + .L 2i ,\Je->.]/s] . (6.7) 
JE.:l- Ij JE.:l-

Obviously 

(6.8) 

( 6.9) 
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Also, by (ii) of Lemma 6.3 

2-J/2 L L l(lfhl > Ajs/2) ::; 4t; (6.10) 
jE.:l- Ij 

and similarly to the above 

s-22-J/2118112 = 110112 t2 = ll1ll2t2. 
r;(stc:) e e 

(6.11) 

In view of (6.7) - (6.11), we conclude for s small enough 

VareT( J) ::; 4 · 2-J/2 lltll2t; + 4 + 4 · 2-Jf2t; ::; 4 + lltll2 

since 2-Jf2t~ -+ 0 as s-+ 0 uniformly in J E Jc:. The assertion (6.3) follows. 
It remains to state asymptotic normality of ((J) in the sense of (6.4). To this 

end, we note that (( J) is a centered and normalized sum of independent random 
variables having arbitrary number of moments. Moreover, it is not difficult to check 
that, the third or forth absolute moment of (( J) is bounded uniformly on e and 
the desirable asymptotic normality can be stated by application, for instance, the 
general results by Amosova (1972). 

6.2. Proof of Theorem 4.3 
To state the lower bound from Theorem 4.3 we apply the Bayes approach developed 
by Ingster (1993). The idea is as follows. 

vVe pick in a given nontrivial parameter set T a finite subset 7; with the 
cardinality Ne: = #(7;) :x lns-2 • 

Then for each T E 7; we construct a prior measure 7r.,.. such that 7r.,.. is con-
centrated on the corresponding alternative set F.,. = { 8 : llOllb~,q ::; NI, 11811 ~ 
cr.,.(stc:)}, 

The choice of the constant c here will be made precise below. 
The whole prior 7rc: is taken of the form 

1 
1rc; = n 2:: 'Jr.,.. 

e Tc 

(6.12) 

Let P1re denote the Bayes measure for the prior 7rc:. Obviously for any test <.p 

sup sup Pe( <.p = 0) ~ P1re ( <.p = 0). 
rET BEFr 

vVe will show that for a special choice of the set 7; and the priors 7r T ' T E 7; ' 
one has for c small enough 

( 6.13) 

under P0 -probability as t: -+ 0. 
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But this yields for any test rp (see Lehmann, 1959) 

Po(rp = 1) + PJr~(rp = 0) = 1 + oe(l) 

and hence the result of the theorem. 

21 

Now we present the construction of the set Te and the priors 7re satisfying (6.12) 
and (6.13). 

Let T be a nontrivial parameter set with the corresponding O"*' O"*, p, q, 1vf. To 
be more definite and to simplify calculation we assume that p 2:: 2 and JVf = 1. 
The case p < 2 can be considered in the similar way but it requires another 
structure of the priors 7rr and slightly different technique, cf. Ingster (1993). 

Recall that in. the case of p 2:: 2 the adaptive rate is defined as 
40" 

r 'T (et e) = (et e) 4u+1 • 

Let, given T = ( O", p, q) ET, the level j( T) be defined by the equation 

(6.14) 

or 

(6.15) 

with some c E (0, 1). 
As usual, if this expression is not an integer, we assume its integer part. Since 

j ( T) depends on T only through O"., we will use also the notation j ( O") . 
Denote 

.* 
J 

:f (T) 

j(O"*), 
- j(O"*), 
- {j E J :j* ~j ~j*} 

and define for each j E :f(T) the value Tj = (O"j,p, q) by the equality j = j(O"j) 
or 

(6.16) 

The set Te consists of Tj, j E :f(T). Now we define for each j a prior 7rj which 
is concentrated on the level j . Namely, let iJ = ( rJ 1 , I E I) be a random signal 
(vector) with {) 1 = 0 for I tl: Ij and iJ 1 are iid within Ij with the binomial 
distribution of the form 

where 

First we check the condition (6.12) for these priors. One has obviously 

Iii? 112 = I: it; = 2iu; 
IJ 

(6.17) 
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and by (6.14) with CJ'== O'j and by (6.16) 

80" 
with r == Tj == ( O'j, p, q) and c' == c4a-+1 • 

Next, in the same way 

2jsp Lu~== 
IJ 

2( u+i /2-1 Ip )jp2j uP == 
e 

4p(a-+l/2) 40-+2 ( Ccte) 40-+1 ( ccte) 4a+1 P == 1. 

This means that 7r A fJ E :FTJ) == 1 and ( 6 .12) is proved. 
At the next step we evaluate the asymptotic expansion of the log-likelihood 

ln(dP7r)dP0 ) for each j E :J(T). Denote 

Lemma 6.6. The following expansion holds true uniformly in j E :J(T) under 
the measure Po 

c -7 0, (6.18) 

and 
P0 (Si > 't) 

1 sup -r , 
ltl~lne-2 1 - ~( t) 

e-r o. · 

Here Sj == 2-i/2 L-(ei - 1). 
IJ 

Proof. The similar expansion can be found in Ingster (1993) and we give only a 
sketch of the proof. 

One has easily for the model (3.1) and the prior 7rj 

·- dP1rJ _ ~ ( 1 -1 -2 2 1 { -1 -2 2}) Lj .- ln dR - Li ln 2 exp{c Ueel - c ue} + 2 exp -€ Ueel - c ue . 
o I1· 

Using Taylor expansion one has readily 

L; =I: [~e-2 u~(eJ -1) - 1
1
2e-4u!et + o (e-6u~e1)] 

IJ 

Notice now that by the definitions (6.17) and (6.14) 

Then, uniformly in j E :J(T) by the law of large number 

c-4u! l:(ei - :3) = 1;2-i IJei - 3) -r o 
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and 

c-6u~ :L e1 = l~2-3i12 :L e1 -7 o 
Ij Ij 

as c ---+ 0 under the measure P0 • 

Finally we remark that c:-2u; I:( ei - 1) = le: Si and the lemma follows. D 
Ij 

Now we state (6.13). The definition of 'lrc: yields 

1 z'lre = - :L z'lrj 
Ne: jE.J'(T) 

where 

and for c < 1 

1 z2 1 c4 lnlne-2 1 (1 -2) c4 0 -e e = -e = - n c -7 
Ne: Ne: Ne: ' 

c -7 0. 

Now the statement (6.13) follows from the next general assertion. 

23 

Lemma 6. 7. Let ((in, i, n ~ 1) be a triangle array of independent random vari-
ables on a probability space ( n, F, P) such that 

I
P( (in >'t) I sup sup - 1 ---+ 0, · 

i~n ltl9Viii7i 1 - <I>( t) 
n---+ oo. (6.19) 

If the- sequence ln be such that 

1 /2 -en -7 0, n---+ oo, 
n 

then the following convergence holds under the measure P 

1 n - L exp{ ln(in - l~/2} ---+ 1. 
n i=l 

Proof. The statement of the lemma means the law of large number for the random 
variables 

Zin =exp{ ln(in - l~/2}. 

For this it suffices to state (see Petrov, 1975) that 

n---+ oo, 

and 

n---+ oo. 
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Using the condition (6.19), one may replace (in in these statements by a standard 
normal ( and Zin by Z =exp{ ln( - z;/2}. To complete the proof it remains to 
note that 

n -7 oo, 

and 

n -7 oo. 

D 

6.3. Proof of Theorem 4.4 
The proof repeats mostly the line of the proof of Theorem 4.2 but we give an 
independent proof because this statement seems to be of special interest. 

Evidently it suffices to state the result ( 4.3) for each test 'Ploc, <.pgross and 'Pdetail 
separately. 

First we note that under Ho all the variables Y1 = c-1 X1 coincide with ~I and 
are standard normal. Hence 

Po('Ptoc = 1) < L P(l61 > i~)::; 

€ -7 0. 
. . . 

Next, by (iii) of Lemma 6.1 one has for c small enough 

Po('Pdetail = 1) < L P(2-jf2 Sj > 2t;)::; 
jE.J'* 

< #(3*)2<P(-2Vlnlnc:-2 )::; 

< ln c-2 2e - ~4 lnlne-2 -7 0 
' c -7 0. 

Finally, similarly to (ii) of Lemma 6.2 one can easily state asymptotic normality of 
the sum 

J*-1 
T0 = 2-J*/2 L Si 

i=io 
with the parameters JV(O, v6) and thus 

Po( l.Pgross = 1) = P(To > 2vot;) -7 0, c -7 0. 

This statement completes the proof of the first assertion of the theorem. 
Now we evaluate the error probability of the second kind for the adaptive test 

<.p~. In the sequel we assume that a vector () observed with noise clue to (3.1) 
belongs to the alternative set i.e. () E e~,/ivf) with some T = ( O", p, q, AI) and 
II() II 2:: Csrr (et~) · 

YVe will show that the probability of the event <.p~ = 0 is asymptotically small 
in this case. 
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vVe proceed as follows. First we study which information about the vector B 
can be extracted from the fact that 'Ploc = 'Pgross = 'Pdetail = 0. 

Then we show that this information is enough to state the desirable result. 

Lemma 6.8. Let IB1I > 4cv'ln c-2 for some I E Ir::. Then 

Pe = ( 'Ploc = 0) = or::(l ). 
Proof. Let us find B1 2:: 4ct~. Now evidently 

Pe ( <.p 1 oc = 0) < P (IX 1 I ::; 2ct~) ~ 
< P(IB1 + ce1I ::; 2ct~) ~ 
< P(le1I > 2t~) -+ 0, c-+ 0. 

0 

Lemma 6. 9. Let 2: B] 2:: 4 · 2i / 2 c2t; for some j E :f* . Then 
Ij 

Pe('Pdetail = 0) = Or::(l). 

Proof. Let j be from the lemma condition. One has by definition of 'Pdetail 

Pe( 'Pdetail = 0) ::=; Pe(2-il2 Sj ::; 2t;). 

Next, 

and one has easily 

EeSi - L [E(c-1Br + ~1) 2 - 1) = L c-2e;, 
Ij I 1-

VareSj L E[(c-101 + e1)2 - c-2e; - 1] 2 = L [4c-2BJ + 2). 
~ ~ 

Under the lemma condition we get for c small enough 

Ee Si > 4. 2if2t2 r::' 
Ee Si 4. 2i/2t2 

2: 2t;. > r:: 
JvareSi )4. 2il2t~ + 2i+l 

Further, it is not hard to state that the normalized differences 

S· - EeS· 
( - J J 

J - /VareSj 

are uniformly in j E :f* asymptotically normal in the following sense 

sup 
lti::;2Jlne-2 

Pe(-(i > t) _ l = Oe(l ). 1-<I>(t) 
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Now 

Pe(Sj < 2jf2 2t;) < Pe (-CjjVareSj > EeSj - 2jf2 2t;) :::; 
< Pe(-(j > 2t;) :::; e-t~ ___,. 0, c ___,. 0, 

and the lemma follows. D 

To formulate the similar result for the test '{)gross, we introduce the following 
notation. Let (}* be defined by ()j = () 1 for I E Ij and j < J* and {}j = 0 for 
I E Ij j ~ J* . With it 

J*-1 
11e*ll 2 = I: I: e7. 

j=jo Ij 

Lemma 6.10. If 11()*11 2 ~ 4v52J*/2c2t;, then 

Pe( '{)gross = 0) = Oe(l ). 

Proof. The proof is similar to that of in the preceding case and we omit the de-
tails. D 

Remark 6.1. The assertions of these three lemmas can be treated in the following 
way: if one observes cp~ = 0, then "almost surely" (with probability close to 1) 

1e 11 < ~et~, VJ E Ie. (6.20) 

I: e7 < 4 · 2jf2c2t;, Vj E :!*, ( 6.21) 
Ij 

J*-1 
L l:BJ < 4 · 2J* l 2v6e2t;. (6.22) 
j=jo Ij 

We will show that these inequalities imply llBll :::; rr(et~). This yields the statement 
of the theorem in view of Lemma 6.8 - 6.10. 

vVe start with the case p ~ 2. For this case the rate rr was stated to rr(e) = 
1 40" 

}\If 4u+l e 4u+l • 

We will see that in this case (6.22) and (6.21) imply llBll :::; rr(ete) i.e. the test 
cp~ provides optimal adaptive rate in any adaptive range T with p ~ 2. 

In fact, for each j E J the "smoothness" condition llOllb~,q :::; NI yields 

(6.23) 

s = (j + 1/2 - 1/p. 
Since p ~ 2 one gets also 
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Combining with ( 6.21) and ( 6.22) we obtain for any J > J* 

11811
2 

< (~. + r~<J + ~) f l81l
2 ~ 

< 4v22J* /2c2t2 + ~ 4c2t22j/2 + ~ J\;J22-2js < 
0 e ~ e ~ -

j<J j~J 

< 4v~2J* l 2c2t; + 8e2t;2J/2 + 2NJ22-2Js 

J -- (2J.;~~)4/(4o-+1) Now we pick J to minimize the last expression. This leads to ~Yl 

and with such J 
8CT 

11011 2 ~ 4 c~;·) <o+I 

and the assertion follows for p 2:: 2 . 
For the case p < 2 we proceed in the similar way but using in addition the result 

(6.20) from the test 'Ploc. For any j E :J we get by (6.23) 

Lo;·~ L( 4et:) 2-Pl81lp ~ ( 4ct:)2-p 1VJP2-jsp 
Ij Ij 

and similarly to the above we obtain for any J 
11811 2 ~ 4v~2J*/2c2 t; + 8e2t;2Jf2 +2(4ct:)2-p1VJP2-jsp. 

Now the "optimal" choice of J leads to 

J "'=! s + ll/(2p) log2 ( 4:~ )-1 = 4o-';+ 1 log2 ( 4:~ )-1 
\Nith it one gets 

(et')*' 11811 2 ~ const. NI 
and the theorem follows. 
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