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Abstract

We consider a broad area Vertical-Cavity Surface Emitting Laser (VCSEL) operating

below the lasing threshold and subject to optical injection and time-delayed feedback. We

derive a generalized delayed Swift-Hohenberg equation for the VCSEL system which is

valid close to the nascent optical bistability. We first characterize the stationary cavity soli-

tons by constructing their snaking bifurcation diagram and by showing clustering behavior

within the pinning region of parameters. Then we show that the delayed feedback induces

a spontaneous motion of two-dimensional cavity solitons in an arbitrary direction in the

transverse plane. We characterize moving cavity solitons by estimating their threshold and

calculating their velocity. Numerical 2D solutions of the governing semiconductor laser

equations are in close agreement with those obtained from the delayed generalized Swift-

Hohenberg equation.

1 Introduction

During the last two decades, the study of localized structures, often called dissipative solitons or

cavity solitons (CSs), has attracted considerable attention in many area of natural science such

as chemistry, plant ecology, and optics (see recent overviews, [1]-[5]). They attract growing in-

terest in optics due to potential applications for all-optical control of light, optical storage, and

information processing [6]-[12]. These stable localized objects arise in dissipative environment

and belong to the class of dissipative structures found far from equilibrium. Cavity solitons are

stationary localized intensity peaks that appear in a subcritical regime involving a homogeneous

background of radiation and a self-organized periodic pattern which are both linearly stable.

They can be manipulated individually by the process of writing or erasing through an external

control beam when they are sufficiently well separated from each other. When, however, the

distance between peaks decreases they start to interact through their oscillating, exponentially

decaying tails. This interaction then leads to the formation of clusters. Therefore, the number of

peaks and their spatial distribution in the transverse plane can be either independent and ran-

domly distributed or clustered forming a well defined spatial pattern [13]. Recently, the relative

stability analysis of different clusters of closely packed localized peaks has been performed [14].

Cavity solitons are not necessary stationary objects. They can be time dependent, e.g. moving

or oscillating. In particular, different mechanisms leading to the motion of dissipative solitons

have been described in the literature. It has been shown that uniform motion of solitons can

be induced by a vorticity [15], a finite relaxation rates [16, 17, 18], a phase gradient [19], an

Ising-Bloch transition [20, 21, 22], a walk-off, a symmetry breaking due to off-axis feedback [23],

a resonator detuning [24], or a Hopf-Turing interacting bifurcations [25].

1



More recently, it has been shown that inclusion of delayed feedback in the dynamics of spatially

extended systems can lead to a drift instability of cavity solitons [26]. This behavior has been

identified first in the case when the delayed feedback is frequency selective [28]-[31]. Spon-

taneous motion of a single cavity soliton in the case of non-frequency selective (i.e., regular)

feedback has been predicted in [26]. This result has been obtained with a model of passive

nonlinear cavity filled with two-level atoms without population inversion and driven coherently by

an external injected beam. Other studies of various spatially extended systems with time delay

have motivated further to investigate this subject [32].

In this paper, we investigate the effect of a regular delayed feedback on the mobility properties

of 2D cavity solitons in a broad area Vertical-Cavity Surface-Emitting Laser (VCSEL). The de-

layed feedback is provided by an external mirror located at a distance L from the output facet of

the VCSEL. The structure of the considered device is schematically illustrated in Fig. 1. We as-

sume that the laser operates in a single-longitudinal mode, the diffraction in the external cavity

is fully compensated, and the feedback field is sufficiently attenuated, so that it can be modeled

by a single delay term with a spatially homogeneous coefficient. We show that this device can

admit both stationary dissipative solitons and solitons moving in the transverse direction. Unlike

previous communication where the analysis is performed in strictly one transverse dimension

[33] here we consider the case of two transverse dimensions. We show that stationary cavity

solitons exhibit a clustering behavior which has been experimentally observed in [34]. This be-

havior corresponds to back and forth oscillations of the laser output energy curve inside the

pinning region. We explore the mechanism of formation of localized structures by constructing

their bifurcation diagram with changing amplitude of optical injection. We show that when the

strength of the delayed feedback exceeds some threshold value two-dimensional cavity solitons

exhibit a spontaneous motion in the laser transverse section.

The paper is organized as follows: in section II, we introduce and discuss the VCSEL model. In

section III, in the neighborhood of the second-order critical point marking the onset of hysteresis

loop, we derive the generalized Swift-Hohenberg equation with time delay and perform linear

stability analysis of the spatially homogeneous stationary solutions of this equation. In section IV,

we describe the snaking bifurcation diagram associated with stationary cavity solitons. Analytical

calculations of the drift instability threshold as well as the velocity of moving solitons are obtained

in this section. Finally, numerical simulations of the generalized Swift-Hohenberg equation with

time delay are presented in section IV together with the results of numerical integration on the

original laser model. Concluding remarks are given in section V.

2 Mean field model of VCSEL with time delay

The laser model under consideration is obtained from the scalar Maxwell-Bloch equations using

the slowly varying envelope and paraxial approximations. We assume that the laser operates in

a single longitudinal mode. Under these approximations, the mean field model describing the

space-time evolution of the electric field envelope E and the normalized carrier density Z in

a broad area VCSEL subject to optical injection and delayed optical feedback is given by the
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following set of dimensionless partial differential equations [33]

∂t′E = − (1 + iθ)E + 2C(1 − iα)(Z − 1)E (1)

+ Ei + ξeiψE(t′ − τ ′) + i∇′2
⊥
E

∂t′Z = −γ′
[

Z − I + (Z − 1) |E|2 − d∇′2
⊥
Z

]

(2)

where Ei is the amplitude of the injected beam. The parameter θ is the cavity detuning, C is

the bistability parameter, and α is the linewidth enhancement factor. The delayed feedback is

characterized by three parameters: feedback strength ξ, feedback phase ψ, and time delay τ ′.
The parameter γ′ is the carrier decay rate, I is the injected current (we assume that the laser

operates below the lasing threshold), and d is the diffusion coefficient. The diffraction of light

and diffusion of the carriers are described by the Laplace operator ∇′2
⊥

= ∂2
x′x′ +∂2

y′y′ acting of

the transverse plane (x′, y′). In the absence of delayed feedback, ξ = 0, we recover the mean

field model of Ref. [35]. The linear stability analysis of the spatially homogeneous steady states

of Eqs. (1) and (2) as well as numerical analysis of stationary and moving cavity solitons have

been performed in [33] in strictly one dimensional setting.

Figure 1: Schematic setup of a Fabry-Perot cavity with delayed optical feedback and driven by

a coherent external injected beam. The nonlinear medium consists of a vertical-cavity surface

emitting laser. To compensate the diffraction in the external cavity we use two lenses in self-

imaging configuration.

In order to reduce the number of free parameters, we introduce the following change of vari-

ables: n = [2C(Z − 1)− 1]/2 and e = E∗/
√

2. The model equations (1,2) of semiconductor

laser driven by an injected field Y = Ei/(2
√

2) take the following form:

∂te = iθ′e+ (1 + iα)ne+ Y + η′e−iψe(t− τ) − i∇2
⊥
e (3)

∂tn = γ[P − n− (1 + 2n)|e|2 +D∇2
⊥
n] (4)

The pump parameter P is P = C(I − 1) − 1/2, γ = γ′/2, D = 2d, η′ = ξ/2, and

θ′ = (θ + α)/2. The new time and space scales are (t, τ) = 2(t′, τ ′) and ∇2
⊥

= 2∇′2
⊥

.

Let us assume for simplicity that the detuning and the feedback phase are zero in the model
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equations (3) and (4), i.e., θ′ = 0 and ψ = (0, π). The homogeneous steady states are

solutions of the two coupled equations Y = −es(1 + iα)(P − |es|2)/(1 + 2|es|2) and ns =
(P − |es|2)/(1 + 2|es|2). It is well known that the dynamics of a driven semiconductor cavity

exhibits Turing instability and hysteresis, the former giving rise to either periodic or localized

patterns consisting of localized intensity pulses in the transverse plane. In order to obtain a

qualitative picture of the dynamics of this system, we focus our analysis on regime which is (i)

close to the nascent bistability threshold where the phenomenon of slowing down occurs, i.e.,

∂Y/∂|es| = ∂2Y/∂|es|2 = 0, and (ii) close to long wavelength pattern forming instability. In

this regime, the space-time dynamics is governed by the well know Swift-Hohenberg equations

[36].

3 Derivation of the generalized Swift-Hohenberg equation with

time delay

In this section we explore, the nascent optical bistability regime near the critical point where the

output intensity as a function of the injection parameter Y has an infinite slope, i.e., ∂Y/∂|es| =
∂2Y/∂|es|2 = 0. The coordinates of the critical point are ec = (1 − iα)

√

3/2(1 + α2),

nc = −3/2, Pc = −9/2, Dc = 8α/[3(1 + α2)] and Yc = (3/2)(3/2)(1 + α2)1/2. We

consider large time delay regime and we assume that the amplitude of the feedback strength is

small: η′ = ηε2 and τ → (1/γ +Dc/α)τε2, where ε is a small parameter and η, τ = O(1).

We seek corrections to the steady state solution at the criticality that depend on time and space

via the slow variables t → (1/γ +Dc/α)ε2t and (x, y) → (ε/Dc)
1/2(x, y). We expand the

input field amplitude Y , the parameter P , and the variables e and n around their critical values,

e = ec(1 + εu + ε2e2...), n = nc(1 + εn1 + ε2n2...), Y = Yc(1 − ε2p2/2 + ε3y...),

P = Pc(1 + 3ε2p2 + ...), and D = Dc(1 + εd + ...). We substitute these expansions and

the space-time scalings in Eqs. (3) and (4). We get u = −n1 in the leading order problem, i.e.,

O(ε) where u has to be real. At the O(ε2), we obtain e2 = −i[∇2
⊥
u/(4α)+2ηα/(3(1+α2))]

and n2 = u2−p2/2−∇2
⊥
n1/4. Finally the solvability condition at O(ε3) leads to the following

delayed partial differential equation

∂tu = y − u(p+ u2) + ηu(t− τ) (5)

+ (d− 5u

2
)∇2

⊥
u− a∇4

⊥
u− 2(∇⊥u)

2,

where a = (1 − α2)/(4α2). Note that y is the deviation from the injected field amplitude and

transverse coordinate at the same time. The real variable u, the parameters p and d are the

deviations of the electric field, the pump parameter and the carrier diffusion coefficient from

their values at the onset of the critical point, respectively. In the absence of delay; i.e., η = 0,

Eq. (5) is the generalized Swift-Hohenberg equation that has been derived for many far from

equilibrium systems [36, 37]. Equation (5) model differs from the usual delayed Swift-Hohenberg

equation [26, 37] in two significant ways. First, the presence of nonlinear diffusion terms u∇2
⊥
u

breaks the symmetry u 7→ −u and allows Eq. (5) to exhibit modulational instabilities with

different wavelengths. Second, in the absence of delay the equation (5) is nonvariational devoid

of gradient form, and therefore it does not admit a Lyapunov functional or a free energy to
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Figure 2: Stability curves associated with traveling wave instability in the monostable regime.

The characteristics: (a) output field (us) as a function of input field (y); (b) wavenumber q2 and

(c) angular frequency ω are plotted as a function of output field (us). The full and the broken

lines correspond, respectively, to stable and unstable homogeneous steady states. Parameters

are p = 5, d = −1, a = 0.1, η = −0.1, and τ = 15.

minimize. As a consequence, cavity soliton could move with a constant velocity even in absence

of delayed feedback [37].

The homogeneous stationary solutions us of Eq. (5) are given by y = us(p − η + u2
s). For

p < η (p > η) the transmitted intensity as a function of the input intensity is monostable

(bistable). We now perform the linear stability analysis of the homogeneous steady states. The

linear deviation from the steady state is proportional to exp (λt+ iq.r), where r = (x, y)
stands for the transverse coordinates and the transverse wavevector is q. The transcendental

characteristic equation reads:

λ = −(p+ 3u2
s) − q2(d− 5us

2
) − (1 − α2)

4α2
q4 + ηe−λτ (6)

Modulational instabilities correspond to the occurrence of zero real root (λ = 0) and ∂qλ = 0.

Our calculations show that there can be zero, one or two modulational instabilities. The critical

wavenumber associated with both instabilities are:

q2
T± =

α2(5uT± − 2d)

(1 − α2)
(7)

The threshold; uT±; associated with these instabilities are:

uT± =
2[5α2d±

√

(1 − α2)[α2(12d2 − 37) + 12](p− η)]

12 − 37α2
(8)

Classification of different scenarios leading to the instability of the homogeneous steady state

are summarized in [38].

The linear stability analysis shows that there exists a Hopf bifurcation with a finite wavenumber

often called traveling wave instability. This instability occurs if a pair of complex conjugate roots
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Figure 3: Stability curves associated with traveling wave instability in the monostable regime.

The characteristics: (a) output field (us) as a function of input field (y); (b) wavenumber q2 and

(c) angular frequency ω are plotted as a function of output field (us). The full and the broken

lines correspond, respectively, to stable and unstable homogeneous steady states. Parameters

are p = −2, d = −1, a = 2, η = −0.1, and τ = 15.

of Eq. (6) has a vanishing real part and non zero imaginary part, i.e., λ = ±iω. This instability

occurs when

η cos(ωτ) = (3u2 + p) + (d− 5u

2
)q2 + aq4 (9)

η sin(ωτ) = −ω (10)

Two examples of stability curves are shown in Figs. 2 and 3 where we plot the homogeneous

steady states in the monostable and in the bistable regimes; the unstable wavenumbers and the

unstable frequencies associated with the traveling wave instability.

4 Stationary and moving localized structures

4.1 Light clustering and moving cavity solitons

In the case of one spatial dimension stationary dissipative solitons correspond to the solutions

of the Swift-Hohenberg equation homoclinic in space and stationary in time. The existence of

an infinite set of homoclinic solutions in the variational Swift-Hohenberg has been demonstrated

[39]. This behavior is referred to as homoclinic snaking phenomenon [40]: the system exhibits

a high degree of multistability in a finite range of parameters often called the pinning region. In

this region, stable homogeneous steady state coexists with stable spatially periodic solution and

there is an infinite set of patterns comprising different number of cavity solitons. Each of them

is characterized by either odd or even number of peaks. The configuration that maximizes the

number of cavity solitons in the pattern corresponds to spatially periodic distribution of the field

amplitude. Examples of localized patterns having odd and even number of peaks are shown in

Fig. 4. All localized patterns shown in these figures are obtained for the same parameter val-

ues and differ only by the initial condition. In the pinning region, the wavelength of the localized
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Figure 4: Stationary localized patterns formed with 1, 2, 3, 4 , and 5 cavity solitions in the

amplitude of intracavity field. The parameters are y = −0.35, p = −0.7, d = −1.2, a = 0.75,

τ = 1., and η = 0.1

patterns is close to that of the periodic structure, i.e., λT+ ≈ 2π/qT+. Since the peak am-

plitudes of localized patterns comprising different number of solitons are close to each other,

it is convenient to plot the ”L2 -norm"defined by the relation N =
∫

dx|u − us|2 instead of

the peak amplitudes. Typical bifurcation diagram illustrating the dependence of N on the input

field amplitude y is shown in Fig. 5. It consists of two snaking curves: one corresponding to

localized patterns with odd number of peaks and the other – to patterns with even number of

peaks. The two inter-weaved snaking curves emerge from the modulation instability point lo-

cated at u = uT+. For each curve, as N increases, at every turning point where the slope

becomes infinite, a pair of additional peaks appear in the pattern. It is seen from Fig. 5 that this

growth is associated with back and forth oscillations around the pinning region. In the case of

a fiber ring resonator, diffraction is replaced by chromatic dispersion. In this context, localized

structures are often called temporal cavity solitons, which can also exhibit homoclinic snaking

phenomenon [41].

In the absence of feedback all localized patterns involving odd or even numbers of cavity solitons

are stationary. As we shall see in the next subsection, when the delay feedback strength passes

through the threshold value given by ητ = −1, localized patterns start to move spontaneously

in an arbitrary direction. This is due to the isotropy of space (x, y). Example of 1D and 2D

moving patterns consisting of one or two bounded cavity solitons are illustrated in Fig. 6 and

7, respectively. When two cavity solitons are separated initially by a distance of order of the

wavelength associated with the modulational instability, they repeal each other, and, therefore,

start to move with equal but opposite velocities as shown in Fig. 8. Localized patterns consisting

7
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Figure 5: Snaking bifurcation diagram of Eq. (5) showing two inter-weaved snaking curves: the

branches (a), (b), (c), (d), (e) correspond to 1, 2, 3, 4, 5 cavity solitons, respectively (see Fig. 3).

The full and the broken lines correspond, respectively, to stable and unstable localized branches

of solutions. The parameters are p = −0.7, d = −1.2, a = 0.75, and τ = η = 0.

Space

T
im
e

Space

T
im
e

Figure 6: Space-time map of a moving cavity solitons solution of Eq. (5) in 1D. (left) single cavity

solitons (right) two cavity soltions. Parameters are p = −0.9, d = −1.5, a = 0.75, y = −0.5,

η = −0.15, and τ = 15..

of a larger number of cavity solitons exhibit a similar behavior (see Fig. 9) The results shown

in Figs. 6-9 have been obtained by numerical simulations of the generalized delayed Swift-

Hohenberg equation (5) with periodic boundary conditions.

4.2 Drift instability threshold and the velocity of the moving cavity soli-

ton

We have shown that below the drift instability threshold the modified SH equation Eq. (5) admits

stationary localized patterns involving either an odd or an even number of cavity solitons. In this

section, we discuss spontaneous motion of cavity solitons induced by the delayed feedback.

We calculate the threshold value of the feedback strength above which cavity solitons start to

move in an arbitrary direction and derive an expression for the velocity of the cavity soliton.
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Figure 7: Moving 2D cavity soliton solution of Eq. (5). Parameters are the same as in Fig. (6).

The size of the system is 128 × 128.

Figure 8: Moving 2D cavity soliton solution of Eq. (5). Parameters are the same as in Fig. (6).

The size of the system is 128 × 128.

By presenting the results of numerical simulations of the full dynamical model Eqs. (1) and (2)

we demonstrate that the existence of 2D moving cavity solitons is not restricted to the nascent

bistability regime but can also occur far from that regime.

Analytical expression for the drift instability threshold was derived in Ref. [26] in the case of

variational Swift-Hoheneberg equation with delay describing the passive nonlinear cavity. Let us

first rewrite Eq. (5) in the form

∂tu = y − u(p′ + u2) + η(u(t− τ) − u) (11)

+ (d− 5u

2
)∇2

⊥
u− (1 − α2)

4α2
∇4

⊥
u− 2(∇⊥u)

2,

with p′ = p − η. We will assume that Eq. (11) without the term η(u(t − τ) − u) has a stable

stationary radially symmetric soliton solution u = u0(|r|). Stability of this solution means all the

9



Figure 9: Moving 2D localizes pattern formed by four cavity solitons. Time sequence (t1 <
t2 < t3 < t4) of the amplitude of the intracavity field solutions of the generalized delayed

Swift-Hohenberg Eq. (5). Parameters are the same as in Fig. (8).

solutions Λ the eigenvalue problem

L⊥φ = Λφ, (12)

with self-adjoint operator

L⊥ = −
(

p′ + 3u2
0 +

5

2
∇2

⊥
u0

)

+ (d− 5u0

2
)∇2

⊥
− a∇4

⊥
,

are real and negative except for a pair of zero eigenvalues corresponding to the translational

invariance of Eq. (11), Λ1,2 = 0. Since the term η(u(t − τ) − u) vanishes at any stationary

solution, the stationary soliton u0(|r|) is also a solution of Eq. (11) with η 6= 0. Let us substitute

slightly perturbed soliton solution u(r, t) = u0(|r|)+φeµt into Eq. (11). Then linearizing it with

respect to small perturbation φ we obtain:

L⊥φ = [µ+ η (1 − eµτ )]φ. (13)

From Eqs.(12) and (13) we see that for η 6= 0 the stability of cavity soliton solution u0 requires

that the real parts of all the solutions µ of the equation

µ+ (1 − eµτ )η = Λ, (14)

must be non-positive for all Λ satisfying Eq. (12). In particular, for the 2-fold degenerate eigen-

value Λ1,2 = 0, assuming that |µ| � 1 and expanding Eq. (14) up to the second order terms

in µ we get two real solutions

µ1,2 =
2(ητ + 1)

ητ 2
, µ3,4 = 0, (15)

where zero solutions µ3,4 are associated with the translational symmetry of the model equations

and µ1,2 change their sign at the drift instability point ητ = −1. At this point, where Eq. (14)

10
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Figure 10: Velocity of moving cavity soliton as a function of the time delay τ for different values

of the delayed feedback strength η.

has four-fold degenerate solution µ1,2,3,4 = 0, stationary soliton solution looses stability and

uniformly moving soliton solution bifurcates from the stationary one. According to Eq. (15) the

stationary soliton is stable for −1/τ < η < 0 and becomes unstable for ητ < −1. The velocity

of the moving single cavity soliton can be estimated by performing an expansion in terms a small

parameter ζ which measures the distance from the drift instability threshold, ητ = −1 − ζ2.

Let us look for a solution of Eq. (11) in the form of uniformly moving cavity soliton:

u(r, t) = u0(R) + ζ3δu(R) + ..., R = r − vt,

where u0 is the stationary soliton solution evaluated at the drift instability point, v = ζV is

the soliton velocity, and δu is the correction to the soliton shape due to its motion. Plugging

this expression in Eq. (5), using the expansion, u0(R − ζV τ) = u0(R) − ζV τu1(R) +
(ζV τ)2u2(R)/2 − (ζV τ)3u3(R)/6 + ...., where V = |V| and up = (V · ∇⊥up−1)/V
(p = 1, 2, 3, 4), and collecting third order in ζ , we obtain the following inhomogeneous problem

L⊥δu = −V u1 +
η

6
(V τ)3u3. (16)

According to the solvability condition, the right-hand side of this equation should to be orthogo-

nal to the translational neutral modes φx,y = ∂xu0, ∂yu0. By multiplying Eq. (16) with the linear

combination of these modes V · ∇⊥u0/V ≡ u1 and integrating over 2D space, we obtain the

equation for the cavity soliton velocity:

V

(
∫ +∞

−∞

u2
1dxdy −

η

6
V 2τ 3

∫ +∞

−∞

u1u3dxdy

)

= 0. (17)

Nontrivial solution of Eq. (17) is given by

v = ζV =
Q

τ

√

−(1 + ητ), with Q =

√

√

√

√6

∫ +∞

−∞
u2

1dxdy
∫ +∞

−∞
u2

2dxdy
, (18)
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where the relation
∫ +∞

−∞
u1u3dxdy = −

∫ +∞

−∞
u2

2dxdy was used obtained by integration by

parts. The expression for the soliton velocity (18) coincides with that obtained earlier for the

case of variational Swift-Hohenberg equation [26, 27], which describes a driven passive non-

linear cavity filled with two-level atoms. This expression is valid not only for a single cavity

soliton but also for any localized patters. The spatial form of the pattern affects only the fac-

tor Q in Eq. (18), which can be calculated numerically. In particular, for the parameter values

y = −0.35, p = −0.7, d = −1.2, a = 0.75, we obtain Q = 1.44. The dependence of the

soliton velocity on the time delay calculated using Eq. (18) is plotted for a fixed value of the feed-

back strength in Fig. 4.2. It is seen that the curve of the velocity has a maximum at τ = −2/η,

which corresponds to the maximal velocity vmax = −Qη/2.
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Figure 11: Time evolution of the spatially localized 2D solution |E(x, y, t)|2 of Eqs. (1)-(2).

(a) Time-evolution of the radius-vector Rmax of the peak of the cavity soliton. (b), (c) and (d)

Snapshots of the optical power distribution at the points indicated in (a). The parameter values

are: η = 0, θ = −2, α = 5, C = 0.45, I = 2 and γ = 0.05, Ei = 0.8. The feedback

strength and phase are given by η = 0.1 and ξ = 3, respectively.

Moving cavity solitons can be observed not only in the nascent optical bistability regime, but

also far away from this regime. This is illustrated by Fig. 11, which was obtained by numerical

integration of model Eqs. (1) and (2) using the Runge-Kutta method together with the fast Fourier

transform. The boundary conditions were periodic in transverse directions. It is seen from Fig. 11

that a single cavity soliton exhibits a motion in an arbitrary direction in the (x, y) plane due to

the presence of delayed feedback. Noteworthy, that in the absence of delayed feedback, cavity

solitons were observed experimentally in broad area VCSELs both below [42, 7] and above [43]

the lasing threshold.
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5 Conclusions and perspectives

In conclusion, we have shown that close to the nascent bistability threshold, the space-time

dynamics of a broad area Vertical-Cavity Surface-Emitting Lasers (VCSEL) operating below the

lasing threshold and subject to optical injection is described by a generalized delayed Swift-

Hohenberg equation. We show that in one transverse dimension, stationary cavity solitons ex-

hibit a clustering behavior in the pinning range of parameters, where spatially homogeneous and

periodic solutions are both linearly stable. In this range we construct a snaking bifurcation dia-

gram associated with stationary cavity solitons. We demonstrate that one and two-dimensional

cavity solitons exhibit a drift instability leading a spontaneous motion in an arbitrary direction.

We estimate the threshold of this instability and the velocity of the moving cavity solitons. In

two dimensions, the motion of two cavity solitons is studied numerically. Finally, numerical sim-

ulations of the original model (1) and (2) show that the described behavior is not limited to the

nascent optical bistability regime but can also exist far away from this regime.
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