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Abstract

In this work, we discuss an efficient modeling approach for the simulation of Broad Area
Laser Diodes. Our method is based on the analytical solution in the spectral domain of the
paraxial wave equations for the forward and backward slowly varying traveling waves. We
show how to extend to the lateral dimension and to the influence of diffractive terms the
idea of mesh decimation by recasting traveling wave models into coupled delay algebraic
equations, as discussed in [1]. We compare the results of the dynamics obtained with our
improved model with the results of a standard traveling wave description in the cases of
straight current stripes as well as in the important configuration of high power tapered
anti-reflection coated devices. We obtain an excellent agreement and an improvement of
the integration time between one and two orders of magnitudes which may alleviate the
necessity of using complex parallel codes. We discussed how the method can be further
improved to other, more refined descriptions of the active medium and to the inclusion of
thermal effects.

1 Introduction

The optical power that can be extracted from a Semiconductor Laser (SL) is limited because
of Catastrophic Optical Damage (COD). One path used to circumvent this limit is to increase
the volume of the lasing mode, which in the simplest case is achieved by increasing the lateral
dimension, thus leading to the so-called Broad-Area Laser Diodes (BALDs). BALDs are usually
easy to fabricate which makes these devices useful for characterizing the properties of the active
material because parameters like the gain, the differential gain and the quantum efficiency can
be extracted from their L-I curve. Typical BALDs have lateral dimensions of the order of 100µm
- 500µm, and allow to obtain CW output powers of the order of 10 W [2]. However, the emission
profile of these lasers usually presents a low quality, with M2 factors substantially larger than
unity [3], which prevents their application in fields where a close to diffraction limited beam is
required, such as for example marking. As a consequence, BALDs are mainly used for optical
pumping of high-power solid-state lasers, and specialized optical manipulation of their beam is
required for pumping of fiber amplifiers or lasers [4].

The poor beam quality of BALDs originates from their large lateral dimension, which allows for
many lateral modes that are nearly degenerated in gain. This leads to multipeaked near-fields,
but more important, the spatial profile usually depends on the current value due to carrier-
induced self-focusing, which might even lead to chaotic filamentation of the beam [5]. The origin
of this phenomenon is the so-called Spatial Hole Burning (SHB): in regions of high optical in-
tensity, the local gain (and thus the local carrier density) is depressed by stimulated emission;
this depression leads to a local increase of refractive index which tends to further confine the
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light and to increase the local field intensity. An additional consequence of filamentation is that
the resulting SHB leads to multimode operation.

Several strategies have been proposed to improve beam quality in BALDs, mostly based on
spatial filtering aimed at suppressing higher order lateral modes, e.g. the use of Bragg gratings
[6], the α-DFB [7, 8], unstable resonators [9, 10], optical feedback [11, 12], tapered lasers [13],
master-oscillator/power amplifiers (MOPAs) [14] or etched patterns [15]. However, filamentation
due to SHB depends on the working point of the laser and its analysis requires models and
simulation tools that take into account the whole state of the system. Different physical models
have been proposed in order to understand the behavior and the modal properties of BALDs.
These models are based mainly in the paraxial wave-equation completed with the Bloch equa-
tion for the carriers and the induced polarization of the medium, but there are other approaches
based on stationary electro-thermal-optical characteristics [16]. A traditional used approach to
numerically compute the stationary solutions of these approaches are based on Beam Prop-
agation Methods (BPMs), specially the Fox and Li method [17] using Perfectly Matched Layer
(PML) boundary conditions [18]. Other stationary approaches to calculate the modes of BALDs
are based in resulting Helmholtz equations from performing the mean-field approximation in
the longitudinal direction [19] and performing the Linear Stability Analysis (LSA) via a Green
function method [20].

However, a time-dependent approach would be the appropriate choice in order to assess multi-
mode behavior and filamentation effects. Such approaches have been successfully applied to
BALDs, amplifiers and tapered lasers. They are based on discretized schemes like for example
the Hopscotch method [21], an explicit scheme with some implicit character, or split traveling-
wave models (TWMs) where the diffraction in the lateral dimension is computed via spectral
methods [14]. From the numerical point of view, the two-dimensional character of the field and
of the carrier distributions combined with the large spectral width (∼ 10 − 50 nm) of the gain
curve in semiconductor materials, result in models that are characterized by huge number of
degrees of freedom (DOF). Such large numbers of DOF demand an exceedingly large com-
puting power for performing exhaustive simulations in the asymptotic regimes using standard
Finite-Differences Time-Domain (FDTD) approaches [22]. In general, all the spatially resolved
and time dependent approaches are strongly hindered by the stiffness of laser dynamics: to
properly account for the broad gain spectrum one must use an appropriately small time step
δt, while the Courant-Friedrichs-Lewy (CFL) [23] condition for numerical stability imposes an
accordingly fine spatial discretization δz.

Recently, it was shown by some of us [1] that a one dimensional TWM can be recast into an
ensemble of a few coupled Delayed Algebraic Equation. The method relies on approximating the
analytic solution of the field propagation equation, and allows to substantially reduce the number
of DOF that must be non trivially updated after each time step, as compared to methods based
on finite-differences. It was shown in [1] that such a description for a bi-directionaly emitting
laser cavity containing an extended medium permits to drastically reduce the computation time
as compared to a TWM while accurately preserving the dynamics even in the strongly non linear
regimes of passive mode-locking. The large reduction in complexity allowed for a direct linear
stability analysis (LSA) and numerical bifurcation diagram reconstruction. However the method
discussed in [1] cannot be applied per se in the case of a multi-dimensional laser due to the
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presence of diffraction in the transverse plane that must be properly accounted for.

In this paper we present an efficient model for the simulation of BALDs that is based on a
combination of a Fourier method and of the Delay Algebraic Equations method developed for
the simulation of narrow-stripe SLs [1]. The resulting model consists in several coupled DAEs in
the Fourier domains describing the temporal evolution of the optical field that are coupled to the
active medium polarization that is still described in the direct space.

The article is organized as follow: In section II, we detail outline our modeling approach and the
numerical method we developed. In Section III, we explain the major results of the decimation
method and how it allows to recover known results of the dynamics of BALDs like the so called
zipper states and the transition to chaotic transverse and longitudinal dynamics. We also discuss
the important case of the dynamics of tapered laser. The conclusions are given in Section IV.

2 Model

2.1 Traveling-Wave equations

Our model for the gain-guided BALD considers a single polarization mode in the transverse
direction. The optical field in the cavity is assumed to be almost TE polarized and it is decom-
posed into a forward and a backward wave, E±(x, z, t), whose instantaneous distributions in
the lateral (x) and longitudinal (z) direction are described in the paraxial approximation by a
TWM [24] extended to include diffraction in the transverse dimension. In addition, the carrier
densityN(x, z, t) in the cavity is decomposed into a quasi-homogeneous termN0(x, z, t) and
a grating term at half the optical wavelength, N±2(x, z, t), with N−2(x, z, t) = N∗2 (x, z, t).
Scaling the two spatial coordinates and time as (x, z, t) = (X,Z, T )/(Lx, Lz, τ) , where the
time of flight in the cavity is τ = nLz/c, the resulting equations read

(∂t ± ∂z)E± = i∆∂2
xE − αiE± + iP± , (1)

∂tN0 = J (x, z)−R (N0) +D∂2
xN0 − i

(
P+E

?
+ + P−E

?
− − c.c.

)
, (2)

∂tN±2 = −
(
R′ (N0) + 4Dq2

)
N±2 − i

(
P±E

?
∓ − E±P ?

∓
)
, (3)

R (N) = AN +BN2 + CN3. (4)

where αi takes into account for the internal losses, J(x, y) is the space dependent pump
current, D = D̃L−2

x is the scaled diffusion length and ∆ = λ0/(4πn)LzL
−2
x is the scaled

diffraction length, with λ0 the wavelength in vacuum and n is the group index. For the sake of
simplicity we have neglected the transverse diffusion ( i.e.D∂2

xN2) of the longitudinal population
grating N2 since the actual decay rate 4Dq2 ∼ 1012 s−1 correspond to a length well below
the diffusion length. The carriers are normalized to the transparency density Nt and the non
linear recombinationR (N) contains the non radiative (A), the radiative (B) and the Auger (C)
contributions. The boundary conditions at the left and right facets reads in the simplest case of
a Fabry-Pérot cavity

E+ (x, 0, t) = rlE− (x, 0, t) ,
E− (x, 1, t) = rrE+ (x, 1, t) .

(5)
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The field amplitudes and the carrier density components are coupled through the polarizations
of the active medium, P±(x, z, t), which describe in time-domain the carrier-induced gain and
refractive index experienced by the forward and backward fields. Analytical approximations to
the optical response of the medium in frequency-domain exist in simplified cases (two parabolic
bands and assuming low temperature) either including [25] or not [26] spectral hole burning in
the carrier distribution. When spectral hole burning is negligible, a time-domain description of the
material polarization P (x, z, t) can be found in the intraband quasi-equilibrium approximation,
which is valid for time scales longer than the intraband relaxation rates (∼ 0.1 ps) [27]. In
this limit, P (x, z, t) is described by a convolution kernel that reproduces the full gain curve
of the semiconductor material hence permitting to describe both gain and absorbing sections
simultaneously. When the dynamics is restricted to the vicinity of the band-gap, as is the case
of BALDs, it is possible to use a simpler Padé approximation to the optical response as that
developed in [28].

In the asymptotic limit of a very broad semiconductor band (i.e. b → ∞ with the notations of
[26]), the link between the polarization and the field is given in frequency domain as

P (x, z, ω) = χ [D (x, z) , ω]E (x, z, ω) , (6)

χ (D,ω) /χ0 = ln

(
ω

γ
+ i

)
− 2 ln

(
ω

γ
+ i−D

)
+ iπ + ln 2, (7)

where D(x, z) = N (x, z) /Nt denotes the carrier density at point (x, z) normalized to the
transparency carrier density. The gain, given by the imaginary part of χ, has a maximum at fre-
quency ωp(D) = γ

(√
2D2 − 1−D

)
. A diagonal Padé[1,1] approximation of the frequency

domain susceptibility around the dynamic frequency ωp where the gain is maximal reads

χ (D,ω) ' χ (D,ωp) + (ω − ωp) a
1 + (ω − ωp) b

, (8)

a = χ (D,ωp) b+ ∂ωχ (D,ωp) , (9)

b = −1

2

∂2
ωχ (D,ωp)

∂ωχ (D,ωp)
, (10)

The polarization at a given point (x, z) therefore reads

[1 + (ω − ωp) b (x, z)]P (x, z, ω) =

[χ [D (x, z) , ωp] + (ω − ωp) a (x, z)]E (x, z, ω) , (11)

where the spatial dependence of a and b arises from that of D. In the cases where the gain
does no possess a maxima, as for instance in the unpumped regions around the gain stripe, the
Padé approximation is performed at the band-gap frequency, i.e. ωp = 0.

Decomposing the field into forward and backward waves and the carrier density into homo-
geneous and grating terms, and assuming the grating term to be small in comparison to the
homogeneous one, we find that
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[1 + (ω − ωp) b (x, z)]P± (x, z, ω) =

[χ [D0 (x, z) , ωp] + (ω − ωp) a (x, z)]E± (x, z, ω) +

∂Dχ (D0(x, z), ωp)D±2(x, z)E∓(x, z, ω) , (12)

where we have neglected the impact of the grating terms on a and b. Finally, using that ∂t →
−iω, the time domain evolution equation for the polarizations can be written as

∂tP± = −
(

1

ib
+ iωp

)
P± +

χ− ωpa
ib

E± +
a

b
∂tE± +

∂Dχ

ib
D±2E∓, (13)

where χ = χ(D0(x, z, t), ωp) and a and b are given by eq. (9) and eq. (10), respectively, with
D = D0(x, z, t).

2.2 Numerical method

Our numerical method for solving eqs. (1-4) and eq. (13) adapts the Delay Algebraic Equa-
tion (DAE) approach developed in [1] to the case of a gain guided BALD. The main difficulty
arises from the diffractive term in eq. (1) as any approximation over the spatial derivative us-
ing e.g. finite differences would introduce numerical artifacts in the dispersion relation of the
transverse mode and therefore potentially spoils the dynamics. This problem can be circum-
vented by Fourier transforming eq. (1) along x which leads again to an uni-dimensional TWM.
This allows to exploit the exact solution by integrating over the so-called forward and backward
characteristics [29] and to obtain again a DAE that reads

E± (q, z, t) =E± (q, z ∓ h, t− h) e−(i∆q2+αi)h + iS±, (14)

S± =

∫ h

0

dsP± (q, z ∓ s, t− s) e(i∆q2+αi)s. (15)

The source term S± is approximated by assuming a linear variation of the polarization in Fourier
space along the characteristics, i.e. we assume that the distance h between the two points is
short enough for the Uniform Field Limit (UFL) to hold and as such we have that

S± ' w1P± (q, z ∓ h, t− h) + w2 [P± (q, z, t)− P± (q, z ∓ h, t− h)] , (16)

w1 =
e(i∆q

2+αi)h − 1

(i∆q2 + αi)
, (17)

w2 =
e(i∆q

2+αi)h [(i∆q2 + αi)h− 1] + 1

(i∆q2 + αi)
2 h

. (18)

The approximation in eq. (16) is valid up to second order in h, the length of the characteristics.
Notice also that in eqs. (14,15) the treatment of propagation losses and of diffraction is exact.
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Hence the full modal structure of the resonator is perfectly reproduced. One remarks that such
a DAE can be written only in Fourier space which is not convenient for the active material
description. Hence the methodology consists in transforming back in forth between the direct
and the Fourier space to update the field and the polarization and carriers with the following
sequence (fields in Fourier and direct space are denoted by the same letters but depend either
on x or on q):

1 Perform a first order explicit Euler prediction of E± (q, z, t+ δt) and transform back to
space (x) domain to obtain a first order estimate of E± (x, z, t+ δt).

2 Perform a second order semi-implicit evolution of the polarization and getP± (x, z, t+ δt)
as in [28] and Fourier transform to get P± (q, z, t+ δt).

3 Perform the second order semi-implicit evaluation of E± (q, z, t+ δt) as in [28] and
transform back to space (x) domain to get E± (x, z, t+ δt).

4 By using staggered grid for the population inversion (see the appendix of [30] for in-
stance), the carrier equations eqs. (2-3) are treated as in [28]. Here, the effect of carrier
diffusion is not critical and can be treated classically using finite centered difference in
space.

In a normal Fourier based TWM, one must use an identical temporal and longitudinal increment
(the speed of light being scaled to unity), i.e. h = δt in order to fulfill the CFL condition [23].
The DAE approach allows to decouple the two values and to “leapfrog” between spatial points,
hence the idea of mesh decimation. Such a decoupling is relevant since the temporal increment
must be chosen according to the stiffness of the active material response, γδt� 1 in our case,
while the spatial increment is related to the gain amplification and to the field non uniformity
along the characteristics. By analogy with a TWM approach, we define the decimation factor D
denoting the number of skipped spatial points as D = h/δt. When D = 1, one recovers the
usual TWM, see [1] for details.

2.3 Reconstruction

In the case of a large decimation factor the effective mesh along the laser cavity is only com-
posed of a few points. Still, all the complexity of the dynamics remains intact and is hidden in the
past values of the field kept at each mesh point. For instance, it is still possible to reconstruct
the full two dimensional profile by using the past values of the fields. Such a reconstruction at
a point zi is done from a past value tp of the closest point on the left zl (resp. right zr) for the
forward (resp. backward) propagating wave and reads

Ẽ (x, zi, t) = F
{

[E± (q, zl,r, tp) + tpP± (q, zl,r, tp)] e
−(i∆q2+αi)tp

}
, (19)

with tp = |zi − zl,r|. This spatial reconstruction of the longitudinal profiles of the fields achieved
in eq. (19) is simply an Euler prediction from the past values to recover the corresponding mesh
points. The result of such a reconstruction is exemplified in Fig. 1 in the case of a straight,
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100µm wide BALD operated in a chaotic regime and where the dynamics is both multimode in
the longitudinal and in the transverse dimension. The smoothness of the reconstructed profiles
indicate a posteriori that no significant information is lost.
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Figure 1: Mesh reconstruction from the past values in the case of a 100µm device. The decima-
tion factor is D = 16 which corresponds to (Nz − 1)/D = 17 points. The current is J = 3Jth
and the facet reflectivies are rl = 1 and rr =

√
0.5.

3 Results

In order to test the numerical method described in the previous section, we consider two BALDs
of width Wx = 28µm and Wx = 57µm, as well as a wide tapered device whose transverse
length ranges from 10µm to 100µm. We take the lateral extent of the integration region as
Lx = 2Wx to ensure that the fields experiencing diffraction on each side of the current stripe
have a sufficient interaction length to decay smoothly to zero. Such a precaution is important
since the Fourier method we use dictates periodic boundary conditions in the transverse di-
mension: any energy flowing out on each side is not lost and re-enters on the other side of
the integration domain which may spoil the asymptotic dynamics. We assume typical values
for the semiconductor material as detailed in Table 1. In addition, we fixed the mesh size to be
(Nx, Nz) = (128, 257). Such a convenient value of the mesh size in the longitudinal direc-
tion allows us to use decimation factors of D = (128, 64, 32, 16, 8, 4, 2, 1). The longitudinal
length of all devices is fixed of 1 mm which lead to a single trip of τc = 12.5 ps and to a modal
separation of 40 GHz. The temporal increment is δt = τc/Nz ∼ 48 fs.
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Symbol Value Units Meaning
λ0 1.55 µm Emission wavelength
n 3.75 - Effective index
Γ 5% - Optical confinement factor
r 1/0.5/0.01 - Facet power reflectivity
τc 12.5 ps Cavity transit time

2αi 15 cm−1 Internal losses
Ωg 0 GHz Band-Edge Frequency
2χ0 1500 cm−1 Gain factor
b ∞ - Empty band contribution
γ 8× 1012 s−1 Polarization decay rate
Nt 1× 1018 cm−3 Carrier Density at transparency
D 20 cm2s−1 Ambipolar diffusion coefficient
A 1× 108 s−1 Non radiative recombination
B 7× 10−10 cm3s−1 Spontaneous recombination
C 1× 10−29 cm6s−1 Auger recombination

Table 1: Table of the parameters used in the simulations

3.1 Bifurcation diagram

As a first test of the decimation method in the bi-dimensional case, we examine the sequence
of bifurcations in the mode profile that occur as a function of the bias current in the cases of a
narrow and a moderately wide devices. In both cases, we consider devices that are relatively
far from the uniform field limit since rl = 1 and rr = 0.5. It was shown in [1] that the higher
decimation factors can be used when one is closer to the uniform limit. The threshold is attained
for J ∼ 35.

The upper panels in Fig. 2 show the near field output of a device with a relatively narrow stripe
of width Wx = 28µm for D = 1 (i.e., no decimation and thus Nz = 257), while the lower
panels correspond to D = 32 and thus Nz = 9. The left column is a temporal zoom of the
right one. In both cases, a bifurcation from emission in the fundamental transverse mode to
emission into a so-called zipper state, see [31] for details, composed of two transverse modes
occurs for J ' 70. The emission profile in the zipper state alternates from one side to the other
of the stripe, with a frequency that decreases with current. The dynamic characteristics (profile,
oscillation frequency, etc.) of the zipper state are the same for the two cases, evidencing that
decimation factors D = 32 preserve the dynamics of the system in the present case.

We repeated the same analysis for a broader device, Wx = 57µm. Here a transition from
the zipper state toward chaotic transverse dynamics occurs as detailed in Fig. 3. Although the
quasi-periodic zipper regime is properly reproduced, in the simplified model with D = 32, the
time traces look different for high current although the optical spectrum remains quantitavely
identical. In a chaotic regime such a discrepancy has to be expected and two times traces
without decimation, i.e. D = 1, but with different initial conditions would look as dissimilar.
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Figure 2: Numerical bifurcation diagram in the case of a 28µm wide BALD. A zipper state
emerge and remains stable up to four times threhold. The period of the zipper increases with
current as expected. Excellent agreement between the full 2d TWM approach (top) and the
decimated mesh approach (bottom) with D = 32 is found.
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Figure 3: Numerical bifurcation diagram in the case of a 57µm wide BALD. A zipper state
emerges but do not remain stable and a transition to transverse multimode dynamics occurs.
Only a qualitative agreement between the time traces of the full 2d TWM approach (top) and
the decimated mesh approach (bottom) with D = 32 is found due to the chaotic dynamics.
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3.2 Convergence test

Since it is somewhat difficult to compare chaotic time traces, we devised another test. In the
case of a 57µm wide device a full 2d TWM simulation (i.e.D = 1) is performed. Then, the final
state of such a simulation serves as an initial condition in a second run (without any stochastic
compoent) using different level of decimation, i.e. removing more and more active points from
the initial condition. One expect that the chaotic trajectories remain arbitrarily close during a
finite time of integration. We choose a long simulation time of T = 1.25 ns. The result of this
approach is depicted in Fig. 4. An excellent agreement is found even after a relatively long time
of integration with D up to 32. For D = 64 a very similar regime is found although the period is
slightly affected (two extra oscillations after T = 1.25 ns, i.e. a 4% mismatch in the fundamental
period of the quasiperiodic regime). Since the temporal time traces looks identical, we quantified
the mismatch on the output facet in Fig. 5 by representing the normalized deviation between the
trajectories

e =

∫ 1
2

− 1
2

∣∣ID+ (x, 1, T )− ID=1
+ (x, 1, T )

∣∣ dx∫ 1
2

− 1
2

ID=1
+ (x, 1, T ) dx

In Fig. 5, we also depicted the best fit of e (D,T ) with a quadratic law in D thus confirming the
our method is consistently of second order both in space and in time.

3.3 Tapered dynamics

We have showed so far that the decimation method discussed in [1] can be extended success-
fully to broad area lasers that do not operate too far from the uniform field limit (i.e. for moderate
or high values of rlrr). The method also assumes implicitly a certain uniformity of the param-
eters in the longitudinal direction which justifies the quasi-linear approximation of the source
term in eq. (16) along the forward and backward characteristics. Here we demonstrate that the
method is still applicable although to a lesser extend in the most unfavorable case of a spatially
dependent tapered gain medium enclosed in a strongly asymmetric cavity composed of a high
reflection coated mirror and of an anti-reflection coated facet (hence low values of rlrr). The
tapered gain section is linearly increased from l1 = 10µm to l2 = 100µm which represents
an opening angle θ = 2.5 o in our 1 mm device. We assume that rl = 1 and rr = 0.1. The
threshold current is Jth = 125. We biased the device up to J = 1.4Jth which is quite far from
threshold for such kind of device. For all current values, the dynamics remains quantitatively
identical for decimation factors up to D = 16 and upon increasing the bias current the near
field pattern shows some amount of symmetry breaking. However, simulations performed with
D = 32 or D = 64 gives erroneous predictions in the form of a self pulsating instability at
the frequency of the relaxation oscillations (∼ 3 GHz) for J = 1.4Jth as depicted in Fig. 6.
Although such a bifurcation is expected after a symmetry breaking since the field is going to see
more and more the umpumped regions which act as a weak saturable absorber, the bifurcation
point of such a regime here is poorly estimated.

We represented in Fig. 6 a short segment of the temporal evolution of the near field pattern
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Figure 4: Spatially resolved time trace for the right output |E+ (x, 1, t) |2 from the same initial
condition in the absence of noise and using different decimation factors. From top to bottom the
decimation factors are D = 1, 16 and 32. An excellent agreement between the full 2d TWM
approach (D = 1) up to D = 32 is found even after a long 1.25 ns integration time.
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Figure 5: Error e in the near field output intensity pattern integrated over the transverse dimen-
sion on the right facet for different decimation factors. The mismatch fits with a second order law
in D and remains bounded even after 1.25 ns of time integration in a chaotic regime.

as well as the beam profile on the anti-reflection coated right facet both in the case of a fully
spatially resolved two dimensional TWM, i.e. D = 1 and with D = 16. The current is biased
from threshold Jth = 130 toward J = 1.5Jth where the tapered BALD develop a longitudinal
multimode instability. Here again a quantitative agreement is found and the mesh reconstruction
gives a smooth spatial profile. However, with D = 32 the multimode instability develops for
lower values of the bias current and the mesh reconstruction is not smooth, which signal that
the distance between spatial point is too large to perform a quasi-linear approximation in eq.
(16). We exemplify in Fig.7 the mesh reconstruction with a method similar as the one discussed
in Fig.1. One can clearly see that D = 64 is way too large and that the field reconstruction is
not smooth. Some remaining artefacts can still be seen with D = 16 which signal that for such
a demanding, tapered, asymmetric device D = 16 is the upper limit one can use.

3.4 CPU time

The result comes here at no surprise: the CPU time is simply divided by the decimation factor.
Notice however that the memory footprint remains unaffected by the decimation factor since
the “missing” spatial points are now folded into the additional time delays. The scaling of the
CPU time as a function of D is depicted in Fig. 8. The typical reduction of at least one order of
magnitude observed renders BALDs simulations doable on a single computer and thus avoid all
the implementation difficulties associated with truly parallel MPI codes. Still, such a simplified
model as the one discussed here can benefit from a moderate amount of trivial parallelism using
OpenMP by sharing the longitudinal “slices” between a few cores of a multi-core processor. Here
a quasi linear scaling was observed up to four cores.
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Figure 6: Time dependent near field pattern (left) and snapshot of the field intensity and car-
rier profiles for different decimation factors. A self pulsating regime develops due to the poor
accuracy of the model for D > 16.
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Figure 7: Mesh reconstruction from the past values in the case of a tapered device. The decima-
tion factors areD = 64 andD = 16 from top to bottom which corresponds to (Nz−1)/D = 5
and 17 points, respectively. The current is J = 1.4Jth and the facet reflectivies are rl = 1 and
rr = 0.1. Notice the symmetry breaking with respect to the current stripe.
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Figure 8: Normalized CPU run time for a 100 roundtrip simulation as a function of the effective
number of active spatial point in the longitudinal direction (Nz − 1) /D (left) and as a function
of the decimation factor (right). An almost perfect linear scaling with D−1 is obtained.

4 Conclusion

In this manuscript we discussed how an efficient numerical approach for the simulation of BALDs
based on solving the paraxial wave equations for the forward and backward-traveling waves in
the spectral domain can be obtained. This allowed us to extend the idea of mesh decimation
discussed in [1] to several dimensions and to the influence of diffractive terms. Such a method
allows to decouple the longitudinal discretization over which the evolution is smooth and the
temporal and transverse ones. The model discussed in this manuscript is based on a Padé
approximation of the response of the active medium similar to the one discussed in [28]. How-
ever, Padé approximant have a restricted domain of validity in the frequency domain and are
not adapted to broad band dynamics induced by e.g. reverse bias saturable absorbers. Our ap-
proach can be readily extended to other descriptions of the active medium and for instance to the
time domain convolution kernel recently developed in [32, 27]. Another important improvement
of the method discussed would consider the inclusion of the thermal and electro-thermal effects
due to current injection and field two photon absorption which are known to play a dominant
role in the dynamics of BALDs. Last but not least, distributed feedback in the weak coupling
approximation and assuming uniformity of the coupling in the transverse plane can by read-
ily implemented as in [24]. While the implementation of the aforementioned points are quite
straightforwards, combining the DAE method, valid for gain guided BALD with the effect of an
index guiding structure in the transverse plane remains a completely open problem.
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