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ON EFFICIENCY BOUNDS FOR 
ESTIMATING THE OFFSPRING MEAN 

IN A BRANCHING PROCESS 

Alexander A. Gushchin 
Steklov Mathematical Institute, Moscow 

ABSTRACT 
Suppose that we observe the branching process with nonrandom immigration 

Xk-1 

Xk = L Yk,i + 1, k = 1, 2, ... ' xo = 1, 
i=l 

Yk,i are i.i.d. random variables with an unknown distribution p on {0, 1, 2, ... } with 
finite second moment. We study the problem of efficient estimation of the offspring 
;,:iean ~(p) on observing a single realization { x1, ... ~ Xn }. For a sequence of estimators 
'13n = "3n(x1, ... , xn) satisfying some "regularity" properties with respect to "small 
perturbations" near a point p, we prove an asymptotic lower bound on the deviation 
'Jn - 'IJ(p). This lower bound has the same form in the subcritical, the supercritical 
and the critical cases. The estimator 

is asymptotically efficient at every point p in our approach. 

1. INTRODUCTION 
Suppose that we observe a stochastic process with an unknown distribution P 

which is assumed to belong to some large nonparametric family P, and we wish 
to estimate a one-dimensional functional {): P -7 R 1 of this family. 

One can suggest the following scheme for the problem of asymptotically 
efficient estimation of iJ. 

1. For . a fixed P E P, we introduce a class P( P) of one-parameter local 
submodels around the "point" P. Usually every submodel in P(P) must be 
approximated by a limit statistical experiment from a certain class. 

2. Given an arbitrary submode! in P(P), we find a lower bound on the 
asymptotic performance of estimators in the parametric problem of estimating{) 
in this submodel. 

3. We choose a "least favorable submode!" in P( P), i.e., a submodel for 
which the lower bound (Step 2) is maximized among the class P(P). 
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4. An estimator is said to be asymptotically efficient at the point P if it 
attains the lower bound corresponding to a "least favorable submodel" in P( P). 

5. An estimator is said to be asymptotically efficient in P if it is asymptoti-
cally efficient at every point P E P. 

To apply this scheme to a particular statistical model, we must specify the 
class P(P) (Step 1) and the asymptotic lower bound theorem (Step 2). It is im-
portant to take the class P(P) large enough in order not to miss a "least favorable 
submodel", so the appropriate choice of P(P) depends on the model under con-
sideration. If we observe a stochastic process of ergodic type (in particular, if 
the observations are independent and identically distributed), the widely used 
approach consists of considering locally asymptotically normal submodels, i.e., 
submodels which can be approximated by Gaussian shift experiments. Then it is 
natural to take the asymptotic lower bounds given by the convolution theorem 
or by the asymptotic minimax theorem at Step 2. The lower bounds given by 
these theorems are inversely proportional to the value of the Fisher information 
(about '!9) in the limit experiment. So both these theorems lead to the same 
description of the "least favorable submodels" and, moreover, they lead to the 
same description of asymptotically efficient estimators. This approach is origi-
nally due to Levit (Levit, 1973, 1975), see also the exposition in (Ibragimov and 
Has'minskii, 1981, Chapter 4.1). The problem of constructing estimators which 
are asymptotically efficient in P under this approach has been successfully solved 
for a wealth of semiparametric models, see e.g. (Bickel et al., 1993). 

In this paper we consider a specially chosen example of estimating the off-
spring mean '!9( P) in a branching process with nonrandom immigration. This 
process exhibits qualitatively different behavior for different parameter values. It 
is ergodic only if '!9( P) < 1 (the sub critical case). If fJ( P) > 1 (the supercritical 
case) then it grows exponentially fast, and it is unstable if '!9( P) = 1 (the critical 
case). 

In this model the class of locally asymptotically normal submodels is too 
poor for "points" P with fJ(P) ~ 1. We suggest considering a larger class of one-
parameter local submodels which can be approximated by a limit experiment 
of a rather general form, not necessarily by Gaussian shift experiments. We 
do not use the convolution theorem or the asymptotic minimax theorem as the 
asymptotic lower bound theorems at Step 2, though there are different versions 
of these theorems which are valid for much more general families of experiments 
than locally asymptotically normal families, see e.g. (Le Cam, 1986; Greenwood 
and Wefelmeyer, 1993; Shiryaev and Spokoiny, 1994). The reasons are that, 
firstly, it is not always possible to find a "least favorable submodel" (Step 3) or, 
secondly, the corresponding bounds are not sharp and asymptotically efficient 
estimators do not exist. Instead of this, we use the asymptotic lower bound 
given by an asymptotic version of the Cramer-Rao inequality, see (Gushchin, 
1995b ). The advantage of this approach is that the corresponding lower bound 
is inversely proportional to the value of the Fisher information (about '!9) in 
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the limit experiment again, which makes it possible to find a "least favorable 
submodel" easily. This lower bound is not always sharp, but it is sharp for locally 
asymptotically quadratic families, cf. (Gushchin, 1995a). Since in our model it 
is possible to find a "least favorable submodel" which is locally asymptotically 
quadratic, we can describe the estimators which are asymptotically efficient at a 
fixed P. Finally, we find an estimator which is asymptotically efficient in P in 
our model. 

The following notation and definitions are used throughout the paper. N = 
{1, 2, ... } is the set of natural numbers, No = NU{O}. Let P and P be probability 
measures on a measurable space (f!, F). We denote by dP / dP the density of f 
with respect to P defined as dP /dP = J/J, where J and J are the Radon-Nikodym 
densities of P and P respectively with respect to Q = ( P + P) /2. The distance 
in variation llP - Pll between P and Pis defined by 

- - J JI dP I -{ dP } llP-Pjj=2~~~1P(B)-P(B)I= fi-JldQ= dP-ldP+P dP=oo. 

- -The Hellinger distance p( P, P) between P and P is defined by 

p2(P,P) = ~ !( ./3-VJ)2 dQ = ~ !( VdP/dP-1) 2 dP + ~P{ ~~ = 00} 
= 1- H(P,P), 

where H(P, P) = J /"iJ dQ =JV dP /dP dP is the Hellinger integral (of order J) 
between P and P. 

Let (pa, a E A ~ R 1 ) be a family of probability meas~res on ( n, F) and 
a 0 E A a cluster point of A. Denote zo: = dPo: / dPo: 0 • We shall say that (Po:) is 
L 2 -differentiable at a 0 if there exists a random variable V E L 2 ( po:o) such that 

y'ZQ-1 v 
--- ----+ -
a-ao 2 

and 
Pa{zo: = oo} = o(la - aol 2) 

as a -t a 0 • In this case V is called the score function of (Po:) at ao, we have 
Eao [V] = 0 and the variance 

I= Vara0 [V] = Ea0 [V2] = 8 lim p
2
(po:o, pa) (1.1) 

o:~ao (a - ao)2 

is called the Fisher information about a in (Po:) at ao (where Ea and Vara: are 
the expectation and the variance respectively under pa). 

The next proposition is a slightly modified version of the result on differ-
entiating under the expectation sign which is used to prove the Cramer-Rao 
inequality, cf. (Witting, 1985, Satz 2.136) and (Gushchin, 1995b ). 
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Proposition 1. Let (pa) be L 2 -differentiable at a 0 witb tbe score function V 
and T a random variable sucb tbat Vara. [T] ~ C < oo in a neigbborbood of ao. 
Tb en tbe function m( a) = Ea [T] is differentiable at ao and 

m' ( ao) = Ea. 0 [TV]. 

If en are random vectors given on probability spaces (nn' ;:n' pn) with values 
in Rd' then £(en I pn) :::} £( 0 will mean that one can construct a probability 
space (Q*, F*, P*) and a random vector~ defined thereon with values in Rd such 
that the distributions of en under pn weakly converge to the distribution of e 
under P* as n -+ oo. The notation E* will -indicate the expectation with respect 
to P*. 

2. A STATISTICAL MODEL 
We consider a statistical experiment where the observation is a Galton-

Watson branching process with (nonrandom) immigration defined by 

Xk-1 

Xk = L Yk,i + 1, k = 1, 2, ... , x 0 = 1, 
i=l 

(2.1) 

Yk,i are i.i.d. random variables with an unknown distribution p on N 0 • Let 
Pi = p( {j} ). It will be assumed that I:J:o j2pj < oo. For the mean and the 
variance o~ the offspring ~istribution p write . 

00 00 

rJ(p) = L jpj, a2(p) = L (j - rJ(p))2Pi· 
j=O j=O 

The estimation problem is to determine rJ(p) on observing a single realization 
of the process { x1 , ... , Xn}. We do not consider estimation problems when all 
offspring sizes are observed. 

There is a huge literature on inference for Galton-Watson branching pro-
cesses with random immigration, see for instance (Winnicki, 1988; Wei and Win-
nicki, 1990) and references therein. Our assumption that the immigration is non-
random is done to simplify the problem. On the other hand, if the observation 
is a Galton-Watson branching process without immigration: 

Xk-1 

Xk = L Yk,i, k = 1, 2, ... , x 0 = 1, (2.1') 
i=l 

Yk,i being the same as above, the consistent estimation of iJ(p) based on a single 
long realization is possible on the nonextinction set, which has a positive proba-
bility only in the supercritical case, iJ(p) > 1, whereas we are interested to study 
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the subcritical, '!9(p) < 1, the critical, '!9(p) = 1, and the supercritical cases in a 
unified manner. 

In our model a natural estimator for rJ(p) is 

(2.2) 

(Note that for the model (2.1') in the supercritical case a similar estimator 
;Jn = I::;=l Xk / I::~=l Xk-l was introduced by Harris (Harris,1948) and has 
been studied in many papers.) It can be obtained by minimizing 

t (Xk - E(xk I x1, ... , Xk-1)) 
2 

k=l y'Var (xk I x1, ... , Xk-l) ' 

i.e., Jn is the weighted conditional least squares estimator in the sense of Wei 
and Winnicki (Wei and Winnicki, 1990). In parametric case, ;Jn is the maximum 
likelihood estimator for a power series family of offspring distribution, cf. (Heyde, 
1975) or (Basawa and Prakasa Rao, 1980, p. 22). Jn can also be obtained as a 
nonparametric maximum likelihood estimator, cf. (Feigin, 1977). 

Let JP' be the class of all probability measures p on N 0 such that 0 < 0"2 (p) < 
:E, where :E is an arbitrary (large enough) fixed positive number. To every off-
spring distribution p there corresponds the distribution P of the entire process 
{x1 , x 2 , •• •. , Xn, .. . } defined by (2.1). Let P be the image of JP' under this map-
ping. This mapping is one-to-one, so we can permit ourselves to use the notation 
rJ(P) and 0"2 (P). 

Distributions from Pare defined on the coordinate space N 00 = {( x1 , ... , Xn, 
... ), Xn EN} with the product O"-field F. Let Fn be the sub-O"-fieldof F generated 
by the first n coordinates x1, ... , Xn. The sub-index n will indicate the restriction 
of a ~easure to the O"-field Fn: Pn = Pl.r . 

Let P and Q be measures in P with the corresponding offspring distribu-
tions p and q. We. shall need few times an explicit expression for the Hellinger 
process h of order ! between P and Q with respect to the filtration (Fn)· Using 
Proposition IV.l.63 in (Jacod and Shiryaev, 1987) and the Markov property of 
the process { xn}, we obtain the following version: 

n 

hn=L[l-H(xk-1)], n=l,2, ... , (2.3) 
k=l 

where H(j), j = 1, 2, ... , is the Hellinger integral of order ! between the j-fold 
convolutions of p and q, i.e., 

j times j times 
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where* means the convolution. 
In the rest of this section let us fix a distribution P E P, Eis the expectation 

with respect to P. Put {) = fJ(P), 0'2 = 0'2 (P). Let us define the following 
quantities: 

{
~n-1/2 

'Pn = J2 n -l 
({) _ l)e-Cn+1)/2 

Xk-1 

if() < 1, 
if() = 1, 
if() > 1, 

ck= L (Yk,i - fJ) = Xk - 1 - fJxk-1, 
i=l 

n 

Gn = c.p~ L Xk-l· 
k=l 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Let Mn = L:~=l ck· It is easy to see that (Mn, Fn) is a P-square inte-
grable martingale with the quadratic characteristic (M)n = 0'2 l:Z=i Xk-1 · In 
particular, Eck = 0 and 

n 

EM~= E(M)n = 0'
2 EL Xk-l = 0'

2 Bn({)), 
k=l 

where 
n k-l 

Bn(t) = L L it. 
k=l i=O 

It follows from direct calculations that limn-+oo <p;Bn( 19) = 1; moreover, 

From monotonicity of Bn(t) we now obtain 

if () = 1, s f= 0' 
otherwise. 

Lemma 1. Let tn be a sequence of positive numbers sucb tbat 

limsup<p~ 1 ltn - 191:::; C1 < oo. 
n-+oo 

Tb en 

n-+oo 

wbere C2 depends only on C1 . 

(2.8) 

Now we have ESn = 0, ES~ = 0'2 EGn = 0'2 <p~Bn( 19) ---? 0'2 as n ~ oo, in 
particular, the sequence (Sn, Gn) is tight under P. In fact, this sequence weakly 
converges as it follows from the next proposition. 
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Proposition 2. We have 

£(Sn, Gn IP):::> £(S, G), 

where G > 0 (P*-a.s.), 

E*G == 1, E* S == 0, E* S2 == a 2 

and 
a2 0"2 

E* exp (aS- -G) == 1 
2 

(2.9) 

(2.10) 

(2.11) 

for any real a. More precisely, if '19 < 1, G == 1 (P*-a.s.) and S has the normal 
(0, a 2 ) distribution. If '19 > 1, the distribution of (S, G) coincides with the distri-
bution of ( G112 N, G), where a random variable N is independent of G and has 
the normal (0, a 2 ) distribution. If '19 == 1, the distribution of (S, G) coincides with 
the distribution of ( v'2(Y1-1),2 f0

1 yt dt), where (Yt, 0 :s; t :s; 1) is a non-negative 
diffusion process satisfying the stochastic differential equation 

where W is a standard Wiener process. 

Proof. If '19 < 1, the assertion of the proposition follows from ergodic properties 
of {xn}, see e.g. the proof of Theorem 2.1 in (Wei and Winnicki, 1990) .. If '19 > 1, 
it is known from (Seneta, 1970) that 19-nxn ---+ X (P-a.s.) as n -+ oo, where 
X is a random variable with a distribution on (0, oo ). By Toeplitz's lemma, 
Gn ---+ {)X (P-a.s.). The convergence result now follows from, e.g., Theorem 3 
in (Touati, 1993). If '19 = 1, the convergence (2.9) to the described limit follows 
immediately from Remark 2.4 in (Wei and Winnicki, 1989). The equality (2 .. 11) 
is trivial if{) =f. 1. Let {) = 1. It is known that E* exp (-uyt) = (1 + ut/2)-2 , 

u > 0, see e.g. (Ikeda and Watanabe, 1981, p. 222), so it is easy to deduce that 
supt<l E*e6Yt < oo if 8 < 2. According to (Liptser and Shiryaev, 1977, p. 220, 
Example 3), this condition guarantees the last equality in the following relation: 

Relations (2.10) follow easily from the facts which have just been proved, 
except the first equality in (2.10) in the case{) > 1. But it follows from straight-
forward but tedious calculations that, for every PEP, EG~ = 0(1) as n-+ oo, so 
the sequence Gn is P-uniformly integrable and, hence, E*G = limn-+oo EGn = l. 
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Remark. Let (~a, 0 ::; t ::; 1) be a non-negative diffusion process satisfying the 
stochastic differential equation 

If Qa is the distribution of ~a in C[O, 1], then ( Q0-a.s.) 

~~: (Y) =exp ( v'2a(Y1 -1)- a2a 2 
[ yt dt). 

Since :On-{}= 'PnG;;,1Sn by (2.2) and (2.5)-(2.7), it follows from Proposi-
tion 2 that J" n is a consistent estimator of {)( P) in P. Moreover, 

and 

It is also important to study the asymptotic behavior of J"n under some 
alternatives. Let pn E P, n 2:: 1, be a sequence of distributions. Put {Jn = fJ(Pn), 
a;= a2(Pn). 

Lemma.2. Assume that 

lim sup 1.p;;:1 j{) n - {)j ::; C1 < oo. 
n-oo 

Then the sequence of distributions £(1.p;_ 1Gn(:On - '!9n) I pn) is tight and, if its 
subsequence weakly converges to a distribution L on R, then 

J xL(dx) = 0 and J x2 L(dx)::; C2 < oo, 

where C2 depends only on C1 and :E. 

Proof. Denote Sn = 1.p-;_1Gn(J'n - {Jn) = 'Pn L:;=l (xk - 1 - {)nXk-1). Similarly 
as above, Ensn = 0, Ens~= <.p~a~Bn({)n) (En is the expectation with respect 
to pn ). By Lemma 1, lim SUPn-+oo Ens~ ::; C2 < oo, where C2 depends only on 
C1 and :E, and the result follows from the uniform integrability of (Sn, pn) and 
from Fatou's lemma. 

3. MAIN RESULTS 
·In this section we follow the set-up of the previous section. 
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Let Jn = Jn(x1, ... , xn) be a sequence of estimators of 79(P). Our aim is 
to give an asymptotic lower bound on the performance of can), that is, given 
an arbitrary point P E P, we shall obtain a lower bound for a· quantity charac-
terizing the asy~ptotic behavior of the deviation 79n - 79(P). This will be done 
for estimators ( 79n) satisfying some "regularity" properties with respect to "small 
perturbations" of P. Our lower bound is based on an asymptotic version of the 
Cramer-Rao inequality, and in this sense our approach is close to that of Dzha-
paridze and Spreij (Dzhaparidze and Spreij, 1993). Let us also mention that 
there is a connection between our approach and quasi-likelihood methods, see 
Section 5. 

To give a meaning to the words "small perturbations", we introduce a notion 
of a one-dimensional local submodel passing through P E P. Roughly speaking, a 
one-dimensional local submodel passing through Pis a family (Po:,n), po:,n E P, 
of measures, where a is a real parameter and n E N, po,n = P, satisfying 
the following property: the sequence of statistical experiments (N00

, Fn, P::,n) 
(recall that P;:,n = po:,n l1::J weakly converges (in .the sense of Le Cam, see 
(Strasser, 1985; Le Cam, 1986; Le Cam and Yang, 1990) to an appropriate limit 
experiment £*. If we supposed that £* is a Gaussian shift (as in the LAN theory), 
we would obtain a very poor class of one-dimensional local submodels in the case 
79(P) ~ 1. Moreover, since the next step will be to find a submodel which is the 
most difficult (in a sense) for estimating 79( P), so at this stage we are interested 
to embrace so many submodels as possible. In particular, we do not include the 
assumption of the contiguity P;:,n <l Pn for all a into the next definition since we 
do not need it, though this assumption seems 'to be very natural and simplifies. 
the proofs. 

In the sequel P is an arbitrary but fixed point in P. The sequence 'Pn is 
defined according to (2.4) with 79 = 1J(P). 

Let A be a subset of R such that 0 E A and 0 is a cluster point of A. A 
family (Po:,n, a E A, n E N) is called a one-dimensional local submodel passing 
through P E P if 

(i) po:,n E P Va EA Vn EN; 
(ii) po,n = P \In EN; 
(iii) the statistical experiments (N00

, Fn, P;:,n, a E A) weakly converge to a 
statistical experiment£* = (n*, F*, Qo:, a EA); 

(iv) the family ( Qo:) is L2-differentiable at a = 0 and the Fisher information 
J(o:) about a in ( Qo:) at a = 0 is strictly positive; the measures Qo: and Q0 are 
not singular for every a EA. 

The class of one-dimensional local submodels passing through P will be 
denoted by P(P). 

An interesting (unsolved) question is formulated as follows. Let p be the 
offspring distribution corresponding to P E P. Let v = v(j), j E No, be a 
function on N 0 such that J v dp = 0 and 0 < J v2 dp < oo. Let (pt), t E (-c, c) 
be a "path" in JP such that p0 = p and (pt) is L2-differentiable at t = 0 with 
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the score function v (such a path always exists by Lemma 4 in Appendix). Let 
(Pa,n, a ER) be a family in P such that pa,n is the distribution of the branching 
process (2.1) under p'Pna if l'Pnal < €. Is it true that (Pa,n) E P(P)? By 
Lemma 5 in Appendix, the answer depends only on p and v. We know that the 
answer is positive if iJ(P) < 1, the limit experiment £* being a Gaussian shift 
(the proof can be based on Theorem 1. 24 in ( Hopfner et al., 1990)), or if v (j) 
is proportional to j - 19(P) (see Theorem 2 below). It is easy to check with the 
use of Hellinger processes that (P:,n) <lf> (Pn) for all a E R, so the hypothesis 
seems to be true. But even if the answer is positive in the general case, there 
are no reasons to restrict ourselves a priori to considering only such submodels: 
in the supercritical case it is possible to construct a family pa E P such that 
pa,n = pa is a one-dimensional local submode! in our sense, cf. Lemma 3 in 
(Le Cam and Yang, 1988) and Section 3 in (Wei and Winnicki, 1990). 

It follows from Lemma 6 in Appendix that if (Pa,n) E P(P), the sequence 

(3.1) 

is bounded for all a E A. The functional {) will be called differentiable in the 
limit along (Pa,n) E P(P) if the sequence (3.1) has a limit k(a) for every a EA 
and there exists a limit 

lim k(a) = x 
a-+O a 

(it follows from Theorem 1 that this limit is necessarily finite). The class of 
submodels (Pa,n) E P(P) such that{) is differentiable int.he limit along (Pa,n), 
will be denoted by Pd(P). 

Let us assume for a moment that the limit experiment £* for a submode! 
(Pa,n) is a Gaussian shift, i.e., A= R, £* = (R,B,N(J(a)a,J(a))); moreover, 
assu:f!le that {) is differentiable in the limit along (Pa,n) and k( a) is a linear 
function: k( a) = xa and x =/=- 0. In the limit the problem of estimating {) in the 
parametric submode! ( pa,n) is no easier than estimating k( a) in £*. The latter is 
equivalent to the problem of estimating the mean in a Gaussian shift experiment 
again but with the Fisher information J(a) / x 2 • 

Similarly, if £* is the limit experiment for (Pa,n). E Pd(P), the amount 
J(a) / x 2 is the Fisher information about k( a) in £* at a = 0. 

Generalizing this concept, for (Pa,n) E P(P), define 

[ 
1 ( iJ( pa,n(11)) - {)( P)) 2]-l 

J(t'J) = sup limsup -zlim r<a)' 
{ n(v)} a-+O O'. 11 'Pn(11) 

where the supremum is taken over the set of all subnets {n(v)} in N such that 
there exists a limit 

. {)( pa,n(11)) _ iJ(P) 
hm-------

" 'Pn(v) 
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for all a E A (this set is nonempty by Tychonov's theorem). By the definition, 
0 S J(l1) S oo. We call J(l1) the asymptotic Fisher information about{) in (P01 n). 

Remark. By (1.1), 

J(o:) = 8 lim p
2
( Qo:' Qo) = 8 lim lim P

2 (P~,n' Pn). 
o:-o a2 o:-o n-co a2 

So the definition of the asymptotic Fisher information can be given without re-
ferring to the limit experiment and thus it can be extended to arbitrary families 
(Po:,n) satisfying (i) and (ii) above. But it seems that the result of Theorem 1 
below is not true for such arbitrary families: L 2-differentiability of the limit ex-
periment is essentially used in the proof. 

As the lower bound on the asymptotic performance of estimators, we in-
tend to use the asymptotic information-type inequality given by Theorem 2 in 
( Gushchin, 1995b ). For convenience, we now reformulate it conformably to our 
model. 

Proposition 3. Let (Po:,n) E Pd(P) and Jn= Jn(x1, ... , Xn) be a sequence of 
estimators. Assume that there exist a subnet { n( v)} in N and a net of measurable 
mappings Hv: (Nco, Fn(v))-+ [O, +oo) such that 

r(1()-l H (J _ fJ(Po:,n(v) )) I po:,n(v)) ~ L 
,1_, r n(v) v n(v) -r en a EA, 

where Lo: is a probability measure on R, 

j xL,,(dx) = 0 . and 

for all a E A. Moreover, assume that £( H v I P) =? H, where H is a variable 
with values in [O, +oo] and P*(H = 0) < 1. Then 

J x2 Lo(dx)?:: (E*H)2 /I(n) (3.2) 

(here oo/oo = 0 and oo/a = oo if 0 S a < oo). In particular, E* H < oo if 
J(19) < 00. 

Remark. After replacing J(l1) by 

[l. 1 l' ({)(po:,n(v))-fJ(P))2]-lJ(o:) imsup 2 1m 
o:-o a v 'Pn(v) 

in (3.2), the statement of Proposition 3 remains true not only for (Po:,n) E Pd(P) 
but also for (Po:,n) E P(P) such that there exists a limit 

. fJ(po:,n(v)) _ fJ(P) 
hm-------
v 'Pn(v) 
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for all a EA. 

Our next goal is to find "least favorable submodels". According to Proposi-
tion 3, the asymptotic lower bound is inversely proportional to J(iJ) (if J(iJ) < oo, 
we can normalize Hv so that E* H = 1). Hence, we must find submodels with the 
minimal asymptotic Fisher information. This will be done in Theorems 1 and 2. 

Theorem 1. For any one-parameter local submode] passing through P, its asymp-
totic Fisher information JC iJ) about {) satisfi.es the inequality 

The class of submodels (Pa,n) E Pd(P) such that J(iJ) = l/a2 (P) will be 
denoted by Pm(P). This class is nonempty for any P E P as it follows from 
Theorem 2. 

Lemma 3. Let P E P and p be the offspring distribution corresponding to P. 
There exists a mapping t ~ pt from an interval ( -£, £) to JP such that p0 = p and 
(pt) is L 2 -differentiable at t = 0 with the score function v(j) = j - {). 

A particular case of the next theorem was considered in Example 3 in 
(Gushchin, 1995a). The variables Sn and Gn are defined in (2.6) and (2.7) with 
{) = {)( P); a2 = a2 ( P). 

Theorem 2. Let a mapping t ~ pt from (-£, c;) to JP satisfy the statement 
of Lemma 3. Let pt be the distribution of the branching process (2.1) under 
pt.· Defi.ne pa,n, a E R, as follows: pa,n = p'Pna if llf'nal < c and p·a,n = P 
otherwise. 
1) For any bounded sequence {an}, the sequences P;fnan and Pn are mutually 
contiguous and 

Remark. The first statement of the theorem means that the sequence (N00
, Fn, 

P~, t E (-£, £)) of statistical experiments is locally asymptotically quadratic at 
t = 0 (see (Le Cam and Yang, 1990) for the definition of locally asymptotically 
quadratic families); moreover, it follows from Proposition 2 that this sequence is 
locally asymptotically mixed normal if{)( P) =f l and locally asymptotically normal 
if {)(P) < 1. 

Let us now proceed to study propertie.s of estimators of {)( P). As a simple 
corollary of Proposition 3, we prove (in fact, under redundant assumptions) that 
a "good" estimator cannot converge to {)( P) faster than :an. 
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Theorem 3. Let (Pa,n) E Pd(P) with J(fi) < oo and :On = :On(X1, ... , Xn) be a 
sequence of estimators. Assume that the sequence of distributions £(?f;;;_ 1 (:0n -
7J(pa,n)) I pa,n) is tight for every a EA for some sequence ?/Jn > 0. Then 

lim sup ?/;-;;1 'Pn < oo. 
n-oo 

The first part of the next theorem is a slight reformulation of Proposition 3 
in the case (Pa,n) E Pm(P). As it was mentioned in the introduction, the 
lower bound (3.2) is not sharp in general but it is sharp for locally asymptoti-
cally quadratic submodels, cf. Theorems 3 and 4 in (Gushchin, 1995a). Though 
not every submodel from Pm ( P) can be obtained from a locally asymptotically 
quadratic sequence as the submodel considered in Theorem 2, the structure of 
all submodels from Pm(P), roughly, is the same as a-+ 0. This fact explains the 
second part of the next theorem, which means that the estimator ;Jn is asymp-
totically efficient at all P E P in our sense. 

,.._, ,.._, 

Theorem 4. Let (Pa,n) E Pm(P) and 7Jn = 7Jn(x1, ... , Xn) be a sequence of 
estimators. 
1) Assume that there exists a sequence of measurable mappings H n: (N00

, Fn) -+ 

[O, +oo) such that the sequence of distributions 

(3.4) 

is tight in R for every a EB, where Bis a subset of A such that 0 EB and 0 is 
a cluster point of B. Denote £ 0 the set of cluster points of the sequence (3.4). 

· Assume that, for some C < oo, J xLa( dx) = 0 and J x2 La( dx) :::; C for all a E B 
and La E £a, and £(Hn IP)::} H, E* H = 1. Then 

(3.5) 

for every Lo E £0. 
2) The sequence (;Jn) satisfi.es the assumptions of the fi.rst part of the theorem 
with Hn = Gn, n EN, and attains the lower bound in (3.5). 
3) If(Jn) satisfi.es the assumptions of the fi.rst part of the theorem with Hn = Gn, 
n EN, and we have equality in (3.5) for every Lo E £0, then r.p;; 1(Jn _;Jn) __!._,, 0 
as n-+ oo. 

Remarks. 1. It follows easily from the second part of the theorem that the 
converse to the third part of the theorem is true if P:;,n <J Pn for all a E A . 

. 2. If we have equality in (3.5) for a sequence (Jn) of estimators satisfying the 
assumptions of the first part of the theorem with an arbitrary sequence {Hn}, 

,.._, ...._ p 
then we cannot assert that <p;;1 (7Jn - 7Jn)---+ 0 as n-+ oo. 
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4. PROOFS 
Proof of Theorem 1. Since the limit experiment £* = (n*, F*, Qa, a E A) is 
L 2 -differentiable, lima-o llQa - Q0

11 = 0 and we can assume without loss of 
generality that 11 Qa - Q0 II < 2(1 - €) for some € > 0 for all a E A. 

It follows from Lemmas 2 and 6 that the sequence of distributions 

( 4.1) 

is tight in R for every a E A; moreover, if £a denotes the set of cluster points of 
the sequence ( 4.1 ), 

J xLa(dx) = 0 and 

for every a E A and La E £a, where C does not depend on a. 
Let { n( v)} be a subnet such that 

. 19(Pa,n(v))-19(P) 
hm-------
v 'Pn(v) 

( 4.2) 

exists (and finite by Lemma 6) for all a E A. We can find a further subnet, 
abusing notation denoted { n( v)} again, such that the net of distributions 

£(M-1 G ('J _ ?J(Pa,n(v) )) I pa,n(v)) r n(v). n(v) n(v) · 

weakly converges to a distribution L.a E £a for all a EA. Note that. Lo = £(S) 
by Proposition 2. In view of ( 4.2), we can apply Theorem 2 in (Gushchin, 1995b ), 
see Remark after Proposition 3, which gives 

---2 < hmsup 2 hm J(a)_ E* S 2 
[. 1 . (?J(pa,n(v)) - ?J(P)) 

2
] I 

(E*G) - a-o a v · 'Pn(v) 
(4.3) 

The left-hand side of (4.3) is equal to a 2 (P) by Proposition 2, which completes 
the proof. 

Proof of Lemma 3 .. Let a(t) = p(ltvl ~ 1) and f(t) = J exp(tv)I (ltvl ~ 1) dp, 
t ER. Then a(t) > 0 if tis small enough, so we can define a probability measure 
Pt on N 0 by 

d t _ exp(tv)I(ltvl ~ 1) d 
p - f(t) p. ( 4.4) 

The function a2(pt) is continuous by Lemma 4 in Appendix, hence pt E JP if 
t E (-c, €) for some€ > 0. The L2-differentiability of (pt) at t = 0 follows also 
from Lemma 4. 
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Proof of Theorem 2. 1) Let pt be defined by (4.4). It is enough to prove the 
statement only for this family. Indeed, let {pt}, P° = p, be another family which 
is L 2-differentiable at t = 0 with the same score function. Put Jt = dpt/ dp and 
Jt = dpt/ dp. Then 

p2 (pt, pt) ::; ~ j ( /'{; - v'Ji)2 dp + ~p1 (Jt + 3t = oo) + ~iJ(Jt + '3t = oo) = o(t2
) 

owing to the definition of L 2-differentiability and since pt(Jt < oo, Jt = oo) = 
pt(Jt = oo,Jt < oo) = 0. Moreover, limt-+or1(19(pt)-19(p)) = a 2 (p) by Proposi-
tion 1. Therefore, llPX'nan - Ptnan II ~ 0 (where pt is the distribution of the 
branching process (2.1) under pt) as n -r oo for any bounded sequence {an} by 
Lemma 5 in Appendix. 

Let us also define a probability measure qt on N 0 by 

d t _ I ( ltv I ~ 1) d 
q - a(t) p. 

Denote by Qt the distribution of the branching process (2.1) under qt. By 
Lemma 4, p2 (p, q'Pn an) = o( <p~) for any bounded sequence { O'.n}, so 

by Lemma 5. 
Since· pt rv qt and 

t q -a.s., 

it is E'.asy to deduce, using the Markov property of {x1 , .•• , Xn, .. . }, that, Qt-a.s., 

dPt n (t) n 
log d ; = t 2,)xk - 1 - i9xk-1) + (log ;(t)) L Xk-1 

Qn k=l k=l 

_ 1 _ 2 ( a(t)) 
= <pn tSn + <pn log J(t) Gn· 

By Lemma 4, 
a(t) a2 t 2 

log - = --(1 + o(l)) f(t) 2 
as t -r 0, 

hence dP'Pn an a2 a2 
log dQ~nO'.n = anSn -T(1 + o(l))Gn 

for sufficiently large n for any bounded sequence {an}· Taking into account ( 4.5) 
and Proposition 2, we obtain (3.3). 
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To prove the mutual contiguity of {Ptnan} and {Pn} for any bounded se-
quence { O'.n} it is enough to consider the case O'.n --+ a, n --+ oo. Then, by 
Proposition 2 and (3.3), 

(P*-a.s.), 

hence Pn <l Ptnan. In view of (2.11), Ptnan <l Pn by the Le Cam first lemma. 
2) By the first part of the theorem, the sequence (N00

, Fn, P:,n, a E R) 
weakly converges to (fJ*, F*, Qa, a ER), where dQa = Za dP*, Za =exp ( aS -
a 2 a 2 G/2), a E R. The function Za is differentiable in a with the derivative 
(S - aa2 G)Za. Using the explicit representation for the distribution of (S, G) 
given by Proposition 2 and Remark after it, it is easy to obtain that 

j (S - au2 G)2 dQ"' = E* S2 = u 2 

and 

if 

if {) = 1, a =f. 0, 
if {) = 1, a = 0. 

In the both cases the function J(S - aa2G)2 dQcr. is continuous in a. There-
fore, the family ( Qcr.) is L2-differentiable at every a, see (Strasser, 1985, p. 393, 
Discussion 77.5) and J(a) = a 2(P). Furthermore, 

1
. {)(pa,n) - fJ(P) 2(P. ) 
1m =aa 

n--;.oo <pn 

by Proposition 1, so {) is differentiable in the limit along (Pcr.,n). Finally, we 
deduce J( ~) = 1 / u 2 ( P). 

Proof of Theorem 3. Assume that limv 'l/J;;}v)<pn(v) = oo for some subsequence 
{n(v)}. Then 

<n-l (J _ fJ(Pa,n(v))) p~) 0 Tn(v) n(v) 

for all a EA. Applying Proposition 3 (with Hv = 1), we arrive to a contradiction. 

Proof of Theorem 4. 1) Let us fix Lo E £ 0 • There is a subsequence {n(m)} such 
that 

.C(r...p~lm)Hn(m)(Jn(m) - fJ(P)) IP)=> Lo. 

By hypotheses of the theorem, there exists a subnet { n( v)} of { n( m)} such that 

.C(u)-1 H (J _ iJ(Pcr.,n(v))) I pcr.,n(v)) 
r n(v) n(v) n(v) 
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weakly converges to a distribution Lo: E .Co: for all a E B \ {O}. Applying 
Proposition 3, we obtain 

2) It was implicitly shown in the proof of Theorem 1 that :On satisfies the 
assumptions of the first part of the theorem with Hn = Gn, n EN, and 

B ={a E A:limsup llP:,n -Pnll < 2(1- c)}, 0 < € < 1. 
n-+oo 

Evidently, .Co = {.C(S IP*)} and we have equality in (3.5) by Proposition 2. 
3) Assume that the joint distributions 

weakly converge along a subsequence { n( m)} to a distribution .C( S, S I P*). Since 
the sequence of estimators f3;3n + (1 - j3);§n satisfies the assumptions of the first 
part of the theorem with Hn = Gn for every /3 E [O, 1], we have 

E* S 2 = a 2 , E* S 2 = a 2 , E*[j3S + (1 - j3)S] 2 2:: a 2 . 

This is possible only if S = S (P*-a.s.). This means that r.p;;_ 1Gn(;§n _;Jn) ~ 0, 
and the result follows since the limit distribution of .C( Gn I P) is concentrated 
on (0, oo ). 

5. CONCLUDING REMARKS 
We follow the set-up of Section 2. 
Let {) > 0 be a real number. Put P{) = {P E P : 19(P) = 19}, Mn('19) = 

L:;=l (xk - 1 - '19xk_1). We implicitly exploit in the proofs of Theorems.1 and 4 
the fact that 

(Mn(fJ), Fn) is a P-square integrable martingale for every PEP{). (5.1) 

To illustrate this we shall deduce some simple consequences of ( 5.1) in this section. 
First, we shall obtain counterparts of Theorems 1 and 2 for finite samples. 

Let (pt), t E ( -c, € ), be a path in JP which is £ 2-differentiable at t = 0 with a 
score function v. Denote by pt the distribution of the branching process (2.1) 
under pt; p = p0, P = P 0, {) = fJ(p), a2 = a 2 (p), en= Xn - 1 - '19xn-1· It is easy 
to check that, for every n E N, the family (Pr) is L 2 -differentiable at t = 0 with 
the score function 

n Xk-1 

Vn = L L E[v(Yk,i) I Fk]· (5.2) 
k=l i=l 
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The process (Vn, Fn) is a P-square integrable martingale. Put~ Vn = Vn - Vn-1, 
Vo= 0. 

By Proposition 1, fJ(pt) is differentiable at t = 0 and 

AQ l" fJ(Pt) - f) L(X) . ( ') 
v == 1m = J v J Pi. t-o t 

j=O 

(5.3) 

Hence, 

Xn-1 Xn-1 

= L L E[v(Yn,i)(Yn,j - fJ(p)) I Fn-l] = Jxn-l· (5.4) 
i=l j=l 

(In fact, the relation (5.4) can be directly deduced from (5.1). For a general result 
of this kind see (Gushchin, 1994, Theorem 8.1).) Put 

. n 

f) " l.. Vn = 2 L.t ck + Vn . a 
(5.5) 

k=l 

Then E(~ vnl..Cn I Fn-1) = 0, so the terms in the right-hand side of (5.5) are 
orthogonal in L2 • In particular, we have the following lower bound for the Fisher 

. information I~t) about tin (P~) at t = 0: 

Let us suppose that J =/= 0 and 79(pt) is a monotone function in a neigh-
borhood of 0. Then we can reparametrize {P~} by the offspring mean, and the 
Fisher information J~-a) about fJ at fJ(p) satisfies the inequality 

(5.6) 

It follows from (5.5) that if we have equality in (5.6) for some n, then we 
have equality in (5.6) for n = 1, i.e., J v2 dp = a-2J2 • Comparing with (5.3), we 
obtain 

v(j) = a-2 J(j - 79), j E No, p-a.s. 

Conversely, if (5.7) holds then (5.2) implies 

. n 
79 

Vn = a2 L Ck, 
k=l 

18 
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so we have equality in (5.6) for all n. 
The existence of a family (pt) passing through an arbitrary p E IP' with the 

score function (5.7) is proved in Lemma 4 in Appendix. If g(t) = I:j Pj(l + t)i < 
oo (in particular, if -1 < t:::; 0), we can define pt by 

dpt (j) = ±._pj(l + t)i 
dp (]"2 g(t) ' j E No. 

This means that the power series family of offspring distributions has the minimal 
Fisher information about {) among other parametric families passing through a 
fixed point p. This also explains why we prove that the estimator ;Jn which is the 
maximum likelihood estimator for power series families of offspring distributions, 
is asymptotically efficient at every point p. 

Let us now draw a parallel between Theorem 4 and quasi-likelihood estima-
tion. We refer to (Godambe and Heyde, 1987) for a discussion of the general 
quasi-likelihood framework. Quasi-likelihood estimation for branching processes 
with immigration has been considered in (Heyde and Lin, 1992). 

Taking (5.1) into account, we confine attention to martingale estimating 
functions belonging to the class 

n 

1-l = {H: Hn({)) = L ck({))(xk -1- {)xk-1) for Fk-i-measurable ck(iJ)}. 
k=l 

It is assumed that ck({)), k E N, are differentiable with respect to{). The esti-
mator ;J H,n· corresponding· to H E 'H is defined as the solution of the equation. 
Hn(iJ) = 0. Usually it is implicitly assumed that comparisons are to be made be-
tween estimators which, with appropriate norming, are asymptotically normally 
distributed: 

(5.8) 

under PEP~ as n--+ oo, where 
n 

H n( {)) = - L ck( iJ)xk-l 
k=l 

is the P-compensator of 8Hn(iJ)/8{) and 
n 

(H(iJ))n = (]" 2(P) L c~(iJ)xk-l 
k=l 

is the P-quadratic characteristic of Hn( {)). The relation (5.8) leads to maximizing 
. the expression 
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which is maximized if ck( '!9) = const. Therefore, the optimal estimating function 
in the sense of the asymptotic optimality criterion of Godambe and Heyde (Go-
dambe and Heyde, 1987), i.e., the quasi-score estimating function, is H~(tJ) = 
const · 2=~= 1 (xk -1- tJxk-1) (as it usually happens, the quasi-score estimating 
function is the true score function for some parametric submodel, a power series 
family in our case), and the quasi-likelihood estimator ;§H*,n coincides with Jn. 

H* also satisfies the fixed sample criterion in (Godambe and Heyde, 1987). 
To compare the quasi-likelihood approach and our results let us first note 

that, according to Proposition 2, ~ does not satisfy (5.8) if tJ(P) = 1, so the 
quasi-likelihood theory does not justify optimality properties of ;§n in the critical 
case. Next, Taylor's expansion gives 

8Hn( ') -BtJ {) n ( {) H, n - {)) = - H n ( {)), 

where{)~ lies between{) and:;§ H,n· It follows from the martingale property of H( '!9) 
that under mild regularity conditions (which are of less restrictive type than those 
leading to (5.8)), with appropriate norming, the estimator J H,n is asymptotically 
unbiased, which corresponds to the assumptions of Theorem 4. Thus, the class of 
competing estimators in the quasi-likelihood approach is smaller than that in our 
approach. On the other hand, both approaches compare the quality of estimators 
in a similar manner, from the point of view of minimum dispersion distance. 

6. APPENDIX 
Lemma 4. Let e be a variable on a p;robability space (0, ):, P) with Ee2 < oo. 
Put a( t) = P( lt~I :::; 1) and f( t) = E[exp( t~)I (It-el :::; 1 )] , where I ( ·) is the 
indicator function. If a(t) > 0, defi.ne probability measures Qt and Pt as follows: 

dQ = I (lt~I :::; 1) dP 
t a(t) 

and 
dP = exp( t~)I (It~ I :::; 1) dP 

t f(t) . 
Then 

a(t) = 1 + o(t2 ), f(t) = 1 + tE~ + t 2 Ee /2 + o(t2
) (6.1) 

and 
(6.2) 

as t->- 0 and the family (Pt) is L2 -differentiable at t = 0 with the score function 
e - E~. The functions f e dPt and e dPt are continuous at t = 0. 

Proof. Since Ee2 < oo, we have 

1 - a(t) = P(lt~I > 1):::; t2 E[eI(lt~l > 1)] = o(t2
) (6.3) 
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as t ~ 0. It follows immediately from the definitions that p2 (P, Qt) = 1- Fa<J5, 
hence (6.2) follows from (6.3). 

Write 
ex=l+x+x2 /2+x 2 R(x), R(O)=O, 

then R( x) is a continuous function. One has 

r 2 [f(t) - 1 - tEe - t2 Ee /2] = E[e R(te)I (Itel :::; 1)] 
- E[r2 (1 + te + t2 e2 /2)1 (Itel> 1)]. (6.4) 

Evidently, the expressions in the square brackets in the right-hand side of (6.4) 
tend to 0 as t ~ 0 and they are majorized by integrable variables e SUP1x19 IR(x )I 
and 5e2 /2 respectively,. so (6.1) follows. 

Let Zt = exp(te)I(ltel:::; l)/f(t). It now follows from (6.1) that 

vtz;-1 e-Ee 
---~ 

t 2 

as t ~ 0. To prove that this convergence holds also in L 2 (P), it is enough to 
check that 

E( v3 -1)2 ~ ~E(e - Ee)2 
t 2 4 

or, equivalently, 
1 - ~y!Zt -+ Ee -

8 
(Eff (6_5) 

But Evtz; = fi (t/2)/ Vf(i), where fi (t) = E[exp(te)I (Itel :::; 1/2)]. The func-
tion fi(t) has the same expansion (6.1) as f(t), and (6.5) follows after simple 
calculations. 

The lq,st assertion of the lemma follows from the dominated convergence 
theorem. 

In the next lemma we follow the set-up of Section 2. The sequence 'Pn is 
defined by (2.4) with some number{) > 0. We assume that pn and Qn, n EN, 
are measures from P and pn and qn are the corresponding offspring distributions. 
The sub-index n means the restriction of a measure to the o--field Fn· 

Lemma 5. Let 19(pn) - {) = O(c.pn) and p2 (pn,qn) = o(c.p!) as n ~ oo. Tben 
llP: - Q~ll = o(l) as n ~ oo. 

Proof The Hellinger process h n of order ~ between pn and Qn with respect to 
the filtration (Fn) is given, according to (2.3), by 

t 

h~ = L [1 - Hn(Xk-1)], t = 1, 2, ... , 
k=l 
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where Hn(j), j = 1, 2, ... , is the Hellinger integral of order t between the j-fold 
convolutions of pn and qn. It is clear that 

Hence 
t 

h~ ::=; p2(pn' qn) L Xk-1 
k=l 

and 
En h~ ::=; Bn ( iJ(pn) )p2 (pn, qn ), 

where En is the expectation with respect to pn and Bn(·) is defined by (2.8). 
The hypotheses of the lemma and Lemma 1 imply now that Enh~ -t 0, n -too. 

pn 
Hence h~ ~ 0, and the result follows from Theorem V.4.31 in ( J acod and 
Shiryaev, 1987). 

In the next lemma P and pn, n = 1, 2, ... , are measures in P, p and pn are 
corresponding offspring distributions, i) = iJ( P), i) n = iJ( pn ), rJ2 = rJ2 ( P) and 
O"~ = rJ2(Pn); 'Pn and Gn are defined according to (2.4) and (2.7). 

Lemma 6. Let 

limsup llPn - P:ll < 2(1 - c), c > 0. (6.6) 
n-oo 

Then 

n-oo 

where C1 depends only on P, L: and c. 

Proof. Let Hn(j), j = 1, 2, ... , be the Hellinger integral of order t between the 
j-fold convolutions of p and pn. Put Ln(j) = - log Hn(j) and 

n 

(n =exp (- L Ln(Xk-1)). 
k=l 

The proof consists of two steps. First we shall prove that condition (6.6) implies 

liminf E(n > c2 • (6.7) 
n-oo 

Then we shall show that 

(6.8) 

where C2 depends only on L:. The statement of the lemma follows from (6.7) 
and (6.8). Indeed, (n ::; 1, hence, by (6.7), 

(6.9) 
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for n large enough. On the other hand, £(Gn I Pn) =? G and G > 0 (P*-a.s.) by 
Proposition 2, therefore, 

n = 1,2, ... , (6.10) 

for some 8 > 0 depending only on P. From (6.9) and (6.10) we obtain P(Gn(~ ~ 
& 4 /4) ~ c2 /4, so (6.8) implies cp-;;_ 2 ({)n - {))2 :::; 4C2/&4 • 

Let hf, t = 1, 2, ... , be the Hellinger process of order t between P and pn 
with respect to the filtration (Fn)· According to (2.3), we have hf = I::~=l [1 -
Hn(Xk-1 )]. Hence, 

n n 

(n =II Hn(Xk-1) =II (1- hk + hi:-1) = £(-hn)n, 
k=l k=l 

where£(·) is the Doleans exponential. (6.7) follows now from (6.6) and from the 
following estimate for the variation llPn - P:ll: 

llPn - P:ll ~ 2(1 - )E£(-hn)n), 
see (Kabanov et al., 1986, Theorem 2.1). 

Since the j-fold convolution of p (respectively, pn) has the mean j{) (respec-
tively, j{)n) and the variance ja2 (respectively, ja;), we have the estimate 

1-Hn(j) > ({}n-{})2. 
[Hn(j)]2 - 4( a 2 + a~)J' 

which follows immediately from the distance inequality proved in (Kholevo, 1973) 
or (Le Cam and Yang, 1990, p. 128, Corollary 1 ). In other terms, 

e2Ln(j) - eL~(j) ~ 0:;1({)n - {))2j, (6.11) 

where C2 = 82::. 
The function J( x) = e2 x - ex, x ~ 0, is convex and f (0) = 0, hence f (xi) + 

· · · + f(xn) :::; J(x1 + · · · + Xn) for arbitrary n and Xi ~ 0, i = 1, ... , n. Using 
this property and (6.11), we get 

n n n 

c:;1 ({)n - {))2 L Xk-1 :::; L J(Ln(Xk-i)):::; !(L Ln(Xk-1)) 
k=l k=l k=l 

= JC- log (n) = (;2 - (;I :::; (;2' 

which completes the proof of (6.8) and the lemma. 
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