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and Gaussian White Noise 

Michael Nussbaum 
Weierstrass Institute, Berlin 

September 15, 1995 

Abstract 

Signal recovery in Gaussian white noise with variance tending to zero has served for 
some time as a representative model for nonparametric curve estimation, having all the 
essential traits in a pure form. The equivalence has mostly been stated informally, but 
an approximation in the sense of Le Cam's deficiency distance ll would make it precise. 
The models are then asymptotically equivalent for all purposes of statistical decision with 
bounded loss. In nonparametrics, a first result of this kind has recently been established 
for Gaussian regression '{Brown and Low, 1993). We consider the analogous problem for 
the experiment given by n i. i. d. observations having density f on the unit interval. Our 
basic result concerns the parameter space of densities which are in a Holder ball with 
exponent a > ! and and which are uniformly bounded away from zero. We show that 
an i. i. d. sample of size n with density f is globally asymptotically equivalent to a white 
noise experiment with drift / 112 and variance 1n-1 . This r.epresents a nonparametric. 
analog of Le Cam's heteroscedastic Gaussian approximation in the finite dimensional case. 
The proof utilizes empirical process techniques related to the Hungarian construction. 
White noise models on f and log f are also considered, allowing for various "automatic" 
asymptotic risk bounds in the i. i. d. model from white noise. As first applications we 
discuss exact constants for L2 and Hellinger loss. 

1 Introduction and main result 

One of the basic principles of Le Cam's (1986) asymptotic decision theory is to approximate 
general experiments by simple ones. In particular, weak converyence to Gaussian shift exper-
iments has now become a standard tool for establishing asymptotic risk bounds. The risk 
bounds implied by weak convergence are generally estimates from below, and in most of the 
literature the efficiency of procedures is more or less shown on an ad hoe basis. However, a 
systematic approach to the attainment problem is also made possible by Le Cam's theory, 
based on the notion of strong converyence of experiments which means proximity in the sense 
of the full deficiency distance. But due to the inherent technical difficulties of handling the 
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deficiency concept, this possibility is rarely made use of, even in root-n consistent parametric 
problems. 

In non parametric curve estimation models of the "ill posed" class where there is no root-n 
consistency, research has focused for a long time on optimal rates of convergence. In these 
problems, limits of experiments for n- 112-localized parameter are not directly useful for risk 
bounds. But now a theory of exact asymptotic risk constants is also developing in the context 
of slower rates of convergence. Such an exact risk bound was first discovered by Pinsker 
(1980) in the problem of $ignal recovery in Gaussian white noise, which is by now recognized 
as the basic or "typical" nonparametric curve estimation problem. The cognitive value of this 
model had already been realized by Ibragimov and Khasminski ( 1977). These risk bounds 
have been established since then in a variety of other problems, e. g. density, nonparametric 
regression, spectral density, see Efroimovich and Pinsker (1982), Golubev (1984), Nussbaum 
( 1985), and they have also been substantially extended conceptually (Korostelev ( 1993), 
Donoho, Johnstone, Kerkyacharian, Picard (1995) ). The theory is now at a stage where the 
approximation of the various particular curve estimation problems by the white noise model 
could be made formal. An important step in this direction has been made by Brown and 
Low (1993) by relating Gaussian regression to the signal recovery problem. These models 
are essentially the continuous and discrete versions of each other. The aim of this paper is 
to establish the formal approximation by the white noise model for the problem of density 
estimation from an i. i. d. sample. 
To formulate our main result, define a basic parameter space I: of densities as follows. Let 
for a E (0, 1) ~nd M > 0 

A0 (M) =·{!: lf(x) - f(y)I.:::; M Ix,__ yl 0
, x, y E [O, l]} 

be a Holder ball of functions with exponent a . Define for E > 0 a set :F?:.e as the set of 
densities on [O, 1] bounded below by <:: 

(1) 

Define an a priori set, for given a> l, M > 0, E > 0, 

(2) 

Let A be Le Cam's deficiency pseudodistance between experiments having the same param-
eter space. For the convenience of the reader a formal definition is given in section 10 below. 
For two sequences of experiments En and 1Fn we shall say that they are asymptotically equiv-
alent if A(En, 1Fn) ~ 0 as n ~ oo. Let dW denote the standard Gaussian white noise process 
on the unit interval. 

1.1 Theorem. Let I: be a set of densities contained in I:a,M,e for some E > 0, M > 0 and 
a > i. Then the experiments given by observations 

(3) 

(4) 

Yi, i = 1, ... , n i. i. d. with density f 

dy(t) = f 112(t)dt + ~n- 112dW(t), t E (0, 1] 

with f E I: are asymptotically equivalent. 
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This result is closely related to Le Cam's global asymptotic normality for parametric models. 
Let in the i. i. d. model f be in a parametric family (!19, {) E 8) where 8 c Rk, which is 
sufficiently regular and has Fisher information matrix J(1J) at point 1J. Then the i. i. d. model 
may be approximated by a heteroscedastic Gaussian experiment 

(5) y = {) + n-1/2 J(1J)-1/2"7 

where 'T] is a standard normal vector and{) E 8. We see that (4) is a nonparametric analog 
of (5) when{) is identified with / 112. Indeed, consider the identity for the Fisher information 
matrix in the parametric case 

Regarding formally f 112 itself as a parameter, we find the corresponding Fisher information to 
be 4 times the unit operator. But even for parametric families (4) seems to be an interesting 
form of a global approximation: if J~12 is taken as parameter then the resulting Gaussian 
model has a simple form. One recognizes that the heteroscedastic nature of (5) derives only 
from the "curved" nature of a general parametric family within the space of roots of densities. 
This observation was in fact made earlier by Le Cam (1985). In his theorem 4.3 there he 
established the homoscedastic global Gaussian approximation for i. i. d. models in the finite 
dimensional case. We give a paraphrase of that result in a specialized form. A set 8' in 
L2(0, 1) is said to be of finite metric dimension if there is a number D such that every subset 
of 8' which can be covered by an €-ball can be covered by no more than 2D balls of radius 
E/2, where n· does not depend on E. A set of densities f has this property in Hellinger metric 
if the corresponding set of j 112 has it in ~2(0, 1). 

1.2 Proposition (Le Cam). Let I: be a set of densities on [O, 1] having finite dimension 
in Hellinger metric and fulfilling a further regularity condition (see section 12). Then the 
experiments given by observations {3}, (4) with f E I: are asymptotically equivalent. 

The actual formulation in Le Cam (1985) is more abstract and general giving a global asymp-
totic normality in the i. i. d. case for arbitrary random variables, in particular without 
assumed existence of densities; but finite dimensionality is essential. This result in its con-
ceptual clarity and potential impact seems not to have been well appreciated by researchers; 
the heteroscedastic form (5) under classical regularity conditions is somewhat better known 
(cp. Mammen (1986)). 
Our main result can thus be viewed as an extension of Le Cam's proposition 1.2 to a non-
parametric setting. The value 1/2 of the Holder exponent a is a critical one, according to a 
recent result of Brown and Zhang (1995). 
White noise models with fixed variance do occur as local limits of experiments in root-n 
consistent nonparametric problems (Millar (1979) ), and, via specific renormalizations, also in 
non root-n consistent curve estimation (Low (1992), Donoho and Low (1992)). Thus various 
central limit theorems for i. i. d. experiments can be embedded in a relatively simple and 
closed form approximation by (4). Moreover, for the density f itself and for log f we also 
give Gaussian approximations which are "heteroscedastic" in analogy to (5), see remark 2.9, 
corollary 3.3 below. 
The paper is organized as follows. The basic results are developed in an overview fashion in 
sections 2-4 which may suffice for a first reading. By default, proofs or technical comments 
for all statements are to be found in part II, i. e. the proof sections 5-12. 
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In section 2 we develop the basic approximation of likelihood ratios over shrinking neighbor-
hoods of a given density Jo. These neighborhoods En(/o) are already "nonparametric", in 
the sense of shrinking slower than n - 1!2. For proving this, we partition the sample space 
[O, l] into small intervals and obtain a product experiment structlire via poissonization. The 
Gaussian approximation is then argued via the "space local" empirical process on the small 
intervals; piecing this together on [O, 1] yields the basic parameter-local Gaussian approxi-
mation over f E En(/o). Once in a Gaussian framework, we manipulate likelihood ratios to 
obtain other approximations, in particular the one with trend f 112. For these experiments 
which are all Gaussian we use the methodology of Brown and Low (1993), who did compare 
the white noise model with its discrete version (the Gaussian regression model). 
It remains to piece together the parameter-local approximations by means of a preliminary 
estimator; this is the subject of section 3. Our method of globalization is somewhat different 
from Le Cam's which works in the parametric case; the concept of metric entropy or dimension 
and related theory are not utilized. But obviously these methods which already proved fruitful 
in nonparametrics (Birge (1983), Van de Geer (1990)) have a potential application also here. 
Some statistical consequences are discussed in section 4; here we focus on exact constants 
for L2-loss. As an exercise we derive the result of Efroimovich and Pinsker (1982) on density 
estimation from the white noise model; simultaneously we extend it and give a variant for 
Hellinger loss. 
As a basic text for the asymptotic theory of experiments we refer to Strasser (1985). We use 
C as a generic notation for positive constants; for sequences the symbol an ::::::: bn means the 
usual equivalence in rate, while an rv bn means an= bn(l + o(l)). 

2 The local approximation 
. . 

Our first Gaussian approximation will be established ih a parameter local framework. Supp-
pose we have i. i. d. observations Yi, i = 1, ... , n with distribution P1 having Lebesgue 
density f on the interval [O, 1), and it is known a priori that f belongs to a set of densities 
E. Henceforth in the paper we will set E = Ea,M,e for some E > 0, M > 0 and a > 1/2. 
Let 11 • llP denote the norm in the space Lp(O, 1), 1 ~ p ~ oo. Let 'Yn be the sequence 

(6) 'Yn = n-114(1ogn)- 1, 

and for any f o E E define a class En (Jo) by 

(7) En (Jo) = { f E E : II fa - 1 t ~ In} · 
For given Jo EE we define a local (around / 0) product experiment 

(8) 

Let Fo be the distribution function corresponding to f 0 and let 

K(fo II!)= - j log fa dFo 

be the Kullback-Leibler relative entropy. Let W be the standard Wiener process on [O, 1] and 
consider an observed process 

(9) 
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Let Qn,f,fo be the distribution of this process on the function space Cro,ij equipped with its 
Borel O"-algebra Bcro,IJ' and 

(10) 

be the corresponding experiment when f varies in the neighborhood En(/o). 

2.1 Theorem. Define En(/o) as in (1), (6). Then 

~(lEo,n(/o),Ei,n(/o)) -lo 0 as n -lo oo 

uniformly over fo E E. 

The proof is based upon the following principle, described in Le Cam and Yang (1991), p. 16. 
Consider two experiments Ei = (Oi, Ai, (Pi,-a, fJ E 0)), i = 0, 1 having the same parameter set 
0. Assume there is some point fJo E 0 such that all the Pi,-a are dominated by Pi,-ao, i = 0, 1 
and form Ai( fJ) = dPi,-a/ dPi,'19o. Consider Ai = (Ai( fJ), fJ E 0) as stochastic processes indexed 
by fJ given on the probability space (Oi, A, Pi,-a0 ). By a slight abuse of language, we call 
these the likelihood processes of the experiments Ei (note that the distribution is taken under 
Pi,'19o here). Suppose also that there are versions Ai of these likelihood processes defined on 
a common probability space (0, A, lP'). 

2.2 Proposition. The deficiency distance ~(Ei, E2) satisfies 

Proof. It is one of the basic facts of Le Cam's theory that· for dominated experiments, the 
equivalence class is determined by the distribution of the likelihood processes under Pi,'19o when 
'!90 is assumed fixed. This means that in the above framework, we have il(lEo, Ei) = 0 iff 
£(AolPo,~0 ) = £(AilPi,-a0 ). Thus, if we construct an experiment Ei with likelihood process 
Ai, we obtain equivalence: ~(Ei, Ei) = 0. The random variables Ai( rJ) on (0, A, lP') have 
the same distributions as Ai(fJ) on (Oi,A,Pi,'19o), for all fJ E 0; hence they are positive and 
integrate to one. They may hence be considered as lP'-densities on (0, A), indexed by fJ. 
These densities define measures Pi:fJ on (O,A), and experiments Ei = (O,A, (Pi:-a, '!9 E 0)), 
i = O, 1. By construction, the likelihood process for Ei is Ai('!9), so Ll(~,Ei) = 0, i = 0, 1. 
Hence il(Eo,E1) = il(E0,Ei), and E0,Ei are given on the same measurable space (O,A). In 
this case, an upper bound for the deficiency distance is 

where II· II is the total variation distance between measures (in section 10, (72) take the identity 
map as a transition M). But llPo,fJ - Pi,rJll coincides with EJPIAQ(fJ) - Ai(fJ)I which is just a 
Li -distance between densities. D 

The argument may be summarized as follows: versions Ai of the likelihood processes on a 
common probability space generate (equivalent) versions of the experiments on a common 
measurable space for which Ai ( '!9) are densities. Their Li-distance bounds the deficiency. 
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When Ai( 19) are considered as densities it is natural to employ also their Hellinger distance 
H(·, ·); extending notation we will write 

(11) 

Making use of the general relation of Hellinger to L1-distance we obtain 

(12) ~2 (lE~,lEi):::; sup H 2(AQ('t9),Ai('t9)). 
't9E0 

In the sequel we will work basically with this relation to establish asymptotic equivalence. 
For our problem, we identify 19 = J, 't9o = Jo, 0 = 'En(fo), Po,-e = Pfn, P1,-e = Qn,1,10 • 

Furthermore, we represent the observations Yi as Yi= p-1(zi), where Zi are i. i. d. uniform 
(0,1) random variables and Fis the distribution function for the density J (note that F is 
strictly monotone for J E 'E). Let Un be the empirical process of z1, ... , Zn, i. e. 

1 n 
Un(t) = Vn ~(X[O,tj(zi) - t), t E [0, 1]. 

Note that lEo,n(fo) is dominated by Pfon; then the likelihood process is 

Defining 

(13) 

Ao,n(f, Jo)= exp f)og { { (Fo-1(Zi))}. 
i=l JO 

and observing that 

J AJ,Jo(t)dt = -K(follf) 

we then have the following representation: 

(14) Ao,,.(!, Jo)= exp { n J >..1,10 (t) Jn Un(dt) - nK(JollJ)}. 

This suggests a corresponding Gaussian likelihood process: substitute Un by a Brownian 
bridge B and renormalize to obtain integral one. We thus form for a uniform (0, 1) random 
variable Z 
(15) Ai,n(J, Jo)= exp { n J >..1,10 (t) Jn B(dt) -iVar (>..1,10 (Z))}. 

For ·an appropriate standard Wiener process W we have 

J AJ,Jo(t) B(dt) = J(AJ,Jo(t) + K(fo II!)) W(dt). 

By rewriting the likelihood process Ai,n(J, Jo) accordingly we see that it corresponds to 
observations (9) or equivalently to 

(16) dy(t) = (AJ,Jo(t) + K(Jollf))dt + n-112dW(t), t E [O, 1], 

at least when the parameter space is 'E. Thus Ai,n(J, Jo) is in fact the likelihood process for 
lE1,n(Jo) in (10). 
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To find nearby versions of these likelihood processes, fulfilling 

(17) 

it would be natural to look for versions of Un and Bon a common probability space (!Un and 
Rn, say) which are close, such as in the classical Hungarian construction (see Shorack, Wellner 
(1986), chap. 12, section 1, theor. 2). However the classical Hungarian construction (Komlos-
Major-Tusnady inequality) gives an estimate of the uniform distance ll1I.Jn - lIBn !1

00 
which for 

our purpose is not optimal. The reason is that the uniform distance may be construed as 

where Q is a class of indicators of subintervals of [O, l]. Considering more general classes of 
functions g leads to functional KMT type results (see Koltchinskii (1994), Rio (1994)). But 
for an estimate (17) we need to control the random difference 1I.In(g) - Bn(g) only for one 
given function (A f,fo in this case), with a supremum over a function class only after taking 
expectations (cp the remark on p. 16 of Le Cam and Yang (1991)). Thus for our purpose we 
ought to use a functional KMT type inequality for a one element function class g = {g }, but 
where the same constants and one Brownian bridge are still available over a class of smooth 
g. Such a result is provided by Koltchinskii (1994), theorem 3.5. We present a version 
slightly adapted for our purpose. Let .C2[0, 1] be the space of all square integrable measurable 
functions on [O, 1] and let II· II H1/2 be the seminorm associated with a Holder condition with 

2 
exponent 1/2 in the L2-sense (see section 6 for details). 

2.3 Proposition. There are a probability space (0, A, JP>) and a number C such that for all n, 
there are versions of the uniform empirical process 1Unfo) and of the Brownian bridge Bn(g), 
g E .C2[0, 1] such that for all g with 11911 00 < oo, llgllH1/2 < oo and for all t ~ 0 

2 

JP>(n1/ 2 l1I.Jn(g) - Bn(g)j ~ C (llgll00 + llgllH1;2)(t + logn) log1/ 2 n) ~ C exp(-t). 
2 

Specializing g = A f ,f 0 - J AJ ,Jo we come close to establishing the relation ( 17) for the likeli-
hood processes, but we need an assumption that the neighborhoods En (Jo) shrink with rate 
o( n - l/3 ). Comparing with the usual nonparametric rates of convergence, we see that such 
a result is useful only for smoothness a > 1. To treat the case a > 1/2 however we need 
neighborhoods of size o( n-1/ 4). 
To obtain such a result, it is convenient, rather than using the Hungarian construction globally 
on [O, 1], to subdivide the interval and use a corresponding independence structure (approx-
imate or exact) of both experiments. In this connection the following result is useful (see 
Strasser (1985), lemma 2.19). 

2.4 Lemma. Suppose that Pi, Qi are probability measures on a measurable space (Oi, A), 
for i = 1, ... , k. Then 

k k k 

H 2((g)Pi,(g)Qi) ~ 2L:H2(Pi,Qi)· 
i=l i=l i=l 

Consider a partition of [O, 1] into subintervals D1. The Gaussian experiment E1,n(!o) has 
a convenient independence structure: in the representation (16), observations on the signal 
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>..f,Jo(t) + K(follf) are independent on different pieces Dj. A corresponding approximate 
product structure for the iid experiment Eo,n (Jo) will be established by Poissonization. Let 
Eo,j,n(fo) be the experiment given by observing "interval censored" observations 

(18) YiXDi (Yi), Yi i. i. d. with density f, i = 1, ... , n 

with f E En(/0 ). We use the symbol ® for products of experiments having the same 
parameter space. 

2.5 Proposition. Let kn be a sequence with kn --+ oo, and consider a partition Dj = 
[ (j - 1) /kn, j /kn), j = 1, ... , kn. Then 

kn 

~(Eo,nUo), QS}Eo,j,nUo))--+ 0 
j=l 

uniformly over f o E E. 

Our choice of kn will be 
(19) kn rv n 112 /(logn)2 . 

For each Dj we form a loc~l likelihood process Ao,j,~(J, Jo), as the likelihood process for 
observations in (18) for given j, and establish a Gaussian approximation like (17) with a 
rate. Let Ai = Fo(Dj) and let 1E1,j,n(fo) be the Gaussian experiment 

(20) dy(t) = XAi (t) (>..1,10 (t) + K(follf))dt + n-112dW(t), t E [O, 1] 

with parameter space En(J0 ). Let A1,i,nU, Jo) be the corresponding likelihood process. 

2.6 Proposition. On the probability space (n, A, JF) of proposition 2.3, there are versions 
Ai,j,n(J, Jo), i = 0, 1 such that 

(21) sup H 2 (AO 1· nU, Jo), Ai 1· nU, Jo)) = 0(1'~(1ogn)3 ) 
/E'En(/o) ' ' ' ' 

uniformly over j = 1, ... , kn and Jo EE. 

This admits the following interpretation. Define rnn = n/kn; in our setting this is the 
stochastic order of magnitude of the number of observations Yi falling into Dj. Thus for the 
local likelihood process Ao,j,n(J, Jo) the number ffin represents an "effective sample size" in a 
rate sense. In view of (6) and (19) we have rn '""m,;;1!2 , and since this is the shrinking rate of 
"En(Jo) in the uniform norm, it is also the shrinking rate of this set of densities restricted to 
Dj, and of the corresponding set of conditional densities. Thus in a sense we are in a classical 
setting with sample size ffin and a root-mn shrinking neighborhood. The result (21) implies 

(22) ~(Eo,j,n(Jo), 1E1,j,n(Jo)) = O(m~ 1/2 (1ogn)312 ), 

i. e. we have a root-mn rate up to a log-term. Note that here we have introduced a "space 
local" aspect in addition to the already present parameter local one. In piecing together these 
space local approximations, we will crucially use the product measure estimate of lemma 2.4. 
This motivates our choice to work with the Hellinger distance, for the likelihood processes 
construed as densities. 
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Proof of theorem 2.1. The Gaussian experiment E1,n(/o) decomposes exactly: 

kn 

~(E1,n(/o), @E1,j,n(fo)) = 0. 
j=l 

According to (12) and lemma 2.4 we have 

By proposition 2.6 this is bounded by 

0 ( kn'Y~(logn)3) = 0 ( (logn)-1) = o(l), 

and these estimates hold uniformly over Jo EE. D 

Low (1992) considered experiments given by local (on Dj) perturbations of a fixed density 
Jo and applied a local asymptotic normality argument to obtain strong convergence to a 
Gaussian experiment. This amounts to having (22) without a rate, and it is already useful 
for a number of nonparametric decision problems, like estimating the density at a point. 
Golubev (1991) used a similar argument for treating est~ation in L2-loss. 
We are now able to identify several more asymptotically equivalent models. This is based on 
·the following reasoning, applied by Brown and Low (1993) to compare Gaussian white noise 
models. Consider the measure of the process n-1/ 2 W(.t), t E [O, 1] shifted by a function JJ gi, 
i = 1, 2, where gi E .C2[0, 1]; call these measures Pi. Then · 

(23) 

If (gi,{}, {) E 0), i = 1, 2 are. two parametric families then the respective experiments are 
asymptotically equivalent if llg1,fJ - g2,fJll2 = o(n-112) uniformly over rJ E 0. In the Gaus-
sian experiment E1,n(/o) of (16), the shift is essentially a log-density ratio. We know that 
log(!/ Jo) is small over J E 'En(/o); expanding the logarithm we get asymptotically equivalent 
experiments with parameter space 'En (Jo). 
Accordingly, let E2,n (Jo) be the experiment given by observations 

(24) dy(t) = (f(t) - fo(t))dt + n-1/ 2 J~12(t)dW(t), t E [O, 1] 

with .parameter space 'En(/o), and let lE3,n(/o) correspondingly be given by 

(25) dy(t) = (J112(t) - J51 2(t))dt + ~n- 112dW(t), t E [O, 1]. 

2.8 Theorem. The experiments Ei,n(/o), i = 1, 2, 3 are asymptotically equivalent, uniformly 
over Jo E 'E. 
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2.9 Remark. The equivalence class of E1,n(fo) is not changed when the additive term 
- lo(t)dt in (24) is omitted, since this term does not depend on the parameter l, and omittirig 
it amounts to a translation of the observed process y by a known quantity. Moreover, in the 
proof below it will be seen that in the representation (16) of 1E1,n(Jo} the term K(follf)dt is 
asymptotically negligible. Analogous statements are true for the other variants; hence locally 
asymptotically equivalent experiments for f E 'En(fo) (with uniformity over lo E 'E) are also· 
given by 

(26) 
(27) 
(28) 

(29) 

D 

Yi, i = 1, ... , n i. i. d. with density l 
dy(t) =log f(F0 1(t))dt + n-112dW(t), t E [O, 1] 
dy(t) = l(t)dt + n- 112 f~/2 (t)dW(t), t E [O, 1] 

dy(t) = J112 (t)dt + ~n- 1 12dW(t), t E [O, l]. 

Note that (28) is related to the weak convergence of the empirical distribution function Fn 

n 112 (Fn - F) =>Bo F. 

Indeed, arguing heuristically, when Fis in a shrinking neighborhood of Fo we have Bo F ~ 
Bo Fo, while Fn is a sufficient statistic. We obtain 

Fn ~ F + n-1/ 2 Bo Fo 

which suggests a Gaussian accompanying experiment (28). This reasoning is familiar as 
a heuristic introduction to limiting Gaussian shift experiments, when neighborhoods are 
shrinking with rate n-1/ 2 • However our neighborhoods l E 'En(fo) are larger (recall In = 
n-114(1ogn)- 1). 

3 From local to global results 

The local result concerning a shrinking neighborhood of some lo is of limited value for sta-
tistical inference since in general such prior information cannot be assumed~ Following Le 
Cam's general principles, we shall construct an experiment where the prior information is 
furnished by a preliminary estimator, and subsequently the local Gaussian approximation is 
built around the estimated parameter value. 
To formalize this approach, let Nn define a "fraction of the sample size", i. e. Nn is a sequence 
Nn ~ oo, Nn < n, and consider the corresponding fraction of the sample YI, ... , YNn. Let 
then /n be an estimator of l based on this fraction, fulfilling (with Pn,f the pertaining 
measure) 
(30) inf Pn 1(/n E 'En(!)) -+ 1. 

/E'E ' 

The set~ must be such that the shrinking rate of ~n(f) is an attainable rate for estimators. 
If l has a bounded derivative of order a, we have for l an attainable rate in sup-norm 
(n/ logn)-a:/(2a+l) (see Woodrofe (1967)). The required sup norm rate is In= o(n-114 ); this 
corresponds to a > 1/2. Thus we may expect for the HOlder smoothness classes assumed 
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here that the rate 'Yn is attainable if the size Nn of the fraction is sufficiently large. We will 
allow for a range of choices: 

· (31) n/ logn ~ Nn ~ n/2. 
Define Eo,n to be the original i. i. d. experiment (3) with global parameter space :E. 

3.1 Lemma. Suppose (31} holds. Then in Eo,n there exists a sequence of estimators In 
depending only on Y1, ... , YNn fulfilling (30). One may assume that for each n, the estimator 
takes values in a finite set of functions in :E. 

The following construction of a global approximating experiment assumes such an estimator 
sequence fixed. The idea is to substitute In for f o in the local Gaussian approximation and to 
retain the first fraction of the i. i. d. sample. Recall that our local Gaussian approximations 
were given by families (Qn,J,fo, f E :En(!o)), cp. (10). Note that f E :En(!o) is essentially 
the same as f o E :En(!). Accordingly we now consider the event In E :En(!), and let 
f range in the unrestricted parameter space :E. We look at the second sample part, of size 
n - Nn, with its initial i. i. d. family (P7(n-Nn), f E :E). Based on the results of the 
previous section, we can hope that this family will be close, in the experiment sense, to 
the conditionally Gaussian family (Qn-Nn,fJn, f E :E), on the event In E :En(!). The 
measures Q 1 !A , which now depend on In, have to be interpreted as conditional measures, n,, n 
and we form a joint distribution with the first sample fraction. 
This idea is especially appealing when the locally approximating Gaussian measure Qn,f,Jo 
does not depend on the "center" Jo. In this case the resulting global experiment will have a 
convenient product structure, as we shall see. This is the case with the variant (29) in remark 
2.9, when we parametrize with J112 • . 

To be more precise,. define Qi,n,f,fo, i = 1, 2, 3 to be the distributions of (y(t), t E (0, 1)) in 
(27), (28), (29). Consider a "compound experiment" given by joint observations Y1, ... , YNn 
and y = (y(t), t E (0, 1)), where 

(32) 
(33) 

Y1, ... , YNn i. i. d. with density f 
£(yly1, · • • 'YNn) = Qi,n-Nn,fJn' 

Here (33) describes the conditional distribution of y given y1, ... , YNn· Define R;,,n,J(I) 
to be the joint distribution of Y1, ... , YNn and y in this setup, for i = 1, 2, 3; the notation 
signifies dependence on the sequence of decision functions f = {/n}n;?:l (not dependence on 
the estimator value). Then the compound experiment is 

Since Q3,n,f,fo = Q3,n,f does not depend on Jo, the measure R3,n,J(/) = R3,n,f does not 
depend on I either, and is just the product measure of Pfn @ Q3,n-Nn,f. We also write 
E3,n (/) = E3,n. The technical implementation of the above heuristic reasoning (see section 
10) gives the following result. 

3.2 Theorem. Suppose (31} holds and let fn be a sequence of estimators as in lemma 3.1. 
Then for i = 1, 2, 3, 

11 



To restate this in a more transparent fashion, we refer to Y1, ... , YNn and y = (y(t), t E [O, l]) 
in (32), (33) as the first and second parts of the compound experiment, respectively. Let Fn 
be the distribution function corresponding to the realized density estimator Jn. 
3.3 Corollary. 
part 
(34) 

Under the conditions of theorem 3.3, the compound experiments with first 

Yi, i = 1, ... , Nn i. i. d. with density f 

and respective second parts 

(35) 
(36) 
(37) 

(38) 

Yi, i = Nn + 1, ... , n i. i. d. with density f 
dy(t) =log f(F;; 1(t)) + (n - Nn)- 112dW(t), t E (0, 1] 
dy(t) = f(t)dt + (n - Nn)- 112 J~l2 (t)dW(t), t E (0, 1] 

dy(t) = f 112(t)dt + ~(n - Nn)- 112dW(t), t E (0, 1] 

with f E ~ are all asymptotically equivalent. 

For obtaining a closed form global approximation, the compound experiment JE3,n, i. e. (34), 
(38), is the most interesting one, in view of its product structure and independence of J. 
Here the estimator sequence J only serves to show asymptotic equivalence to Eo,n; it does 
not show up in the target experiment JE3,n itself. This structure of JE3,n suggests to employ 
an estimator based on the second part to move on. 

3.4 Lemma. Suppose {31) holds. Then in JE3,n there exists a sequence of estimators Jn 
depending only on yin {38) fulfilling {30}. T:he second statement of lemma 3.1 also applies. 

Note the symmetry to lemma 3.1. Here we exploit the well known parallelism of density 
estimation and white noise on the rate of convergence level. 

Proof of theorem 1.1. We choose Nn = [n/2]. On the resulting compound experiment 
JE3,n we may then operate again, reversing the roles of first and second part. We may in turn 
substitute Y1, ... , YNn by a white noise model, using a preliminary estimator based on (38). 
The existence of such an estimator is guaranteed by the previous lemma. Thus substituting 
Y1, ... , YNn by white noise leads to an experiment with joint observations 

dy1(t) - j112(t)dt + ~N;; 112dW1 (t), t E (0, 1] 

dy2(t) - J112(t)dt + ~(n - Nn)- 112dW2(t), t E (0, 1]. 

where W1, W2 are independent Wiener processes. A ~ufficiency argument shows this equiva-
lent to observing n i. i. d. processes, each distributed as 

dy(t) = f 112(t)dt + ~dW(t), t E (0, 1], 

which in turn is equivalent to (4). D 
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4 An application: exact constants for L2-risk 

Let Fn C :E be any a priori set for the density /, and ln be a bounded loss function in an 
estimation problem: 

ln(g, !) ~ C for f E Fn and for all possible estimator values g. 

Let as before Eo,n be the density experiment with full parameter space :E, and let Po,n(ln, Fn) 
be the minimax risk there for restricted parameter space Fn and loss function ln. Let E"",n be 
another experiment with parameter space :E, and let p,...,n(ln, Fn) be the analogous minimax 
risk there. 

4.1 Proposition. Let ln be a uniformly bounded sequence of loss functions. Suppose that 
~(Eo,n, E,...,n) -+ 0. Then for any sequence of parameter spaces Fn C :E the minimax risks 
fulfill 

In particular one may consider loss functions ln such as 

(39) ln(g, /) = l ( n1-rllg - /II~) 

where nr- l is the optimal rate of convergence for squared L2-loss and l is a bounded function. 
Let ,C be the class of continuous nondecreasing functions on (0, oo) such that 0 ~ l(x) ~ x, 
x E [O, oo), arid let ,Cb be the class of bounded l E -C. 
The exact risk asymptotics over Sobolev classes for squared L2-risk (i.e. for an unbounded 
l(x) = x) was found by Pinsker (1980) for white noise; it was subsequently carried over 
to density estimation by Efroimovich and Pinsker (1982). Tsybakov (1994) generalized the 
Pinsker result to bounded l; this is particularly suitable for an argument via equivalence. 
As an exercise let us deduce the density case result for bounded loss from the white noise 
approximation. 
We begin by stating Pinsker's minimax risk bound in a very simple Gaussian model, which 
is instructive for understanding the general case. Consider observations 

(40) Yi= /(j) + ~j, j = 1, ... , n 

where ~j are independent standard normal,_ and the vector f = (/(j))j=l, ... ,n is in a set 

where 11·11 is euclidean norm. Denote this experiment by E~,n· Consider a loss function 

(41) 

and let p,...,,n(ln, Wn) be the minimax risk over all estimators, for parameter space Wn. 

4.2 Proposition. Consider l E ,C and let the loss ln be defined by (41). Then in the 
Gaussian experiment E~,n the minimax risk fulfills 
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Proof. For the lower bound, assume that l is bounded and consider a prior distribution 
where f(j) are independent N(O, 1- 8), where 8 > 0. By the law of large numbers, this prior 
concentrates on Wn as n ---+ oo, so that the Bayes risk is an asymptotic lower bound for 
p-,n(ln, Wn)· The loss ln(g, !) is subconvex, hence the posterior expectation off is the Bayes 
estimator. This Bayes estimator is fu) = 1!1~sYi , so that the Bayes risk is 

(42) 
n 

E l(n- 1 2:.)(1 - 8)yj/2 - 8 - f(j)) 2) 
j=l 

Here t::~Yi - f(j) are i. i. d. normal random variables with variance v0 = 2(1 - 82)/(2 - 8) 2 , 

so that (42) converges to l(v0 ). For 8---+ 0 we get l(v0 )---+ l(l/2). 
For attainment of this bound, consider first the case l E £b and the estimator J(j) = Yi/2, 
j = 1, . .. ,n. We have for f E Wn 

The extension to general l E £ takes a few more lines of standard reasoning. 0 

Pinker's result for Sobolev smoothness classes of functions can be construed as a generaliza-
tion to infinite dimensional ellipsoids which are "oblique" in the sense of being nonsymrnetric 
in the indices. Let <pj(x) = v'2cos(27rjx), j 2 1, <pj(x) = v'2sin(27rjx), j ~ -1, <po= 1 be 
the Fourier basis in L2(0, 1), and f(j) = (!, <pj) be the Fourier coefficients of a function f. 
Consider a periodic Sobolev class 

· Wf (K) = { f E L2{0, 1) : ~(21rj)2.e !&> ::; K}. 

and write wt (1) = wt. We state Pinsker's minimax risk bound in the white noise model, 
in the variant for bounded l according to Tsybakov (1994). Thrther discussion of the decison 
theoretic background can be found in Donoho, Liu and Macdibbon (1990). Let E,_,n be the 
experiment given by observations 

(43) Yi= f(j) + n-1/2~j, j = 1, 2, ... 

where ~j are independent standard normal and f E Wf. 
4.3 Proposition (Pinsker, Tsybakov). Suppose f3 > 0 and let r = 213~1 . Consider l E £and 
let the loss ln be defined by (39). Then in the Gaussian experiment E--,n the minimax risk 
fulfills 

- /3 p,...,,n(ln, W2)---+ l('Y(f3)) as n---+ oo, 

where 1(!3) = (2{3 + l)r ({3/7r({3+1))1-r is the Pinsker constant. 

Note that (43) is equivalent to the Gaussian white noise model 

dy(t) = f(t)dt + n-112dW(t), t E (0, 1]. 
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For application to density estimation, we consider a more general "heteroscedastic" form as 
in (28) 
(44) dy(t) = f(t)dt + n- 1/ 2 JJ12 (t)dW(t), t E [O, 1) 

where f o is a fixed probability density from the parameter space :E = :Ea M € defined in 
' ' (2). Recall that the distributions of yin (44) were called Q2,n,f,fo in section 3; let E,.,.,,n,f,fo 

be the respective expectation. Let JE,.,.,,n Uo) be the experiment formed by these measures 
when f o is fixed, with parameter space f E Wf, and let P"',n,Jo ( ·, ·) be a minimax risk 
there. Furthermore, we need a localized variant of the risk bound over shrinking uniform 
neighborhoods. Denote 

bo(r) = {t: ff= 0, 11/11 00 ST}· 
It turns out that the Pinsker bound holds also in this heteroscedastic case, and in the localized 
setting. Let 1 be the uniform density on [O, 1). We restrict ourselves to natural f3 in order to 
keep the proof simple (section 11). 

4.4 Proposition. Suppose f3 is natural and let r = 1/ (2/3 + 1). Consider l E ,.C and let the 
loss ln be defined by (39). 
(i) In the Gaussian experiment JE"',n(l), for any sequence: Tn ~ 0, Tnn/31(2/3+1) ~ oo we 
have 

liminf P"',n,1 (ln, Wf n bo( Tn)) ~ l(T(f3) ). n 

(ii) In the Gaussian experiments JE"',n(/o), there is a sequence of estimators f~, not depending 
on f o, such that 

lim sup sup E"',n,f,foln(f~, !) <.5. l( 1(/3) ). 
n - /3 /EW2 , /oEE 

We are now ready for application to density estimation. Consider the set of densities 

In conjunction with proposition 4.1 this already allows to state a risk convergence in the 
density model. We first use the local asymptotic equivalence of remark 2.9 for a lower 
asymptotic risk bound. Now have to assume f3 > 1, since the· Sobolev class Wf (K) is 
embedded in a HOlder class Af3-lf2(K'). Consider the experiment given by (28) with f E 
:En(/o) for Jo = 1. 

4.5 Proposition. Suppose {3 is natural, {3 > 1 and let r = 1/(2{3+1). Considerl E ,.Cb and 
let the loss ln be defined by (39). Then in the density experiment lEo,n the minimax risk over 
Wf fulfills 

liminf Po,n(ln, Wf) ~ l(1({3)). n 

For .the converse upper bound we shall invoke the global result· of corollary 3.3. Take the 
model (37) for a choice Nn = n/ log n and look what risk bounds are attainable there. 
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4.6 Proposition. Under the conditions of the previous proposition, in the density experiment 
Eo,n the minimax risk over Wf fulfills 

limsup Po,n(ln, Wf) ::; Z( 7((3) ). 
n 

We have seen that transferring the Pinsker bound to the density case ( cp. the details in 
section 11) is still somewhat cumbersome; the reason is that a white noise approximation 
with f as signal is not available in a closed global form. A more direct reasoning is possible 
for the Hellinger risk of a density, in view of the white noise approximation of theorem 1.1 
where f 112 is the signal. This presupposes an adapted a priori class 

W~= {f, f E F?_e, J1f2 E wf}. 
Define a squared Hellinger loss as 

. z!; (g, !) = l ( nl-rllgl/2 - 111211~) 

4.7 Proposition. Suppose f3 is natuml, f3 > 1 and let r = 1/(2{3+1). Consider l E i!b and 
let the loss Z;f be defined as above (Hellinger loss). Ther:i in the density experiment Eo,n the 
minimax risk over w~ fulfills 

Another natural application of asymptotic equivalence is minimax nonparametric hypothesis 
testing, where a theory of optimal rates and constants is also developing ( cp. Ingster (1993)). 

Part II: Technical sections 

5 Poissonization and Product Structure 
For the proof of proposition 2.5 we need some basic concepts from the theory of point pro-
cesses, see Reiss (1993). A point measure on (JR, B) is a measure µ : B ~ [O, oo] of form 
µ = EieI µxi' where I C N, Xi are points in lR and µx is Dirac measure at x. A point 
process is a random variable on a probability space (n, A, JP) with values in the space of 
point measures M equipped with the appropriate a-algebra M, see Reiss (1993), p. 6. If 
Y = {yi, i = 1, 2, ... } is a sequence of i. i. d. r. v.'s then the random measure µo,n = E~=l µYi 
is called an empirical point process. More generally if v is a random natural number inde-
pendent of Y then µ = Ei=l µYi is a mixed empirical point process. In particular if v = Tin 
is Poisson(n) then µ*,n = L:f;:1 µYi is a Poisson process which has intensity function nf if Y1 
has density f. If f and Jo are two densities for Y1 such that P1 « P10 and the law of v is 
given then it is possible to write down densities for the distributions II1 := .C(µ I P1) of the 
mixed empirical point process µ. For the case of the empirical and the Poisson point process 
(v =nor v =Tin) we shall denote these distributions respectively by IIo,n,/ and IT*,n,f· For 
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observations (v, Yi, i = 1, ... , v) write the likelihood ratio for hypotheses (P1, .C(v)) versus 
(Pio' .C(v)) 

(45) tr (f / fo)(y;) =exp j log(!/ fo)dµ. 
i=l 

This is a function ofµ which can be construed as a density of the point process law rr1 on 
(M, M, II10 ), or as a likelihood process when f varies. Note that for different .C(v) these den-
sities are defined on different probability spaces, since the respective laws rr10 differ. However 
let (n,A,P) = ([O, l]CX),B[0,11 ,A®00

) where A is Lebesgue measure on [O, 1) and let Y and v 
be defined on that space (as independent r. v.'s). Then (45) also describes versions on the 
probability space (n, A, P) which is common for different .C(v). For the case of the empirical 
and the Poisson point process (v =nor v = 7rn) we shall denote these likelihood processes 
respectively by Ao,n(/, fo)(w) and A.,n(f, fo)(w). The experiments defined by these versions 
construed as P-densities are then equivalent to the respective point process experiments, for 
any parameter space. In particular the empirical point process experiment (with laws IIo,n,f) 
is equivalent to the original i. i. d. experiment with n observations; µo,n = :Li=l µYi is a 
sufficient statistic. 
For our particular parameter space ~n (Jo) define the Poisson process experiment 

and recall the definition (8) of the i. i. d. experiment 1Eo,n(/o). 

5.1 Proposition. We have 

uniformly over Jo E ~. 

Proof. We use an argument adapted from Le Cam.(1985). It suffices to establish that 

H 2 (Ao,n(J, Jo), A.,n(J, Jo)) = O(n1121~) 

uniformly over f E ~n(/o), Jo E ~. With Vmin = min(7rn, n), Vmax = max(7rn, n) we get 

2 
Vmin Vmax 

= Erp II(! I fo)(Yi) II (!I fo) 112 (Yi) - 1 . 
i=l i=llmin+l 

Consider first the conditional expectation when 7r n is given; since Yi are independent it is 

En> ( JL (f / fo) 112 (y;) - 1 

2 

I 1fn) . 
This can be construed as the squared Hellinger distance of two product densities, one of 
which has Vmax - Vmin = 17r n - nl factors and the other has as many factors equal to unity~ 
Applying lemma 2.4 we get an upper bound 

2. 'f: En> (IU I fo) 112(y;) -112 I 1fn) ~ 2 11fn - nl 'Y~· 
i=Vmin+l 
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Taking an expectation and observing El1fn - nl :::; Cn112 completes the proof.D 

If µ is a point process and D a measlirable set then define the truncated point process 

µv(B) = µ(B n D), BE B. 

Let µo,n,D, µ*,n,D be truncated empirical and Poisson point process on [O, 1), respectively. 
The following Hellinger distance estimate is due to Falk and Reiss (1992); see also Reiss 
(1993), theorem 1.4.2: 

(46) H (£(µ,o,n,D I !), £(µ*,n,D I !)) :::; VSPJ(D). 

Proof of proposition 2 .. 5. By the previous proposition it suffices to establish that 

(47) 
kn 

~(E*,n(Jo), QSJEo,j,n(Jo))----? 0 
j=1 

uniformly over Jo E :E. In Eo,j,n(fo) we observe n i. i. d. truncated random variables (18); 
their empirical point process is. a sufficient statistic. Hence µo,n,Di (the truncated empirical 
point process for the original Yi) is a sufficient statistic also; let IIo,j,n,f = £(µo,n,Di I !) be 
the corresponding law. It fqllows that each Eo,j,n(fo) iS equivalent to an experiment 

Eo,j,nUo) = (M,M, (IIo,j,n,f, f E :En(/o)). 

Let IT*,j,n,f = £(µ*,n,Di I f) be the law of the truncated Poisson point process and 

E*,j,n(fo) = (M, M, (II*,j,n,f' f ~· :En(fo)); 

then by the p~opertles of the Poisson process E*,nUo) is equivalent to @J~1E*,j,nUo). It now 
suffices to show that 

kn kn 

~(QSJE*,i,nUo), QSJEo,j,nUo))----? 0 
j=1 j=l 

uniformly over f o E :E. From lemma 2.4 and ( 46) we obtain 

~ ~ ~ ~ 

H 2('°'II · f '°'IIo · J) < 2 ~ H 2(II · f IIo · J) < 6 ~ P 2 (D·) \(Y *,3,n, ' \(Y ,3,n, - L-t *,3,n, ' ,3,n, - L-t f 1 
j=l j=l j=l j=l 

:::; 6 sup Pf (Dj ). 
l~j~kn 

The functions f E :E are uniformly bounded, in view of the uniform HOlder condition and 
J f = 1. Hence PJ(Dj)----? 0 uniformly in f E :E and j.D 

6 Empirical Processes and Function Classes 

From the point process framework we now return to the traditional notion of the empiri-
cal process as a normalized and centered random function. However we consider processes 
indexed by functions. Let Zi, i = 1, ... , n be i. i. d. uniform random variables on [O, 1]. Then 
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is the uniform empirical process. The corresponding Brownian bridge process is defined as a 
centered Gaussian random function B(f), f E .C2[0, 1] with covariance 

EB(f)B(g) = j f g - (! f) (! g) , f, g E £2[0, l]. 

For any natural i, consider the subspace of .C2[0, 1] consisting of piecewise constant functions 
on [O, 1] for a partition [(j-1)2-i,j2-i), j = 1, ... , 2i. Let g(i} be the projection of a function 
g onto that subspace, and define for natural K 

The following version of a KMT inequality is due to Koltchinskii (1994), theorem 3.5 (spe-
cialized to a single element function class F there and to K = log2 n) 

6.1 Proposition. There are a probability space (0, 2l, JID) and numbers 0 1, 0 2 such that for 
all n, there are versions 1Un and Rn of the empirical process and of the Brownian bridge such 
that for all g E .C2[0, 1] with llglLX) ::; 1 and for all x, y ~ 0 

JID(nl/2 l1Un(g) - Bn(g)I ~ X + xlf2ylf2(CJJ.og2n(g) + 1)) 

(48) 

To set qK(g) in relation to a S1:fioothness measure, consider functions g E.C2[0, 1] satisfying 
~~c . 
(49) l~h (g(u + h) - g(u))2du $; Ch for all h > 0. 

For a given g, define llgll 2 1/2 as the the infimum of all numbers C for such that ( 49) holds; it is H2 
easy to see that ll·llH1/2 is a seminorm. The corresponding space Hi12 with norm ll·ll2+ll·llH1;2 

2 2 

coincides with the Besov space B~I! on [O, 1] (see Nikolskij (1975), 4.3.3, 6.2). Furthermore 
(cf. Koltchinskii (1994), relation (4.5)) 

qk(g) ::; 4K llgll~1;2. 
2 

Proof of proposition 2.3. If g fulfills llgll 00 < oo we divide by llgll 00 and apply (48); 
furthermore we put y = x + 021 logn, x = Ci1t and obtain from (48) 

201 exp( -t) ~ 

JID(n1/ 2 l1Un(g) - Bn(g)j ~ llglloo X + X 112Y112 (CJiog2n(g) + llglloo)) 

~ JID(n1/ 2 l1Un(g) - Bn(g)I ~ llgll 00 X + x 112Y112 (2 llgllH1/2 (log2 n) 112 + llglloo)) 
2 

2:: JID(n1/ 2 l1Un(g) - Bn(g)I ~ C(llgll 00 + llgllH1;2)(t + logn)(logn) 112). 
2 

0 
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6.3 Lemma. There is a C such that for all f E Lin(fo), Jo E Li 

Proof. The first relation is obvious. For the second, note that Fe) 1 has derivative 
1/ J(F0 1 (·)), and since f ~ E, we have F0-

1 E A1(C) .. Now write AJ,fo as a difference of 
logarithms and invoke again f ~E. D 

Next we have to consider the likelihood ratio for interval censored observations (18). We shall 
do this for a generic interval DC (0, 1] of length k;; 1 . We wish to represent the observations 
via the quantile function F01 in the usual fashion; we therefore assume D = F0-

1(A) where 
AC (0, l]. Consider a class of intervals, for given C1, C2 > 0, 

(50) 

The assumption f o E Li implies that f o is uniformly bounded and bounded away from zero. 
Hence mes(D) = k;;1 implies that A= Fo(D) E 2Ln for all Jo E Li and appropriately chosen 
C1, C2. The technical development will now be carried out uniformly over all intervals 
A E 2fn. We shall put P1(F0-

1(A)) = p, P10 (F0 1(A)) =PO· The corresponding log-likelihood 
ratio under Jo, expressed as a function of a uniform (0, 1] variable z, is then AJ,Jo,A(z), where 

AJ,fo,A(t) = XA(t) log { (F0-
1(t)) + (1 - XA(t)) log 

1
1 

- p. 
JO -po 

(51) 

Since AJ,Jo,A has jumps at the endpoints of A, it is not in a Holder class A0 (M) but it 
is in an L2-Holder class, so that we can ultimately estimate II,\ f,fo,A II H1;2 and apply the 

2 
KMT-inequality of proposition 2.3. We first need some technical lemmas. 

6.4 Lemma. There is a C such that for all f E Lin(fo), Jo E :E, A E 2Ln 

sup IAJ,fo,A(t)I ~ c,n, sup IAJ,fo,A(t)I ~ Ck";;,1,n. 
tEA tEAc 

Proof. For t E A we invoke the previous lemma. For t E Ac we estimate 

11 _ E_I < f v If - fol < f v lfo - ll lo < . 
Po - f D f 0 - f D f O - {n 

In view of (50) we also have po :::=::: k;;1 ~ 1/2, hence 

(52) 11- 1- p I= -1!E_ 11- E_I ~ Ck";;lrn· 1-po 1-po Po 

This implies a similar estimate for j log ((1 - p)/(1 - po)) I and thus yields the estimate for 
t E Ac. D 
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6.5 Lemma. There is a constant C such that for all f E ~n(fo), Jo E ~'A E 2ln 

j >..J,Jo,A::; .C n-1, - j >..f,fo,A::; C n-1. 

Proof. From the previous lemma and (50) we obtain 

(53) f >.},fo,A = L >.},fo,A + L >.J,to,A ::; Ck;1"1~ + Ck;2"(~::; Ck; 1"(~, 
hence in view of (6) and (19) 

n j >.. J,Jo,A ::; Cnk;;, 11~ ::; C. 

To prove the second relation, define cp(t) = exp>..f,fo,A(t); then J cp = 1, and lemma 6.4 
implies lcp(t) - ll ::; Crn uniformly. Hence 

-n j AJ,fo,A = -n j logcp::; n j (1- cp + C(cp - 1)2
) = Cn j (cp - 1)2 

Here we treat the r. h. s. analogously to (53), using the fact that lemma 6.4 remains true 
with cp - 1 in place of>.., so that 
(54) n j (cp -1)2 ::; C. 

D 

6.6 Lemma. There is a C such that for all f E ~n(fo), Jo E ~' A E 2ln 

ll>../,/o,AllH1/2 ::; Crn· · · 
2 

Proof. It suffices to show 
rl-h 

(55) Jh (>..J,fo,A(x + h) - >..f,fo,A(x))2 dx::; C1~h for 0 < h < 1/2. 

Let A= [a1, a2) and define Al,h = [a1 + h, a2 - h), A2,h = [a1 + h, a2 - h) n [h, 1 - h] (here 
A1,h is empty for h > kn/2). The integral above over [h, 1 - h] will be split into integrals 
over A1,h, A2,h \ Al,h and [h, 1 - h] \ A2,h· According to lemma 6.3, AJ,fo,A fulfills a Holder 
condition on A, so that 

L (>..J,fo,A(x + h) - AJ,fo,A(x))2 dx::; Ch20k';;, 1 

I,h 

We have k:;; 1 rv1~(1ogn)4 in view of (6) and (19), so that a> 1/2 implies Ch20k:;; 1 ::; Chr~· 
For the second integral, we use the estimate ll>..1,/o,AIL:io ::; Crn implied by lemma 6.4, and 
obtain 

1 (>..J,fo,A(x + h) - AJ,J0 ,A(x)) 2 dx::; C1~h. 
A2,h \A1,h 

Finally, note that AJ,fo,A is constant on [O, 1] \ A2,h, so that 

{ (>..J,fo,A(x + h) - AJ,fo,A(x))2 dx = 0. 
j[h,l-h]\A2,h 

Thus (55) is established.D 
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7 The local likelihood processes 

Consider now the likelihood process for n observations (18) when Dj is replaced by the generic 
subinterval D = F01(A) with A E 2ln from (50). With n i. i. d. uniform (0, I)-variables Zi 
we get an expression for the likelihood process 

(56) Ao,n(J, fo, A)= exp{~ At,fo,A(z;)}; 

for A= Fo(Dj) this is the same as Ao,j,n(f, Jo) as defined after (19). Denote 

K(fo II J, A) = - j AJ,fo,A(t)dt 

the pertaining Kullback information number. We assume that lUn and Bn are sequences 
of uniform empirical processes and Brownian bridges which both come from the Hungarian 
construction of proposition 2.3. We obtain the representation ( cp. (14) and proposi.tion 2.6, 
suppressing the notational distinction of versions) 

(57) Ao,n(f, Jo, A)= exp { n 112 1I.Jn(AJ,fo,A) - n K(fo II J, A)}. 

The corresponding Gaussian likelihood ratio is (cp. (15)) 

(58) A1,n (!,Jo, A) = exp { n l/2 I!!,. (A f,/0 ,A) - % Var( A f,f 0 ,A ( Z))} · 

Consider also an intermedia:ry expression 

A#,n(f, Jo, A)= exp { n 112 B~(AJ,Jo,A) - n K(fo II f, A))}. 

The expression A#,n(f, Jo, A) is not normalized to expectation one, but we consider it as 
the density of a positive measure on the probability space (0, A, JP>). The Hellinger distance 
H 2 ( ·, ·) is then naturally extended to these positive measures. 

7.1 Lemma. There is a C such that for all f E ~n(fo), Jo E ~'A E 2Ln 

Ew (Ai,n(f, Jo, A) )2 ~ C, i = O, 1, Ew (A#,n(f, Jo, A) )2 ~ C. 

Proof. Define (for a uniform (0, 1)-variable Z) 

(59) n 
T11 = n K(fo II J,A), T12 = 2Var(AJ,fo,A(Z)), 

(60) 

Since T22 is a zero mean Gaussian r. v., we have 

Hence 

Ell'Atn = Ell' exp (2 (T22 - Tl2)) = exp (2T12) :::; exp ( n j A},fo,A) . 
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Now from lemma 6.5 we obtain the assertion for i = 1. For the case i = 0, we get from (56) 

EJ?A5,n =Ell' exp { 2 ~ At,fo,A(Zi)} = (Eexp (2At,fo,A(Z))t. 

Now we have for cp(t) = exp.Xf,fo,A(t) 

Eexp2.Xf,fo,A(Z) = J(cp(t)) 2dt = 1 + J (cp(t) -1)2 dt:::; 1 + Cn- 1 

as a consequence of ( 54). Hence 

so that the lemma is established for i = 0. Finally, to treat EJP>A~,n' observe that lemma 6.5 
implies that Tn and Ti2 are uniformly bounded. Hence 

EwA~,n = EwAi,n exp (2(T12 -Tn)) :::; C. 

D. 
The next lemma is the key technical step, bringing in the Hungarian construction estimate 
of proposition 2.3. 

7.2 Lemma. There is a C such that for all f E 'En(/o), Jo E 'E, A E 2ln 

H (Ao,n(/, Jo, A), A#,n(!, Jo, A)):::; C /n(logn)312
• 

Proof. Define 
To= n112 (1IBn - 1Un)(AJ,J0 ,A)· 

Combining proposition 2.3 with lemmas 6.4 and 6.6, we obtain 

lP(ITol ~ C1n(t + logn) log112 n) :::; C exp(-t). 

Put t = tn = 4 log n and for the above C 

Un = 5C/n log3/ 2 n. 

For an event 

B = B1,Jo,A = {w: !Toi:::; Un} 

we obtain an estimate 

(61) 

To treat H 2(Ao,n, A#,n), split the expectation there into EJPXB(·) and EwXBc(·), and observe 

EJP>XBc(Atl~ - A~,!)2 < 2.Ei?XBc(Ao,n + A#,n) 

< 2 (1P(Bc)2Ew(A~,n + A~,n)) 112
• 
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According to the previous lemma Enn(A5,n +A~,n) is uniformly bounded, so that (61) implies 

(62) E (A1/2 _ Al/2 )2 < C -2 JPlXBc O,n #,n - n · 

For the other part, observe that on w E B, in view of Un= o(l), 

ll - exp(To/2)1 5:. Cun, 

so that on w E B 

(A~:; - A~,!)2 = (1 - exp(To/2) )2 Ao,n 5:. Cu~Ao,n· 

Since EwAo,n = 1, we obtain 

(A1/2 Al/2 )2 c 2 EJPlXB O,n - #,n 5:. Un· 

This completes the proof in view of (62) and n-2 = o(u~).D 

7.3 Lemma. For all J E 'En(/o), Jo E 'E, A E 24i 

H(Ao,nU, Jo, A), Al,n(f, Jo, A)) 5:. 2H(Ao,n(f, Jo, A), A#,nU, Jo, A)). 

Proof. Consider the space of random variables L2(0, A, JP>) and note that H(A#,n, Al,n) is 
the distance of A~,! and AV; in that space. Furthermore 

A 1/2=A1/2 (E A )-1/2 1,n #,n fill #,n · 

is the element of the unit sphere of L2(0, A, JP>) clos~st to A~,!. Since A~:; is on the unit 
sphere, we have 

and therefore 

D 

Let now A = Aj = Fo(Dj) and consider also the likelihood process Al,j,n(f, Jo) of the 
Gaussian experiment Ei,j,n(fo) of (20). Remind that this differs from Ai,n(f, Jo, Aj) (cp. 
(58) and (51)). We consider versions of both likelihood processes which are functions of the 
Brownian bridge version B. 

7 .4 Lemma. There is a C such that J or all f E 'En (Jo), Jo E 'E and j = .1, ... , kn 

Proof. The likelihood process Al,n(f, Jo, Aj) is Al,n(f, Jo) from (15) with AJ,fo replaced by 
AJ,fo,Aj, so it corresponds to a Gaussian model 

dy(t) = (>..J,fo,Aj(t) + K(follJ, Aj))dt + n- 1/ 2dW(t), t E [O, 1] 
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with J E 'EnCfo) (cp. (16)). Moreover Ai,j,n(f, Jo) corresponds to the Gaussian model (20). 
Hence the distance H ( ·, ·) between the likelihood processes on ( n, A, JP>) equals the Hellinger 
distance between the two respective shifted Wiener measures. We may apply formula (23), 
putting 

91 = At,fo,A; - f At,fo,A;, 92 = XA;Af,fo - L. At,fo· 
J 

We obtain in accordance with (13) and (51) 

1191 - 9211~ = llXAJA /,/o,A; - l'j A /,/o,A; rr: = Po(l - Po) log
2 

1
1 ~:a 

where p = P1(Dj), Po= P10 (Dj)· Using Po:::; Ck";;, 1 and (52) we find 

llg1 - g2ll~:::; Ck~3r~· 

By ( 23) the squared Hellinger distance is 

2 (1-exp {-ill91 - 9211~}) :::; 2 (1-exp {-Cnk;;-3-y~}) 

and the lemma follows from nk;;,3 = o(l).D 

Proof of proposition 2.6. Consider Ao,n(f, Jo, A) for A = Aj and identify this to 
Ao,j,n(f, Jo). Identify Ai,j,nCf, Jo) oflemma 5.3.4 to Ai,j,n(f, Jo). The result then follows from 
lemmas 7.2-7.4.D 

8 Further local approximations 

Define functions 

Al,f,fo - AJ,fo + K(follf), A2,J,/o =(!/Jo - 1) o FQ" 1
, 

A3,f,fo - 2 ( (! / Jo)1f2 - 1) o Fo-1 

and experiments Etn Cf o) given by observations 

(63) dy(t) = Ai,f,Jo(t)dt + n- 1l 2dW(t), t E [O, 1], 

and parameter space J E :EnCfo), for i = 1, 2, 3. We have seen that EfnCfo) = E1,nCfo) (cp. 
(16)). 

8.1 Lemma. We have 

Proof. The likelihood process for Etn Cf o) is 
' 
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Define a process 

W'(t) = l IQ 112d(W o Fo). 

This is a centered Gaussian process with independent increments and variance at t given by 
JJ J01dFo = t. Hence W* is a Wiener process, and we have for every continuous g on [O, 1] 

J gJ~12dW* = J gd(Wo Fo). 

Utilizing W* in (24), we get a likelihood process for lE2,n(/o) 

exp { n Ju- lo)I0 1n- 1l21~12dW' - i Ju- lo)2101
} 

- exp { n J (!/lo - 1) n-1/2d(W o Fo) - i JU/ lo - 1)2 dFo} = A2,n(/, lo). 

Similarly for lE3,n(/o) we obtain a likelihood process 

exp { 4n J (/1/2 - 1~f2)~n-1/2dW' - ~n J (/1/2 - l~/2)2} 

- exp{ 2n J (U I 10)112 -1) n-1l 2d(W o Fo) - ~n J (U / 10)112 -1)2 
dFo} 

- A3,n(/, Jo). 
D 

Proof of theorem 2.8. It now remains to apply formula (23) to the measures given by (63) 
when J E "Ein(/o). vVe have to prove 

(64) sup llA1,/,/o -Ai,f,toll~ = o(n-1) 
/E~n(/o) 

for i = 2, 3, uniformly over Jo E "£. Using the expansion 
1 

(65) logx = log(l + x -1) = x -1 - 2(x -1)2 + o((x -1) 2) 

and putting x = (!/Jo) o F0-
1 (t), we note that for f E "Ein(/o) 

(66) AJ,t0 (t) = A2,f,Jo(t) + O(/~) 
uniformly. Since J A2,f,fo = 0, we obt~in 

(67) K(follf) = J (A2,f,fo - AJ,Jo) ~ llA2,J,fo - A/,toll2 = 0(1~). 
Now· ( 66) and ( 67) imply 

llAJ,/o + K(follf) - A2,/,Joll~ = 0(1~) = O(n- 1(1ogn)-4
) 

which proves (64) for i = 2. For i = 3, note first that for J E "Ein(/o) we have 

llU I /0)1/2 - 11100 = O(/n), 

and use (65) with x = (! / fo) 112 o F0-
1(t) to obtain 

(68) AJ,Jo(t) = 2log(f / /0) 1/ 2 o F0-
1(t) = A3,f,fo(t) + 0(1~) 

uniformly. Now (68) and (67) imply (64) for i = 3. D 
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9 The preliminary estimator 

Consider first a histogram estimator based on the whole sample. Let 
'l/Jn,,,, = (Klogn/n) 0 1(2o+l) f~r a K > 0 and Sn= ['lfJ~)/0 ] + 1. Define intervals Jj,n = s;;, 1 [j -
1, j), j = 1, ... , Sn and let Fn be the empirical distribution function of y1 , ... , Yn. Define an 
estimator 

9.1 Lemma. In the experiment lEo,n there is a K such that 

Proof. Consider the usual decomposition 

Note that fort E Jj,n 

IEfn(t) - f(t)I - k(t) - Sn k. f(u)dul ~Sn L;,n IJ(t) - J(u)I du 

< Msn f jt-uj 0 du~Ms;;,0 ~M'l/Jn,"'' 
}Jj,n 

so that 

For the variance part, write fort E Jj,n and observations Yi having density f 

fn(t) - Efn(t) - Sn f XJ;,.d(Fn - F) = Snn-l t T/ij, 
i=l 

where "Jij - XJj,n(Yi) - P1(Jj,n)· 

Then l"Jij I ~ 1 and using notation Vn = Ei=l Var( "Jij) consider Bernstein's inequality 

It is easy to verify that the quantity 

(69) µE =sup llf 11 00 
/EE 

is finite; this is a consequence of Holder continuity in conjunction with J If I = 1. We find 

Vn = nPf(Jj,n)(l - Pf(Jj,n)) ~ ns;;,1µE. 

Putting t = 'l/Jn,1ts;;, 1n, we obtain Vn + t/3 ~ 2ns;;, 1µE for large n and 
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Consequently for K, ~ 4µr:, 

< f Pn,f (snn- 1 lt'f/ijl 2:: 'l/Jn,K-) 
J=l i=l 

< 3snn-l ---+ 0. 

For K, ~ max( 4µr:,, 2M, 2) we obtain the lemma. 0 

Proof of lemma 3.1. Consider the estimator applied to a sample fraction Yi, i = 1, ... , Nn; 
call it f Nn· Then, since a> 1/2, 

This immediately implies 

(70) supPn,t (sup lt(t)-JNn(t)I > Cln)---+ 0, for all c > 0. 
/E'E tE[O,l) 

Note that the set E is compact in the uniform metric: indeed it is equicontinuous and 
uniformly bounded accorcfu+g to (69), so compactness is implied by the Arzela-Ascoli theorem. 
Now cover Eby a finite set of uniform In-balls with centers in E and define Eo,n be the set 
of the centers. Define in as the element in Eo,n closest to J Nn (or in case of nonuniqueness, 
select an element measurably). Analogously, for f E E select a closest element gf E Eo,n· 
Then we have 

·llin -Jlloo ::; llin - JNnll
00 

+ llJNn - Jll~ 
< Ilg! - JNnll

00 
+ llJNn - Jll

00 

< Ilg! - f lloo + 2 llJNn - f 11
00 

::; 2 llJNn - f lloo +In· 

Hence in also satisfies (70), and it takes values in the finite set Eo,n C E. From this we 
obtain immediately 

supPn,f (sup IJ(t)/ JNn(t) -11 >In)---+ 0 
/EE tE[0,1) 

in view of the uniform bound f ( t) ~ E for f E E. D 

For lemma 3.4, we first consider estimation of the signal (rather than its root) in the white 
noise model. Let again 7/Jn,K- = (K,logn/n)a:/(2a+l). 

9.3 Lemma. Consider an experiment given by observations 

(71) dy(t) = g(t)dt + n-112dW(t), t E [O, 1] 

with g E A a: ( M). There one can find an estimator 9n and a K, such that 

sup Pn,g (!Ian - gll 00 2:: K, 'l/Jn,K.) ---+ 0. 
gEA0t(M) 
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The proof could be analogous to lemma 9.1, with simplifications due to Gaussianity. Alterna-
tively, we may refer to theorem C in Donoho (1994) where sharper results (optimal constants) 
are obtained. 

Proof of lemma 3.4. If g = f 1!2 with f E ~ then since f E F'?.E 

jJlf2(t) - 11/2(u)j ~ E-1/2 lf(t) - f(u)I 

so we obtain g E N:r·(c112 M). Also, by the previous argument we may assume that gn takes 
values in a finite subset of {/112 : f E ~}. On the other hand, if In= g; then · 

IJn(t) - J(t)I ~ lgn(t) + g(t)l lgn(t) - g(t)I. 

Since both gn and g are in {/112 : f E ~}they are uniformly bounded by µi{2 (cf. (69)), so 
that for some"' 

Finally assume that Jn is based on observations with noise intensity (n - Nn)- 112 instead of 
n- 112 , i. e. on (38). Then (n - Nn)- 112 ~ (n/2)-112 so that attainable rates are not worse. 
As in lemma 3.1 we now infer that the estimator In based on (38) fulfills (30).D 

10 Experiments and globalization 
We collect some basic facts a~out experiments and· deficiencies following Strasser (198q) 
([S] henceforth). Let lE1 = (f!i,A1, (P1,~,'i9 E 8)) be an experiment and )et L(lE1) be 
the corresponding L-space (see [S] 41.4); L(lE1) is a certain subspace of the set of signed 
measures on ( Oi, Ai) which is a Banach lattice under the variational norm II· I I· Let lE2 = 
(02, A2, (P2,'l9, fJ E 8)) be another experiment with the same parameter set 8 with L-space 
L(lE2). A transition from L(lE1) to L(lE2) is a positive linear map with norm one (i. e. a linear 
map M: L(lE1) ~ L(lE2) such that for a E lE1, a~ 0 one has Ma~ 0 and llMall = llall, cp. 
[S] 55.2). Every Markov kernel K: 01 x A2 ~ [O, 1] defines a transition. For the definition 
of the deficiency 8(lE1, lE2) of lE1 with respect to lE2 via decision problems see [S] section 59. 
An equivalent characterization is ([S] 59.6) 

(72) 

where the infimum extends over all transitions from L(lE1) to L(lE2). The two sided deficiency 
is 

This defines a pseudodistance on the set of all experiments with parameter space 8; in 
particular, the triangle inequality holds [S] 59.2). lE1 and lE2 are called equivalent (or of the 
same type) if A(lE1, lE2) = 0. 
We are interested in conditions under which every transition is given by a Markov kernel. [S] 
55.6 (3) gives it for the case that lE1 is dominated and 02 is a locally compact space with 
countable base and A2 is its Borel a-algebra. But spaces like C[O, 1] are not locally compact, 
so we would like to have the result for a complete separable metric (Polish) space instead. 
We briefly complete the argument. 
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10.1 Definition. An experiment 1E. = (n, A, (PrJ, iJ E E>)) is called Polish if n is a Polish 
space and A is the pertaining Borel a-algebra. 

10.2 Proposition. Suppose that JE.1 is a dominated experiment and lE.2 is Polish. Then every 
transition from L(lE.1) to L(lE.2) is given by a Markov kernel. 

Proof. It is well known that (!12, A2) is Borel isomorphic to a subset of the unit interval 
(Dudley (1989), lemma 13.1.3, Parthasarathy (1980), Proposition 25.6). This means that 
there is a one-to-one function cp from n2 onto a Borel subset S of the unit interval such 
that cp and cp-1 are both measurable. It is clear that JE.2 is then equivalent to an experiment 
1E.2 given on the measurable space (S, B8 ), and this equivalence is realized by Markov kernel 
transitions given by the mappings cp and cp-1. Thus it suffices to prove the theorem for 
lE.2 = 1E.2. We now refer to remark 5.5.6 (3) in [S].D 

For the proof of theorem 3.2 we formulate a lemma in an abstract framework. Let X = 
(X, X, (P'l9, iJ E E>)) be an experiment. Suppose also that there are a system of subsets 
0(</J) C 0, cjJ E 0 and experiments 

Suppose further that there is a finite subset of 80 c 0 and an estimator ~ : (X, X) I-* 

(0o, 280 ) and form Markov kernels 

Qi,rJ(X, A')= Qi,'19,J(x)(A'), X EX, A' EA, i = 1, 2. 

Let (Xi, Xi) = (X x ni, x x A) be a product measurable space. For any Markov kernel 
K: X x A I-* [O, 1) and a measureµ I X we shall form the usual compos.ed measure µ®K I Xi. 
Define measilles Pi,'19 I xi = p{) ® Qi,'19 I xi and experiments ]Fi = (Xi, xi, (Pi,{), iJ E E>)), 
i = 1,2. 

10.3 Lemma. Suppose that for all cjJ E 0 the experiments lFi(c/J), i = 1, 2 are Polish and 
dominated, and 
(73) supll(lF1(</J),lF2(</J)) ~E. 

</.>E9 

Suppose also that the estimator ~ with values in 80 fulfills 

(74) 

Then 

Proof. Observe that since 0 0 is finite and ~ is 29 0_ measurable, the set Vfl = { x : iJ E 
E>(~(x))} is in X. In accordance with proposition 10.2, let Kq_,(w2, ·) be a Markov kernel 
realizing 

and define 
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It is easy to see that M is a Markov kernel. Indeed by standard arguments this claim is 
reduced to the measurability of K~(x)(w1, A') in x = (x, w1) for given A' E A2, which again 
follows from the properties of J. Now we have for A E X2 

Hence 

and we obtain 

IP2,19(A) - MP1,19(A)I :::; 2P19(VJ) 

+ l. l.l, XA(x,w2)(K.i;cx81,o,J;(x) - Q2,0,J;(x))(dw2)I P,i(dx) 

:::; 2P19(VJ) + sup sup llKq,Q1,19,</> - Q2,19,<t>ll :::; 3€ 
</>E 90 19E 9( </>) 

c5(1F1,1F2):::; sup llP2,19 - MP1,19ll:::; 3c. 
19E9 

The argument for c5 (JF 2, lF 1) is symmetric. D 

Proof of theorem 3.2. In the previous lemma we put fJ = f, </>=Jo, 8 = :E, 8(4>) = :En(fo) 
and identify the experiment :X to the one given by the sample fraction Y1, ... , YNn (which 
may be written Eo,Nn). Furthermore. lF1(efJ) is given by the second sample fraction with f 
restricted to~ neigJ:iborhood :En(fo) (which may be written Eo,n-Nn(fo), cp. (8)). 1F2(4>)) 
is given by one of the three local experiments (27), (28), (29) in remark 2.9 (we have seen 
that those are asymptotically or exactly equivalent to the respective Ej,n(fo), j = 1, 2, 3 from 
theorem 2.8). Note that both lFi(</>)), i = 1, 2·are then Polish and dominated; in particular, 
O[O,l] is a Polish space (see Dudley (1989), Corollary 11.2.5). The estimator J is taken to be 
Jn according to lemma 3.1 and the finite set 80 is the range of this estimator. To identify 
the global experiments 1F i of the lemma, note that the measures in lF 1 ( </>) do not depend on </> 
(indeed 1F1(4>) = Eo,n-NnUo) is obtained by just restricting the parameter space in Eo,n-Nn). 
Therefore lF 1 coincides with the set of product measures P?Nn © PJ(n-Nn), f E :E, i. e. with 
Eo,n· The experiment 1F2 coincides with Ej,n(f) as constructed; for j = 3 this again is a set 
of product measures P?Nn © Qa,n-Nn,f· Take € arbitrary; then for sufficiently large n we 
achieve (73) by theorems 2.1 and 2.8 (they were shown for sample size n; but since n - Nn 
is of order n, the argument remains valid for the now relevant diminished sample size). We 
achieve (74) by lemma 3.1. We have shown ~(Eo,n,Ej,n(})) :::; 3€ for sufficiently large n, 
which proves the theorem. D 
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11 Exact constants for L2-risk 

Proof of proposition 4.1. For this basic relation see Le Cam and Yang (1990), Strasser 
(1985), 49.6. These authors consider a setup of lower semicontinuous loss functions on a 
topological space of decisions. For our purpose it suffices to work with a measurable space 
of decisions (G, g) and bounded loss functions ln(g, iJ) which are measurable in g. If JEi = 
( ni' A' (Pi,{}' {) E e)) is an experiment then (randomized) decision functions are Markov 
kernels K: ni x g 1-+ (0, l]. The minimax risk is 

Pi(ln, 0) = inf sup j ln(g, iJ)K(w, dg)Pi,1'J(dw). 
K 1'JE9 

Proposition 4.1 is then immediate if both experiments JEi, i = 1, 2 are Polish and dominated. 
Indeed, let M : L(IE1) 1-+ L(IE2) be a transition attaining 8(IE1, IE2) + E and K be a decision 
function in IE2. Since Mis a Markov kernel (proposition 10.2), the composition Ko Mis a 
decision function in IE1, and we have for {) E 0 

J ln(g, iJ)K(w2, dg)P2,1'J(dw2) 2:: J ln(g, iJ)(K o M)(w1, dg)P1,1'J(dw1) - C (8(1E1, IE2) + E). 

Taking a sup over {) E e and then an inf over K, we obtain, since E > 0 was arbitrary, 

In proposition 4.1 both experiments are Polish and dominated. D 

Proof of proposition 4.4~ For the Pinsker result many variants of proof have been given, 
see Golubev and Nussbaum (1990) (GN henceforth) and the literature cited therein. Our 
argument will therefore be extremely condensed. 
(i): case l(x) = x. Set q = [(n/KY] for some K > 0. Let 

ivf (1<) = { f E Wf (1<), l f = 0, f(k)(O) = f(k)(l) = 0, k = o, ... ,,B-1.} 
Consider a probability measure v on L2(0, 1) with finite support fulfilling Ev llD.Bg11 2 < K. 

Assume a prior distribution for I such that l(x) = Ek=l n-112q112gk(qx - k + 1) where gk 
are i. i. d. v. By the law of large numbers, this prior asymptotically concentrates on Wf (1) 
(lemma 5 in GN). By lemma 6 in GN, the minimax risk over I E Wf (P) with normed L2-loss 

~ 2 ' 
n1-r Ill - 111

2 
is then lowerbounded by K-r times the Bayes risk inf_g Ev II§ - gll~ for prior v 

in a model 
(75) dy(t) = g(t)dt + dW(t), t E (0, 1] 
(cp also Low (1993)). The set Wf (K) has an ellipsoid representation, see section 5.1 of GN. 
Consider the Fourier coefficients g(j) of g wrt the pertaining orthonormal basis. Let rwf (K) 
the set of centered Gaussian distributions v* on £ 2(0, 1) for which g(j) are independent and 

which fulfil! Ev· llD.B g11 2 
< K. Now v may be selected to approximate such a v*, which yields 

a lower bound as a least favorable Bayes risk in the model (75) 

(76) K,-r sup il}f j E II§ - gll~ dv*(g). 
v*ErWf(11:) g 
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The eigenvalue asymptotics of the ellipsoid wf (K) is the same as for wf (K); this implies that 
for K --1- oo the risk (76) tends to 

sup {1-: h2(x) ( 1+ h2 (x) r1 dx : L: h2(x)(27rx) 2f3 ~ 1}. 
The value of the extremal problem is the Pinsker constant r(/3) ( cp. Golubev (1982) ). 
In this argument, since v initially is a measure with finite support, the corresponding prior 
on f is such that almost surely 

sup IJ(x)I:::; O((n-lq)l/2) = O(K-rnr-1)1/2). 
xE[0,1] 

This proves that the lower bound remains valid with a restriction to bo( Tn). 
(i): general l E £. Combine the method in the lower bound proof of proposition 4.2 with 
the above argument. 
(ii): case l(x) = x. Consider first the simple model of proposition 4.2, but assume now that 
the noise in (40) is f~(j~~j, where Jo E JR+ is a vector such that n- 1 llfoll2 = 1. Then for the 
estimator l(j) = Yj/2 we have for f E Wn 

i .. e. risk performance of the optimal estimator lu) is the same as before, in the more general 
model with unequal fo(j)· This phenomenon appears also in Pinker's ellipsoid model (43). In 
the more general model (44), consider the optimal estimator of proposition 4.3. It is known 
to be the minimax linear estimator over wf in (43), of form 

l* = :E Cjl(j)'{Jj 
j=0,±1,±2, ... 

where l(j) = J <pjdy, for certain coefficients Cj , such that Cj = C-j· The latter property holds 
since Wf is symmetric wrt indices j and -j. For the risk of l* in ( 44) we have (for each n 
only finitely many Cj are nonzero) 

En,f,fo Ill* - tll: = ~(1 - Cj)
2 !&) + n-

1 ~ c] J <pJfo. 
J J 

Observe that J ( <p~ + <p2_ j) f o = 2 J f o = 2. Then Cj = C-j implies 

En,f,fo Ill* - 111: = 2:(1 - Cj)
2 !&) + n-

1 L c]. 
j j 

Thus we are back in the case of uniform variance function (Jo = 1), where l* attains the 
bound r(/3) for l(x) = x. 
(ii): general l E £. Combine the method in the attainment proof of proposition 4.2 with 
the above argument.D 
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Proof of proposition 4.5. Consider the set 
- f3 Fn = 1 + W 2 n Bo(rn)· 

In proposition 4.4 (i) wf nB0 (rn) may be replaced by Fn since observations (and estimators) 
may be transformed by adding ldt to the observations dy(t). Let {3 :;::: a+ 1/2. We claim 
that Tn may be chosen such that for any n 

(77) Fn c Wf, Fn c En(l). 
Indeed, functions in Fn integrate to one. Furthermore they are eventually all :;::: E if Tn--+ 0, 
so that Fn c F'?.e and the first inclusion is proved. By embedding theorems, Wf (P) is 
contained in a Holder class A0 (M) for {3:;::: a+ 1/2. Furthermore we have 

for a choice Tn = n-f3/(2f3+1) logn and {3 > 1/2, so that Fn C En(l). Since by remark 2.9 
asymptotic equivalence holds over the set En ( 1), the proof is complete. D 

Proof of proposition 4.6. For {3 > 1, by embedding theorems wf (P) c A0 (M) for some 
a > 1/2, M > 0. Thus Wf C E, and by theorem 3.2 we may pass to the compound Gaussian 
white noise experiment E2,n(/), for a choice Nn = n/ logn and a preliminary estimator fn. 
Consider the measures R2,n,f(f) and Q2,n-Nn,/,fo as introduced in section 3. Take 8 > 0, and 
define z(s)(x) = Z((l + 8)x); then for sufficiently large n 

ln(g, !) ~ l((l + 8)(n- Nn) 1-rllg - !II~)= z<s)((n - Nnf- 1 llg- !II~)= z~S}_Nn.(g, f), 

say. For any estimator J/! in E2,n (/) we have 

sup J ln(f!, f)dR2,n,f (f) < 
JEW~ 

sup~ I(/ z~2Nn (f;t, J)dQ2,n-Nn.!.fn) dF'fNn 
fEWe 

sup sup I l~82N. (f!, f)dQ2,n-Nn,J,Jo· 
fEWf foE'l:i n 

Now take J/! to be the estimator f~-Nn of proposition 4.4 (ii), as a function of y in (37). 
Then uniformly over Jo EE 

sup I l~82Nn (/!' f)dQ2,n-Nn,J,Jo --+ z<8\y({3)). 
JEW~ 

according to proposition 4.4 (ii). Taking 8 --+ 0 completes the proof. D 

Proof of proposition 4. 7. We first have to show that W, c E. By embedding theorems 
we know that J112 is in a class A0 (M') for {3 :;::: a+ 1/2. Furthermore, the embedding 
inequality 

llglloo ~ C (llgll2 + jjn13gl1 2) 

for {3 > 1/2 ensures that that 111112 11
00 

is uniformly bounded. Hence 

IJ(x) - f(t)I = 1Jlf2(x) - Jlf2(t)j 1Jlf2(x) + J1f2(t)I ~ 2CMlx - tla' 
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hence W. C E. By theorem 1.1 it now suffices to consider risk bounds in the white noise 
model (4). The attainability of the bound follows directly from proposition 4.3. Here it is to 
be noted that the factor 1/2 of the noise appearing in (4) can be amalgamated into n-1/2, i. 
e. into the normalizing nl-r in (39). For the lower bound in (4) we have to take into account 
that J112 is now restricted to the unit sphere in L2. L€t b(t) = {f; 11111

00 
:::; t}. We use 

proposition 4.4 (i) and further restrict f 112 to a set 1 + b( Tn) where Tn --+ 0, Tnn(l-r)/ 2 --+ oo. 
Let II1 (]112) be the ~-projection of / 112 to the affine tangent hyperplane of the unit sphere 
of L2 at point 1. Then obviously II1(!112) = / 112 +CJ1 for some number CJ, and 

CJ - llJl/2 - TI1(fl/2)11oo = llJ1/2 - TI1(fl/2)112 

(78) = 0 (111112 -111:) = O(r~) 

uniformly over / 112 E 1 + b( Tn)· Since nr-l = n-2!3/(2!3+1), and /3 > 1/2, Tn may be chosen 
such that the r. h. s. of (78) is o(n-112). We may then apply the reasoning in connection 
with (23) to show that in the white noise model where / 112 E 1 + b(rn), the drift / 112 may 
be substituted by II1 (!112), with asympotic equivalence of the experiments. Then II1 (!112 ) 

varies in an affine subspace of L2, and its derivative of order f3 for /3 2 1 coincides with that 
of / 112 . Also (78) implies that by further restricting j112 , we can achieve that h = II1(!112) 

varies fully within Wf n (1 + b((l - 8)rn)) for some 8 > 0. Subtracting ldt from the model 
yields a white noise experiment with parameter space wt n bo((l - 8)rn), i. e. the case 
covered by proposition 4.4 (i).D 

12 Addendum for proposition 1.2 

Let E' denote an arbitrary set of probability measures on [O, 1]. Define 

Sn (E') = { ( P, Q) E E' x E' : H 2 ( P, Q) :::; n - l, P, Q E E'} . 

and let ~~ be the R-N- derivative of the Q-continuous part of P. Le Cam's second regularity 
condition for proposition 1.2 on the set of densities E is: if E' is the associated set of p. m. 
then 

sup n(P + Q) (I ddQP -11:::; E) --+ 0. 
(P,Q)ESn(E') 

This is fulfilled in case E' = (PrJ, fJ EK) where K is a compact subset of an open set E> c JR.k 
and the family (PrJ, fJ EE>) is differentiable in quadratic mean uniformly on compacts KC E> 
(see proposition 1, chap. 17.3 in Le Cam (1986) ). 
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