WeierstraBl—Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Heteroclinic Cycles for Reaction Diffusion

Systems by Forced Symmetry—Breaking

Reiner Lauterbach! , Stanislaus Maier—Paape?

submitted: 13th September 1995

1 Weierstraf-Institut 2 Institut fir Mathematik

fiir Angewandte Analysis Universitdt Augsburg
und Stochastik Universitatsstrae 14
Mohrenstrafle 39 D - 86135 Augsburg

D - 10117 Berlin Germany

Germany

Preprint No. 173
Berlin 1995



Edited by

WeierstraB-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrae 39

D — 10117 Berlin

Germany

Fax: + 49 30 2044975
e-mail (X.400):  c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

e-mail (Internet): preprint@wias-berlin.de



Abstract. We consider solutions of the semilinear parabolic equation (1.1)
on the 2-Sphere. Assuming (1.1) has an axisymmetric equilibrium u, the
group orbit of u, gives a whole (invariant) manifold M of equilibria for (1.1).
Under generic conditions we have that, after perturbing (1.1) by a (small)
L C O(3)—equivariant perturbation, M persists as an invariant manifold M
slightly changed. However, the flow on M is in general no longer trivial.
Indeed, we find heteroclinic orbits on M and, in case L = T (the tetrahedral
subgroup of O(3)), even heteroclinic cycles.

1 Introduction: A Motivating Example

Recently, L—equivariant flows on homogeneous spaces G/ H, where G is a compact Lie
group and L, H are subgroups, have been of high interest, since it seemed possible to derive
by this group theoretical approach information on heteroclinic orbits, even in PDE’s. A
seminal presentation of these ideas in the case G = SO(3) can be found in Lauterbach
and Roberts [12].

In order to motivate our group theoretical discussions of the following sections, we consider
solutions u = u(t,z),z € S* C R3¢t > 0 of the semilinear parabolic equation on the 2-
sphere

ue = A(A)u + f(v) =: g(u,A). (1.1)

Here f : R — R is a smooth nonlinearity with f(0) = 0 and f'(0) = 0. A(A): D C
L?(5?) — L?(S?) is a linear, symmetric operator (depending continuously on a parameter
A € R) with —A(A) sectorial. Thus A(A) generates an analytic semigroup (cf. [6], Chapter
3). Moreover, we assume that A(A) is O(3)—equivariant, and therefore

g(vu,A) = vg(u,A) forall v € O(3), (1.2)

where the standard action yu(z) := u(y™'z) of O(3) on L?(S5?) is used. So one may think
of A(A) = A — AId : H*(S?) — L?*(S?), where A is the Laplace-Beltrami operator, but
also equations like Cahn-Hilliard equations (cf. [14]) on the 2-Sphere fit into our concept.

Equation (1.1) generates a G = O(3)—equivariant semi~dynamical system

®* : RY x L*(S%) — L*(S?). (1.3)

Ob‘viously, f(0) = 0 implies that we have the trivial solution v = 0 for all A € R in
(1.1), since g(0,A) = 0. If we assume that A()Ao) has a nontrivial kernel, we obtain under
additional conditions (e.g. a transversality condition cf. [5], Theorem 3.5; an existence



result in case the domain of Equation (1.1) is a ball instead of the sphere S? can be found
in [10]) that the equation

kg(ua)‘) =0 (1.4)

has a branch of nontrivial solutions (uq, Ay) near (0, o) (for a in a neighborhood of zero)
which all have the same isotropy subgroup H = X, = {7y € G|yuq = ua} Without loss
of generality, we write

Uq = au* + o(a) for a near 0, (1.5)
with u* € kerA(Ao) and %,. = H. The group orbit of uq, for ap fixed

O(tay) := {78aoly € G} = G/H (1.6)

gives a whole branch of solutions of (1.4), and therefore of equilibria of (1.1). Since the
flow ®*=0 of (1.3) on O(uy,) is trivial, O(uy, ) is an invariant set for =0, and the semi-
dynamical system (1.3) may be restricted to O(uq,). Due to the compactness of O(uq,)
it gives a dynamical system '

30 : R X O(e,) = Ottay)- (1.7)

This simple and rather boring situation changes dramatically, once we add a (small)
symmetry-breaking term in (1.1). Consider

us = AQu+ f(u) + eh(u) = g.(u, ), (L8)

where € > 0 is a small parameter and A : D C L?(5?) — L?(S?)is a smooth L—equivariant
mapping. In the case that O(uy,) is a normally hyperbolic manifold with respect to the
flow @20 this invariant manifold persists, slightly changed, for the perturbed equation
(1.8) with € > 0 sufficiently small (cf. Proposition 1.1 in [12] and [7] for the concept of
a normally hyperbolic manifold). That means there exists a manifold M** C L?(S5?),
which is L—equivariantly diffeomorphic to O(us,) and therefore to G/H, such that the
perturbed L—equivariant flow =, generated by (1.8) with (¢, Aa, ), is invariant on
MC ao

és)Aag‘ :R X Mslao — M:,do. (1.9)

The hypotheses to guarantee that the manifold is normally hyperbolic will generically
be satisfied (cf. [3], Theorem A.20). Although the unperturbed flow ®*< was trivial on
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O(ta, ), this is in general no longer the case for ®*= on M=%, For that reason we will
study L—equivariant flows ¥ on G/H

U:RxG/H - G/H, (1.10)

with L and H subgroups of a compact Lie group G (cf. e.g. [11] for more information on
that topic). L—equivariance is still a very severe restriction, since subsets of G/H, which
are fixed under subgroups L' of L

Fizg/u(L') ={y€ G/H |ly=yVie L'} CG/H (1.11)

are necessarily invariant under the flow ¥ (cf. Proposition 1.6 in [12]). For instance, if
G = SO(3) and H = O(2) we obtain G/H = P?, the two dimensional real projective
space. L = T—equivariant flows on IP? are shown in the following figure (cf. [12], Section
2.2):

D,
Z,

1 Z,

Figure 1: Fig. 3 from Lauterbach and Roberts
(©Academic Press Inc.

Here the nontrivial subgroups of T are three copies of L' = Zj,, four copies of L' = Z3 and
one copy of L' = D,. The last one is the disjoint union of all Z, subgroups. It turns out
that F":mSO(s)/O(z)(mz) = SlUlpt, Fi:l:so(:,)/o(z)(%g) = 1pt and Fi:l:so(3)/o(2)(D2) = 3pt
(we use ‘pt’ as abbreviation for isolated points). As it is indicated, the isolated points in
Fizso(s)/0(2)(Zs2) are fixed by D.

The isolated points in Fizg g (L") (for some subgroup L’ in L) play a special role: By con-
tinuity of the flow, these isolated sets also have to be invariant sets for every L—equivariant
flow. That means all these points give equilibria for L—equivariant flows. We call these
points equilibria of (L, G/ H) and write:

Er,e/m) = {y € G/H | y is isolated in its stratum },



ie. for y € &1 ,¢/m) exists some subgroup L' C L such that y is an isolated component
of Fizg/g(L'). Also of great interest are the points connecting two such equilibria of the
group. We call a set T C Fizg/g(L') C G/H (for some subgroup L' C L) a connection

of (L,G/H), if Fizg/g(L') contains some isolated subset diffeomorphic to S* and T has
the form

T = {w(y) | ¢ € (0,4")} C §* C Fizg/a(L), (L12)

where w : [0,*] — S is an injective smooth mapping with w(0),w(¢*) € €r,6/m) but
w(p) & Ez,e/m) for all p € (0,0*). Let

Hi,e/m) :={T | T is a connection of (L,G/H)}. (1.13)

Of course connections T of the group need not be heteroclinic orbits of an L—equivariant
flow, but since Y is an invariant set for all these flows, there is a good change to find a
flow having a heteroclinic orbit on Y.

In Figure 1 the equilibria of (T, SO(3)/0(2)) are shown in bold face and the connections
of (T,SO(3)/0(2)) connect them. - : :

The aim of this paper is to prove results about the flow on these connections of (L, G/ H).
It will turn out that, indeed there is a restriction for the flow on these parts, if the
symmetry-breaking in (1.8) is sufficiently small. To that end, in Section 2 we derive a for-
mula which enables us to calculate flows on connections of (L, G/ H) for small symmetry-
breaking. The rest of the paper is dedicated to applications of this flow formula in the
case G = O(3). k

In Section 3 we find the generators of the L—invariant polynomials on S? for subgroups
L =T0TeoZ;0,0Z; I, and I & Z; of O(3). Here we denote by Zj the
subgroup Zj :=<—1>= {£1} of O(3). The invariant polynomials will be used to
construct equivariant mappings. Furthermore, the generators of the equivariant mappings
are studied as well.

For the subsequent discussion it will be of high interest, whether or not there are polyno-
mials having precisely T symmetry (in the sense that they cannot be written as a sum of
polynomials being more symmetric). We resolve this question in Section 4.1. Moreover,
we find for each nonplanar subgroup of O(3) the ring of invariant polynomials and the
module of equivariant polynomial mappings in terms of generators and Poincaré-series.
In Theorem 4.8 and 4.11 we characterize a complement of O®Z;— and I@Z;—invariant
polynomials and show that its dimension is given by a Poincaré-series as well. Similar
studies are also given for the equivariants.

Afterwards, in Section 5, we investigate the sets



Fi:l:(L’G/H) = U Fimg/H(L') (1.14)
L*#L'CL .

in the cases H = O(2)®Z3 and H = O(2)”. Here we denote by L* = {y € L |yy =
y for all y € G/H} the stabilizer of this action. Moreover, we look for parametrizations
of the connections of (L, G/ H).

In Section 6 we introduce a set of basically possible flows (called ‘basic flows’), we have
found by using the flow formula for different symmetry-breaking terms of the form & :
L?(S%) — L*(5?), u > p-O(u), where © : R — R is a smooth function and p € C($?) is a
polynomial on 52 which is invariant under L for some finite supergroup L of T. Using this
kind of perturbations, we find lots of heteroclinic orbits for the perturbed flow. However,
- since this perturbed problem is still of variational structure, it admits no heteroclinic
cycle.

We will overcome this lack in Section 7, when we consider T—equivariant perturbations
h: D C L*(S*) — L?*(S?), u — eVu, with some T —equivariant polynomial mapping e.
Here and, moreover, in some special cases e = g - Vp, with both g and p T—invariant, we
establish heteroclinic cycles. The special cases are of particular interest because they can
be viewed as a perturbatlon of the diffusion term.

In Section 8, we give some hints how these ideas work out for systems and finally, in the
appendix we give some more details on the calculation program which denved most of
these ﬂows

2 The Flow Formlila

The aim of this section is to find more information about L—equivariant flows restricted
to connections of (L,G/H). However, we do not want to discuss that topic in general,
as we did it in [11]. Here we are particularly interested in the flow on M** for |a| # 0
and € > 0 small and fixed. M** as well as O(u,) and O(u*) are all diffeomorphic to
G/H. Our program will therefore be to approximate the manifold M** by O(u*) and,
moreover, to find information about the flow on the connections of (L, M**) in terms of
quantities which can be calculated on O(u*).

As before, we denote by (%a,Aa), |@| small, the branch of equilibria of (1.1). We assume
that at (u,A) = (0, A¢) the center manifold theorem is applicable (cf. [6], 6.3, for growth
conditions on the nonlinearity and [2] for the handling of the parameter A). This gives

Ue = ou® + o(au’, As), (2.1)

with a smooth function o : kerA(Ao) x R — kerA(Ao)* C Lz(Sz), which has the properties



o(0,A\) =0 forall Aand D;a(0,A) =0. (2.2)

In order to calculate the flow on connections of (L, M "5‘) in a first approximation, it is
necessary to have a parametrization of these connections. However, the manifold A5~
is not so easy to handle and therefore we look for better realizations of G/H. For this
reason let

V = kerA(Xo) C L*(S?). (2.3)
Since A(Ao) is assumed to be G—equivariant, it follows that V is G—invariant and hence
the action of G on L*(S?) restricts to V, i.e. we have G XV = V, (v,v) — yv.

In (1.5) we assumed that both u* € kerA(Ao) and u,, have isotropy subgroup H. Therefore
a realization of G/ H which is (after rescaling) a good approximation of the group orbits
O(ug), for |a| # 0 small, is given by ~

G/H = O(u*) = {yu*|y € G} C kerA(Ao) C L*(5?). (2.4)

We thus have three different realizations'of G/H, namely M**, O(u,), and O(u*) which
are all L—equivariantly diffeomorphic.

Assume T € H(z,g/m) is a connection of (L,G/H) connecting two equilibria e;,e; €
&r,c/m)- In particular T is contained in some component of the fixed—point subspace
Fizg/g(L'), L' C L C G, diffeomorphic to S* C G/H. Considering again O(u*) as a
realization of G/H we can parameterize T C G/H as a part of O(u*) explicitly: There
exists a smooth function 4* : R/2r — G such that

w:R/2r = S* C O(u*) C L*(S?), w(p):=7"(p)u* (2.5)
is a nondegenerate parametrization of this S of the above fixed—point subspace, with

T= {w(go)]go €(0,¢")}, 0<¢*<2r, w(0)=e; and w(ga*) = e,. (2.6)

Corresponding to w, the quantity 7 : R/2r — R

7(p) := .[92 T(p) - h(w(p))dS, with 3(p) := L(SO) € kerA(Xo) C L*(S?) (2.7)

el

which is the tangent vector on this S, will play a crucial role in the following. We
introduce similar quantities on O(u,). Letting
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Wa(p) == 7" (P)ua = aw(p) + 7" (p)o(ov®, As), (2.8)

we find that

{walp), p € R/27} 2 S C O(ua) (2.9)

is a parametrization of the S* part in the fixed~point subspace Fizo(y,)(L'), and

Yo := {wa(p)lp € (0,0} (2.10)

“is a connection of (L, O(u,)). Similarly,

e o
role) 1= [ o) hlua(o))dS,  with 5ile) = (22T

is defined. Once we add a symmetry-breaking perturbation term as in (1.8), we know
already that the invariant manifold O(u,) of (1.1) gets slightly perturbed to M**, an
invariant manifold of (1.8), which is L—equivariantly diffeomorphic to O(u,). Let

C L*(S?) (2.11)

Pea : Oua) = M™* (2.12)

denote this L—equivariant diffeomorphism with po, = Id. Now

Wea(P) = pealwa(p)) (2:13)

gives a parametrization of

Yoo i= {@ealp)le € (0,07} (2.14)

which is a connection of (L, M**) due to the L—equivariance of p,o. In particular it is
a one-dimensional invariant manifold of the flow generated by (1.8). Both @, ,(0) and
@ea(p*) are equilibria of (L, M*=*), and therefore also equilibria for the flow in (1.8) (cf.
[12], Proposition 1.6).

However, the flow on Te,a is by no means clear, although the flow for the unperturbed

problem on T, was trivial. Indeed, it will turn out that we will obtain nontrivial flows in
particular cases.

For the following development we use that the direction of the flow on a one-dimensional
invariant manifold can be obtained by the inner product of the tangent vector and the
vector field. To be precise:



Remark 2.1 Let M C L?*(S?) be a one-dimensional invariant manifold for the flow
®: R x L*(S?%) — L*(S?). Thenw € M 1is an equilibrium for the flow if and only f

/sz (w)- :jd—t-(@t(w))lt=0 ds =0, (2.15)

 where 3(w) € L*(S?) denotes a tangent vector on M at the point w.
Hence in order to determine whether @, o(¢) € Y. is an equilibrium, we have to calculate

~ d Te A - . ‘di'a}e)a((P)
Tea = Tea(@) = (B (@e =0 dS, with%,, =2 - L}§? ,
ale) = [ Tealp) (B @uale)eno (#) = Tt © 1)
(2.16)

where again ®**= denotes the flow generated by (1.8). The following theorem due to
Lauterbach and Roberts (cf. [13]) decides for sufficiently small |a| # 0 and & > 0 the sign
of 7. a(). Therefore the direction of the perturbed flow on the connections YT, , can be
calculated. In particular heteroclinic orbits on Tc,a can be established.

Theorem 2.2 Consider two closed subgroups L and H of G = SO(3) or O(3) and the
G— equivariant semi-dynamical system generated by (1.1) near a bifurcation point (0, Ao) €
L?(8?) xR of (1.4). We assume that kerA(Xo) C L*(S?) is nontrivial and u* € kerA()o)
has isotropy subgroup H. Moreover, a branch of equilibria with isotropy subgroup H as in
(2.1) is assumed to ezist. Let the connections Y C O(u*) and To C O(ua) of (L, O(u*))
and (L, O(uy)) be given (see (2.6) and (2.10)).

We perturb the flow of (1.1) by an L—equivariant smooth mapping h : D C L?*(S?) —
L*(S?) which is homogeneous of order , i.e.

h(au) = a*h(u), for all @ >0 and u € D. (2.17)

Then for sufficiently small |a| # 0 ande > 0 there is a one-dimensional invariant manifold
Yoo C M5 C L?(S52) for the perturbed L—equivariant semi-dynamical system (1.8) and
the direction of the flow at &, (@) is determined by 7. o(p) (see (2.13) and (2.16)). The
sign of 7. a(p) is given by 7(p) (see (2.7)) in the following sense:

1. V86> 0 Jag > 0, such that Va € [—aq, ao]\{0} Jeo = eo(a) > 0 with

() 2 6, ¢ € R/2m = sign(..a(p)) = sign(r()), Ve € (0, €o]- (2.18)

2. Let o1 € R/2w with 7(p1) = 0 and 7'(p1) # 0 be given. Then Jay > 0 and Va €
[—a1,01]\{0} Fe1 = e1() > O such that for all € € (0,e;] there ezists a unique zero of
Te,a NEGT @y, called @, q:

Tea(Pea) =0 and 'T'e"a(pe,a) # 0. (2.19)



Proof. By the above discussion the only thing left to show is that 7., can be approxi-
mated by 7 in the stated sense. Let w.l.o.g. « > 0. Essentially, one has to prove that in
the topology of C*(R/2r)

To :
po —7 as a\0 (2.20)
and for a > 0 fixed
1.
“Tea 7 Ta 38 € N\ 0. (2.21)

For the proof of (2.20) it is essential to have that h is homogeneous. (2.21) is proved by
expanding (2.13):

Gea($) = wal$p) + e2a(p) + o(e), as € \, 0.

It follows

1

L) = ali) = [, ) - Duglenli Aol + o(1),

as € \( 0. The above integral, however is zero, because of the symmetry of A()) and since
Ta(p) € ker(Dyg(wa(®), Aa)). The details will be given in [13]. O

It is remarkable, that the flow direction depends on u* € kerA()\g) and therefore on the
representation of the group action of G' on kerA(X¢) (see also Section 6 for more details).

Remark 2.3 In case 7 = 7(p),¢ € R/2r, 15 a function having only simple zeros, the
same s true for 7. o for |a| # 0 and € > 0 sufficiently small.

Remark 2.4 In the sequel we will calculate instead of 7(p) only the ‘flow formula’

Fa(e) = [, 5(e) - hw(e))dS, ¢ € R/2m, (2.22)

with 3(p) = ﬁl—w(go) , since sign and simple zeros of F& and T are the same.

" Remark 2.5 In case we use L— equivariant perturbatzons h: D C L*(S?) — L*(S?) of
the form
h(u) = h(u) + o ||u||**), asu — 0,

with b as in (2.17), we find that Theorem 2.2 is applicable to h, too. The flow direction
for h is the same as the one for h.



3 The Invariants and Equivariants of the Exception-
al Subgroups of O(3) |

As mentioned before, we want to restrict ourselves to symmetry-breaking terms which
have at least T symmetry. Actually we discuss the cases L = T, T®Z;, 0, 0~, 09Z;, I
and IQZ; in detail. Note again that Z3 =< —1 >C O(3). Some elementary facts on these
groups might be found for instance in [1]. In order to understand the effects for a large
number of perturbations, we first classify possible perturbation terms. This classification
is based on invariant theory. An important tool is the so called Poincaré-series (see
[15, 16]). It is defined as

E(t) = 3 (dime(RE) - ¢ (3.)

d=0

where RY is the space of L—invariant homogeneous polynomials of degree d. A well known
result (cf. e.g. [16] Proposition 4.1.3) gives a method how to calculate the Poincaré-series
for a finite group L:

PE@) = == Y det(t —t-4)7, (3.2)

|L| ~v€L

In case of a compact Lie group, the sum has to be replaced by the Haar integral. We refer
to (3.1) as the Poincaré-series for the algebra of invariant polynomials.

A similar formula is true for the module of equivariant mappings. Let M’ denote the
module of L—equivariant polynomial mappings, we define the Poincaré-series for this
module as’

oQ

Pi(t) = Y (dime(MJ)) -, (3.3)
d=0
where MZ% denotes the subspace of those mappings having degree d. This series can be
represented as

PL(t) = (3.4)

|L] 2 da(i-5) det(]l - t7)

YeL

We would like to point out, that although these formulas are proved in the complex case
they also apply to the real case as well.
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3.1 Generators for the Algebra of Invariant Polynomials

In this section we look at the natural representations of the exceptional subgroups of
O(3) on R? and determine the generators of the algebra of invariant functions and the
module of equivariant polynomial mappings, respectively. Of course the generating set
is not unique, we just present one choice of generators, which prove to be useful for the
application we have in mind.

3.1.1 The Invariants for the Action of T

The Poincaré—Series. The Poincaré-series for the three dimensional representation of
T is given by

T 1 1 3 8
() = 3 ((1 R R R I T —t)(1+t+t2))
1—¢24¢*
(1-#2)(1-13)
1418
(1-#2)(1 —#5)(1—¢*)

It is well known that the ring of invariants is Cohen-Macauley [17]. It can be written as a
free module over the primary invariants. Since the representation of the Poincaré-series
in terms of rational functions is not unique, the validity of the following representation
is shown by giving a set of algebraically independent generators with the respective de-
grees. This remark applies to all computations of Poincaré-series in this paper. The
interpretation is as follows: we expect four generators of the ring of invariant polynomi-
als: IF, IX, IT, IX, where the first three form an algebraically independent set. The
last one is not in the ring generated by IF, LT IT, but it satisfies an algebraic relation,
i.e. there exists a polynomial a : R* — R with a(IF, IX, IT IT) = 0 (see (3.6)).

The Invariant Polynomials. The group action on IR? is as follows: the elements of
order two send two variables to their respective negatives, one element of order three gives
cyclic permutation of the variables z,y, z. For the sequel we shall fix our attention on this
T subgroup of O(3). The function IX(z,y,2) = 22 + y? + 22 is certainly invariant. Since
there is (up to multiplication with constants) only one quadratic invariant, I;® has the form
given. The cubic function zyz is invariant, again by uniqueness IX(z,vy,2) = zyz. Since
z*+y*+2z* is invariant and not a multiple of (IF)?, we may choose I} (z,y, 2) = z*+y*+2%.
The polynomial z® + y® + 28 is obviously invariant under the action. However, it is not
linearly independent from the functions generated by IF, IT and I} since
3

1
242 = (P ST 430 (35)

11



The invariant Igr(a:,y, z) is given by

1%(2,,2) = (2% — 47)(2” — 2*)(* — 2°).

This polynomial is invariant with respect of any sign change in any of the variables. The
rotation which maps ¢ — y,y — 2 and z — z transforms this function to

(v* - 2°)(y* — =) (2" — 2%),

which equals IX. In order to simplify notation we define

pa(2,y,2) =2 +y* + 2%, pa(z,y,2) =2t +yt+ 2%, pe(z,y,2) =2+ 4% + 25,

m3(z,y,2) :=2yz and m(z,y,2) = (2® —y?)(e® — 2%)(y? - 2?).

Hence a set of generators of the T—invariant polynomials is given by p2, 73, ps and 7.
The algebraic relation turns out to be

1 5 1,
76 = =Pt Papa +5p3Ts — S paps — 9pamipa — 273 + Spu (3.6)

3.1.2 The Invariants of T®Z;

For the three dimensional representation of T@ZS the Poincaré-series is

14128
(1—2)(1 —t4)(1—t8)

ToZS 1
PRoM(t) = (P () + Pr(-t) =
A set of generators of the algebra of T@Zj—invariant polynomials is given by

P2, P4, pe and Te.

The first three are algebraically independent. 7% is not in the ring generated by the first
three, but satisfies an algebraic relation, which is easily derived from (3.5) and (3.6):

1, 3 4 7 1
Te = =P T 5PaPe — 3PaPs — 53 T Bpapars + 5PL — 305 (3.7)

12



3.1.3 The Invariants of O

The Poincaré-series for the three dimensional representation of O is given by

1 1 9 8 6
PRE) = 5 ((1—t)3+ Q- +eF  G-ni+ire) (l—t)(1+t2))
1—13 418 141°

-2 -#) ~ @-2) -1 -#)

There is only one subgroup © C O(3) with © D T and the functions which are invariant
under O are obviously also invariant under T. This gives I = p; and IQ = ps. In
addition to the elements in T we get an action ¢ — y, y — —z, z — z of an element of
order 4. The function 7g is not invariant under this action. However the function Pe is
invariant. In this case it is not in the span of (IP)3, I2I?. Therefore

Ig)(cc,y,z) =z% + 4%+ 25,

Observe that the element of order 4 in O changes the sign of 73 and 7s. ' Therefore the
product is invariant under © and the set of generators is given by pa, ps, ps and 73 - 76.
The algebraic relation is obvious from (3.5) and (3.7).

3.1.4 The Invariants of O~

The Poincaré-series can be computed considering the elements in T and outside T sepa-
rately. We obtain

l_( 1 3 N 8 N 6 . 6 )
24 \(1—¢)®  (1—8)(1+12)2  (1—t)(A1+t+182)  (1—t)2(1+t) (Q+8)(1+¢2))

One finds

) 1
o) = doppas a0 12
1 1

(1=8)(1+8)(1—2) (1 —3)(1 +2) (1—t2)(1—¢3)(1 —¢t4)

The generators of the O~ —invariant polynomials are given by

I =py, I3 =75 I} =pa
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3.1.5 The Invariants of O®Z3

In this case the Poincaré-series is given by

1
(1 —t2)(1—¢4)(1 —t8)

PR (1) = 2(PR(5) + PR(~1)) =

Comparing this series with the one of © and O~ tells us that the functions of order 6
which are invariant under ©, O~ and O@ZS are all the same. The tetrahedral group has
an extra fixed function which is not fixed under either of these groups, namely 76. The
generators of the O@Z—invariant polynomials are p,, ps and pg.

3.1.6 The Invariants of I

The Poincaré—Series. We begin again by computing the Poincaré—series.

1 1 15 20
0= (g —oF -0 C-04E+D)

12 12 ,

T (1 —1¢) (1 —2(cos(2m/5)) t + £2) i (L —%) (1 —2(cos(4m/5))t + tz))

1 1 15 20 12(2 + ¢ + 2t2)
60 ((1—t)3 Ao T -0 +ird) Q@ —t)(1+t+t2+t3+t4))

T+t -2 -t — 85+ ¢7 + 18
(1—2P(14+e)2(1+t+82)(1+ ¢+ 82 + 83+ t4)
I+t -3 —t* =5+ t7+8®  (L+t -3 -t —* + 7 +8)(1 -t +£7)
Q+)1—2) (1)1 —1t5)  (1+£)(1—2)(1—t+22)(1—£2)(1 —£5)
1—¢5 4410 _ 14 415
A #)1-)1—F)  (1-&) (- (169
e

The Invariant Polynomials. In this case it is not obvious how to get a complete set
of generators of the algebra of I—invariant polynomials. It is clear that we still have p,.
Furthermore, the supergroup I O T (with T fixed as before — cf. 3.1.1) is no longer
unique. It will be determined uniquely by any of its Zs subgroups, or equivalently, by
the rotation axis of this Zs. There are two different possibilities. To see this consider the
projection of the edges of the icosahedron to the unit sphere. This will divide the unit
sphere into 20 congruent equilateral triangles. The length of one edge of such an triangle

is
s ()
Ip = arccos = |
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The first rotation axis d; of Zs C I is obtained by rotating the z—axis by the angle %IA
in direction of the z—axis (cf. Figure 8 for a geometrical illustration):

cos(3la) 0 —sin(3la) 1 V 3t %
B = 0 1 0 , dg=B| 0 | = 0

1_ V56
2

10

sin(3la) 0  cos(3la) 0

Similar, we find another icosahedral supergroup of T, which we will denote by I, as
I :=< T,Zs >, where the axis of rotation for this Zs subgroup is obtained by rotatmg

the z—axis by the angle 3l in direction of the y—axis: dp := \/2 + 10,\/— —¥2.0
Again, from Figure 8 it is not difficult to see, that any other cyclic subgroup of order 5
in a icosahedral group, which contains T is conjugate to either Zs or Zs.

Proposition 3.1 There is a set of generators of the algebra of I—invariant polynomsials
containing p; and the following elements:

11
Lg = Ts+\/—( 3P2+P2P4 15P6)

64

: 26 19
tio = PaTe + V5 (—P2P4 - nggpe' — 3paph + EP4P6>

56 39 199 1383
and ts 1= TaTe (123 2 29””””“) + Voms (2900”3_ 290072P*

826 69 972 i )
795 F2P8 T00P2P4 — 7g5P2PaPe t 11gPs T g5Ps

The algebraic relation is

. ( 380057 s B9 o0 99 44 17397 23,
“5. = \ 71513800077 ~ 168200072°6 T 341072 T 21025072°¢ 10 T gragh? te'10
59751 52) ( 130367 ., TI6T o, 243 BOL
~ 16820007210 V5 5046000°2 ® * 33620072% 33640L6+1682000 2 410
L 28T L, 8L , o, 243 L3)
33640072°¢"° ~ 6728072 "1 T 67280 *°

Finally, a set of generators of the algebra of I—invariants is given by

' 1 11
g = —TgT V5 (—gpi + p2pa — EPS)
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- 64 , 19
lo = —P47'6+\/_< popa— 45P2P6 3P2Pi+“é‘P4P6>

. 56 . 39 199 1383 ,
and Ly = TTe (145”2 :>.9””"*+'°6)"\/573 (2900”g 29002F*

+326 + 69 972 4 27 + 279 ) .
725P2P6 100P294 725P2P4P6 116P4 725/’6

Proof. We will first consider the I—invariants; the I case then follows easily. Any of
the above given polynomials is T—invariant by construction. To show I—invariance, it
suffices to show the invariance under Zs C I, or, equally well, under a generating element
&5 of this Zs. & is a rotation about an angle of 27 around the d; —axis:

1 0 0
& =B ( 0 cos(2r) —sin(2n) ) B
0 sin(3nm) cos(s'lr)

A short calculation gives

2

(=1+5) — (

& =

N
"\

F1+5) Y(-1++/5)
( vB) (1+v5) )
; CI

2

+ +t¢h—l

It remains to check that

(& (

and similar the equation

fsbi(y)=bi(€§1(y))=bi(y)

holds for 2 = 10 and 15. This requires a little patience, though no real flair, and therefore
we leave that and also the verification of the algebraic relation to the reader. Due to the
Poincaré-series, we have found all generators of the I—invariant polynomials. To see the
generators for I—invariant polynomials, observe that for the two axes of rotation of Zs
and Zs

)) — (mz_yZ)(yZ__zZ)(zz_mZ)_%g\/g(m6+y6+z ) 2\/—:v2y222 = 16 ( y ) ’

N Q8

dz = §4d1
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holds, where &, is an element of order four in © D T (which maps ¢ — 2,y — —z,2z = y).
Hence Is = &LsE" and being invariant under I means being invariant under T and
64%554 . As a matter of fact this is the case for Ig,i10 and i;5, because using ¢33 =
£l = —13 and €476 = € 16 = —7p it follows

&al; =f4—ll,' = 4;, for 1 = 6,10 and 15.

3.1.7 The Invariants of IQZS

Here we have

P£®Z ( ) %(P%(t) + P’}];.(_t)) = (1 — tz) (1 — ts) (1 i tlo)'

‘The generators of the I@®Z;—invariant polynomials are ps, 6 10, Whereas ps, s and o
generate the ]I@Zc —invariants.

3.2 Generators for Modules of Equlvarlant Polynomial Map-
pings
3.2.1 The Tetrahedral Equivariants

The Poincaré—Series. For the Poincaré-series for the module of tetrahedral equivari-

ant polynomials we get
‘ t+ 82283 4t 18

Pul) = i ma (3.8)
and

Tozs,,,  t+283 4285 +1¢7

= o) (39)

A Generating Set. From the Poincaré-series we find that there is a set of generators
containing one linear, quadratic, quartic, quintic and two cubic elements. We write ET
for an element of this list of degree d, the second index gives an enumeration of elements
having the same degree. Here is a list of generators:

(z,y,2) — ET =(z,y,2)
— EF = (yz,zz,zy)
— By = (zy® + 22%, 2%y + y2? 2%z + y*z)
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— B = (—ey® + 22?0’y —y2?, —zz + y%2)
= EY = (y3z —y2® 22 — 22° 2% — zy®)
> Egr = V(LG)

We write ¢; = E}E for j = 1,2,4,5 and €3, or €3, for Ey, and Eq, respectively.

For a list of generators of the T @ Z§ we just have to restrict to the odd members of
our list. However some care is required. Any odd T-equivariant mapping has the right
equivariance property, however the odd generators do not generate the odd mappings over
the ring of invariant functions. For example, the second fifth degree equivariant is given
by T3€3.

3.2.2 The Octahedral Equivariants

Poincaré—Series. Again we start by giving the respective Poincaré-series for O, O~
and O @ Z35. We have

t4+t3 5 18 8

Pl = o - - )
O iy t+1% 448

P = —ma =
OO () _ t+82 4+ ¢

(1—#2)(1 —t4)(1—1t8)

The Generators. From the Poincaré-series it is clear that the module of functions
equivariant with respect to O~ is generated by €;, €; and some cubic mapping. It is easy
to check, that this cubic mapping is given by

(z,y,2) — ez, y, 2).

From the Poincaré-series we conclude that the space of cubic equivariant polynomial
mappings is the same for all octahedral groups.

Theorem 3.2 1. Ifn is even, then

ME = M2 o M2,

2. Forn odd, we find
M2 = MDP™ = MO%%;,

18



Proof. It is easily checked that for even n MT = M2 + MO and the intersection

M2 N MP™ = {0}. In order to show the second assertion, we notice that MR i
contained in both MY and MP™. From the Poincaré-series we read off that all the
dimensions of these three spaces are equal, which shows the result. ad

For the equivariants of degree 4 we conclude that
MT = M2 o MO,

MT is generated by 731, pse; and €4. The first two of these are equivariant with respect
to O, the last one is equivariant with respect to O.

The Poincaré-series indicates a quintic mapping for the groups O and © @ Z5. One easily
checks that this mapping is given by 73e;.

For’degree 6 we find that Mg) is given by products of invariant functions and equivariant
mappings of lower degree and 73e3. In a similar fashion we conclude that MQ is given
by products of lower order functions and mappings and the new term T3es.

3.2.3 The Icosahedral Equivariants

The Poincaré—Series. For the group I we find the Poincaré-series

tA+t5+t6+t9+t1°+t14

I —
Pp(t) = A=) =) =9 (3.10)
From this one gets
: t+ 85 +1°
Py(t) = i (3.11)

(1 —t2)(1 —¢8)(1 —t19)°

The Generators. Here, we restrict our attention to the group I @ Zj. From the
Poincaré-series for the invariant functions one can easily conclude that the gradients of
the generators of the invariant functions lead to a set of generators for the module of
equivariant mappings. I.e. we find

MBEZ; =< €, VLG, Vi >Rnez§ . (312)

4 Precisely T@Z; Symmetric Polynomials

The question we want to address here is:“Are there any polynomials having precisely
tetrahedral symmetry (in the sense that they cannot be written as a sum of polynomials
all of them having more symmetry)”’? We will answer this question negatively, but we
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will also see that there are polynomials having precisely T@Z§ symmetry in the above
sense. The importance of this question is based on the fact that octahedral or icosahedral
symmetric perturbations always produce additional equilibria in the flow formula. These
perturbations moreover rule out hyperbolic heteroclinic cycles. We therefore can accom-
plish our final goal of finding heteroclinic cycles only with precisely tetrahedral symmetric
perturbations.

Let us start with the invariant polynomials. The same question for the equivariant poly-
nomial mappings is addressed in Subsection 4.2.

4.1 Orthogonal Decomposition of RT

Although some of the following linear spaces are already defined, we give them again for
convenience. ‘

Definition 4.1

R = {p:R®— R | p is polynomial }

R: = {p € R | p is homogeneous and deg(p) = i}
RSi = @Rj = {p ER | deg(p) < z}
j=0

RY = {peR|yp=pforalvye L}

The spaces RF and 'Rgi are defined analogously.

Resuming the results of the last section we know a minimal set of generators for the
following RL:

Corollary 4.2

RY = Rlp2, 7s, pa, 7], RT®% = R|ps, ps, ps, 7]
RO = IR[p27 P4, pP8,T3* 7-6]7 RD— = ]B.[pz,Tg,p4]

RO®% = Rlpz, ps, pel, R" = Rlp2, 6, t10, t1s]
, RIo%Z; _ R [pz, t6, t10]-

The dimension of RE,L = T,Te%s, 0,0 ,00%Z, I and ISZS, is given by the i-th
coefficient of the Poincaré—series PE (cf. Section 3).

Actually, we are only interested in the restrictions of the above polynomials to the sphere
S?. Therefore let
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Definition 4.3
R;:{p:sz—)]ﬁ | apenwithplsz =ﬁ}

and simslarly, define Ri, R<;, RY, R¥ and ’R, as linear spaces of the restrictions of the
appropriate polynomials. '

We use for instance g : S? — R as the restriction of the polynomial pg to the sphere and
the same notation for the other functions. This agreement will be valid for the whole of
this section. Later on, however, we will come back to the notation without bars, because
then it won’t make a difference, whether the functions are defined on 52 or IR3.

~ One immediately finds (note that p, restricted to the sphere is just a constant!):
Corollary 4.4

RT = R[Fs, pa, o), RT®%: = R|[pa, ps, Te]
R® = R[ps, ps, 75 - 7o), R®”" = R[Fs, pu]
RO®E — R[ps, s, RE = Rte, Ti0, T1s)

REOT — Rz, T1g).

Still we have that the sum of RF,7 € N, spans the whole space R”, but the sum is no
longer direct. Recognizing that 72 satisfies an algebraic relation similar as 72 (see (3.6))
one would guess that

QF := Span{7p\7" | 3k + 4l + 6m =i and k,l > 0, m € {0,1}}, >0

(with QF = {0} in case no such combination of k,! and m exists) would give a proper
decomposition of RT. This is indeed the case.

Define QF similar for the other relevant subgroups L using their generators from Corolla.ry
4.4 and the algebraic relations from Section 3.

Proposition 4.5 We have for L D T and j > 2

RE, CREY and RL, ® QF =R} (4.1)

J q-

Furthermore, for 3 > 0, dim Rf = dim Rf holds and

j i _ _ N AL _ B
D G =Rf, QOF=REL ORI =RL (21) o vell s POF = RE. (47
i=0 i=0 =0

j—i=0mod2

The dimension of the spaces OF can be obtained by the coefficients of the modified Poin-
caré-series

PE(s) = (1= ") - Pr(s).
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Proof. Firstly, 7?,‘-‘ ’R, , because p € ’R ", implies pap € RL Therefore, RY_, + QL
RL by definition. To show “3” we assume L T, since thmgs work out 51m.llar for the
other subgroups. For any p € 'R,qr choose some p € 'R,T with pjsz = p. By Corollary 4.2
and (3.6) p can be uniquely wntten as

— kIl _m
p = Z Qi kel szTs PaTe
2i43k+414+6m=j
mE{D,l} |
k1 -1 k I _m —_

= Z Ok, LmT3 PaTe. + P2 * Z Qik l,mP2 T3 PaTg =: q1 + Pag.

3k+4l+6m=j 2(i—1)+3k+4l+6m=5—2

me{0,1} . i>1, me{0,1}

Now p = pisa = qus2 + P2 @252 € Qgr +1. 72]1_2. Furthermore, the sum is direct:
7?,3"‘_}12 N Q;r = {0}. For suppose p € 7?,3-1‘_2 N QJT is given. Then we can find p = pjs2 = g|s3
wit

_ ikl _m _ k1 _m
p= Z Qi k1,mP3Ts PaTe and g = Z Br,1;mT3 PaTe -
2i4-3k+-41+6m=;-2 3k+41+6m=j

me{0,1} . me{0,1}

Since p is homogeneous of degree j — 2 and g is homogeneous of degree j, we conclude

a(z,y, 2) = |(m,y,z)|fp(|g:—;j§l) = |(2,3, 2)pla, v, 2) for all (2,3, 2) € RS,

In other words ¢ — pap = 0. But this is a linear combination of terms only of the form
phrEplT with 26 + 3k + 4l 4+ 6m = j and 4,k,] > 0,m € {0,1}. These terms are
linearly independent (cf. Section 3) and this ensures that all coeflicients must be zero,
ie. &iptm =0 and Bim = 0. Consequently, p = 0.

We proceed proving dim 725‘ = dim ’R,JL for any exceptional subgroup L of O(3). Consider
the restriction mapping

%:Rf—)']%?,pl—)plsz.

This map is clearly surjective, but it is also injective, because 9i(p;) = R(p») implies

(e, = I3, 2)80) ({2222 ) = o0, 2t ({222 ) = (e, 2)

(2, y,2)| (,y,2)|

and this claim is proved. The rest is now easy. By repeatedly applying (4.1) we infer
@ 0 QF = RE The rest of (4.2) is immediately clear except RY, N RE = {0}.

j—i=0mod2
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Assume p € ’RI’ N 'RL is given and take again p = pjss = ¢52 withg€ R}_; and p € ’R,L
Like before we ﬁnd

p(z,y,z) = |(=,y,2)|q(z,y, z) for all (z,y,2) € R>.

If ¢ were not identically zero, then the right hand side would not be polynomial; a contra-
diction, since p is polynomial. Hence, p = 0 and (4.2) is proved. The remaining follows
from

dim @} = dim R} — dim R} , = dim R} — dimRY,

and exploiting the fact that the j-th coefficient of P% is equal to dim RE. O

The following theorem is a first step in order to decompose RYT into spaces of more
symmetry.

Theorem 4.6 Let T C O(3) be fized as in Section 3 and © DO T. Then
RT = RTOM g7, RTOH (43)

and RTO% = RO g 7, . ROOT, (4.4)

Using UR := 7 - R®®%3 we find a decomposition of RT in pairwise orthogonal subspaces
with respect to (., .)za(s2):

721‘ = 7?,06)2; b T3 Rd)@z; D TaTe - ﬁ@@z; (&) U'ﬁ' (45)

Proof. We start proving that both decompositions are orthogonal. For an arbitrary
polynomial § € RT®% we claim (73, §)z2(s3) = 0. Integration over S? is invariant under
O(3), especially under v := —1 € TOZ;. We have

(T, @)za(52) = (Y78, 79 13(5%) = (T3, @)3(57) = —(Ts, Q) 13(5%)

and the first claim is proved. Observe that this also gives RT®%: N7, . RTOZ5 = {0}. The
orthogonality in (4.4) follows similarly with v := & € O, the generator of a Z4 subgroup
in O. For an arbitrary polynomial § € R%®%: we infer from 7 = —7%

(76, @) z3(s2) = (776, 7)13(53) = —(T6, T)13(57)
and RO®%: N 7 - R®®%: = {0} as well. The inclusion “ D ” in (4.3) is obvious. To show
equality use that the generators of RT are 73,54 and 75 by Corollary 4.4. An arbitrary
polynomial § € RT is therefore of the form
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7= =i =j=m _i-1j-m
q= Zam mT3P4Tg = Z at,a,m”'3P47's + 73 Z QijmT3  P4Ts

ieven zodd

and (4.3) is established, since 72 € RT®% and p4 as well as 75 are generators of RT®%3,

These two together with pg are all generators of RTOZ; Hence, an arbitrary polynomial
g € RT®%; js of the form

4= BiimPiTaRs -

- We can argue as above, since 72 € R®®%: and the generators of R®®% are jy and .
Again “ D ” it trivial and the theorem is proved. a

Observe that 73 € R®™ gives
73 - RO®%: — RO, whereas 775 - RV®%: ¢ R®

follows from 737 € RP. Actually we even have:

Theorem 4.7 Let T C O(3) be fized as in Subsection 3.1.1 and let O~ and ODZS be
supergroups of T. Then

RO™ = RO9% g7 . ROOT: (4.6)
and R® = RO®% g 7,7 - RO% (4.7)

holds, where again both decompositions are orthogonal in L*(S?).

Proof. Let ¢ be an arbitrary polynomial in RO®Z: Then § € RT%: as well as 753 €
REOZ: . Consequently, Theorem 4.6 provides

(f31 @L?(sz) =0 and (’1_'31_"3, Q)Lz(sz) = 0.

It remains to show “O” in (4.6) and (4.7). The generators of RO are 73 and py. Therefore
an arbitrary polynomial § € R®” is of the form

q= Z @ 37'3P4
Again 72 € RO®%: yields the missing argument, if we proceed as in the proof of Theorem
4.6. (4.7) is proved in the same way, using the generators of R? (5, ps and 737s) and the
fact that (737)% € RO®%:, 0
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From the above theorem we conclude, that the first three components of the decomposition
(4.5) have actually more symmetry than only T or T@®ZS. Moreover, the elements in
73RO®E: are the elements with exactly O~ symmetry (and not more!), whereas the ones
in 737 RP®2: have exactly O symmetry.

For UR = 7R°®% we observe UR C RT®Z5  but some elements in UR have in some
sense even more symmetry: let I be the supergroup of T introduced in Section 3 and
V® .= Projy=(R™¥%:) C U® (here by Proj,= we mean the orthogonal projection on U%
resulting from the decomposition (4.4)). The space U® decomposes orthogonally to

UR=vRew*, (4.8)

where WR := {z € U® | (%,7)2(s2) =0, V5 € VR} = Projp=(RY®%) C UR. We claim

VR C Span{RO®% R}, (4.9)

To see that note VR C UR = 7 R®®% and (4.4) implies that an arbitrary § € RY®%5 C
RT®%: can be written as § = §; + o2 With both g, and & in R®®%:. This gives

VR 5% :=Projy=(q) = Tl = 1 — @

and (4.9) follows. Hence, the elements in VR can all be written as a sum of two poly-
nomials with the additional symmetry O®ZS or IDZS, respectively. Only the space W*
seems to have pure T@HZ; symmetry:

Theorem 4.8 Let again T C O(3) be as in Section 3 and let O as well as I be supergroups
of T as before. Using the spaces VR and WR defined above we clasm

RO®% @ VR = Span{RO%% RI0%} (4.10)

Consequently,
WR 1 Span{R°9% R1e%Z} (4.11)
and RT®%2 = Span{RO®%: R} g w® (4.12)

holds. Furthermore, W* is independent of the particular choice of 1 O T (cf Subsubsec-
tion 8.1.6).
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Proof. We begin with (4.10). R®®%i + V® = Span{RO9%: RI®Z} is obvious from (4.9)
and the sum is direct, because it is even orthogonal due to VR c UR L R®®%. Both
(4.11) and (4.12) follow immediately from (4.4) and (4.8).

It remains to show the independence of W?R of the particular choice of I D T. Suppose _
I O T is the other copy of a icosahedral supergroup of T as in Subsubsection 3.1.6
introduced. We claim

Projy=(R™%) = Projy= (RI®%).

To see this let {4 € O\T be an element of order 4 in © D T. As already seen in
Subsubsection 3.1.6, {4 conjugates I to I: &7 1¢, = I. Therefore with p € ’R,]“i”“2 we have
g := é4p € RIS Writing p = Proj;o0en; (P) + Projy=(P) we infer

g = f4]5 = Projﬁoez; (ﬁ) - ProjUn(p?),

since the action of £, on elements of f\{o&;?; is trivial and elements in U R obtain a minus.
Therefore the projection of R¥%: and R'¥@%: to U* span the same space. -

The elements in W7® will be of major.interest to us, since they contain all elements
with precise T@®ZS symmetry. Still it is by no means clear how large W* is and how
we can calculate the elements of W®. The following definition provides subspaces, which
eventually give the decomposition of W*. For the rest of this section we are only interested
in polynomials with at least T@®Z; symmetry. Observe that the elements of RT®%Z: are
all restrictions of polynomials of even degree (cf. Corollary 4.4), so we do not have to
worry about any odd degree polynomials.

Definition 4.9 Let W;’?, J 2> 0 be recursively defined as the mazimal subspace of 7'222‘*”2 N
UR = ’R,Lr;.;z’ NUR c UR which satisfies the condition

i-1
W;S L Span{R <2] ,@ng . (4.13)

=0

Some of these subspaces will only contain 0, and therefore these subspaces won’t con-
tribute much to our decomposition. Theorem 4.11 will tell us exactly which of them. We
have:

Theorem 4.10 (W[);»0 is a sequence of pairwise orthogonal subspaces in L*(S?) which
satisfy

W5 L Span{RO%% RIe%), (4.14)
In particular, they form an orthogonal decomposition of W
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R = pwE. (4.15)
=0 ‘

Proof. To start with (4.14) first of all note that W;? C UR L RO®%5, Suppose

@€ W L Regs? (4.16)

is given. We have to prove w L R™Z%:. Qur proof uses projections on fixed-point spaces:

for p € R define

Q#(P) := Projgs(p) = — >_v5 € R-.
'LI b=y

Now if § € R in order to show (w, §) Lz(‘sz) =0, it is sufficient to show Q?z{ (@) =0 for
some Zs C II. To see that let {5 € Zs be one of its generators. Then with £ = 1 we find

1 4

(@, Q)r2(s3) = (B, Q% ())13(s2) = H > (@, £d) 13(s9)
=0
1 4
= EZ( 5 "D €5€I)L7(S’) = (qu (@), @) 13(52).-
=0
Now obviously w := Q'R (@) € ’R,QJ On the other hand we will show in a moment

that @ € ('RQJ)J‘ C Rcaj, which is only possible if % = 0 and the proof would be
accomplished. The remaining: for p € 'Rzzj we have

(@,P)asy = (QF (’T'):P)v(sn = (8, Q% (P)za(sn = (&, P)ia(s
(@ TM( ),Q 2(1_7))L2(.<,'2)=('1177Q;Tzeﬂ’(ﬁ))M(sz)

since w € RT®%2, Using again that p € ’R<2] and (4.16), we conclude

- 1 _
(0,D)r2(s7) = (@0, 5 51 > D)rs?)
YETOZS

1 1& o 1 ~
= (&g > 3275510)132(5’):(1”’1_ Y. 1P)a(sy) =0,

veTOZ; ~ i=0 vEIOZS

]

27



since Y. crpzs P € ’R.gjz. It remains to prove (4.15). “D” follows immediately from

(4.14) and the definition of W?R. To see “C”, let & € WR C UR be given. Then @ €
U® = 7RO9%: C RTO%;, Since w must be a restriction of a polynomial of finite degree,

we conclude even w € 7?,<2 % for some j > 0. But since @ L Span{ﬁoez;,ﬁng},
certainly also w L RE%JZ"’ holds and by Definition 4.9 @ € @, WZ follows, which
proves everything. [

The last theorem in this section will tell us how large Wg;l- actually is.

Theorem 4.11 We obtain for any j > 0
TORS OO 5IOLS
R<2J ' = {R<23 ' Reai” }@ @W;f (4.17)
Furthermore, the dimension of W.§ is given by the coefficient of 8% in the Poincaré—series

s14

T=s) (=) -
— 14+818+822+824+526+528+830+332+2834+836+2838+O( )

P¥ (s) ‘(4-18)

Proof. Equation (4.17) follows immediately from (4.12) and (4.15) by projecting both
sides to 'er-iz

The space R<2J decomposes by Proposition 4.5 to EB,_O tzn.;e; i and similarly

OQZ; OQZ; SIQES SIQZES
R<2J = @ Q R<2.7 - @ Qa7
=0 =0
Y33 3. CY 4 ODZ3 IgZS

The sum ’R<;.; ?+R<y;” is not direct, but R<2J n 'R.<2J contains only constants: every
polynomial having both O®Z; and ][ea%" symmetry must have already O(3) symmetry,

since both subgroups are maximal. The Poincaré—series of O(3) is PgJ(s) = 5 and

p2 is the only generator of RO(). Hence RO = IR[1] is one dimensional. We therefore
find for 7 > 0:

dimWg = dim @, — dim Span {0y, Qm}
= dim Q5 — (dim Qyp 3 + dim Qe ¢ — dim @9),

which is by Proposition 4.5 given by the 2j-th coefficient of the Poincaré-series
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PY(s) = Pz "(s)— (Pg®™(s) + Pa2"(s) — PPP(s))

. 1+ 8 _( 1 + 1 1
T o(l—st)(1-s8)  \(1—s%)(1—s6) (1—36)(1—310)")

8 56— gl0 4 gl6

T - T I-o)—s9

B 36(1 _ 310) 58 4 g4y gl6 _ g20
 (LT—st)(1—s8)(1—s19) (1 — s%)(1— s8)(1 — s20)

(
g4 _ 20 g4
(

(1—s%)(1—s8)(1— s19) (1 - s%)(1 = s10)

d

Note that although W?® has a Poincaré-series, W?® is by no means an algebra! The
somehow cumbersome definition of W75 turns now out to be very helpful for calculating

basises of these spaces. We have e.g. WX = Span{@}} and WX = Span{wR} with

. /23, 2 16 - -
Dy = T (135»0‘5 5 PP~ 27pzpe+pi)' (4.19)
A (8893 L1837, 49544 2347,
18 6" 4455p2 135 p2p4 4455 p2p6 99 p2p4
4496 1024
T35 P2PePe +pg — 81 Pe) (4-20)

where one only has to check w14 L {75, 710,22} a.nd @R L {Zs, 510, 12, Tel10, I3, ®F}. This is
left to the reader.

4.2 Orthogonal Decomposition of MT
Our next goal is to answer the question on the precise tetrahedral symmetry for the

equivariants as well. QOur proceeding will be very similar to the one in the preceding
subsection. Particularly, we will skip arguments whenever things work out the same way.

A mapping b : R® — R? is equivariant with respect to a subgroup L C O(3) if
B(¢) = b(7¢), for all ¢ € R and 7 € L.
The related L—action on mappings from IR? into IR? is defined by
(70)(¢) := 7b(v™*¢), ¢ €R’andy € LCO(3). (4.21)
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Obviously 4 : R® — IR® is L—equivariant if and only if b is invariant with respect to this
L—action (i.e. vb=b for all ¥ € L). We start defining for the equivariants similar linear
spaces as we did for the invariants. '

Definition 4.12

M = {e:R®— R?| e is polynomial }
M; = {e € M| e is homogeneous and deg(e) = i}

Mo = PM;={ecM|deg(e) <i}

=0

ML = {ee M |ye=e foral~ye L}

The spaces MF and Méi are defined analogously.

Resuming the results of the last section on equivariants we know a minimal set of gener-
ators for the modules MZ:

Corollary 4.13

T _ TOES _ '
M - = < €1, €3, €3q, €3h, €4, €5 >po—, M 2 =< €1, €3q, €3b, €5, T3€2, T3€4 >Roe;z§
()] O~ _
M = < €1, €3q, €4, T3€2, T3E3p, T3€5 >Roez; - M =< €1, €2, €3qa >po-
OPZS IQZS
M ©Z; _ < €1, €3q, T3€2 >,Roez§, M o%; =< €1,VL6,VL10 >thez; .

The dimension of M¥, L = T,ToZs, 0,0~ ,00Zs,I and UBZS, is given by the i-th
coefficient of the Poincaré-series PL, (cf. Section 3).

Proof. The last three statements are obvious from our previous results. In the first three
statements one containment relation is also obvious. The other one is obtained from
the Poincaré-series. There is a Poincaré-series associated to the module generated by
elements on the right hand side over the respective ring. It can be easily checked that it
coincides with the Poincaré-series for the left hand side. By inclusion the two sides are

equal. a

Actually, we are again only interested in the restrictions of the above polynomial mappings
to the sphere S2. Therefore let

Definition 4.14
M:={e: 5> 5 R®| Je € M with e|sa = &}

and similarly, define M,-,MS,-, ME, ME and ML, as linear spaces of the restrictions of
the appropriate polynomial mappings. -

Again 1t follows immediately:
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Corollary 4.15

-T _ - - - = = - ~ TOES - - - o= o
M™ = < &,&, €, €y &4, & >go-, MOV =< §, €34, Eap, €5, Ta€a, Tals > 00
-0 - o o e -~ - 0- - - -
M = < &, €3q, €4, T3€2, Takap, Ta€s > z002s, M~ =< €&, €0 >po-
R 2 R
OQRS - = — _ WY A [ — \
M ? = < €,E€3q,T3E >,Roez;, M o3 =< €, VLG, VL]_O >ﬁnez§ .

Similar to the invariants M¥,i € IN, spans the whole space MZ, but the sum is no longer
direct. For instance in case I = T the relevant subspaces for the decomposition of MT
are

T . = - - - - -
S‘i =< €1 >Q3:; + < €9 >Qﬁ_2 + < €3a >Q£_3 + < €3p >Q?——3 + < €4 >Q?_: + < €y >Q;D___5

with 7 > 0 and QF defined in Subsection 4.1 (Qf := {0} in case i is negative). Define SF
similar for the other relevant subgroups L using their generators from Corollary 4.15 and
the respective generating ring. |

The interpretation of SF is similar to the one of OF: &F contains restrictions of polynomial
mappings of degree 7, but not less than 3.

Proposition 4.16 We have for L DT and j > 1

J o0
P Sk = Méj as well as P SF = ME. (4.23)

=1 =1

The sum in (4.22) (and similar for the other cases of L) is direct and the dimension of
the spaces S¥ can be obtained by the coefficients of the modified Poincaré-series

Pyy(s) = (1 — ") - Pyy(s)-

Proof. We prove this proposition again only in the case L = T, for the other cases are
similar. For (4.23) it suffices to prove the first equation. ST + ...+ 8F = MZ; follows

from @, Q7" = R (cf. Proposition 4.5). The only nontrivial statement is that the
sum is direct. We claim

S‘;Eﬂé_'}r= {0} for 7 # j.
Assume there were some & € (SF N SF)\{0}. Using the index set I := {1,2,3a,3b,4,5}
we find gi_g € QY and p;_g € OF 4, B € I (with the obvious abuse of notation), such

that
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€= Gipés = ) Di-pts,
Bel |

Bel

and at least one of the ¢'s and one of the 7's is nonzero. Thus € is the restriction of
two homogeneous polynomial mappings e; and e; of degree 7 and j, respectively. We find
gi—p € RY 5 and p;_g € RY ’ 5 such that

ei=) gigeg and e; = Y pi_gea. (4.24)
BeI Bel

Now e; homogeneous of degree 7 gives

(2,9, 2) = (2,9, 2)[ (ﬁﬁ) , (4.25)

and similar for e;. We conclude e,(:n,y, z) = ei(z,y,2)|(z,y,2)7 (wlo.g. i > j).
Certainly ¢ — j must be an odd. number, because e; was a polynomial mapping. Therefore
k:= =1 € IN and we obtain e; = pke;. Together with (4.24) we get

> (g8 — P5i—p) €8 = 0.
per————
€RO™

But < €1, €3, €3a, €35, €4, €5 >po- gave a minimal set of generators (cf. the Poincaré-series
for MT) and therefore all coefficients in the above equation must be zero: ¢;_g = p5p;_p
for all B € I. We assumed that at least one of the 7's and hence of the p's is nonzero, e.g.
Di—po, 8IVIDG Gi_g, & Q,_ﬂo This is a contradiction.

To see that the sum in (4.22) is direct we can use a similar argument as we used in (4.25).
At last the statement on the Poincaré-series of MT is now immediately clear from

dimSF = Y dim Qt_ﬁ
Bel

and the Poincaré—series of R°™. a

Before we continue searching an appropriate decomposition of MT, we have to introduce
the canonical scalar product on [L?(S52)]?

3
(é, b)[Lz(sz)]a = Z(é[i];b[i])Lz(Sﬁ), for €,b € [Lz(Sz)]s.

=1
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It is easy to see that this scalar product is O(3) invariant: (v€,7vb)z2(s2)p = (E, b)za(s2)p
for any v € O(3).

Before we want to give a deco_mposition of ME, we start decomposing M® and MO~
The following two subsets of MT will prove to be important for us. Set

/O - == = = 7O~ - = = = =
N =< €4, T3€3p, T3€5 >,}i09z§ and N =< €3, T3€1,T3€34 >,Roez§ . (426)

Theorem 4.17 Let T C O(3) be fized as in Subsection 3.1.1 and let O~ and ODLS be
supergroups of T. Then

M® = MO%% g N© (4.27)
and M®" = MO%% g N/O” (4.28)

holds, where both decompositions are orthogonal in [L*(S?)]3.

Proof. From Corollary 4.15 we infer ./\;l'DEB_zg +N©® = MP® and for MO®Z; L /O~ = MO
we use additionally R®™ = RO®%: @ 73 - RO®%: from Theorem 4.7.

All that remains to be shown is that both decompositions are orthogonal, because then
they are direct as well. We have to show

(é, E)[LZ(SZ)]S =0, foralle € MO®E: and b e N UNO.

We have for v := —1 € OQZS that b = —b for any b € N°™ U N©, because bisa
" restriction of a polynomial of even degree. On the other hand & = & for é € M?9%; and
the theorem follows from the O(3)—invariance of the scalar product. a

The theorem yields that the elements in A O__ and N© contain the ‘real’ © and O~
equivariant mappings. Let us now decompose M7 into spaces of more symmetry.

Theorem 4.18 Let T C O(3) be fized as in Section 3 and © DO T. Using UM .=«
€3p, €5, Tals >yoons, we claim

and MT = MO9% g N© 9 N g UM. (4.30)

Both decompositions are pairwise orthogonal with respect to (.,.)za(sa)p -
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Proof. The above decompositions are clearly possible by Corollary 4.15.

To prove orthogonality note that Theorem 4.17 already gives N© | MO®9%; and NO™ L
MOOE; . N© L UM and N L UM follow by the same argument given in that proof.
To see N7 L N® and M®®%: | UM we use an element of order 4 £ € O\T. Observe
that '

¢b= —bfor all be NO U UM

and the proof is accomplished. ' u

From the above theorem we conclude, that besides U* all components in the decompo-
sition of MT have actually more symmetry than only T or T@ZS. Our final goal is to
separate from UM C MT®%5 those mappings which have more symmetry (in the sense
that they are a sum of mappings in M®%%: and Mmzf?). We proceed as in Subsection
4.1.

Similarly, let V* := Projy (M%) C UM (with Projym the orthogonal projection on
UM resulting from the decomposition (4.29)). The space U™ decomposes orthogonally
to ~ '

| UM =vMewHM, (4.31)
where WM := {z ¢ UM | (@, D)z2(s2yp =0, VB € VMY = Projiu(MT0%5) C UM. Now

VM C Span{M®®%: AI0OZ5} | (4.32)

follows in the same fashion as (4.9) for V® was derived.

Again, the elements in V™ can all be written as a sum of two polynomial mappings with
the additional symmetry O®ZS or IOZS, respectively. Only the space W™ seems to have
pure TOZS symmetry:

Theorem 4.19 Let T C O(3) be as in Section 3 and let O as well as I be supergroups
of T as before. Using the spaces VM and W™ defined above we claim

MO®E: ¢ VM — Span{MO®%i fT6%5) (4.33)

Consequently,
WM 1 Span{MO®% Nt} (4.34)
and M™% = Span{MO®% AMTOT} ¢ WM (4.35)

holds. Furthermore, W™ is independent of the particular choice of I D T (cf. Subsub-
section 3.1.6).
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Proof. We omit this proof, because it can be done along the lines of the proof of Theorem
4.8, where we have shown the analogous statement for W¥. u

Again elements in W™ will be of major interest to us, since they contain all elements with
precise T@®Z; symmetry. The following definition provides subspaces, which eventually
give the decomposition of WM. For the rest of this section we are only interested in
polynomial mappings which are at least T@Zj—equivariant. Observe that the elements
of M™% are all restrictions of polynomials of odd degree (cf. Corollary 4.15), so we do
not have to worry about any even degree polynomial mappings.

Definition 4.20 Let sz %1, 720 be recursively defined as the mazimal subspace of
MyoE n UM = Mfgﬁl NUM c UM which satisfies the condition

j-1
IoZs VA
Wik, L Span{MQJ 2L, PwWLT (4.36)

1=0

Some of these subspaces will only contain 0, and therefore these subspaces won’t con-
tribute much to our decomposition. Theorem 4.22 will tell us exactly which of them. We
have:

Theorem 4.21 (sz M )iso is a sequence of pairwise orthogonal subspaces in [L*(S?)?
which satisfy ‘ -

Wzﬁq L Span{M®®%: AqT0%:} (4.37)
In particular, they form an orthogonal decomposition of wH:
"= PwWit,. (4.38)
=0

Proof. Once more we make use of the proof of the analogous theorem in Subsection 4.1.
Replace just the projection @5 onto R by

1
Q¥ (&) := Proj gz (€) = QT Y qE€ M for e € M,
~veL

using the action (4.21) of L on M. Everything else works out as before, now with the
new scalar product on [L?(S?)]3. a

The next theorem in this section will tell us how large Wé’ﬁ_l actually is.
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Theorem 4.22 We obtain for any 7 > 0

ToZs; O0Z —~1OZ;
M<;.;+1 - S an {M<S1+217 Sezaj-*-l} @ @ Wz,.g.l (439)

i=0 )

Furthermore the d’imension [ W - i.s iven b the coe cient o 32_7' 1 m the Poincare’—
’ 2j+1 8 9 Y '
581‘2'63

s3 (14 s + s'?)
(1 —s%)(1— st0)
= 245"+ 5%+ st +2313+2315+2sl7+3319—I—O(szl) .

Pi(s) (4.40)

Proof. Equation (4.39) follows again from (4.35) and (4.38) by projecting both sides to
Mesish-

Proposition 4:16 gives the decompos1t10n M<§’ﬁ1 =@, .jfj‘_’lz ? (note that S ng’ = {0})

and similar ones for M<2 ;41 and M@Jﬂl With an argument very similar to the one given
in the proof of Theorem 4.11, we find for j > 0:

dim Wit , = dim &y op® — (dim&prg® + dim&yay — dim S ).

The Poincaré-series of O(3) for the module is Pﬁ(s)(s) = 1 and hence Pg(s)(s) =3

giving dim ngl) . Using Proposition 4.16, dim Wz’};fl_l is therefore given by the (25 + 1)-th
coeflicient of the Poincaré-series

Pl(s) = Pg™(s)— (PR (s) + P2 (s) — PS7(s))

M
_ s+28%54+28% + 47 s+s3+45 s+ 8%+ 8° b
T (1-s)(1 - s9) (L—st)(1—s8) (1-s%)(1—s9)

s3 (1 + 8 4 s12)

(1— %) (1 —s%0)
0

Note that again W™ is not an algebra. We find e.g. WM = Span{w*} and WM =
Span{@w{*} with

M - N 15 ,_ - _
w:’,v‘ := &g and w?’t = —-1—1p2€35 + 3pa€sp + 1273€,.
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Since @ and @w4* are obviously in U™ we only have to check B L M]i?m = Span{e; }

and @M L Span{./\;I];e;zg,Wgﬂ} = Span{&,, Ve, te&;, Wi}
Some more structure of the space W can be seen in the last theorem of this section.
Theorem 4.23 W7R is embedded in W™ in the following sense:

WRa c W™ and VIW® .= {Vp|p € R, pis homogeneous and Disz =P E Wﬁ} c WM.

Proof. We have & € WR&, ¢ MT®% since WR C RT®%5. All we have to show by
Theorem 4.19 is

g | Span{MO%%: AfT0Z3}

or, equivalently, we have to show Qf;t(é) =0 for L = O@Z; and I®Z;. But this follows
from W® 1 Span{R®9% RIOZ:}.

Q%(8) = Qi(a"a) = Qx (@ )& = 0.
The second assertion is an immediate consequence of

Qu(Vp) = VQz(p) for p€ R.

5 Parametrization of the Fixed-Point Subspaces

In the sequel we derive parametrizations for elements of T € H(1,g/g) in the case G =
0(3), H = O(2)®Zs or O(2)~ and L a supergroup of T. These parametrizations will be
necessary to evaluate the flow formula (2.22) in the next section.

We assume that the kernel kerA()o) C L?(S?) is irreducible for the given (standard)
O(3)—action. This assumption will guarantee easy parametrizations of the relevant con-
nections. To see that, we introduce the space SH; C L?(S5?) of spherical harmonics in
three variables and of degree I € INg. It is well known that any irreducible representation
of O(3) is isomorphic to the (minus or plus) representation of O(3) on SH;, for some |
(see for instance [5], Chapter XIII Theorem 7.5).

Our special situation, however, is even better. Since kerA(Ao) is already a subspace of
L?%(5?), we claim that kerA()o) is actually equal to some SH; (equipped with the standard
action). The restriction of the standard representation of O(3) on L?(S?) to SH, is usually
called the natural representation of O(3) on SH;. This is the minus representation for !
odd and the plus representation for ! even (see [5] Chapter XIII §9 (e)).
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Lemma 5.1 Let {0} # V C L*(S?) be an irreducible representation for the standard
action of O(3). Then

V =8H:,, forsome g€ Ny

Furthermore the O(3)—module V is equal to the O(3)—module SH,,, where O(3) is acting

naturally.

Proof. Consider the orthogonal projections onto SHy, i.e. P, : L(S%) — SH; C L*(S?).
They are obviously O(3)—equivariant. Due to the irreducibility of V and S#H; it follows
that the restriction Py : V' — SH; is either trivial or an O(3)—equivariant isomorphism.

Since V was not trivial and L*(S?) = @2, SH, (see [18] pp. 436-457) we derive that there
is at least one Iy € INy, such that V = SH,, via P,,. On the other hand dim(S#H;) = 21+1
gives that o is the only [ € Ny with Py is nontrivial. Hence,

SHy, =V =P, (V) C SHy,

- giving V' = SHy,. Therefore, P,y is just the identity and V' as an O(3)—module is
equal to SH;, as O(3)—module equipped with the standard action, which is the natural
representation of O(3) on SH;,. : a

We now consider axisymmetric elements in S#;. If SO(2) C O(3) is fixed, there is
(up to multiples) only one axisymmetric spherically harmonic polynomial of degree .
Choosing SO(2) rotating about the z—axis, this polynomial is given by (cf. for instance
[9], Theorem 2.4.6)

(5]

u = ui(z,y,2) = Y (-1)qe(+y7) (5.1)
v=0
Q=1 Wi =(—-20+2)(1-2v+1)gpy, v>1.
Obviously,

S = { O(2)@Z; forleven ,. (5.2)

0(2) for I odd

The group orbit O(uj) C SH, is isomorphic to O(3)/Z,: = O(3)/H. In the two relevant
cases for H we have

0(3)/(0(2)eZ;)
0(3)/0(2)

R IR
<
at

s, - (5:4)
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In order to parametrize connections T of (L, G/H) we search for an injective curve v :
(0,¢*) — O(3) such that

wi(p) := v(p)u; € SHi

parametrizes a one-dimensional subset of Fizo()(L') & Fizg/g(L'), L' C L, which
connects two elements of £,¢/m) (cf. (1.12)). The following subsections will provide
such parametrizations for the various cases of L D T.

Although we do not calculate the fixed-point spaces in detail, we remark that we make
use of the subnormalizer Ng(L, H) := {y € G | L C yHvy '} (cf. [8]). It was shown in
[12], Proposition 1.7, that

Fi:c(;/H(L') = Ng(L', H)/H C G/H
holds (see also [11] for a different way to calculate Fizg/g(L')). We are, however,

interested in the particular fixed-point space Fizo(u;)(L') C kerA(Xo) = SH;, where
O(ui) = O(3)/H and %, = H. We find 4 ,

Fizop(L') = No(L', HYuf C O(uf) C SH,.
5.1 The Fixed-Point Subspaces for L = T, T®Z; and for H =
O(2)®Zs, 0(2)
We start discussing the case L = T and H = O(2)®Z;. Since

0(3)/(0(2)815) = P = SO(3)/0(2), - (55)

this is clearly almost the same example as given at the end of Section 1. The subgroups
of T with nontrivial fixed-point subspace are L' = Zj, D, and Z3 with

Fizo@)/0@ers) (L) = S'Ulpt,  Fizog)o@ens)(D2) = 3pt
Fizo()/(0(2)0m5)(Ls) = 1pt. |

The set Fiz(w,0(3)/(0(2)025)): defined as the union of all the nontrivial fixed-point spaces
(cf. (1.14)) is depicted in Figure 2.

Using
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Figure 2: Fiz(1,0(3)/(0(2)025))

wy /& Z )\

uy /Dy Z, D,

cos(p) 0 —sin(yp)
Yo(p) = 0o 1 0 ;

sin(p) 0 - cos(e)

we find the parametrization for the connection of (T, O(3)/(O(2)®Zs5)) between u; and
the spherically harmonic function of (even) degree ! which is axisymmetric with respect to
the z-axis. Both equilibria which are connected by this branch lie (identify Fizo(u;)(Da),
{ even, with Fia}O(g)/(O(g)@zg)(Dg)) in Fiw0(3)/(0(2)ez;)(D2). For I = 2 this gives a branch
between u3 = 22 — (y + 2°) and 22 — (y® + 2*). For p € (0,%) let

wa(p) := vu(p)us = (2 — 3sin’(p))z® + (2 — 3 cos®(p))2® + 6 cos(p) sin(p)zz — y>. (5.6)

The other connections between equilibria in Fizo(s)/(0(2)ezs)(D2) cannot give any new
information concerning the flow, because all connections lie on the same T—orbit. We
will not make use of other even ! parametrizations, because the computational effort we
have to make in Section 6 rises quickly. Nevertheless, for small [ it would still be possible
to obtain similar results for higher dimensional representations of the kernel.

Considering L = T@Z; instead of L = T, nothing really new happens. Some new
subgroups of T@Z are of the form L' or L'®Z;, where L' is a subgroup of T. There
are, however, also two class III subgroups in T@®ZS (cf. [5], XIII Section 9 for the class
IIT subgroups of O(3) ). The first is Z; = {1, —&;}, where &; is the generator of some
Zy C T. The second is D = Zy U {~—v,v € D,\Z,} with again Z, C D, C T.
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Since all elements in O(3)/(O(2)®Z;) are invariant under v = —1l one gets for L' C T

Fizo()/0(2)em5)(L') = Fizo()/(0)ezs) (L' OL3)

and F ’iw(qp@z;,()(s) /(O(2)0Zs)) in Figure 3 follows easily. : '

Figure 3: F'i:z:(qp@z;,O(a)/(O(z)@z;)) and F iT(TeZ3,0(3)/0(2)-)

MY £
22 LS - 23 OLS
2
]
oY 1 207 D:@ZS

The parametrization from above is sufficient for this case as well. Considering H = O(2)~
we have O(3)/0(2)~ = S? and the nontrivial fixed-point subspaces are for L' = Z;, D?
and Zz: Fia:o(s)/o(z)—(ﬂz—) ~ gt F'i:vo(;;)/o(z)—(D;) = 2pt and Fimo(;;)/o(z)—(%;;) = 2pt
(cf. Figure 3). There is, of course, also a nontrivial fixed-point subspace for Z, C D3.
However, it is the same as the one for D, and therefore not worth mentioning.

We do need a new parametrization for the connections of (T®Z$, O(3)/0(2)7), since the
isotropy subgroup X,» = O(2)~ is only possible for odd I. In the case [ = 3 we get the
branch between u} = 2z® — 3z(y® + 2?) and 22 — 3 z(y? + 2?) as

wa(p) == Yu(p)us = (—3 +5 cosz(go)) cos(p) z® + (2 -5 cosz((,a)) sin(y) 2°
+3 (—1 +5 cosz(c,o)) sin(p) 2z + 3 (4 -5 cosz(ga)) cos(ip) z2°
3y’ (cos(p)e +sin(p)2), @ € (0,3). (5.7)

Using ¢}, ¢ := 7 we denote the above constructed connections by

TPT = {wi(e), e € (0,90 p)}- (5.8)

In the last case L = T and H = O(2)" we find only Fiwo(g)/o(z)_(ﬂz) = 2pt and
furthermore Fizo(s) /0(2)-(Z3) = 2pt remains left. That means there are no connections

of (T, 0(3)/0(2)").
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5.2 The Fixed-Point Subspaces for L = O,07,04%Z$5 and for
' H = 0(2)6925, 0(2)_

We begin discussing L = O and H = O(2)®Z;. Once more O(3)/(0(2)®Z;) = P? =
SO(3)/0O(2) reduces our problem to something known (cf. [12], Table 1).

The subgroups of © with nontrivial fixed-point subspace are L' = Z,, D35, D4 and D3

(we denote by DZ the D, subgroup of © which is not normal in O; this is equivalent to
D3 ¢ Dy C ©O). It follows:

Fizog)/(0()ens) () = §'U1pt,  Fizowy(0@ens)(D;) = 3pt
Fizo(s)/0(2)0m5)(Ds) = 1pt, Fizos)/(0(2)es)(Da) = 1pt.

Figure 4: Fiw(o,O(s)/(O(z)ez;))

Y ARSEEEEII. e, . Dy
z
¥ v} /D2 D2 )\
hE wi /B3 ’ Y
[ D,
- u /Dy Dz Iz

As a first connection of (0, O(3)/(0(2)®Z3)) we find a subset of T¢T. With Yoo =%
we have

17 = {wile). v € (0,%50)} | (59)

- which connects the equilibria in Fizo(s)/(0(2)ezs)(D4) and Fizo /(0(2)0Zs)(D3), i.e. for
I = 2 the connection from 2z? — (y% + 2?) to v} := %(:1;2 +2%) +3zz — y>.

Although for H = O(2)®Z; only the representation for even [ is present, we similarly
intend to treat the odd ! case, which we will need for connections with H = O(2)~
(cf. Figure 7). For [ = 3 this will give a connection between 2z3 — 3z(y? + 2?) and
v = ——@ (23 + 2% — 9z2(z + 2) + 6y%(z + 2)).

There are two more essentially different connections of (0, O(3)/(O(2)®Z3)). The second
branch connects an equilibrium in Fizo(s)/(0(2)ezs)(D3) to an equilibrium which lies in
F’I:.'ZZO(:;)/(O(z)@z;)(D;g). For [ = 2 this equilibrium is 73 := 2(zy + zz +yz) and for [ =3
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the related equilibrium will be 9} := — 2‘/_(2 (® + 1y +2%) —32%(y + 2) — 3y?(z + 2) —

3z%*(z +y) — 15zyz). The corresponding branches are parametrized by

% 0 —-—‘{—2 cos(p) —sin(p) 0 @ 0 3@
Tle)=1 0 1 0 sin(p) cos(p) O 0 1 0
2o £ 0 0 1)\ L ¢ &

We set

T = {xi(e), ¢ € (0, % 0)},

with ¢} ¢ := a.rccos(lé) and

xile) = Telels = (23 os’(p) (4 - 50" +2))

+3 cos(p)Vv2 sin(so)y(a: + 2) + 3 cos’(p)zz.

V3

(5.10)

(5.11)

xa(e) = le)vs = = (=6 +5 cos’(9)) cos(p)(a® + 2°) + (2 — 5 cos’(¢)) sin(p)y®

+ g (—2 +5 cosz(zp)) sin(p)y(e® + 2°) + —— 3\/_ (
3\/— (

+ 4-5 cosz(tp)) cos(p)y?(z + 2) + 15 cos?(¢) sin(p)zy=.

2+5 cosz((p)) cos(p)zz(z + 2)

(5.12)

The last connection between the equilibria in Fizo(s) /(0(2)@z§)(D3) and the equilibria in

Fizo(s)/(0(2)ens)(Ds) is also obtained by x.
We take

T = [alp), ¢ € (#4007/2)},

(5.13)

which connects ¥} to the spherical harmonic function of degree I which is axisymmetric

with respect to the y-axis. For simplicity we combine the last two connections to

PO = {xale) e € (0,7/2)}.

All other connections lie on the group orbit of T¥®, TX0* or TX®P,
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Figure 5: Fiz(0pms,0(3)/(0(2)0zs) 20d Fiz(0-,0(3)/(0(2)0%s))
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WY 2

T2 LS

Considering L = O®Z; we first need the subgroups of ODZ;. Some are again of the form
L' or L'®ZS where L' is a subgroup of ©. There is also a bunch of class III subgroups
of O®ZS, but they are not relevant for the action on O(3)/(O(2)®Z3), because any
element is clearly invariant under ¥ = —1. Therefore all occurring stabilizers are of the
form L'@Z;. Compared with L = O we obtain the same ﬁxed—pomt subspaces, just the
stabilizers increase by ¥ = —1 (cf. Figure 5).

Figul:e 6: Subgroups of O~

To discuss L = O™, we first give the subgroups of O~ in Figure 6. (cf. [5], Chapter XIII
‘Proposition 9.4).

As to our usage of notation for the class III subgroups see again [5], Chapter XIII Theorem
7.5 (for instance D§ = Dy U {—7,v € Ds\D,}). We have

Fizowyojens) () = S*Ulpt,  Fizogomen;)(Z;) = 5* U 1pt
FZ$0(3)/(0(2)®Z§)(D3) - 1Pt, F?,:I}O(a)/(o(z)®z )(D ) o lpt
Fizo@)o0@ers)(D;) = 3pt.
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All connections of F'L..'Iﬁ(oe;z;'O(g) /(O(2)0zg)) and F’I:m(o—,O(g)/(O(z)@zg)) have already been
parametrized (by w and x) (cf. Figure 5).

Figure 7: Fiz(oez5,0(3)/0(2)-) and Fiz(o-,0(3)/0(2)-)

Dz
.2

It remains to discuss the case H = O(2)~. Since O(3)/0(2)~ = 52 we have for L = OQZS
as nontrivial fixed-point subspaces (D3” denotes a D3 subgroup of O®Z; with Dz ¢ Dz)

Fizo)/0(2)-(Zz ) = St Fizos) o)-(D5") = 2pt
Fizo@/op-(D3) =2pt,  Fivo)yo(-(Di) = 2pt.
Fiz(ogms,0(3)/0(2)-) 18 given in Figure 7. For L = O~ the stabilizers decrease. Since
D% ¢ O~ these equilibria have only D C D symmetry and since D;° ¢ O~ these
equilibria are now missing (cf. Figure 7). In the last case L = O no connection is left,
because Z; ¢ O. The parametrizations for these H = O(2)~ cases, which we will need

in the sequel, have been developed earlier (see w and x for the case | = 3).

5.3 The Fixed-Point Subspaces in case L = I, I®Z§ and H =
O(2)8Zs, O(2)~

We begin once more with G/H = O(3)/(0(2)®0Z;) = PP? = SO(3)/0(2) and let L =1.
Following [12], Table 1, we have

Fizog)/o@ens)(Z2) = S'Ulpt,  Fizog)yo@ens)(Ds) = 3pt
Fizog)/(0@)ezs)(Ds) = 1pt, Fizo@)/0(es;)(Ds) = 1pt.

Here we get as in the octahedral case three independent different branches connecting equi-
libria. However, the parametrization is less difficult, since all of them can be found as sub-

VB z - arcsin(ﬂ%ﬁz)

w1T 3 * P _]_-_ * . —
branches of Y;"". We set using ¢, 5, := 3 arccos(*3) and @}, 1, =
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Figure 8: Fiw(n,O(s)/(0(2)®z§))

T(;;,]I,a - {wl(sa)’ @ e (0, w:,][,l)}
T?’:I:b = {wl((P), (P E (90:,][,1) 90:),1,2)}
,r;.;,l[,c = {wi(p),p € (‘P:,I,277r/2}'

For simplicity we combine them to

o7 = {wilp), ¢ € (0,7/2)} = T¥™. (5.15)

T¢™* connects an equilibrium in Fizo(s)/(0(2)ezs)(D2) with one in Fizo(a)/0(2)ezs)(Ds),
i.e. for [ = 2 it connects 22* — (y? + 2?) with

| 1 3 6
i (b G 8) o e (- )

1.3
2710

Similarly taking ! = 3 gives a connection from 2z® — 3z(y® + 2?) to

V10 / V10 / /
w; = —-13- 5—\/5:233——16- 5+\/5z3+§\/5 5+2\/5z2z
‘ 3 3410
+5 V5V5 — 262" — % V10V5 — VBy'z — = —=V5 + V5yz.
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T?”I’b connects an equilibrium in Fizos) /(O(z)@Z;)(Ds) with one in Fizg(s) /(O(z)@zg)(Ds)-
The equilibirium in Fizos);(0(2)ezs)(Ds) for [ =2 is

W, :=él-(l—\/g)w2+%(l+x/g)zz—y2+2mz.

For | = 3 we obtain

a5 = ~Y2 (2 (11— vB) s —2 (114 VE) £+ 12 (4 - VB) o

12 (4+ v5) 22? — 18 (+1 - v/5) 2y® + 18 (1 + v/5) z5?).

At last T;"’I’c connect these equilibria again with Fizo()/(0@)ezs)(D2) : 22 — (2 +4?)
in the case l =2 and 22® — 3 2(z? + y?) in the case I.= 3.

The discussion of L = I®Z; and H = O(2)@Z; gives again only the additional symmetry
v = —1. The remaining cases L = I, I®Z3 and H = O(2)~ can be discussed as in the
tetrahedral case. In any case, connections which occur are already parameterized.

6 Basic Flows for Perturbations of the Reaction
Term
The aim of this section is to calculate the direction of the flow on connections T € Hr,c/m)
in the case G = O(3), H = O(2)®Z5 or H = O(2)~ and for L a supergroup of T. We
firstly perform a case study using perturbations of the reaction term for (1.8) of the form
h: D c L*S?) — L*(S?),
h(u)(2) = p(e) - O(u(z)), z€S* (6.1)

where p € RY and © : R — R is a smooth function. Following Theorem 2.2 on the
connection T := {w(p) | ¢ € (0,¢*)} we have to calculate

FEp) = [ 5le) -5+ Ow(e))dS, € [0,7) (6.2)
where we use the tangent vector %(p) := ﬁw(cp) without normalization (see Remark

2.22). By a ‘basic flow’ we mean a function G : [0,¢*] — R which is achieved in (6.2)
by a specific choice of 5, ® and T. We speak of basic flows, although (6.2) actually just
gives the direction of the flow. Note that by construction G(0) = G(¢*) = 0, because the
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endpoints of every connection are equilibria of (L, G/H) (cf. (1.12)). For simplicity, we
restrict ourselves to the case O(w) = kw* !, k € IN. Here, we use

d

i) = [, 5lo) - p-hle) 1S = 2= [ - wlo)tdS = £-(5.u(e) ). (63

To obtain the parametrizations of the connections T in Section 5, we had to assume that
the kernel kerA(Ao) is an irreducible representation of O(3). This gives by Lemma 5.1
that

kerA(Ao) = SHy, for some I € INo. (6.4)

We will explicitly calculate the basic flows for some p of low degree, as well as for some
small [. Our goal is to understand the basic flows which occur for 5 € RT. According to
Theorem 4.6 it is sufficient to discuss 5 € RO®%: | 73 - RO®E: | 7375 - RO®%: | and 7 - ROO%:
separately. We remark again that 73 - R®®% C R®™ gives all precisely O~ —invariant
polynomials and the polynomials of the form 737-R®®% C R? are precisely O—invariant
" (cf. Theorem 4.7). ‘

Polynomials in 75 - RO®Z; are precisely T@®Z35—invariant. Neveftheless, some of them can
be written as a sum of OGZ;— and IPZ;—invariant polynomials (cf. Theorem 4.8). The
best chance to see tetrahedral flows, which are not influenced by any additional symmetry
is to use p € W*. The basic flows obtained in any of the above cases might then (to some
extend) be used to generate new T—equivariant flows by linear combination. One only
has to ensure to combine flows obtained for the same %k (in order to have homogeneous
perturbations h — see (2.17)). Furthermore the combined flow has to have only simple
- zeros to make Theorem 2.2 applicable.

6.1 Basic Flows for L = O9Z§ Symmetry

For both H = O(2)®Z5 and O(2)~ there are basically two different parametrizations
for three connections of (O@®Zs, O(3)/H) which we have to discuss (cf. Subsection 5.2):
1° and T%°. We simplify notation, setting

Fi(e) = FE3(e), v €, plo =7/ (6.5)

and analogously for T;“O. At next we give a sample calculation for some specific (overview-
able) data; we calculate the flows for k = = 2 and p = ps. We have

" d '
Fi(p) = @(m,wz(w)z)m(sz)-
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Let by := 2 — 3sin®(p) = —1 + 3cos®(p), b, := 2 — 3cos?(p) and b,, := 6sin(p) cos(p).
We obtain from (5.6)

pa-wa(p)® = (2 bz by + biz) e?y*2? — 2b,, 2?2 — 2 b,, 22y%2*
+(1+82,) oyt + (82, +82) at2® + (14 82,) 2t
+ (2 ber by, + biz) (:1:622 + 23226) —2b, (2% + z?y®)
—2b,, (229° +y?2°) + 02 2® 4+ y® + B2, 2B
+2bsp b (272 + 2Py*2 + 2%2°) + 28, b, (2°2° + 2y*2® + 227)
—2b,, (z°y°2 + zy°2 + zy?2°).

Using .
/52 z'y’ 2™dS = /.;2 270 y7l) z7lm)gg (6.6)

for any permutation o of (¢,j,m) and
/2 ziy? 2™dS = 0 for 1,7,m € Ny and 2,7 or m odd , | (6.7)
s

we derive

- 2 _ 2 2 4 4 8
(e waloV)sion = (1+ 8. +82) (2 [ ytatds+ [ 2245)

(20 b =2 (bes + b)) + B2,) (/S 222 74dS + 2 /SzyzzeclS)

All these elementary integrals over S? can be easily calculated (cf. Section 9):

4 4
2.2 _4 - 2,6 -
/SzmyzclS——3151r, ./szy z2°dS 6371'
4 4
4 430 _ 84S — = 1.
szyzds—lOSﬂ-’ /;zzdS gﬂ'
We conclude
88 1 164 ‘
- 2 _ %o _ _ 19 10% 2 2
(,04,602((P) )Lz(sz) - 315” (b" bzz} bm bu + 2b:cz> T 315 ™ (1 +ba:a: +bzz)
= 17?71' - %—W cos’(p) + %W cos*(¢),
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and after differentiating

féij’z)( )= ————ﬂ' cos(i) sin(yp) (1 -2 cosz(ga)).
In the same manner, using (5.11), we calculate straight forward

.7:2(“’2)( ) = —=7 cos(¢) sin(yp) (2 3 cos (go))

In the sequel, we do not give any further details on such calculations, since they all can
conveniently be done by any symbolic calculation program (see Section 9 for more details).
The former example gives us the first basic flow. Using

kij() := i — j - cos®(p) and 7(p) := cos() sin(p)

we define for @ := (v, px) € (0,9}, 0 = 7/4] x [0,7/2]

D% () == ( Lo (pu), gi"fz (0x)) = ((=2) - Fra(pu)r(n), —K2a(x)n(25)) -

Collecting the flows on w and x to

FE(@) = (FED (o) FIED )

we have proved

Theorem 6.1 The flow (direction) for k =1 =2 and p = ps is given by

_ 64 c
fz(th) — __3_5_7r . ;DQBZ, .

Thus, under the assumptions of Theorem 2.2 (with L = O®Z; and H = O(2)®Z3) for
the | = 2 representation on kerA(\o), we find for the semilinear parabolic equation (1.8)
with perturbation (6.1), p = ps and O(w) = 2w, heteroclinic orbits for the perturbed flow.

gf’ %3 is illustrated in the left diagram of Figure 9.

Remark 6.2 This kind of flow occurs actually quite frequently (up to a multiple). It is
also achieved for instance by the following perturbations (5; k): (ps; k = 3,4,5,6), (p6; 2),

(7%:2), (P%:2), (7ape; 2), (7% 2), (5% 2), (7256:2), (745%:2) for I = 2 and (Fi;k = 2,4) for
[=3.
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Figure 9: gf’ezg and G,

There are much more basic ﬂows with O@Z; symmetry, like for instance G, Dot (@) =

(0, cos?(1py)) #0125 () or G5 "% () := ((—8) sin®(pu) cos* (), 3 cos* (o)) * G * (%)
(here the product ‘*’ of two vectors is the product in each component). However, in both
of these cases Theorem 2.2 is not applicable, since the zeros are not simple. Therefore we
do not pursue this any further, although perturbations generating these basic flows may
very well be treated together with the perturbations yielding gf’ Gﬂ;, as long as the latter
are dominant (which happens e.g. for (Pe; & = 3,1 = 2) and (fafe; k = 4,1 = 2)).

In order to see a heteroclinic cycle in the case L = O@S, the flow along T¥® should have
no sign change. In that case at the fixed-point in the middle (¢ = ¢} o = a.rccos(l:))
double zero of F;7/ (Pk) }ad to occur. This is not only a situation which Theorem 2.2 could
not handle, but furthermore, the Dj fixed-point in the middle would be a degenerate
fixed-point for the flow (yielding a non hyperbolic equilibrium), which is not a generic
situation.

6.2 Basic Flows for L = O Symmetry

In the case H = O(2)~ (this corresponds to irreducible representations of kerA(Ao) with
! odd) we have found in Section 5.2 that Fiz(p,0(3)/0(2)-) contains only isolated points.
Theorem 2.2 is not applicable, since there are no connections of (0, 0(3)/0(2)").

In the case H = O(2)®Z3 (i-e. [ even), however, Fiz(0,0(3)/(0(2)ezs)) contains the same
connections as Fw(ﬂ)ez 0() /(O(2)ES))- By Theorem 4.7 the polynomials with precisely
O symmetry are 7275 RO9Z: . These perturbations give just the trivial flow (which means
Theorem 2.2 is again not applicable):

Theorem 6.3 For all irreducible representations of O(3) on kerA(Xo) and with H =
O(2)®ZS (which corresponds to even ) we obtain for all perturbations p € 737 RO®% C
RO just the trivial flow (k € IN):
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F () = (FE (0,), FEP (25)) = (0,0).

Proof. Consider for instance
(B.k) d _ k
Fix (#) = @(P, xi1(9)")L2(s2y, @ €[0,7/2].

xi(¢) is a sum of homogeneous polynomials of degree I. Hence xi(¢)* is a sum of homo-
geneous polynomials of degree k - [ and since [ is even, so is k- [. On the other hand,
P € TaTeRP9%: is a sum of homogeneous polynomials of odd degree, since the generators
of RO®Z%: have only even degree. Altogether, 5 - xi(¢)* is a sum of homogeneous poly-
nomials of odd degree. However, integration of homogeneous polynomials of odd degree
yields 0 (cf. (6.7)) and the proof is established. ' 0

6.3 Basic Flows for L =0~ Symmetry

From Subsectlon 5.2 we know that Fiz(o-,0(3)/(0(2)ems) contains connections Whlch are
parametrized by w and , whereas the relevant connections in Fz:z:lo ,0(3)/0(2)-) are
given by x only. The O~ perturbations of interest are of the form 7RO 25 . Hence, for
H = O(2)®Z; we have for the same reason as in Theorem 6.3:

Theorem 6.4 For all irreducible representations of O(3) on kerA(XAo) and with H =
O(2)®ZS (i.e. | even) any perturbation p € HRP®%: C RO™ gives just the trivial flow
(ke NN):

FPO(3) = (FEH (0.), FEP (24)) = (0,0).

For H = O(2)~ (and ! odd) we just have to consider the connection x. Note that the con-
nection of (0~,0(3)/0O(2)) which connects two D} equilibria is only half parametrized
by x (cf. Figure 7). This, however, does not matter, since the flow on the other part is
obtained by a reflection. Similar to Theorem 6.4 we have for even k the trivial flow:

Theorem 6.5 For all irreducible representations of O(3) on kerA(Xo) and with H =
O(2)~ (i.e. I odd) we get for all perturbations p € FRO®E C RC™ and for even k € IN
just the trivial flow:

FEp)=0, pelo,/2]
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Proof. The proof is done along the lines of the proof of Theorem 6.3. a

Therefore only for odd k and odd I O~ —perturbations might yield situations, where
Theorem 2.2 is applicable. Some of them indeed do.

Theorem 6.6 The flow (direction) in case k = 1,1 = 3 and p = T3 is given by

F(p) = —mmas(ip) cosli) =: 7697 (9), 0 € [0, 7] 62)

Thus, in case the assumptions of Theorem 2.2 (L = O~ and H = O(2)~) are satisfied for
the I = 3 representation on kerA(Xo), we find for the semilinear parabolic equation (1.8)
with perturbation (6.1), p = T3 and ©(w) = 1, heteroclinic orbits. GP™ is shown in Figure

9.

Remark 6.7 Again this kind of flow occurs quite frequently (up to a multiple). It is
achieved for instance by the following perturbations (p;k) and | = 3: (F5;k = 3,5,7),
(T3P 1), (Tape; 1), (Tap3i 1), (Tspa; 1), (Tapape; 1)

Other evaluations of the flow formula give e.g. G (¢) := (cos®(p) - (7 cos?(p) — 8)) -
G2 (@) or G2 (p) := (cos4(go) sinz(tp)) -Gy (p), but Theorem 2.2 does not apply, except,

if flows do appear combined with G2~ and GP~ is dominant (use for instance (aps;3)
and (Tape; 3) for | = 3). ' '

6.4 Basic Flows for L = I®Z5 Symmetry

Here we have to consider (cf.’ Subsection 5.3)

= d  _ s
FER (o) = E;(P, wi(e)¥)ra(say, ¢ €10, 5],

which parametrizes all three important connections at once.

Theorem 6.8 The flow (direction) with k = 3,1l = 2 and p = g is given by

. 1152 . :
FiaPMp) = —555em sinle) cos(p) (5 (1 ~ Bsin’(p) cos”()) ~ VBrral))
1152 1oz

If the usual assumptions of Theorem 2.2 (L = I®ZL§ and H = O(2)®Z;) are satisfied, we
find heteroclinic orbits as in Figure 10.
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Figure 10: G;°% and G, O

In the gl plcture, the D5 equilibria are unstable and the Dj equilibria are stable. Only
the D, equilibria are hyperbohc :

Remark 6.9 Other perturbations (p; k) which yield this flow (up to a multiple) are e.g.:
(T;k = 4,5,6),(3;k = 3,4) for I = 2 and (tg;k = 2,4),(i%;k = 2) for |l = 3 (i.e.
H=0(2)").

-Another basic flow which occurs is

20 () = cos’(p) sin®(p)
(1 = 5 cos?(p) sin®()) + v/5(1 — 6 sin®(p) cos*(p))mrz(p)) ,

but it contains nonsimple zeros. A sum of gf“g and gge”f, where Theorem 2.2 can be
applied, is achieved e.g. by (i%;k = 5,1 = 2). In this case, as for L = O®Z;, heteroclinic
cycles cannot be generic, because both the D3 and the Dj fixed-point would be non
hyperbolic saddles for the flow.

6.5 Basic Flows for L = T@®Z; Symmetry

Sums of O@Z;— and IDZ;—Invariants

The only relevant connection in this case is w = wi(p) for ¢ € [0, 5]. We are firstly going
to consider perturbations # € RT®%: which are sums of polynom1als from R®®% and
RIOZ3 . Due to the special structure of the forced zeros of flows related to OdZ; and
I®Z5 symmetry, we expect that the sum of these two flows contains not only the zeros
which are forced by the group action.
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Theorem 6.10

Fioe) = —15g77 (16 cos’(p) + 6 cos*(y)) cos(p) sin(p)
1152 mems
= ——10017rg1 (‘P)

Hence, under the usual assumptions of Theorem 2.2 (L = TOL; and H = O(2)QLS)
for the | = 2 representation of kerA(Ao), we find heteroclinic orbits for p = 7 and
O(w) = 3w?. G, % is illustrated in Figure 10.

Remark 6.11 The same kind of flow is also achieved by perturbations (p; k) like: (75, k =
47 57 6)7 (716/74; k = 3: 4)) (’FﬁﬁS; k = 3; 4)3 ('Fﬁpz; k = 37 4)1 (7—-6p—4p-6; k = 37 4)7 (fﬁﬁg; k = 37 4)
fO'I" =2 and (7:6; k= 2’ 4)7 (7-:6P_4§ 2); (7_-656; 2)7(7-—652; 2)1 (?ﬁﬁ(zs; 2)7 (7_-654)66; 2) fO’I‘ l=3.

We also observe G, © (@) := (1 — 5 cos?(p) sinz((p)) sin®(p) cos®(p) as an evaluation of

the flow formula, but Theorem 2.2 is here not applicable. A sum of Q;E % and g’f QZE,
where Theorem 2.2 still applies, appears e.g. for (Tsps; k = 5,1 = 2).

Invariants in W%

Following our observations from above, the only.change left to find a heteroclinic cycle
for perturbations of the reaction term is using p € W* (cf. Section 4.1). We obtain for
instance

ok,
FioeD (o) =
294912

= 26930125 sin?(ip) cos®(p) k1z() (1 — 5 cos?(p) sin?(¢2)) (1 — 9 cos(p) sin?(i)).

To this flow not only Theorem 2.2 is not applicable, but furthermore it contains lots of
additional zeros.

6.6 A Summary: Basic Flows for L =T

Since any of the precedingly discussed groups for L have been supergroups of T', we observe
all these flows for T perturbations all well. Moreover, flows related to the same k might
be added (as long as the zeros remain simple) to obtain new kinds of flows. Therefore, so
far we were able to show the existence of many heteroclinic orbits for equations, where the
forced symmetry-breaking is not too strong (¢ > 0 small). However, in all these examples
we found no heteroclinic cycle connecting only the equilibria which were forced by our
symmetry (these are for L = T only the D, fixed-points).
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The reason for this is simply, that even our perturbed equation still possesses Vé.riational |
structure. At this point however, a more convenient way to understand that problem is
to look at (6.3). In case that 5 € RT, necessarily

(B wi(0)*)za(s3) = (B, wi(7/2)*)za(s2)
holds. Therefore %(13, wi(p)*)r2(s2) must vanish somewhere in‘(O, 7/2), i.e. fgﬂ will
i

have an additional zero. We conclude that, in order to see heteroclinic cycles, we have to
look at perturbations of a different structure.

7 Heteroclinic Cycles

‘We now want to consider perturbations of non-variational structure. After all that pre-
liminary work our mission to find heteroclinic cycles will now easily be accomplished.

7.1 Perturbation of the Diffusion Term

In case that p is a T—invariant polynomial on R3, we obtain that

B(e): D Cc L*(R®) — L*R?)

v — div((1+ep)Vu) (7.1)

is T—equivariant. Expanding B(e), we find that the solutions of B (e)u + f(u) = 0 solve
(L+ep)Au+e < Vp,Vu > +f(u) =0,
(where < -, - > is the scalar product in R?) or,
Au+e < Vp,Vu > +(1 — ep) f(u) = o(e).

The perturbation of the reaction term is not very helpful for finding heteroclinic cycles,
as we saw in the last section. We therefore consider u —< Vp, Vu >, or, more general

DCIEY) - LY(RY)
u — ¢-<Vp,Vu>
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with g and p € RT as a T—equivariant mapping. This kind of perturbation is achieved
(in part) by multiplying (7.1) with (1 + eg). Obviously, any function @ € L?(S2) might
be extended (at least to an annulus) by u(z,y,z) := @(z/r,y/r,z/r), r = |(z,y,2)].
Therefore, the restriction

h:DcCI}SY) — LY

2
4 — g-<Vp,Vu> (7 ),

with § and p € RT is a T—equivariant mapping (of L?(5?)) as well. In the sequel we
consider such mappings as perturbations for (1.1) (cf. also (1.8)). For convenience, we
note that the gradient of a restriction % := wujs2 of a smooth L?(IR?) function can be
obtained by projecting the gradient of u to the tangent space of the sphere

ofi)(3) ()3 ) 3+

This is the kind of gradienf, we have to plug into h, because our functions are usually
obtained from restrictions of functions defined on R®. On the connection T¥'T (cf. (5.8))
we find for the flow (direction) (2.22)

Fieale)i= [, zoonle) - hon())dS, o € 0,772,

considered in Theorem 2.2:
Theorem 7.1 Using § = 75 and p = p, for h defined in (7.2) the flow (direction) for the

[ = 2 representation is

1024
~ 5005

Frox () wsin(p) cos(g), @ € [0,7/2].

Thus, under the assumptions of Theorem 2.2 (L = T and H = O(2)QZS) for the | =
2 representation of kerA(Xo), we find for the semilinear parabolic equation (1.8) with
perturbation (7.2), § = T and p = ps, a heteroclinic cycle for the perturbed flow. This
basic flow GX(p) := sin(p) cos(y) is illustrated in the nezt figure.

Proof. Simple computation as already used in Section 6 or use Maple. For details confer
Section 9. d

Some remarks are in order.
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Figure 11: g;‘f

Remark 7.2 The flow GT is of a quite stable structure (against T— equivariant perturba-
tions, i.e. perturbations of the form eh(u)+eh(u) with any other T — equivariant mapping
h, yields, for € > 0 small enough, again the heteroclinic cycle.

Remark 7.3 Other pairs of polynomials (§; 5), which give (up to a multiple) the GF flow
are e.g. (ps;7s), (PeiTe), (ToiPe), (To;P3) (PhiTe)s (Pas PaTe), (PaTe: Pa), (PiPe; Wis), and
(wF; p2ps) for I = 2. Flows which still give heteroclinic cycles, but which are not ezactly
the G flow are achieved for instance by (Ts; pa), (7e; Ps), and (7s; p3) in case [ = 3 (i.e.
H=0(2)"). ' ‘

Remark 7.4 Despile some computational effort and using the knowledge of the space
W™, we have not been able to find heteroclinic cycles for h(@) = p™ - VoV - &* with
m,k € No. However, we still find all heteroclinic orbits of Section 6.

7.2 Perturbations using T—Equivariant Polynomial Mappings

An obvious generalization of the perturbation (7.2) is

h:D C L*S* — L*S? (7.3)

i = <§Va>-a* '
with some € € MT. Since € : S — R?® is T—equivariant, it follows easily that h
is T—equivariant as well. Section 4.2 was devoted to the question which elements are

precisely T—equivariant. These are the elements in WM (cf.Theorem 4.19), two of which

are w3t and WM.

Using & := @3* and k = 0 for h defined in (7.3) the flow for the [ = 2 representation is

96 . T
f.if;,,w (p) = 3" cos(p) sini(p), ¢ €10, —2-]
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This is again a G flow. Another tetrahedral flow can be observed with & := @M and
k = 2 for h defined in (7.3). The flow for the ! = 2 representation is

41472 13824

‘ . ‘ 13824
h _ _ 30\ o
j:T;;,'x‘ (p) = e 05E " cos(yp) sin(e) =005 " % () sin(p) +

5005

 cos® () sin(p). (7.4)

This gives a combination of G¥ with the basic flow G (¢) := sin®(¢) cos®(p). Although
Theorem 2.2 is not directly applicable to GJ', it is applicable to the flow in (7.4) giving
qualitatively again the picture in Figure 11.

Remark 7.5 Other pairs (I; k), which give together with @ the GT flow (up to multiples)
are e.g. (3;0), (40), (2;1), (2;2), (23), and (4;1). The G flow combined with GT as
in (7.4) can also be observed for wa' with the following pairs (I;k): (2;3), (2;4), (3;2),
(4;0), (4;1), and (4;2). Of course these lists are by-no means complete.

8 Applications to Reaction Diffusion Systems

‘Here we want to address the question of applying the previous results to systems. As an
example we discuss the equations of the brusselator on the 2-sphere 5?2 of radius p. We
consider these equations to be a test case for more interesting equations. Qur equations
have the following form

%—[tj- = DIAU+U?V — (B+1)U + A

(8.1)
v
5 = D:AV-UV 4 BU,

where D;, D, are positive and A, B € R (compare Golubitsky and Schaeffer [4], Chapter
VII §5). We find easily a family of spatially constant equilibria, namely

U=Aand V= B/A. (8.2)

Usually one considers B to be a control parameter, while D,, D,, A and p are fixed.
The stability analysis for this family of equilibria is the same as the stability analysis for
the brusselator discussed in [4]. Therefore we just present the results. If one considers
spatially constant perturbations only, one has to consider the system of ODE’s

%g— = UW—-(B+1)U+A
)% \
5 = “U'V+BU
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The family discussed before is stable if B < 1 + A2. At B = 1 + A? we have a Hopf
bifurcation and a family of spatially constant periodic solutions occurs. If we are interested
in stable non-spatially constant solutions we have to consider the full system of PDE’s.
The system under consideration is obviously O(3)-equivariant. If we look for points where
the family (8.2) looses the stability it is natural to ask which representation of O(3) occurs
on the eigenspace corresponding to purely imaginary eigenvalues.

By changing the parameters one can also find other interesting bifurcations. In fact we
show

Theorem 8.1 For each £ € IN there exist diffusion constants Dy, D, and parameters A, p
and a critical number By such that for B < By the trivial solution (8.2) is linearly stable,
and unstable for B > By;. Moreover, for B = By the kernel of the linearization at the
trivial solution is the absolutely irreducible representation of O(3) of dimension 2£ + 1.

Proof. The proof of this theorem proceeds along the lines of the proof in [4]. Write
U=A+u, V=24y, then the system (8.1) takes the form

% = DiAu+ (B —1)u+ A% + f(u,v)
(8.3)
_35% = DyAv — Bu — Azfu - f(u,v),
where f is given by f(u,v) = —u + 2Auv +u?v. Let Y2, —£,...,L be the spherical

harmonics of order £. The Laplace operator applied to Y,fl considered on the sphere of
radius p gives

avz =y (8.4)
p
Therefore the linearization of (8.3) leads to
‘ % = DiAu+ (B —-1)u+ A%
(8.5)
Ov ”
il Dy;Av — Bu — A,

and the eigenfunctions of this system have the form

Y:ﬁ(x). | (8.6)

For Y to be an eigenvector the vector ( Zo ) has to satisfy the condition
0

(o & ) (2)a(z) e
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where p(£) = l—%ﬂ‘. Looking for steady state bifurcations means that we set

det _p 4Dy — A?

= 0. (8.8)
In order to prove the theorem we have to show that for given ly € IN the parameters
A, Dy, D, and p can be arranged such that there exists a number By, < 1 + A? such

that for B < By, the given branch (8.2) is stable, for B = By, there exists some solution
to (8.8) with u(£) = u(4) and for all other £ the determinant is positive. Moreover the
kernel of (8.7) is one-dimensional. It is just a matter of some computations to verify these
claims. « ' u
Choosing the parameters as Dy =1, Dy =4, A=3, p =2, and B = B, = T7/8 we get
the 5—dimensional irreducible representation of O(3) as the one through which the trivial
solution looses its stability.

‘We consider symmetry-breaking perturbations of the following type

(BB yua) o)

with hy(B,u, Vu,z) =< &, Vu > and hy(B,u,Vu,z) =< &, Vu >, where €5 € M.
In order to apply the methods developed in this paper we calculate the arcs T within
function space L*(S?). In order to get the drift along these arcs we have to compute the
scalar product between the tangent vectors and the perturbation terms, as we have seen
in Section 2 and 7. The computations are the same as in the previous cases, therefore we
just state the results. '

Theorem 8.2 There ezist perturbations of the form ( 89) of degree 8, and an g > 0,
such that for each perturbation with € < €¢ there ezist heteroclinic cycles, as described
before.

9 Appendix: Computation of Flows Using Maple

To calculate the flow formula (2.22) we have to find a way to integrate efficiently over
the sphere S2. We will outline, how the symbolic computation program Maple (actually
we use Maple V, Release 2) can be used to integrate polynomials p = p(z,y, z) over S
Writing

p(z,9,2) = Y aijme'y’z™ and 9(i,j,m) = /;z 2y 2™dS,

i,j,m
we find
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/sz p(z,y,2)dS = Z ai ;m¥(3, 7, m).

1,7,

Therefore the knowledge of the numbers #(z, j,m) is crucial for our problem. As already
remarked in (6.6) and (6.7), we have for any permutation o of (3, ,m)

¥(i,5,m) = 19(0‘(2'),0'(5), o(m)), (9.1)

and
¥(z,7,m) = 0 for 1, j,m € Ny and %, or m odd.
Hence only ¥z, j, m) for ¢,j and m even is of interest. The recursion formula

m+1
i+7+m+3

¥i,j,m+2) = ¥(i,7,m), 1,j,m e Ny

is not hard to see. Using (9.1) we get similar expressions for increasing 7 and j, whence all
needed values of ¥ can be calculated easily using ¥#(0,0,0) = vol(S?) = 4x. Provided for
even ¢ < j < m the values of integ([¢, 7, m]) := ¥(3, j, m) are known, the following maple
procedure will calculate fg, p dS.

polyint:= proc(p)
local q,value,dx,dy,dz, set,s,t;
# the values for integ(i,j,m) must be known
value:= 0;
simplify(p); expand(");
collect(",[x,y,z],distributed); q:=combine(");
while (q<>0)
do
" s:=lcoeff(q,[x,y,2],t?); q-s*t; # extracts one coefficient x"i y~j z"m of q
q:=simplify(");

if s¥*t=0 then q:= combine("); # usually not necessary
else
dx:= degree(t,x);
if type(dx,even) then # only x"i y°j 2°m with i,j,m even needed

dy:= degree(t,y);
if type(dy,even) then
dz:= degree(t,z);
if type(dz,even) then
set := [dx,dy,dz]; # this coefficient yields a nontrivial integral
set:=sort(set); .
value:= value+ s* integ(set);
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fi: # {dz}
fi: # {dy}
fi: # {dx}
fi: # {else}
od:
value:=simplify(value);
RETURN(value);
end;

To obtain the flows of Section 6 e.g., we use:

flow:=proc(p,k) #Input p=polynomial, k=integer
local wdiff, prod; #w=w_1(phi) must be known
wdiff:=diff(w,phi);
prod := wdiff#p*w k;
subs(cos(phi)=ccc,"); subs(sin(phi)=sss,");
prod:="; value:= polyint(prod);
subs(ccec=cos(phi),"); subs(sss=sin(phi),");
value:=simplify("); RETURN(value);

end;

' Here a parametrization of a connection, for instance w = wi(p) (see Section 5), must be
known. The sub- and resubstitution of sin(¢) and cos(y) is not really necessary, but it
speeds things up enormously.
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