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Abstract. We consider solutions of the semilinear parabolic equation (1.1) 
on the 2-Sphere. Assuming (1.1) has an axisymmetric equilibrium ua, the 
group orbit of Ua gives a whole (invariant) manifold M of equilibria for (1.1). 
Under generic conditions we have that, after perturbing (1.1) by a (small) 
L C 0(3)-equivariant perturbation, M persists as an invariant manifold M• 
slightly changed. However, the flow on M is in general no longer trivial. 
Indeed, we find heteroclinic orbits on M and, in case L = T (the tetrahedral 
subgroup of 0(3) ), even heteroclinic cycles. 

1 Introduction: A M'otivating Example 

Recently, L-equivariant flows on homogeneous spaces G/ H, where G is a compact Lie 
group and L, H are subgroups, have been of high interest, since it seemed possible to derive 
by this group theoretical approach information on heteroclinic orbits, even in PDE's. A 
seminal presentation of these ideas in the case G = S0(3) can be found in Lauterbach 
and Roberts .[12]. 
In order to motivate our group theoretical. discussions of the following sections, we consider 
solutions u = u(t, x), x E S 2 C JR.3 , t 2::. 0 of the semilinear parab~lic equation on the 2-
sphere 

Ut = A(A)u + f(u) =: g(u, A). (1.1) 

Here f : JR. --+ JR. is a smooth nonlinearity with f (0) = 0 and f1(0) = 0. A(A) : D C 
L2 (S2 )--+ L2 (S2 ) is a linear, symmetric operator (depending continuously on a parameter 
A E JR.) with -A(A) sectorial. Thus A(A) generates an analytic semigroup (cf. [6], Chapter 
3). Moreover, we assume that A(A) is 0(3)-equivariant, and therefore 

g(tu, A) = 1g(u, A) for all i E 0(3), (1.2) 

where the standard action 1u(x) := u('y-1x) of 0(3) on L2 (S2 ) is used. So one may think 
of A(A) = ~ - Ald : H2(S2 ) --+ L2(S2), where~ is the Laplace-Beltrami operator, but 
also equations like Cahn-Hilliard equations ( cf. [14]) on the 2-Sphere fit into our concept. 
Equation ( 1.1) generates a G = 0 ( 3 )-equivariant semi-dynamical system 

(1.3) 

Obviously, /(0) = 0 implies that we have the trivial solution u = 0 for all A E JR. in 
(1.1), since g(O, A) = 0. If we assume that A(Ao) has a nontrivial kernel, we obtain under 
additional conditions (e.g. a transversality condition cf. [5], Theorem 3.5; an existence 
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result in case the domain of Equation ( 1.1) is a ball instead of the sphere S 2 can be found 
in [10]) that the equation 

g(u,.-\) = 0 (1.4) 

has a branch of nontrivial solutions ( ua, Aa) near (0, .A0 ) (for a in a neighborhood of zero) 
which all have the same isotropy subgroup H = :Eua = {1 E Glfua = ua}· Without loss 
of generality, we write 

Ua =au*+ o(a) for a near 0, (1.5) 

with u* E kerA(.Ao) and :Eu• =H. The group orbit of Ua0 for ao fixed 

(1.6) 

gives a whole branch of solutions of (1.4), and therefore of equilibria of (1.1). Since the 
flow <P>.ao of (1.3) on O(ua0 ) is trivial, CJ(ua0 ) is an invariant set for <P>.ao, and the semi-
dynamical system (1.3) may be restricted to O(ua0 ). Due to the compactness of O(ua0 ) 

it gives a dynan:iical system · · 

(1. 7) 

This simple and rather boring situation changes dramatically, once we add a (small) 
symmetry-breaking term in (1.1). Consider 

Ut = A(.X)u + f(u) + eh(u) =: 9t:(u, .X), (1.8) 

where e > 0 is a small parameter and h: D C L2 (S2)-+ L2(S2 ) is a smooth L-equivariant 
mapping. In the case that CJ( Ua0 ) is a normally hyperbolic manifold with respect to the 
flow <P>.ao, this invariant manifold persists, slightly changed, for the perturbed equation 
(1.8) with e > 0 sufficiently small ( cf. Proposition 1.1 in [12] and [7] for the concept of 
a normally hyperbolic manifold). That means there exists a manifold Mt:,ao C L2 (S2 ), 

which is L-equivariantly diffeomorphic to O(ua0 ) and therefore to G/ H, such that the 
perturbed L-equivariant flow ~t:,>.ao, generated by (1.8) with (e, Aa0 ), is invariant on 
Mt:,ao: 

(1.9) 

The hypotheses to guarantee that the manifold is normally hyperbolic will generically 
be satisfied ( cf. [3], Theorem A.20). Although the unperturbed flow <P>.ao was trivial on 
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CJ ( Ua0 ), this is in general no longer the case for ~e,.Aao on Me,ao. For that reason we will 
study L-equivariant flows '11 on G/ H 

'11 : 1R x G/ H--+ G/ H, (1.10) 

with L and H subgroups of a compact Lie group G ( cf. e.g. [11] for more information on 
that topic). L-equivariance is still a very severe restriction, since subsets of G/ H, which 
are fixed under subgroups L' of L 

FixG/H(L') := {y E G/ H I ly = Y· Vl EL'} C G/ H (1.11) 

are necessarily invariant under the flow '11 ( cf. Proposition 1.6 in [12]). For instance, if 
G = S0(3) and H = 0(2) we obtain G/ H rv lP2 , the two dimensional real projective 
space. L = 'I'-equivariant flows on lP2 are shown in the following figure ( cf. [12], Section 
2.2): 

Figure 1: Fig. 3 from Lauterbach and Roberts 
@Academic Press Inc. 

Here the nontrivial subgroups of 'I' are three copies of L' = 7L2 , four copies of L' = Z3 and 
one copy of L' = D2 • The last one is the disjoint union of all Z 2 subgroups. It turns out 
that Fixso(a)/0(2)(Z2) rv S1Ulpt, Fixso(a)/0(2)(Za) rv lpt and Fixso(a)/0(2)(D2) ~ 3pt 
(we use 'pt' as abbreviation for isolated points). As it is indicated, the isolated points in 
Fixso(a)/0(2)(Z2) are fixed by D2. 
The isolated points in FixG/H(L') (for some subgroup L' in L) play a special role: By con-
tinuity of the flow, these isolated sets also have to be invariant sets for every L-equivariant 
flow. That means all these points give equilibria for L-equivariant flows. We call these 
points equilibria of ( L, G / H) and write: 

E(L,G/H) := {y E G/ H I y is isolated in its stratum }, 
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i.e. for y E C(L,G/H) exists some subgroup L' C L such that y is an isolated component 
of Fixa;H(L'). Also of great interest are the points connecting two such equilibria of the 
group. We call a set T C Fixa;H(L') C G/ H (for some subgroup L' C L) a connection 
of (L, G/ H), if Fixa;H(L') contains some isolated subset diffeomorphic to 8 1 and T has 
the form 

T = {w(cp) I cp E (O,cp*)} C 81 C Fixa;H(L'), (1.12) 

where w : [O, cp*] -t 8 1 is an injective smooth mapping with w(O), w( cp*) E C(L,G/H) but 
w( cp) et. C(L,G/H) for all cp E (0, cp*). Let 

1-l(L,G/H) := {T I Tisa connection of (L, G/ H)}. (1.13) 

Of course connections T of ~he group need not be heteroclinic orbits of an L-equivariant 
flow, but since T is an invariant set for all these flows, there is a good change to find a 
flow having a heteroclinic orbit on T. 
In Figure 1 the equilibria of (T, S0(3)/0(2)) are shown in bold face and the connections 
of (T, S0(3)/0(2)) connect them .. 
The aim of this paper is to prove results about the flow on these connections of ( L, G / H). 
It will turn out that, indeed there is a restriction for the flow on these parts, if the 
symmetry-breaking in (1.8) is sufficiently small. To that end, in Section 2 we derive a for-
mula which enables us to calculate flows on connections of (L, G/ H) for small symmetry-
breaking. The. rest of the paper is dedicated to applications of this flow formula in the 
case G = 0(3). 
In Section 3 we find the generators of the L-invariant polynomials on 8 2 for subgroups 
L = T, <D, T E9 7l2, <0-, <D E9 7l2, ][, and ][ E9 7L2 of 0(3). Here we denote by 7l2 the 
subgroup 7l2 :=<-11 >= {±11} of 0(3). The invariant polynomials will be used to 
construct equivariant mappings. Furthermore, the generators of the equivariant mappings 
are studied as well. 

For the subsequent discussion it will be of high interest, whether or not there are polyno-
mials having precisely T symmetry (in the sense that they cannot be written as a sum of 
polynomials being more symmetric). We resolve this question in Section 4.1. Moreover, 
we find for each nonplanar subgroup of 0(3) the ring of invariant polynomials and the 
module of equivariant polynomial mappings in terms of generators and Poincar6-series. 
In Theorem 4.8 and 4.11 we characterize a complement of <DE97l2- and 1lE97l2-invariant 
polynomials and show that its dimension is given by a Poincar6-series as well. Similar 
studies are also given for the equivariants. 

Afterwards, in Section 5, we investigate the sets 
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Fix(L,G/H) := LJ FixG/H(L') (1.14) 
L•:f.L'CL 

in the cases H = 0(2)EBZ~ and H = 0(2t. Here we denote by L* = {'y E L h'Y = 
y for ally E G/ H} the stabilizer of this action. Moreover, we look for parametrizations 
of the connections of ( L, G / H). 
In Section 6 we introduce a set of basically possible :flows (called 'basic :flows'), we have 
found by using the :flow formula for different symmetry-breaking terms of the form h : 
L2 (S2)--+ L2(S2

), u t-+ p·0(u), where e : lR--+ lR is a smooth function and p E C(S2) is a 
polynomial on 8 2 which is invariant under L for some finite supergroup L of T. Using this 
kind of perturbations, we find lots of heteroclinic orbits for the perturbed flow. However, 
since this perturbed problem is still of variational structure, it admits no heteroclinic 
cycle. 

We will overcome this lack in Section 7, when we consider T-equivariant perturbations 
h : D C L2 (S2 ) --+ L2 (S2), u t-+ e\i'u, with some T-equivariant polynomial mapping e. 
Here and, moreover, in some special cases e = q · \i'p, with both q and p T-invariant, we 
establish heteroclinic cycles. The special cases are of particular interest becaµse they can 
be viewed as a perturbation of the diffusion term. 

In Section 8, we give some hints how these ideas· work out for systems and finally, in the 
appendix we give some more details on the calculation program which derived most of 
these :flows. 

2 The Flow Formula 

The aim of this section is to find more information about L-equivariant :flows restricted 
to connections of (L, G/ H). However, we do not want to discuss that topic in general, 
as we did it in [11]. Here we are particularly interested in the flow on Me,a for lal =/= 0 
and e > 0 small and fixed. Me,a as well as 0( ua) and 0( u*) are all diffeomorphic to 
G/ H. Our program will therefore be to approximate the manifold Me,a by O(u*) and, 
moreover, to find information about the :flow on the connections of (L, Me,a) in terms of 
quantities which can be calculated on O(u*). 

As before, we denote by (ua, Aa), lal small, the branch of equilibria of (1.1). We assume 
that at (u, .A)= (0, .A0 ) the center manifold theorem is applicable (cf. [6], 6.3, for growth 
conditions on the nonlinearity and [2] for the handling of the parameter .A). This gives 

Ua = au* + u( au*, Aa), (2.1) 

with a smooth function u: kerA(.A0 ) x lR--+ kerA(.Ao)J. C L2 (S2 ), which has the properties 
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(2.2) 
In order to calculate the flow on connections of (L, Mt:,a.) in a first approximation, it is 
necessary to have a parametrization of these connections. However, the manifold Mt:,a. 
is not so easy to handle and therefore we look for better realizations of G /H. For this 
reason let 

(2.3) 
Since A(Ao) is assumed to be G-equivariant, it follows that Vis G-invariant and hence 
the action of G on L2 ( S2 ) restricts to v' i.e. we have G x v -+ v' (1'' v) I-+ jV. 

In (1.5) we assumed that both u* E kerA(Ao) and Ua have isotropy subgroup H. Therefore 
a realization of G / H which is (after rescaling) a good approximation of the group orbits 
0( ua.), for lal =/:- 0 small, is given by 

G/ H r-.J O(u*) = {1u*l1 E G} c kerA(Ao) c L2 (S2
). (2.4) 

We .thus have three different realizations·of G/ H, namely Mt:,a., V(~a.), and V(u*) which 
are all L-equivariantly diffeomorphic. 

Assume T E 1-l(L,G/H) is a connection of (L, G/ H) connecting two equilibria ei, e2 E 
[(L,G/H)· In particular T is contained in some component of the fixed-point subspace 
FixGJH(L'), L' C L C G, diffeomorphic to S1 C Gj H. Considering again O(u*) as a 
realization of G/ H we can parameterize T C G/ H as a part of O(u*) explicitly: There 
exists a smooth function 1* : R/27r-+ G such that 

w: R/27r-+ S1 c V(u*) c L2 (S2
), w(cp) := 1*(cp)u* (2.5) 

is a nondegenerate parametrization of this S1 of the above fixed-point subspace, with 

T = { w( <p) l<p E (0, <p*)}, 0 < <p* :::; 27r, . w(O) = ei and w( <p*) = e2. (2.6) 

Corresponding tow, the quantity r: R/27r-+ R 

r(cp) := fs, 'I(cp) · h(w(cp))dS, with 'I(cp) := ll~:~:~ll E kerA(Ao) C L2 (S2
) (2.7) 

which is the tangent vector on this S1 , will play a crucial role in the following. We 
introduce similar quantities on 0( ua.). Letting 
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(2.8) 

we find that 

{wa(cp), cp E 1R./27r} ~ S1 C CJ(ua) (2.9) 

is a parametrization of the S1 part in the fixed-point subspace Fizo('u.a) ( L'), and 

Ya := { Wa( <p) l'P E (0, cp*)} (2.10) 

is a connection of ( L, CJ( ua)). Similarly, 

( ) { ( ) h( ( ))dS · h ( ) ~wa(cp) 2(S2) Ta 'P := }52 'Ia cp . Wa cp ' wit 'Ia cp .== II d~wa('P)ll c L (2.11) 

is defined. Once we add a symmetry-breaking perturbation term as in (1.8), we know 
already that tl,ie invariant m~fold CJ(ua) of (1.1) gets slightly perturbed to M~,a, an 
invariant manifold of (1.8), which is L-~quivariantly diffeomorphic to CJ(ua). Let . 

Pe,a : CJ(ua) --+ Me,a (2.12) 

denote this L-equivariant diffeomorphism with Po,a =Id. Now 

We,a(cp) := Pe,a(wa(cp)) (2.13) 

gives a parametrization of 

(2.14) 

which is a connection of (L, Me,a) due to the L-equivariance of Pe,a· In particular it is 
a one-dimensional invariant manifold of the flow generated by (1.8). Both We,a(O) and 
We,a( cp*) are equilibria of ( L, Me,a), and therefore also equilibria for the flow in (1.8) ( cf. 
[12], Proposition 1.6). 
However, the flow on '~fe,a is by no means clear, although the flow for the unperturbed 
problem on Ya was trivial. Indeed, it will turn out that we will obtain nontrivial flows in 
particular cases. 
For the following development we use that the direction of the flow on a one-dimensional 
invariant manifold can be obtained by the inner product of the tangent vector and the 
vector field. To be precise: 
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Remark 2.1 Let M C L2(S2) be a one-dimensional invariant manifold for the flow 
~: lR x L2 (S2 ) -t L2(S2 ). Then w EM is an equilibrium for the flow if and only if 

f '!(w) · dd (~t(w))it=O dS == 0, }52 t 
(2.15) 

where '!(w) E L2 (S2 ) denotes a tangent vector on M at the point w. 
Hence in order to determine whether We,a. ( c.p) E T e,a. is an equilibrium, we have to calculate 

() f () d(-e.:\ ( ( ))) . () -;f;we,a.('P) 2(S2) 
re,a. 'P :== }52 '!e,cx 'P .dt ~t' a we,a. 'P lt=odS, w1th'!e,cx 'P :== lld~we,a.('P)ll c L ' 

(2.16) 
where again ~e,.:\a denotes the flow generated by (1.8). The following theorem due to 
Lauterbach and Roberts ( cf. [13]) decides for sufficiently small lal -/= 0 and e > 0 the sign 
of re,a. ( c.p). Therefore the direction of the perturbed flow on the connections T e,cx can be 
calculated. In particular heteroclinic orbits on T e,a can be established. 
Theorem 2.2. Consider two closed subgroups L and H of G == S0(3) or 0(3) and the 
G- equivariant semi-dynamical system generated by ( 1.1) near a bifurcation point ( 0, Ao) E 
L2 (S2 ) x lR of {1.1,). We assume that kerA(.Ao) c L2 (S2 ) is nontrivial and u* E kerA(.Ao) 
has isotropy subgroup H. Moreover, a branch of equilibria with isotropy subgroup H as in 
{2.1} is assumed to exist. Let the connections TC O(u*) and Ya. C O(ua) of (L, O(u*)) 
and (L, O(ua.)) be given (see {2.6} and (2.10}}. 
We perturb the flow of {1.1} by an L-equivariant smooth mapping h : D C L2 (S2 ) -t 
L 2 (S2 ) which is homogeneous of orderµ, i.e. 

h(au) == aµh(u), for all a> 0 and u ED. (2.17) 

Then for sufficiently small I a I -/= 0 and e > 0 there is a one-dimensional invariant manifold 
Te,a C Me,a C L2 (S2) for the perturbed L-equivariant semi-dynamical system {1.8} and 
the direction of the flow atwe,a.('P) is determined byre,a.(cp) {see (2.13} and {2.16}}. The 
sign ofre,a.('P) is given byr(c.p) (see {2.7)) in the following sense: 

1. \:/8 > 0 3ao > 0, such that \:/a E [-a0 , a 0]\{0} 3e0 == e0 (a) > 0 with 

lr(c.p)I ~ 8, cp E lR/27r:::} sign(re,a(c.p)) == sign(r(cp)), \:le E (0, eo]. (2.18) 

2. Let 'P1 E lR/27r with r( cpi) == 0 and r'( c.p1) -/= 0 be given. Then 3a1 > 0 and \:/a E 
[-a1,a1]\{0} 3e1 == e1(a) > 0 such that for all e E (O,e1] there exists a unique zero of 
re,a. near c.p1, called 'Pe,a.: 

(2.19) 
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Proof. By the above discussion the only thing left to show is that fe:,o: can be approxi-
mated by Tin the stated sense. Let w.l.o.g. a > 0. Essentially, one has to prove that in 
the topology of C1(1R/27r) 

(2.20) 

and for a > 0 fixed 

1 
-re: o: -+ ro: as e ' 0. e , ){ (2.21) 

For the proof of (2.20) it is essential to have that his homogeneous. (2.21) is proved by 
expanding (2.13): 

We:,o:(cp) = wa(cp) + eza(cp) + o(e), as e ~ 0. 

It follows 

as e ~ 0. The above integral, however is zero, because of the symmetry of A(..\) and since 
'Io:(cp) E ker(Dug(wo:(cp), Ao:)). The details will be given in [13]. D 
It is remarkable, that the flow direction depends on u* E kerA(.A0 ) and therefore on the 
representation of the group action of G on kerA( .,\0 ) (see also Section 6 for more details). 
Remark 2.3 In case r = r(cp), cp E 1R/27r, is a function having only simple zeros, the 
same is true for re:,o: for lal =J. 0 and e > 0 sufficiently small. 
Remark 2.4 In the sequel we will calculate instead of r( cp) only the 'flow formula' 

F~(cp) := f 1=(cp) · h(w(cp))dS, cp E 1R/27r, Js2 
with 1=(cp) := frpw(cp), since sign and simple zeros of F~ and r are the same. 

(2.22) 

Remark 2.5 In case we use L-equivariant perturbations h : D C L2(S2 ) -+ L 2 (S2 ) of 
the form 

h(u) == h(u) + o(llull'-'+l), as u-+ 0, 

with h as in (2.17}, we find that Theorem 2.2 is applicable to h, too. The flow' direction 
for h is the same as the one for h. 
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3 The Invariants and Equivariants of the Exception-
al Subgroups of 0(3) 

As mentioned before, we want to restrict ourselves to symmetry-breaking terms which 
have at least T symmetry. Actually we discuss the cases L = T, TE97l~, <D, <0-, <DE97l~, lI 
and lIE97l~ in detail. Note again that 7l~ =< -11 >C 0(3). Some elementary facts on these 
groups might be found for instance in [l]. In order to understand the effects for a large 
number of perturbations, we first classify possible perturbation terms. This classification 
is based on invariant theory. An important tool is the so called Poincare-series (see 
(15, 16]). It is defined as 

00 

P~(t) = L(dimc(R~)). td (3.1) 
d=O 

where R~ is the space of L-invariant homogeneous polynomials of degree d. A well known 
result ( cf. e.g. (16] Proposition 4.1.3) gives a method how to calculate the Poincare-series 
for a finite group L: 

P~(t) = l~I L det(ll-:- t · 'Y )-1
, 

-yEL 
(3.2) 

In case of a compact Lie group, the sum has to be replaced by the Haar integral. We refer 
to (3.1) as the Poincare-series for the algebra of invariant polynomials. 
A similar formula is true for the module of equivariant mappings. Let ML denote the 
module of L-equivariant polynomial mappings, we define the Poincare-series for this 
module as· 

00 

Ptt(t) = L(dimc(M~)) · td, (3.3) 
d=O 

where M~ denotes the subspace of those mappings having degree d. This series can be 
represented as 

pL (t) _ _!__ '°' X(i) 
M - ILi ~ det(ll - h)° (3.4) 

We would like to point out, that although these formulas are proved in the complex case 
they also apply to the real case as well. 
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3.1 Generators for the Algebra of Invariant Polynomials 

In this section we look at the natural representations of the exceptional subgroups of 
0(3) on lR3 and determine the generators of the algebra of invariant functions and the 
module of equivariant polynomial mappings, respectively. Of course the generating set 
is not unique, we just present one choice of generators, which prove to be useful for the 
application we have in mind. 

3.1.1 The Invariants for the Action of T 

The Poincare-Series. The Poincare-series for the three dimensional representation of 
T is given by 

1 ( 1 3 8 ) 
- 12 (1 - t)3 + (1 - t)(l + t)2 + (1 - t)(l + t + t2) 

1- t 2 + t4 

(1 - t2) 2(1 - t3 ) 

1 + t6 

(1 - t2)(l - t 3)(1 - t4). 

It is well known that the ring of invariants is Cohen-Macauley [17). It can be written as a 
free module over the primary invariants. Since the representation of the Poincare-series 
in terms of rational functions is not unique, the validity of the following representation 
is shown by giving a set of algebraically independent generators with the respective de-
grees. This remark applies to all computations of Poincare-series in this paper. The 
interpretation is as follows: we expect four generators of the ring of invariant polynomi-
als: I'f, I'f, J'f, I'f, where the first three form an algebraically independent set. The 
last one is not in the ring generated by I'f, I'f, I'f, but it satisfies an algebraic relation, 
i.e. there exists a polynomial a: lR4 --7 lR with a(I'f, I'f, I'f, I'f) = 0 (see (3.6)). 

The Invariant Polynomials. The group action on lR3 is as follows: the elements of 
order two send two variables to their respective negatives, one element of order three gives 
cyclic permutation of the variables x, y, z. For the sequel we shall fix our attention on this 
T subgroup of 0(3). The function tf (x, y, z) = x2 + y 2 + z2 is certainly invariant. Since 
there is (up to multiplication with constants) only one quadratic invariant, tf has the form 
given. The cubic function xyz is invariant, again by uniqueness I'f (x, y, z) = xyz. Since 
x4 +y4 +z4 is invariant and not a multiple of (Il) 2 , we may choose I'f (x, y, z) = x4 +y4 +z4 • 

The polynomial x 6 + y6 + z6 is obviously invariant under the action. However, it is not 
linearly independent from the functions generated by Il, tf and tf since 

x 6 + y6 + z6 = _!(1!)3 +~I! ff+ 3(1:)2 · 2 2 
(3.5) 
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The invariant I'f ( x, y, z) is given by 

This polynomial is invariant with respect of any sign change in any of the variables. The 
rotation which maps x -t y, y -t z and z -t x transforms this function to 

which equals tf. In order to simplify notation we define 

( ) 2 2+ 2 ( )· 4+ 4+ 4 ( )· 6+ 6+ 6 p2 x, y, z : = x + y z , p4 x, y, z . = x y z , P6 x, y, z .= x y z , 
7a(x, y, z) := xyz and 76(x, y, z) := (x2 - y 2)(x2 - z2 )(y2 

- z2). 

Hence a set of generators of the T-invariant polynomials is given by p2, 73, p4 and 75. 

The algebraic relation turns out to be 

3.1.2 The Invariants of TE97l~ 

For the three dimensional representation of TE97l~ the Poincare-series is 

A set of generators of the algebra of TE97l~-invariant polynomials is given by 

The first three are algebraically independent. 7 6 is not in the ring generated by the first 
three, but satisfies an algebraic relation, which is easily derived from (3.5) and (3.6): 

12 



3.1.3 The Invariants of <D 

The Poincar6-series for the three dimensional representation of([) is given by 

P~(t) 1( 1 9 8 6 ) 
24 (1 - t)3 + (1 - t)(l + t) 2 + (1 - t)(l + t + t2) + (1 - t)(l + t2) 

1 - t 3 + t6 1 + t9 

(1 - t2)(1 - t3)(1 - t4 ) (1 - t2)(1 - t4)(1 - ta). 

There is only one subgroup ([) C 0(3) with <D :J T and the functions which are invariant 
under <D are obviously also invariant under T. This gives I:' = p2 and J,!> = p4 • In 
addition to the elements in T we get an action x ---+ y, y---+ -x, z ---+ z of an element of 
order 4. The function Ta is not invariant under this action. However the function pa is 
invariant. In this case it is not in the span of ( 1~)3 , I~ I,!>. Therefore 

Jo( ) a a a a x,y,z =x +y +z. 

Observe that the element of order 4 in <D changes. the sign of.r3 and Ta. Therefore the 
product is invariant under <D and the set of generators ~s give~ by p2, p4, pa and Ta· Ta. 
The algebraic relation is obvious from (3.5) and (3.7). 

3.1.4 The Invariants of <D-

The Poincar6-series can be computed considering the elements in T and outside T sepa-
rately. We obtain 

1( 1 3 8 6 6 ) 
24 (1 - t)3 + (1 - t)(l + t)2 + (1 - t)(l + t + t 2 ) + (1 - t)2(1 + t) + (1 + t)(l + t 2 ) • 

One finds 

1 
(1 - t)3 (1 + t) 2 (1 + t + t2)(1 + t 2 ) 

1 1 
(1 - t)(l + t)(l - t2)(1 - t3)(1 + t 2 ) - (1 - t2)(1 - t3 )(1 - t4). 

The generators of the ([)--invariant polynomials are given by 
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3.1.5 The Invariants of <DE97l~ 

In this case the Poincare-series is given by 

<DEf)Z~ 1 <D ([) 1 
p'R. (t) = 2(P'R. (t) + p'R. (-t)) = (1 - t2)(1 - t4)(1 - ts). 

Comparing this series with the one of <D and <D- tells us that the functions of order 6 
which are invariant under <D, <D- and <DEB7l~ are all the same. The tetrahedral group has 
an extra fixed function which is not fixed under either of these groups, namely r 6 • The 
generators of the <DE97l~-invariant polynomials are p2 , p4 and p6 • 

3.1.6 The Invariants of lI 

The Poincare-Series. We begin again by computing the Poincare-series. 

p"JI t - __!._ ( 1 15 20 
.. 'R,( ) - 60 (1 - t)3 + (1- t)(l +t)2 + (1- t)(l +.t + t2 ) 

. 12 12 ) 
+ ( 1 - t) ( 1 - 2 (cos ( 27r / 5)) t + t2 ) + ( 1 - t) ( 1 - 2 (cos ( 47r / 5)) t + t2 ) 

1 ( 1 15 20 12(2 + t + 2t2
) ) 

60 (1 - t)3 + (1 - t)(l + t) 2 + (1 - t)(l + t + t2 ) + (1 - t)(l + t + t2 + t3 + t4 ) 

'1 + t - t3 - t4 - t 5 + t1 + t8 

(1 - t)3 (1 + t)2(1 + t + t2)(1 + t + t 2 + t3 + t4 ) 

1 + t - t 3 - t4 - t 5 + t 7 + t8 ( 1 + t - t3 - t4 - t 5 + t 7 + t8
) ( 1 - t + t2

) 

(1 + t)(l - t2)(1 - t3)(1 - t5) (1 + t)(l - t3 )(l - t + t2)(1 - t2)(1 - t5) 
1 - t5 + tlO 1 + t15 

-(1 - t 6 )(l - t 2)(1 - t5) (1 - t2) (1 - t 6 ) (1 - tlO). 

The Invariant Polynomials. In this case it is not obvious how to get a complete set 
of generators of the algebra of JI-invariant polynomials. It is clear that we still have P2· 
Furthermore, the supergroup lI ::J T (with T fixed as before - cf. 3.1.1) is no longer 
unique. It will be determined uniquely by any of its 7l5 subgroups, or equivalently, by 
the rotation axis of this 7l5 . There are two different possibilities. To see this consider the 
projection of the edges of the icosahedron to the unit sphere. This will divide the unit 
sphere into 20 congruent equilateral triangles. The length of one edge of such an triangle 
IS 

la= arccos ( ~) . 

14 



The first rotation axis di of Zs C 1l is obtained by rotating the x-axis by the angle ~la 
in direction of the z-axis ( cf. Figure 8 for a geometrical illustration): 

( 

cos( Fa) 0 - sin( ~la) ) 
B :== 0 1 0 , 

sin( ~la) 0 cos( ~la) ( 1) ( J1 + ~) di == B 0 == 
2 

0 io . 

0 J1-~ 2 io 

Similar, we find another icosahedral supergroup of T, which we will denote by ft, as 
ii :==< T, Z5 >, where the axis of rotation for this Z5 subgroup is obtained by rotating 
the x-axis by the angle ~la in direction of the y-axis: d2 := ( V~ + fj, Vi - fj, 0). 
Again, from Figure 8 it is not difficult to see, that any other cyclic subgroup of order 5 
in a icosahedral group, which contains T is conjugate to either Z5 or Zs. 
Proposition 3.1 There is a set of generators of the algebra of 1l-invariant polynomials 
containing p2 and the following elements: 

The algebraic relation is 

Finally, a set of generators of the algebra of ft-invariants is given by 
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and iis 

Proof. We will first consider the ][-invariants; the :ii: case then follows easily. Any of 
the above given polynomials is T-invariant by construction. To show ][-invariance, it 
suffices to show the invariance under '!ls C ][, or, equally well, under a generating element 
es of this '!ls. es is a rotation about an angle of ~7r around the di -axis: 

A short calc~ation gives 

It remains to check that 

and similar the equation 

holds for i = 10 and 15. This requires a little patience, though no real flair, and therefore 
we leave that and also the verification of the algebraic relation to the reader. Due to the 
Poincare-series, we have found all generators of the ][-invariant polynomials. To see the 
generators for ft-invariant polynomials, observe that for the two axes of rotation of 'll5 

and Z5 
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holds, w~ere e4 is an element of order four in 0 =:)~(which maps x---+ x, y---+ -z, z---+ y). 
Hence, 'lls == e4'llsfi1 and being invariant under ][ means being invariant under T and 
e47lsfi1

. As a matter of fact this is the case for ia, i 10 and i 15 , because using e4r 3 -

e41ra == -T3 and e4Ta == e41ra == -Ta it follows 

D 

3.1.7 The Invariants of ][EB'll~ 

Here we have 

:u:ez~ ) 1 :u: ( :u: ( 1 
Pn (t == 2(Pn t) + Pn -t)) == (1--: t2) (1 - ta) (1 - tlo). 

-The generato~s of the KEB'll~-invariant polynomials are p2, ta £10, whereas p2, ia and i 10 
generate the KEB'll~ -invariant~. 

3.2 Generators for Modules of Equivariant Polynomial Map-
pings 

3.2.1 The Tetrahedral Equivariants 

The Poincare-Series. For the Poincare-series for the module of tetrahedral equivari-
ant polynomials we get 

T t + t 2 + 2t3 + t 4 + t 5 

PM(t) == (1- t2)(1- t3)(1- t 4 ) 
(3.8) 

and 
TE9Z~ _ t + 2t3 + 2t5 + t 7 

p M (t) - (1 - t2)(1 - t 4)(1 - ta). (3.9) 

A Generating Set. From the Poincare-series we find that there is a set of generators 
containing one linear, quadratic, quartic, quintic and two cubic elements. We write E] 
for an element of this list of degreed, the second index gives an enumeration of elements 
having the same degree. Here is a list of generators: 

(x, y, z) r-+ Er== (x, y, z) 
r-+ E'f == (yz, xz, xy) 

r-+ E'! == (xy 2 + xz2
, x 2y + yz 2

, x 2 z + y 2z) 
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i---+ E~ == (-xy2 + xz2
, x 2y -yz2

, -x2 z + y 2 z) 
i---+ E'f == (y3 z - yz3 , xz3 - xz3 , x 3y - xy3

) 

i---+ E'f == V (La) 

We write Ej == E'f for j == 1, 2, 4, 5 and €3a or €3b for El,, and E~, respectively. 

For a list of generators of the T EB 7.l~ we just have to restrict to the odd members of 
our list. However some care is required. Any odd T-equivariant mapping has the right 
equivariance property, however the odd generators do not generate the odd mappings over 
the ring of invariant functions. For example, the second fifth degree equivariant is given 
by 73€2. 

3.2.2 The Octahedral Equivariants 

Poincare-Series. Again we start by giving the respective Poincare-series for (), ()-
and () EB 7.l~. We have 

t + t3 + t 4 + t 5 + t6 + t8 
pO (t) - -------

M - (1 - t2)(1 - t 4)(1 - t 6) 
' 2 3 po- ( ) t + t + t . 

M t == (1 - t 2)(1 - t 3)(1 - t 4 ) 

pO<BZ~ ( ) _ t + t3 + t 5 

M t - (1 - t2)(1 - t4)(1 - t6 )" 

The Generators. From the Poincare-series it is clear that the module of functions 
equivariant with respect to q)- is generated by €1 , €2 and some ·cubic mapping. It is easy 
to check, that this cubic mapping is given by 

( X, Y, Z) i---+ €3a ( X, Y, Z). 

From the Poincare-series we conclude that the space of cubic equivariant polynomial 
mappings is the same for all octahedral groups. 

Theorem 3.2 1. If n is even, then 

2. For n odd, we find 
M o == Mo- == MO<BZ~ 

n n n · 
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Proof. It is easily checked that for even n M'r == M 0 + Mo- and the intersection n n n 

M~ n M~- _;. {O}. In order to show the second assertion, we notice that M~$Z~ is 
contained in both M~ and M~-. From the Poincare-series we read off that all the 
dimensions of these three spaces are equal, which shows the result. D 

For the equivariants of degree 4 we conclude that 

M~ is generated by r3ll, P2E2 and €4. The first two of these are equivariant with respect 
to <D-, the last one is equivariant with respect to <D. 
The Poincare-series indicates a quintic mapping for the groups <D and <DEB 7l2. One easily 
checks that this mapping is given by r 3 E2• 

For degree 6 we find that M~ is given by products of invariant functions and equivariant 
mappings of lower degree ~nd r3 Eab· In a similar fashion we conclude that M~ is given 
by products of lower order functions and mappings and the new term r 3 E5• 

3.2.3 The Icosahedral Equivariants 

The Poincare-Series. For the group JI we find the Poincarfr-series 

][ t. + t5 + t6 + t9 + tlO + t14 
PM(t) == (1 - t2)(1 - t6 )(1 - t 10) . (3.10) 

From this one gets 
p][~fl,C t + t5 + t9 

M 
2 

( t) == -( 1---t-2)-(1---t-6 _)(_1 --tl-O )" (3.11) 

The Generators. Here, we restrict our attention to the group JI EB 7l2. From the 
Poincarfr-series for the invariant functions one can easily conclude that the gradients of 
the generators of the invariant functions lead to a set of generators for the module of 
equivariant mappings. I.e. we find 

(3.12) 

4 Precisely 1rEB~2 Symmetric Polynomials 

The question we want to address here .is:"Are there any polynomials having precisely 
tetrahedral symmetry (in the sense that they cannot be written as a sum of polynomials 
all of them having more symmetry)"? We will answer this question negatively, but we 
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will also see that there are polynomials having precisely TEBZ~ symmetry in the above 
sense. The importance of this question is based on the fact that octahedral or icosahedral 
symmetric perturbations always produce additional equilibria in the flow formula. These 
perturbations moreover rule out hyperbolic heteroclinic cycles. We therefore can accom-
plish our final goal of finding heteroclinic cycles only with precisely tetrahedral symmetric 
perturbations. 

Let us start with the invariant polynomials. The same question for the equivariant poly-
nomial mappings is addressed in Subsection 4.2. 

4.1 Orthogonal Decomposition of R,T 

Although some of the following linear spaces are already defined, we give them again for 
con vemence. 

Definition 4.1 

n .- {p : lR 3 ---+ lR I p is polynomial } 
ni .- {p En Ip is homogeneous and deg(p) = i} 

i 

n~i E9 nj ~ {p En I deg(J:1) ~ i} 
j=O 

'R,L . - {p E n I IP = p for all 1 E L} . 

The spaces nf and n~i are defined analogously. 

Resuming the results of the last section we know a minimal set of generators for the 
following 1?, L: 

Corollary 4.2 

7?,T = JR[p2, T3, p4, Ts], 
n° = lR[p2, p4, Ps, T3. Ts], 

oezc [ ] R 2 = lR p2,p4,ps, 
'R,IE9Z~ 

rrezc [ ] 1?, 2 = JR p2,p4,ps,T6 
o-n = JR[p2, T3, p4] 

n,I = JR(p2, £5, £10, £1s] 
- lR[p2, is, £10]. 

The dimension of nf, L = T, TEBZ~, ([), o-, OEBZ~, I and IEBZ~, is given by the i-th 
coefficient of the Poincare-series P-#, (cf Section 3}. 

Actually, we are only interested in the restrictions of the above polynomials to the sphere 
S2 • Therefore let 

20 



Definition 4.3 

R := {.P : 8 2 -+ 1R I 3p E R with P1s2 = .P} 

and similarly, define Ri, R-s:i, RL, Rf and R~i as linear spaces of the restrictions of the 
appropriate polynomials. - 4 

We use for instance P6 : 8 2 -+ 1R as the restriction of the polynomial p6 to the sphere and 
the same notation for the other functions. This agreement will be valid for the whole of 
this section. Later on, however, we will come back to the notation without bars, because 
then it won't make a difference, whether the functions are defined on 8 2 or 1R3 . 

One immediately finds (note that p2 restricted to the sphere is just a constant!): 
Corollary 4.4 

R'Jr = 1R['fs, p4, 'fs], 
R0 = JR(p4, ps, T3 • TG], 

-oezc [- - ] R 2 = 1R p4, Ps , 
Rl£EBZ2 

-i5 'Jr(BZc JR[- - - ] 
'" 

2 = p4, pa, Ts 
-o-R = 1R[rs, p4] 
R1 = JR[rs, £10, £15] 

JR[rs, £10]. 

Still we have that the sum of Rf, i E JN, spans the whole space RL, but the sum is no 
longer direct. Recognizing that ri satisfies an algebraic relation similar as ri (see (3.6)) 
one would guess that 

Qr:= Span{-r;-p~-r;i I 3k + 41+6m = i and k, l ~ O, m E {O, 1} }, i ~ O 

(with Q'f = {O} in case no such combination of k, l and m exists) would give a proper 
decomposition of R'Jr. This is indeed the case. 
Define Qf similar for the other relevant subgroups L using their generators from Corollary 
4.4 and the algebraic relations from Section 3. 
Proposition 4.5 We have for L :J T and j > 2 

Furthermore, for j ~ 0, dim Rf = dim Rf holds and 

j 

E9 
i=O 

j-i=Omod2 

(4.1) 

The dimension of the spaces Qf can be obtained by the coefficients of the modified Poin-
,, . care-series 

PH,(s) = (1 - s 2
) • P-k,(s). 
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-L -L -L -L -L -L Proof. Firstly, Ri_ 2 C Ri , because p E Rj_ 2 implies P2P E Rj . Therefore, Rj_2 + Qi C 
Rf by definition. To show "::J" we assume L == T, since things work out similar for the 
other subgroups. For any p E Rf choose some p E Rf with P1s2 == p. By Corollary 4.2 
and (3.6) p can be uniquely written as 

p 
2i+3k+4l+6m=j 

mE{O,l} 

3k+4Z+6m=j 
mE{O,l} 

2(i-1)+3k+4Z+sm=j-2 
i~l, mE{O,l} 

- -'JI.' -'JI.' • • Now p == P1s2 == qi 182 + P2 · q2 1s2 E Q3 + 1 · R 3_2 • Furthermore, the sum 1s direct: 
Rf_2 n Qf == {O}. For suppose p E R'f-2 n Qf is given. Then we can find p == P1s2 == q1s2 
with · 

p== 
2i+3A:+4Z+6m=j-2 

mE{O,l} 
3k+41+6m=j 

mE{O,l} 

Since p is homogeneous of degree j - 2 and q is homogeneous of degree j, we conclude 

In other words q - p2p == 0. But this is a linear combination of terms only of the form 
p~r;p~r~, with 2i + 3k + 41 + 6m = j and i, k, l ~ 0, m E {O, l}. These terms are 
linearly independent ( cf. Section 3) and this ensures that all coefficients must be zero, 
i.e. ai,k,l,m = 0 and f3k,l,m = 0. Consequently, p = 0. 
We proceed proving dim Rf= dim Rf for any exceptional subgroup L of 0(3). Consider 
the restriction mapping 

This map is clearly surjective, but it is also injective, because !R(pi) = 9t(p2 ) implies 

an~ this claim is proved. The rest is now easy. By repeatedly applying ( 4.1) we infer 
E93 i=o Qf == Rf. The rest of (4.2) is immediately clear except Rf_1 n Rf = {O}. 

j-i=Omod2 

22 



Assume p E ftf _1 n ftf is given and take again p = P1s2 = q1s2 with q E Rf _1 and p E Rf. 
Like before we find 

p(x,y,z) = l(x,y,z)lq(x,y,z) for all (x,y,z) E Ra. 

If q were not identically zero, then the right hand side would not be polynomial; a contra-
diction, since p is polynomial. Hence, p = 0 and ( 4.2) is proved. The remaining follows 
from 

d. Q-L di -iSL d. -iSL d. 'DL di 'DL Im . = m ''"'. - Im ''"'. 2 = Im ''"'. - m ''"'. 2 3 3 3- 3 3-

and exploiting the fact that the j-th coefficient of Pi_ is equal to dim Rf. D 
The following theorem is a first step in order to decompose 'R_'lr into spaces of more 
symmetry. 

Theorem 4.6 Let T C 0(3) be fixed as in Section 3 and <D ~ T. Then 

ft '1rEBZ2 ffi fa . ft '1rEBZ2 

'R_()EBZ2 ffi fs . ft()EBZ2·. 
(4.3) 
(4.4) 

Using U'R. == r6 • n,oez2 we find a decomposition of ftT in pairwise orthogonal subspaces 
with respect to ( ., . )P(S2): 

( 4.5) 

Proof. We start proving that both decompositions are orthogonal. For an arbitrary 
polynomial q E 'R_'lrEBZ2 we claim {fa, ii.)P(S2) = 0. Integration over S 2 is invariant under 
0(3), especially under I:= -JI. E TEBZ~. We have 

and the first claim is proved. Observe that this also gives ft'1rEBZ2 n Ta. ft'1rEBZ2 = {O}. The 
orthogonality in ( 4.4) follows similarly with I := ~4 E <D, the generator of a Z4 subgroup 
in <D. For an arbitrary polynomial q E ftOEBZ2 we infer from ;f6 = -f6 

and ftOEBZ2 n f 6 • ftOEBZ2 = {O} as well. The inclusion " ~ " in ( 4.3) is obvious. To show 
equality use that the generators of 'R_'lr are fa; p4 and f 6 by Corollary 4.4. An arbitrary 
polynomial q E R '1r is therefore of the form 
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ij == L ai,j,mf~p{r;:" == L ai,j,mr~p{r;:" +fa L ai,j,mT~-l p{r;:" 
i even i odd 

and ( 4.3) is established, since ri E ft'll'EBZ2 and p4 as well as Ta are generators of ft'.1rEBZ2. 
These two together with pa are all generators of ft'll'EBZ2. Hence, an arbitrary polynomial 
ij E ft'll'EBZ2 is of the form 

- "' f3 -i -i -m q == L.J i,j,mP47 aPa · 

We can argue as above, since ri E ftOEBZ2 and the generators of ftOEBZ2 are ,04 and pa. 
Again " =:) " it trivial and the theorem is proved. D 
Observe that f 3 E n,o- give.s 

follows from f 3r6 E 'R.0 . Actually we. even have: 

Theorem 4.7· Let'][' C 0(3) be fixed as in Subsection 3.1.1 and let([)- and ([)ffi7l~ be 
supergroups of T. Then 

n. o- _ n OEBz2 E9 Ta . n. OEBz2 
and n,o ftOEBZ2 E9 fafa. ftOEBZ2 

holds, where again both decompositions are orthogonal in L 2(S2 ). 

(4.6) 
(4.7) 

Proof. Let ij be an arbitrary polynomial in ftOEBZ2. Then q E ft'll'EBZ2 as well as faij E 
ft'll'EBZ2. Consequently, Theorem 4.6 provides 

It remains to show "::J" in (4.6) and (4.7). The generators of'R.0 - are 73 and p4 • Therefore 
an arbitrary polynomial q E no- is of the form 

Again ri E ftOEBZ2 yields the missing argument, if we proceed as in the proof of Theorem 
4.6. ( 4. 7) is proved in the same way, using the generators of 'R.0 (,04 , ,Oa and f3fa) and the 
fact that ( f 3f 6 ) 2 E ftOEBZ2. D 
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From the above theorem we conclude, that the first three components of the decomposition 
( 4.5) have actually more symmetry than only T or Tffi7l~. Moreover, the elements in 
f 3ftOEBZ2 are the elements with exactly q)- symmetry (and not more!), whereas the ones 
in r3r6 R OEBZ2 have exactly q) symmetry. 

For u1l = r6ftOEBZ2 we observe u1l c ft'I'EBZ2' but some elements in u1l have in some 
sense even more symmetry: let ll be the supergroup of T introduced in Section 3 and 
y1l :== Proju~(ft1IEBZ2) c u1l (here by Profo~ we mean the orthogonal projection on u1l 
resulting from the decomposition ( 4.4)). The space U1l decomposes orthogonally to 

(4.8) 

(4.9) 

To see that note y1l c u1l = r6ftOEBZ2 and (4.4) implies that an arbitrary q E ft1IEBZ2 c 
ft'I'EBZ2 can be written as q == iii + f 6 ii2 with both iii and ii2 in ftOEBZ2. This gives 

and ( 4.9) follows. Hence, the elements in y1l can all be written as a sum of two poly_:-
nomials with the additional symmetry Q}ffi7l~ or 1IEB7l~, respectively. Only the space W'R. 
seems to have pure TEB7l~ symmetry: 

Theorem 4.8 Let again TC 0(3) be as in Section 3 and let q) as well as 1I be supergroups 
of T as before. Using the spaces y1l and W1l defined above we claim 

Consequently, 

w1l J_ Span {ft OEBZ2 ' ft][EBZ2} 
and ft'I'EBZ2 - Span{ftOEBZ2' ft1IEBZ2} ffi w1l 

(4.10) 

(4.11) 
( 4.12) 

holds. Furthermore, W1l is independent of the particular choice of ll :J T (cf. Subsubsec-
tion 3.1.6}. 
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Proof. We begin with (4.10). ft<DE9Z2 + vn = Span{ft<DE9Z2, ft1IEBZ2} is obvious from (4.9) 
and the sum is direct, because it is even orthogonal due. to vn c un J_ ft<DE9Z2. Both 
(4.11) and (4.12) follow immediately from (4.4) and (4.8). 
It remains to show the independence of wn of the particular choice of n :) T. Suppose 
:ii: :) T is the other copy of a icosahedral supergroup of T as in Subsubsection 3.1.6 . 
introduced. We claim 

To see this let e4 E q) \ T be an element of order 4 in q) :) T. As already seen in 
Subsubsection 3.1.6, e4 conjugates][ to ft: e.41 lle4 =ft. Therefore with p E ft1IEBZ2 we have 
q := e4P E ftiiEaZ2. Writing p = Projn4'ez; (p) + Proju-R.(p) we infer . 

since the action of e4 on elements of ft<DEaZ2 is trivial and elements in Un obtain a minus. 
Therefore the.projection of ftI@Z2 and ftii@Z2 to un span the same space. D 
The elements in w'R- will be of major. interest to us, since they contain all elements 
with precise TE97l~ symmetry. Still it is by no means clear how large wn is and how 
we can calculate the elements of wn. The following definition provides subspaces, which 
eventually give the decomposition of wn. For the rest of this section we are only interested 
in polynomials with at least TE97l~ symmetry. Observe that the elements of ft'EEBZ2 are 
all restrictions of polynomials of even degree ( cf. Corollary 4.4), so we do not have to 
worry about any odd degree polynomials. 

Definition 4.9 Let wf;, j 2::: 0 be recursively defined as the maximal subspace ofR~EaZ2 n 
Un = ft~~Z2 fl Un C Un which satisfies the condition 

(4.13) 

Some of these subspaces will only contain 0, and therefore these subspaces won't con-
tribute much to our decomposition. Theorem 4.11 will tell us exactly which of them. We 
have: 

Theorem 4.10 (W~)i2:0 is a sequence of pairwise orthogonal subspaces in L2 (S2 ) which 
satisfy 

wf; J_ Span{ft<DEaZ~' ftIEaZ~}. (4.14) 

In particular, they form an orthogonal decomposition of wn: 

26 



00 

w-R- = ffiwt. (4.15) 
j=O 

Proof. To start with ( 4.14) first of all note that wl} c u-R- J_ ftOEBZ2. Suppose 

(4.16) 

is given. We have to prove w J_ ftl!EBZ~. Our proof uses projections on fixed-point spaces: 
for p E R define 

Q~(p) := Proj-R.L(p) = l~I L /PE ftL. 
-yEL 

Now if q E ftIEBZ~ in order to show (w,q)L2(s2) =·0, it.is sufficient to show Q~5 (w) = 0 for 
some '/l5 C ll. To see that let es E 7li5 be one of its generators. Then with e: = ll we find 

( w, q)p (S2) 

1 4 """""("5-i - c5 -) (QZs ( -) -) - L.J ~5 w, ~5 q L2(S2) = 'R. W , q L2(S2)· 
5 i=O 

Now obviously w := Q~5 (w) E R~~j· On the other hand we will show in a moment 
that w E (R~~i)-1 C R9;, which -is only possible if w = 0 and the proof would be 
accomplished.-The remaining: for p E R~~i we have 

. -

( Q~5 (w),fi)Pcs2) · (w, Q~5 (p))pcs2) = ( w, p)L2cs2) 
( Q~EBZ2 ( w), Q~EBZ2 (p) )L:i(s:z) = ( w, Q~EBZ2 (p) )P(S2 ) 

since w E ftFEBZ2. Using again that p E ft~~; and ( 4.16), we conclude 

1 
(w, 24 L 1fi)L2(s2) 

"YEFEBZ2 

1 1 4 . 1 
( w, 24 L 5 L ,e~P)L2(S2) = ( w, 120 L 1fi)L2(S2) = o, 

"YEFEBZ2 i=O "YE:U:EBZ2 
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since E,E][EE)Z~/P En~~:~. It remains to prove (4.15). "::J" follows immediately from 
( 4 .14) and the definition of W'R.. To see "C" , let w E W'R. C U'R. be given. Then w E 
u'ii = 76ft<DE9Z~ c ft'lrEBZ~. Since ii; must be a restriction of a polynomial of finite degree, 

- 'lrEazc - O zc - ][ zc we conclude even iiJ E R<2; 2 for some j ~ 0. But since iiJ J_ Span{R EB 2, R EB 2 }, 

certainly also ii; J_ n~~:r holds and by Definition 4.9 ii; E EB1=o w;t follows, which 
proves everything. - D 
The last theorem in this section will tell us how large WJ} actually is. 

Theorem 4.11 We obtain for any j ~ 0 

( 4.17) 

Furthermore, the dimension of WJ} is given by the coefficient of 8 2; in the Poincare-series 

Pf (s) .-
814 

( 4.18) (1 - 8 4 )(1 - 8 10 ) 

814 + 818 + 822 + 824 + 826 + 8~8 + 830 + 832 ~ 2 834 .+ 836 + 2 838 + 0 ( 840) . 

Proof. Equation (4.17) follows immediately from (4.12) and (4.15) by projecting both 
. -']['EE)Z~ 

sides to R 9 ; . 
- ']['EE)Zc . -']['EE)Zc 

The space R 9 ; 2 decomposes by Proposition 4.5 to ffif=o Q2i 2 and similarly 

j j 
rf5 0EaZ2 _ ffi Q-0$Z~ d rijl£EBZ2 _ ffi Q-l£EBZ2 
'"<2; - W 2i an '"<2; - W 2i · 

- i=O - i=O 

- 0EaZ2 - l£EBZ2 . . - 0EaZ2 - l£EaZ2 . The sum R 9 ; + R 9 ; is not direct, but R 9 ; n R.9 ; contams only constants: every 
polynomial having both <DE97L2 and 1lE97L2 symmetry must have already 0(3) symmetry, 
since both subgroups are maximal. The Poincare-series of 0(3) is pg(a)(8) = 1 ~,,2 and 
p2 is the only generator of R0(3). Hence ft0(3) = 1R[l] is one dimensional. We therefore 
find for j ~ 0: 

dim wt; d. Q-'lrEaZ2 d' S { Q- <DEaZ~ Q-lIEaZ2 } im 2; - im pan 2; , 2; 

d . Q-'lr.EBZ~ _ (d' Q-0.EBZ~ + d' Q-][(~Z~ _ d' Q-0.(3)) im 23 im 23 im 23 im 23 ' 

which is by Proposition 4.5 given by the 2j-th coefficient of the Poincare-series 
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Pf (s) _ p,:ez2(s) _ (P;ez2(s) + p~9Z2(s) _ p~(3)(8 )) 

1+8
6 

( 1 1 ) 
(1 - 8 4){1 - 8 6 ) - (1 - 8 4)(1 - 8 6 ) + (1 - s6)(1 - 810) -

1 

86 -86 - 810 + 816 

- (1 - 8 4 ){1 - 8 6 ) + (1 - 8 6 )(1 - 810) 

8 6(1 _ 8 10) _ 8 6 + 8 14 + 8 1s _ 8 20 

(1 - s 4 ){1 - 8 6)(1 - 8 10) + (1 - 8 4)(1 - 86)(1 - 810) 

814 - 820 814 

(1 - 8 4 ){1 - 8 6)(1 - s 10) (1 - 8 4){1 - 8 10) · 

D 
Note that although wn has a Poincare-series, W'R. is by no means an algebra! The 
somehow cumbersome definition of Wi} turns now out to be very helpful for calculating 
basises of these spaces. We have e.g. W{! = Span{ w~} and Wfs = Span{ wTh} with 

(4.19) 

(4.20) 

where one only has to check w~ 1- {£5, £10, £n and wfs 1- {rs, £10, £~, £s£10, £~, w~}. This is 
left to the reader. 

4.2 Orthogonal Decomposition of J\/t'lr 
Our next goal is to answer the question on the precise tetrahedral symmetry for the 
equivariants as well. Our proceeding will be very similar to the one in the preceding 
subsection. Particularly, we will skip arguments whenever things work out the same way. 
A mapping b: 1R3 --+ 1R3 is equivariant with respect to a subgroup L C 0(3) if 

1b( () = b( 1(), for all ( E 1R3 and I E L. 

The related L-action on mappings from 1R3 into 1R3 is defined by 

( 4.21) 
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Obviously b: lR.3 -+ lR.3 is L-equivariant if and only if bis invariant with respect to this 
L-action (i.e. 1b = b for all / E L ). We start defining for the equivariants similar linear 
spaces as we did for the invariants. 

Definition 4.12 

M .- { e : lR.3 -+ 1R3 I e is polynomial} 
Mi .- { e E M I e is homogeneous and deg( e) = i} 

i 
M=5i .- E9 M; = {e EM I deg(e)::; i} 

j=O 

ML . - { e E M I 1e = e for all 1 E L } . 

The spaces Mf and M~i are defined analogously. 

Resuming the results of the last section on equivariants we know a minimal set of gener-
ators for the modules ML: 
Corollary 4.13 

M ']['. M'll'E9Zc < €1, €2, €3a, €3&, €4, €5 >n,o-, 2 =< €1, €3a, €3b, €5, T3€2, T3€4 > n,oez2 
0 o-M - < €1, €3a, €4, T3€2, T3€3b, T3€5 >n,oez2,. _M =< €1, €2, E3a >n,o-

MOEBZ2 < €1, €3a,T3€2 >n,oez2, MlIEBZ2 =< €1, \7ts, \7t10 >n,lIEBZ2 · 

The dimension of Mf, L = T, TEeZ~, 0, o-, OEeZ~, 1I and 1IEeZ~, is given by the i-th 
coefficient of the Poincare-series P}A (cf. Section 3). 

Proof. The last three statements are obvious from our previous results. In the first three 
statements one containment relation is also obvious. The other one is obtained from 
the Poincare-series. There is a Poincare-series associated to the module generated by 
elements on the right hand side over the respective ring. It can be easily checked that it 
coincides with the Poincare-series for the left hand side. By inclusion the two sides are 
equal. D 
Actually, we are again only interested in the restrictions of the above polynomial mappings 
to the sphere S2 • Therefore let 

Definition 4.14 

M : = { e : S2 -+ lR 3 I 3e E M with e1s2 = e} 

and similarly, define Mi, M=5i, JVt.L, Mf and M~i as linear spaces of the restrictions of 
the appropriate polynomial mappings. -

Again it follows immediately: 

30 



Corollary 4.15 

< €1, €2, €aa, Eab, €4, €5 >'R,o-, A/{'ll'EBZ~ =< €1, Eaa, Eab, €5, f3€2, f3€4 >'R.oei;~ 

< €1, Eaa, €4, f3€2, f3€3b, f3€5 >'R.oez~, M~r =< €1, €2, Eaa >'Ro-
- ][(Bzc - - --< €1, Eaa, f3€2 >'R.oez~, M 2 =< €1, \7 Ls, \7 £10 >'R.liez~ . 

Similar to the invariants M f, i E 1N, spans the whole space ML, but the sum is no longer 
direct. For instance in case L = T the relevant subspaces for the decomposition of A/{'ll' 
are 

-'][' -
Si :=< €1 >Q~- + < €2 >Q~- + < €aa >Q~- + < Eab >Q~- + < €4 >Q-~- + < €5 >Q-~-

1-1 i-2 i-3 s-3 s-4 s-5 

(4.22) 
with i 2:: 0 and Qf defined in Subsection 4.1 (Qf := {O} in case i is negative). Define Sf 
similar for the other relevant subgroups L using their generators from Corollary 4.15 and 
the respective generating ring. 

The interpretation of Sf is similar to the one of Qf: Sf contains restrictions of polynomial 
mappings of degree i, but not less than· i. 

Proposition 4.16 We have for L :) T and j 2:: 1 

(4.23) 

The sum in (4.22} (and similar for the other cases of L) is direct and the dimension of 
the spaces Sf can be obtained by the coefficients, of the modified Poincare-series 

P1 ( s) = ( 1 - s 2
) • pt_ ( s). 

Proof. We prove this proposition again only in the case L = T, for the other cases are 
similar. For ( 4.23) it suffices to prove the first equation. S'f + ... + S'f = M~i follows 
from ffif=o Qf- == R~; ( cf. Proposition 4.5). The only nontrivial statement i; that the 
sum is direct. We cla!m 

sf n sf = { 0} for i i= j. 

Assume there were some e E (S'f n S'f)\{O}. Using the index set I:= {1,2,3a,3b,4,5} 
we find iii-{3 E Qf_~ and Pi-!3 E Qf_-13 , {3 E I (with the obvious abuse of notation), such 
that 
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e = L if.i-f3 Ef3 = L Pi-f3 Ef3, 
{3El {3El 

and at least one of the q' s and one of the p' s is nonzero. Thus e is the restriction of 
two homogeneous polynomial mappings ei and e; of degree i and j, respectively. We find 

<0- d <0-qi-{3 E Ri-{3 an Pi-f3 E R;-{3 such that 

ei = 2: qi-{3 €(3 
{3El 

Now ei homogeneous of degree i gives 

and e; = L Pi-f3Ef3· 
{3El 

( ) I( )Ii-( (x,y,z)) 
ei x, y, z = x, y, z e I ( x., y, z) I , 

( 4.24) 

( 4.25) 

and similar for e;. We conclude ei(x,y,z) = e;(x,y,z)l(x,y,z)li-i (w.l.o.g. i > j). 
Certainly i- j must be an odd.number, because ei was a polynomial mapping. Therefore 
k := i;j E 1N and we obtain ei = p;e3. Together with ( 4.24) we get 

L ( qi-{3 - P~Pj-{3) €[3 = 0. 
f3El 

But < Ei, €2, Eaa, Eab, €4, €5 >n~- gave a minimal set of generators ( cf. the Poincar6-series 
for M'.l') and therefore all coefficients in the above equation must be zero: qi-f3 = P;Pi-f3 
for all f3 E I. We assumed that at least one of the p1 s and hence of the p' s is nonzero, e.g. 
Pi-f3o, giving qi-f3o (/. Q1?-/3o. This is a contradiction. 
To see that the sum in ( 4.22) is direct we can use a similar argument as we used in ( 4.25). 
At last the statement on the Poincar6-series of M'.l' is now immediately clear from 

dim sf = 2: dim Qt~ 
{3El 

and the Poincare-series of ft<D-. D 
Before we continue searching an appropriate decomposition of M'.l', we have to introduce 
the canonical scalar product on [L2 (S2)] 3 

3 

(e, b)[L2(S2)]3 := l::(e[i], b[i])L2(S2), fore, b E [L2 (S2
)]

3
• 

i=l 
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It is easy to see that this scalar product is 0(3) invariant: (Fe, 1b)[L2(S2)]3 = (e, b)[L2(S2)]3 
for any/ E 0(3). 

Before we want to give a decomposition of M'I', we start decomposing M 0 and Mo-. 
The following two subsets of M'lr will prove to be important for us. Set 

( 4.26) 

Theorem 4.17 Let TC 0(3) be fixed as in Subsection 3.1.1 and let q)- and {}ffi7l~ be 
supergroups of T. Then 

Mo _ Momz~ EB .flo 
and Mo- - M omz~ EB .flo-

holds, where both decompositions are orthogonal in [L2(S2)]3 • 

(4.27) 
(4.28) 

Proof. From.Corollary 4.15 we infer M<DEDZ~ +fl<D = M<D and for M<DEBZ~ +fl<D- =Mo-
we use additionally n,o- = ftOEBZ~ EB 73 • n,omz~ from Theorem. 4.7. 

All that remains to be shown is that both- decompositions are orthogonal, because then 
they are direct as well. We have to show . . 

( e, b)[L2(S2)]3 = 0, for all e E M omz~ and b E .fl0 - U .fl<D. 

We have for I := -11. E {}ffi7l~ that 1b = -b for any b E Jlfr U .fl0 , because b is a 
restriction of a polynomial of even degree. On the other hand 1e = e fore E M0EBZ~ and 
the theorem follows from the 0(3)-invariance of the scalar product. 0 
The theorem yields that the elements in .fl0 - and .fl0 contain the 'real' 0 and o-
equivariant mappings. Let us now decompose M'][' into spaces of more symmetry. 

Theorem 4.18 Let T c 0(3) be fixed as in Section 3 and{) ::> T. Using u.M :=< 
€3b, €s, 73€4 >'R.4>ez~, we claim 

.Momz~ 61 u.M 
Momz~ EB JlO EB No- EB u.M. 

Both decompositions are pairwise orthogonal with respect to ( ., . )[L2(S2)]3. 
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Proof. The above decompositions are clearly possible by Corollary 4.15. 
To prove orthogonality note that Theorem 4.17 already gives no l_ J\/tOEBZ~ and nf)- l_ 

J\/tfJEBZ~. no l_ UM and nf)- l_ UM follow by the same argument given in that proof. 
To see nf)- l_ no and J\/tOEBZ~ l_ u.M. we use an element of order 4 e4 E <D\T. Observe 
that 

and the proof is accomplished. D 
From the above theorem we conclude, that besides U .M. all components in the decompo-
sition of J\/t'll' have actually more symmetry than only Tor TE97l2. Our final goal is to 
separate from UM C J\/t'll'EBZ~ those mappings which have more symmetry (in the sense 
that they are a sum of mappings in J\/tOEBZ~ and J\/(O:EBZ~ ). We proceed as in Subsection 
4.1. 
Similarly, let vM. := Proju~(J\/t1IEBZ~) c uM. (with Proju~ the orthogonal projection on 
uM. resulting from the decomposition (4.29)). The space uM. decomposes orthogonally 
to 

vM. c Span{MfJEBZ~' J\/t1IEBZ~}. 
follows in the same fashion as ( 4.9) for v-R was derived. 

( 4.31) 

(4.32) 

Again, the elements in V M can all be written as a sum of two polynomial mappings with 
the additional symmetry <DE97l~ or lIE97l~, respectively. Only the space WM seems to have 
pure TE97l~ symmetry: 
Theorem 4.19 Let T C 0(3) be as in Section 3 and let (]) as well as][ be supergroups 
of T as before. Using the spaces VM. and WM. defined above we claim 

Consequently, 

WM. 1- Span{Moez~,MJiez~} 

and M'Jl'EBZ~ Span{MOEBZ~) j\/tlIEBZ~} E9 wM. 

(4.33) 

( 4.34) 
( 4.35) 

holds. Furthermore, WM. is independent of the particular choice of JI ::J T (cf. Subsub-
section 3.1.6}. 
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Proof. We omit this proof, because it can be done along the lines of the proof of Theorem 
4.8, where we have shown the analogous statement for w-R. D 

Again elements in WM. will be of major interest to us, since they contain all elements with 
precise TffiZ~ symmetry. The following definition provides subspaces, which eventually 
give the decomposition of WM.. For the rest of this section we are only interested in 
polynomial mappings which are at least TffiZ~-equiVa.riant. Observe that the elements 
of .J\/t'll'EaZ~ are all restrictions of polynomials of odd degree ( cf. Corollary 4.15), so we do 
not have to worry about any even degree polynomial mappings. 

Definition 4.20 Let W ff+1 , j 2:'.: 0 be recursively defined as the maximal subspace of 
M- 'll'@z~ u.M. M- 'll'@z~ u.M. u.M. h · h t · :Ji th d ·t · 2j+l n = 9i+l n c w ic sa is es e con i ion 

( 4.36) 

Some of these subspaces will only contain 0, and therefore these subspaces won't con-
tribute much to our decomposition. Theorem 4.22 will tell us exactly which of them. We 
have: 

Theorem 4.21 (~f;+l)j~o is a sequence of pairwise orthogonal subspaces in [L2(S2)]3 

which satisfy 

( 4.37) 

In particular, they form an orthogonal decomposition of WM.: 

00 

w.M. = ffiw:+1· (4.38) 
j=O 

Proof. Once more we make use of the proof of the analogous theorem in Subsection 4.1. 
Replace just the projection Q~ onto f(,L by 

Q1t(e) := Proj.M.L(e) = l~I 2: 7e E .ML, fore EM., 
-yEL 

using the action ( 4.21) of L on M. Everything else works out as before, now with the 
new scalar product on [L2(S2)]3 • D 
The next theorem in this section will tell us how large W2j\1 actually is. 
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Theorem 4.22 We obtain for any j 2:: 0 

( 4.39) 

Furthermore, the dimension of W ~1 is given by the coefficient of 8 2i+l in the Poincare-
series 

P%(s) 
83 (1 + 86 + 812) 

.- (1 - s4) (1 - 8 10) 
( 4.40) 

- 83 + 81+89 + sll + 2813 + 2s15 + 2s17 + 3819 + 0 (s21). 

Proof. Equation (4.39) follows again from (4.35) and (4.38) by projecting both sides to 
- 'Jl'E9Z2 

M91+1·· 

P •t• 4 16 . th d •t• M- 'Jl'E9Z2 ffij s-'Jl'ez2 ( t th t s-'Jl'ez2 {O}) ropos1 10n ; gives e ecompos1 ion <2;+1 = Wi=O 2i+l no e a 2i -:-

d . ·1 £ M- <0ez2 d M-Iez2 W-: h . ·1 t th . an s1rm ar ones or <2i+l an <2i+l · 1t an argument very s1rm ar o e one given 
in the proof of Theorem 4.11, we filld for j 2:: 0: 

di w.M _ di 8-'Jl'E9Z2 (d. 8-oez2 d. 8-IE9Z2 d" 8-0(3)) m 2;+i - m 2;+i - 1m 2;+i + 1m 2;+i - 1m 2;+i . 

The Poincare-series of 0(3) for the module is P1!(3)(s) = 1 ~$2 and hence p~(3)(s) = 8 

giving dimS3i3{. Using Proposition 4.16, dim W~1 is therefore given by the (2j + 1)-th 
coefficient of the Poincare-series 

P~(8) - p~ez;(8) - (P~ez2(8) + P,!fZ2(8) - p~(3)(8)) 

8 + 2 8 5 + 2 83 + 8 7 8 + 83 + 8 5 8 + 8 5 + 89 
------+8 

(1 - 84 ) (1 - 86 ) (1 - s4 ) (1 - 86 ) (1 - 86 ) (1 - 8 10) 
83 (1 + 86 + 812) 

(1 - 8 4)(1 - 8 10). 

D 
Note that again WM. is not an algebra. We find e.g. Wf = Span{wgW} and Wf = 
Span{wf} with 
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Since wf and wft are obviously in uM we only have to check wf J_ M~~z~ = Span{€1} 
-M - :U:E9Zc M - - -and W7 J_ Span{M~7 2

' W3 } = Span{€1, V" La, £a€1, w~}. 

Some more structure of the space WM can be seen in the last theorem of this section. 
Theorem 4.23 wn. is embedded in WM in the following sense: 

'R- M 1l - . - -w €1 c w and V"W := {V"p Ip ER, p is homogeneous and P1s2 = p E wn} c WM. 

Proof. We have e E W'R.€1 C J\/t'll'E9Z~, since W'R. C 'R,'ll'E9Z~. All we have to show by 
Theorem 4.19 is 

e J_ Span { M OE9Z~ ' M IE9Z~}' 

or, equivalently, we have to show Qi7t(e) = 0 for L = OE97l~ and ][EB7l~. But this follows 
from w'R J_ Span{'R.0E9Z~' 'R_IE9Z~ }: 

The second assertion is an im.inediate consequence of 

Qtt(V"p) = V"Q~(p) for p ER. 

D 

5 Parametrization of the Fixed-Point Subspaces 

In the sequel we derive parametrizations for elements of T E 1l(L,G/ H) in the case G = 
0(3), H = 0(2)E97l~ or 0(2)- and La supergroup of T. These parametrizations will be 
necessary to evaluate the flow formula (2.22) in the next section. 
We q.ssume that the kernel kerA(Ao) C L2 (S2 ) is irreducible for the given (standard) 
0(3)-action. This assumption will guarantee easy parametrizations of the relevant con-
nections. To see that, we introduce the space S1l1 C L2 (S2 ) of spherical harmonics in 
three variables and of degree l E 1N0 • It is well known that any irreducible representation 
of 0(3) is isomorphic to the (minus or plus) representation of 0(3) on S1lz, for some l 
(see for instance [5], Chapter XIII Theorem 7.5). 
Our special situation, however, is even better. Since kerA(Ao) is already a subspace of 
L2 {S2), we claim that kerA{Ao) is actually equal to some S'H.1 (equipped with the standard 
action). The restriction of the standard representation of 0(3) on L2(S2) to S1l1 is usually 
called the natural representation of 0(3) on S1-l1. This is the minus representation for l 
odd and the plus representation for l even {see [5] Chapter XIII §9 { e)). 
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Lemma 5.1 Let {O} =f. V C L2(S2 ) be an irreducible representation for the standard 
action of 0(3). Then 

V = 81£10 , for some lo E lNo. 

Furthermore the 0(3)-module Vis equal to the 0(3)-module 81£10 , where 0(3) is acting 
naturally. 

Proof. Consider the orthogonal projections onto S1lz, i.e. Pz : L2(S2) --+ S1lz C L2(S2). 
They are obviously 0(3)-equivariant. Due to the irreducibility of V and S1li it follows 
that the restriction Pqv : V--+ S1lz is either trivial or an 0(3)-equivariant isomorphism. 
Since V was not trivial and L2 (S2 ) = ffibo S1lz (see [18] pp. 436-457) we derive that there 
is at least one l0 E lNo, such that V ~ S1lz0 via Pz0 • On the other hand dim(S1lz) = 21+1 
gives that 10 is the only l E IN0 with Pqv is nontrivial. Hence, 

S1lz0 rv V = Pz0 ( V) C S1lz0 

giving V = S1-lt0 • Therefore, Pz0 IV is just the identity and V as an 0(3)-module is 
equal to S1lz0 as 0(3)-module equipped with the standard act~on, which is the natural 
representation of 0(3) on S1lz0 • D 
We now consider axisymmetric elements in S1lz. If S0(2) C 0(3) is fixed, there is 
(up to multiples) only one axisymmetric spherically harmonic polynomial of degree l. 
Choosing S0(2) rotating about the x-axis, this polynomial is given by ( cf. for instance 
[9], Theorem 2.4.6) 

Obviously, 

rt1 
U* u* ('" y z) .- ""'(-1)"'q.,,,.l-2v(z2 + y2)v 

l = l "'' ' LJ .,"' 
v=O 

qo = 1, 

for l even 
for l odd · 

(5.1) 

(5.2) 

The group orbit O(ui) C S1l1 is isomorphic to 0(3)/~u; = 0(3)/ H. In the two relevant 
cases for H we have 

0(3)/(0(2)E91Z~) ~ 1P2 

0(3)/0(2t ~ s2
• 
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In order to parametrize connections T of (L, G/ H) we search for an injective curve I : 
(0, cp*) -t 0(3) such that 

wi(cp) := 1(cp)ui E S1lz 

parametrizes a one-dimensional subset of Fixo(ui)(L') rv FixG/H(L'), L' C L, which 
connects two elements of £(L,G/H) ( cf. (1.12) ). The following subsections will provide 
such parametrizations for the various cases of L :J 'I'. 
Although we do not calculate the fixed-point spaces in detail, we remark that we make 
use of the subnormalizer .NG(L,H) := {1EGILC1H1- 1 } (cf. [8]). It was shown in 
(12], Proposition 1.7, that 

fiXGjH(L') = NG(L', H)l H c G/ H 

holds (see also [11] for a different way to calculate FixG/H(L')). We are, however, 
interested in the particular fixed-point space Fixo(ui)(L') C kerA(Ao) = S1lz, where 
O(ul) ~ 0(3)/ Hand }Ju; =H. We. find 

Fixo(ui)(L') = NG(L', H)ui C O(u;) C S1lz. 

5.1 The Fixed-Point Subspaces for L = 'JI', '1I'EBZ2 and for H = 
0(2)EBZ2, 0(2)-

We start discussing the case L = 'I' and H = 0(2)EB'll~. Since 

0(3)/(0(2)ffi'/l~) rv JP2 
rv S0(3)/0(2), (5.5) 

this is clearly almost the same example as given at the end of Section 1. The subgroups 
of 'I' with nontrivial fixed-point subspace are L' = 'll2 , D2 and 'Ila with 

Fixo(a)/(0(2)ffiZ2)('ll2) ~ S1 U lpt, Fixo(a)/(0(2)ffiZ2)(D2) ~ 3pt 
Fixo(a)/(0(2)ffiZ2) ('Ila) ~ lpt. 

The set Fix('.lr,O(a)/(0(2)ffiZ2)), defined as the union of all the nontrivial fixed-point spaces 
(cf. (1.14)) is depicted in Figure 2. 

Using 
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Figure 2: Fix('r,O(a)/(0(2)ffizm 

z 

( 

cos ( cp) 0 - sin ( cp) ) 
/w( <p) = 0 1 0 , 

· sin ( cp) 0 90s ( cp) 

we find the parametrization for the connection of (T, 0(3)/(0(2)E97l~)) between ui and 
the spherically harmonic function of (even) degree l which is axisymmetric with respect to 
the z-axis. Both equilibria which are connected by this branch lie (identify Fixo(u;)(D2), 
l even, with Fixo(a)/(0(2)ffiZ2)(D2)) in Fixo(a)/(0(2)ffiZ2)(D2). For l = 2 this gives a branch 
between u; = 2 x2 - (y2 + z 2) and 2 z 2 - (y2 + x2). For cp E (0, =i) let 

w2(cp) := /w(c,o)u; = (2- 3sin2(cp))x2 + (2- 3cos2(cp))z2 + 6 cos(cp) sin(cp)zz -y2. (5.6) 

The other connections between equilibria in Fixo(a)/(0(2)ffiZ2)(D2 ) cannot give any new 
information concerning the flow, because all connections lie on the same T-orbit. We 
will not make use of other even l parametrizations, because the computational effort we 
have to make in Section 6 rises quickly. Nevertheless, for small l it would still be possible 
to obtain similar results for higher dimensional representations of the kernel. 

Considering L = TE97l~ instead of L = T, nothing really new happens. Some new 
subgroups of TE97l~ are of the form L' or L'E91l~, where L' is a subgroup of T. There 
are, however, also two class III subgroups in TE97l~ ( cf. [5], XIII Section 9 for the class 
III subgroups of 0(3) ). The first is 7l2 = {11., -e2}, where e2 is the generator of some 
1l2 C T. The second is D~ = 7l2 U { -7, 1' E D 2 \ 7l2 } with again 7l2 C D2 C T. 
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Since all elements in 0(3) / ( 0(2)EB7l2) are invariant under I = -:Il one gets for L' C T 

Fixo(a)/(0(2)ez~) ( L') = Fixo(a)/(0(2)ez~) ( L' EB7l~) 

and Fix(Tez2,o(a)/(0(2)ezrn in Figure 3 follows easily. 

T~e parametrization from above is sufficient for this case as well. Considering H = 0(2)-
we have 0(3)/0(2)- ,....., S2 and the nontrivial fixed-point subspa~es are for L' = 7l2, D2 
and 'lla: Fixo(a)/0(2)-(7l2) ::::'. S1, Fixo(a)/0(2)-(Dn ,....., 2pt and Fixo(a)/0(2)-(7la) ::::'. 2pt 
( cf. Figure 3). There is, of course, also a nontrivial fixed-point subspace for 7l2 C D2. 
However, it is the same as the one for D2, and therefore not worth mentioning. 

We do need a new parametrization for the connections of (TEB7l2, 0(3)/0(2)-), since the 
isotropy subgroup :Eu; = 0(2)- is only possible for odd l. In the case l = 3 we get the 
branch between u; = 2 x3 - 3 x(y2 + z2) and 2 z3 - 3 z(y2 + x2) as 

(-3 + 5 cos2(cp)) cos(cp) x 3 + (2 - 5 cos2(cp)) sin(cp) z3 

+3 (-1+5 cos2(cp)) sin(cp) x 2 z + 3 (4 - 5 cos2(cp)) cos(cp) xz2 

-3y2(cos(cp)x + sin(cp)z), cp E (0, i ). (5.7) 

Using r,o:,T := i we denote the above constructed connections by 

(5.8) 

In the last case L = T and H == 0(2t we find only Fixo(a)/0(2)-(7l2) ~ 2pt and 
furthermore Fixo(a)/0(2)-(7l3 ) ,....., 2pt remains left. That means there are no connections 
of (T, 0(3)/0(2)-). 
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5.2 The Fixed-Point Subspaces for L 
H = 0{2)EB7l2, 0(2)-

<D, <0-, <DEB7l2 and for 

We begin discussing L = <D and H = 0(2)EB7l2. Once more 0(3)/(0(2)EB7l2) ~ lP2 ~ 
S0(3)/0(2) reduces our problem to something known (cf. [12], Table 1). 
The subgroups of <D with nontrivial fixed-point subspace are L' = 7l2 , D~, D4 and D3 
(we denote by D~ the D2 subgroup of <D which is not normal in <D; this is equivalent to 
D~ rt D4 C <D). It follows: 

Fi:vo(3)/(0(2)mz2) (7l2) ~ S1 u lpt, 

Fi:vo(3)/(0(2)E9Z2) ( D3) ~ lpt, 

Fi:vo(3)/(0(2)mz:n ( n;) ~ 3pt 

Fi:vo(3)/(0(2)E9Z2) ( D4) ~ lpt. 

Figure 4: Fi:v(o,0(3)/(0(2)E9Z2)) 

z 

D~ 

As a first connection of (<D, 0(3)/(0(2)EB7l2)) we find a subset of T~''Jl': With c,o:,o := ~ 
we have 

(5.9) 

which connects the equilibria in Fi:vo(3)/(0(2)mz2)(D4) and Fi:vo(a)/(0(2)E9Z2)(D~), i.e. for 
l = 2 the connection from 2 :v2 -' (y2 + z2) to v; := ~(:v2 + z2 ) + 3 xz - y2. 

Although for H = 0(2)EB7l2 only the representation for even l is present, we similarly 
intend to treat the odd l case, which we will need for connections with H = 0(2t 
( cf. Figure 7). For l = 3 this will give a connection between 2 :v3 - 3 :v(y2 + z 2 ) and 
v; := -Vj (x3 + z3 

- 9xz(x + z) + 6y2 (x + z)). 
There are two more essentially different connections of (<D, 0(3)/(0(2)EB7l2)). The second 
branch connects an equilibrium in Fixo(3)/(0(2)E9Z2) ( nn to an equilibrium which lies in 
Fixo(3)/(0(2)mz2)(D3). For_l = 2 this equilibrium is v; := 2(xy + xz + yz) and for l = 3 
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the related equilibrium will be v; := - 2 f3(2 (x3 + y3 + z3 ) - 3x2 (y + z) - 3y2 (x + z) -
3 z2 ( x + y) - 15 xy z). The corresponding branches are parametrized by 

We set 

( 

-;; 0 -1-i ( cos ( <p) 
Ix ( <p) = 0 1 0 sin( <p) 

il 0 v2 0 
2 2 

- sin( <p) 

cos( <p) 
0 

~) ( t 
1 _ _il 

2 

"ff'o,a := {xz( <p ), <p E (0, <t';,o) }, 

with <p~,o := arccos( 1f) and 

(2 - 3 cos2 (cp)) (y 2 
- ~(:i:2 + z2

)) 

~ t l · 
0 il 

2 

+3 cos(<p).J2 sin(<p)y(x + z) + 3 cos2 (<p)xz. 

(5.10) 

(5.11) 

Xa(cp) .- fx(cp)v; = V: (-6 + 5 cos2 (cp)) cos(cp)(:i:3 + z3
) + (2 - 5 cos2(cp)) sin(cp)y3 

3 ( ) . 3J2 ( ) + 2" -2 + 5 cos2(<p) sm(<p)y(x2 + z2
) + - 4- -2 + 5 cos2 (<p) cos(<p)zx(x + z) 

+ 3'{2 ( ( 4 - 5 cos2
( cp)) cos( cp )y2

( :i: + z) + 15 cos2
( cp) sin(cp ):i:yz. (5.12) 

The last connection between the equilibria in Fixo(a)/(0(2)eZ~)(D3 ) and the equilibria in 
Fixo(a)/(0(2)eZ~)(D4) is also obtained by Xl· 

We take 

(5.13) 

which connects Vi to the spherical harmonic function of degree l which is axisymmetric 
with respect to the y-axis. For simplicity we combine the last two connections to 

Tf'0 := {xz(<p),<p E (0,-Jr/2)}. (5.14) 

All other connections lie on the group orbit of T~,o, Tf'o,a or Tf'O,b. 
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Figure 5: Fix(oez2,o(a)/(0(2)ezm and Fix(o-,O(a)/(0(2)ezm 

Considering L = <DEB7l~ we first need the subgroups of <DEB7l~. Some are again of the form 
L' or L'EB7l2 where L' is a subgroup of <D. There is also a bunch of class III subgroups 
of <DEB7l2, but they are not relevant for the action on 0(3)/(0(2)EB7l2), because any 
element is clearly invariant· under I = -11.. Therefore all occurring stabilizers are of the 
form L' EB7l2. Compared with L = <D we obtain the same fixed-point subspaces; just the 
stabilizers increase by I = -11. ( cf. Figure 5). 

Figure 6: Subgroups of <D~ 

<0-

To discuss L = <0-, we first give the subgroups of <0- in Figure 6. ( cf. [5], Chapter XIII 
Proposition 9.4). 
As to our usage of notation for the class III subgroups see again [5], Chapter XIII Theorem 
7.5 (for instance Dt = D2 U {-1, I E D4 \D2} ). We have 

Fixo(3)/(0(2)ez2)(7l2) ~ 8 1 U lpt, 

FiX0(3)/(0(2)9Z2)(D~) ~ lpt', 

Fixo(3)/(0(2)ez~)( D~) 
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FiXQ(3)/(0(2)9Z2) ( D~) ~ lpt 
~ 3pt. 



All connections of Fix(<DEElZ~,O(a)/(0(2)EElZm and Fix(<D-,O(a)/(0(2)EElZ~)) have already been 
parametrized (by w and x) ( cf. Figure 5). 

It remains to discuss the case H = 0(2)-. Since 0(3)/0(2)- ~ 8 2 we have for L = OE97l~ 
as nontrivial fixed-point subspaces (D~,:z: denotes a D2 subgroup of OE97l~ with D2 c/- D~) 

FiX0(3)/0(2)-{7l2) rv 8 1
' 

Fixo(a)/0(2)-(D~) ·rv 2pt, 

Fixo(a)/0(2)-(D~':z:) rv 2pt 

Fia}o(a)/0(2)-(D~) ~ 2pt. 

Fix(<DEElZ2,o(a)/0(2)-) is given in Figure 7. For L = o- the stabilizers decrease. Since 
D~ c/- o- these equilibria have only Di C D~ symmetry and since D~,:z: c/- o- these 
equilibria are now missing ( cf. Figure 7). In the last case L = 0 no connection is left, 
because Z2 c/- <D. The parametrizations for these H = 0(2)- cases, which we will need 
in the sequel, have been developed earlier (see w and x for the case l = 3). 

5.3 The Fixed-Point Subspaces in case L = JI, 1IEB7l2 and H = 
0(2)EB7l2, 0(2)-

We begin once more with G/ H = 0(3)/(0(2)E97l~) ~ 1P2 ~ S0(3)/0(2) and let L = ][. 
Following [12], Table 1, we have 

FiX0(3)/(0(2)EElZ2) (7l2) ~ 8 1 u lpt, 

Fixo(a)/(0(2)EElZ~) ( Da) ~ lpt, 

Fixo(a)/(0(2)EElZ2)(D2) ~ 3pt 
Fixo(a)/(0(2)EDZ~) ( Ds) ~ lpt. 

Here we get as in the octahedral case three independent different branches connecting equi-
libria. However, the parametrization is less difficult, since all of them can be found as sub-

b h f 'Y'w,'ll' W . * ·- 1 (Y'.'.§:) d * ·- .!!: • {v'3(-i+v'5)) ranc es o .t l . e set using 'Pw,JI,l .- 2 arccos 5 an 'Pw,JI,2 .- 2 - arcs1n 6 
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Figure 8: Fix(I,0(3)/(0(2)EBZ~)) 

'Y'w,I,a 
.l l .-

T~,:U:,b 

rw,:U:,c 
l 

{ wi( <p ), <p E ( <p:,][,1, <p:,I,2)} 

.- {wi(cp),cp E (cp:,:u:,2 ,7r/2}. 

For simplicity we combine them to 

z 

(5.15) 

T~,:u:,a connects an equilibrium in Fixo(a)/(0(2)ez2)(D2) with one in Fizo(a)/(0(2)EBZ2)(Ds), 
i.e. for l = 2 it connects 2 x2 - (y2 + z2 ) with 

* (1 3 ~) 2 6 ~ 2 (1 3 . ~) 2 w := - + - v 5 x + - v 5xz - y + - - - v 5 z . 2 2 10 5 2 10 

Similarly taking l = 3 gives a connection from 2 x3 - 3 x(y2 + z2 ) to 
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T~,lI,b connects an equilibrium in Fixo(3)/(0(2)ez2)(Ds) with one in Fixo(3)/(0(2)ezc)(D3). 
The equilibirium in Fixo(3)/(0(2)ez2) ( D3) for l = 2 is 

2 

w; := ~ (i -v'5) :i:2 + ~ (1 + v'5) z2 
- y2 + 2:i:z. 

For l = 3 we obtain 

w; - '{; (2 (n -v'5) :v3 
- 2 (n + v15) z3 + 12 (4 - v15) :v2z 

-12 (4 + J5) xz2 
- 18 ( +1- VS) xy2 +18 (1 + v'S) zy2

). 

At last T~,lI,c connect these equilibria again with Fixo(a)/(0(2)ez2)(D2 ) : 2 z 2 - (x2 + y2 ) 

in the case l = 2 and 2 z3 - 3 z(x2 + y2 ) in the case l.= 3. 
The discussion of L = ](ffiZ~ and H = 0(2)E9Z~ gives again only the additional symmetry 
I = -11. The remaining cases L = ][, ](ffiZ~ and l! = 0(2)- can be .discussed as in the 
tetrahedral case. In any case, ·connections which occur are already parameterized. 

6 Basic Flows for Perturbations of the Reaction 
Term 

The aim of this section is to calculate the direction of the flow on connections T E 1-l(L,G/H) 
in the case G = 0(3), H = 0(2)E9Z~ or H = 0(2)- and for La supergroup of T. We 
firstly perform a case study using perturbations of the reaction term for ( 1. 8) of the form 
h: D c L2 (S2 )-+ L 2(S2 ), 

h(u)(x) = p(x) · 0(u(x)), x E S2, (6.1) 

where p E ftL and 0 : 1R -+ 1R is a smooth function. Following Theorem 2.2 on the 
connection T := { w( cp) I cp E (0, cp*)} we have to calculate 

FS/10) ( cp) := f 'I( cp) · p · 0( w( cp) )dS, cp E [O, cp*], )52 (6.2) 

where we use the tangent vector 'I(cp) := d~w(cp) without normalization (see Remark 
2.22). By a 'basic flow' we mean a function Q : [O, cp*] -+ 1R which is achieved in (6.2) 
by a specific choice of p, 0 and T. We speak of basic flows, although (6.2) actually just 
gives the direction of the flow. Note that by construction Q(O) = Q(cp*) = 0, because the 
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endpoints of every connection are equilibria of (L, G/ H) (cf. (1.12)). For simplicity, we 
restrict ourselves to the case G(w) == kwk- 1 , k E JN. Here, we use 

To obtain the parametrizations of the connections Tin Section 5, we had to assume that 
the kernel kerA(.Xo) is an irreducible representation of 0(3). This gives by Lemma 5.1 
that 

kerA(.Xo) == S1-lz, for some l E lN0 • (6.4) 

We will explicitly calculate the basic flows for some p of low degree, as well as for some 
small l. Our goal is to understand the basic flows which occur for p E 'R,'Jr. According to 
Theorem 4.6 it is sufficient to discuss p E R{)<BZ2, r3 • R{)<BZ2, r3ra · R{)<BZ2, and Ta· R{)<BZ2 
separately. We remark again that r3 • R()ez; C R{)- gives all precisely {)--invariant 
pqlynomials and the polynomials of the form r3ra · R{)<BZ2 C R{) are precisely {}-invariant 
( cf. Theorem 4. 7). 
Polynomials in fa· R{)<BZ2 are precisely TE97l~-invariant. Neve~theless, some of them can 
be written as a sum of ([)Ee7L2- and llE97L2-invariant polynomials ( cf. Theorem 4.8). The 
best chance to see tetrahedral flows, which are not influenced by any additional symmetry 
is to use p E wn. The basic flows obtained in any of the above cases might then (to some 
extend) be used to generate new T-equivariant flows by linear combination. One only 
has to ensure to combine flows obtained for the same k (in order to have homogeneous 
perturbations h - see (2.17)). Furthermore the combined flow has to have only simple 
zeros to make Theorem 2.2 applicable. 

6.1 Basic Flows for L = <DE9Z2 Symmetry 

For both H == 0(2)E97L2 and 0(2)- there are basically two different parametrizations 
for three connections of ({)E97L2, 0(3)/ H) which we have to discuss (cf. Subsection 5.2): 
T~,{) and ii''{). We simplify notation, setting 

:Fi(p,k) (en) ·== :;::_(p,k) (en) 
l,w r · T'"'•o r ' 

l 
(6.5) 

and analogously for T?•0
. At next we give a sample calculation for some specific (overview-

able) data; we calculate the flows for k == l == 2 and p == p4 • We have 
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Let bxx := 2-3sin2 (<p) = -1+3cos2 (<p), bzz := 2- 3cos2 (<p) and bxz := 6sin(<p)cos(<p). 
We obtain from (5.6) 

Using 

(2 bxx bzz + b!z) x2y4z2 - 2 bzzx4y2z2 - 2 bxx x2y2z4 

+ ( 1 + b!a:) x,4y4 + (b!a: + b~z) x,4z4 + ( 1 + b~z) y4z4 

+ ( 2 bxx bzz + b!z) ( x,6 z2 + x,2 z6) - 2 bxx ( x,6y2 + x,2y6) 

-2 bzz (z2y6 + y2z6) + b!a: x,8 + y8 + b~z zs 
+2 bxx bxz (x7 z + x3y4z + x3z5) + 2 bzz bxz (x5z3 + xy4z3 + xz7) 
-2 bxz (x 5y 2 z + xy6 z + xy2z5

). 

for any permutation u of (i,j, m) and 

we derive 

(p4,w2('f')2
)L'(S') = (i + b!,, + b~.) (2 fs, y4 z4 dS + fs, z8dS) 

+ ( 2 b,., b,. - 2 (b •• + b,.,) + b!.) (fs, z 2 y 2 z4dS + 2 fs, y 2 z6dS) . 

All these elementary integrals over S2 can be easily calculated ( cf. Section 9): 

r 2 2 4 4 
ls'J x y z dS = 315 7r, 

f y2 zsdS = _±_ 7r 
}52 63 

( y4 z4dS = __!_ 7r, 
}52 105 z dS = -7r. 1 8 4 

52 9 

We conclude 
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and after differentiating 

In the same manner, using (5.11), we calculate straight forward 

In the sequel, we do not give any further details on such calculations, since they all can 
conveniently be done by any symbolic calculation program (see Section 9 for more details). 
The former example gives us the first basic flow. Using 

"1ij ( cp) := i - j · cos2
( cp) and 'TJ( cp) := cos( cp) sin( cp) 

we define for rp := ( 'Pw, 'Px) E [O, 'P:,co = 7r / 4] X (0, 7r /2] 

Collecting the flows on w and x to 

we have proved 

Theorem 6.1 The flow {direction} fork= l = 2 and p = p4 is given by 

Thus, under the assumptions of Theorem 2.2 (with L = ([)ffi7l~ and H = 0(2)EBZV for 
the l = 2 representation on kerA(..\0), we find for the semilinear parabolic equation {1.8} 
with perturbation {6.1}, p = p4 and E>(w) = 2w, heteroclinic orbits for the perturbed flow. 
g~ffiZ~ is illustrated in the left diagram of Figure 9. 

Remark 6.2 This kind of flow occurs actually quite frequently (up to a multiple). It is 
also achieved for instance by the following perturbations (p; k): (p4 ; k = 3, 4, 5, 6), (ps; 2), 
(p~; 2), (p~; 2), (p4ps; 2), (p~; 2), (p~; 2), (p~,06 ; 2), (p4p~; 2) for l = 2 and (p4; k = 2, 4) for 
l = 3. 
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There are much more basic flows with ()EBZ~ symmetry, like for instance g~ez~ ( cp) := 
oezc: oezc: ( ) oezc: (O,cos2 (Sox)) *gi 2 (cp) or Q3 

2 (cp) := (-8) sin2 (<,c>w)cos2 (<,c>w),3 cos4 (Sox) *gi 2 (cp) 
(here the product '*' of two vectors is the product in each component). However, in both 
of these cases Theorem 2.2 is not applicable, since the zeros are not simple. Therefore we 
do not pursue this any further, although perturbations generating these basic flows may 
very well be treated together with the perturbations yielding g~ez~, as long as the latter 
are dominant. (which happens e.g. for (p6 ; k = 3, l = 2) and (p4p6 ;.k = 4, l = 2)). 
In order to see a heteroclinic cycle in the case L = ()EBZ~, the flow along if'0 should have 
no sign change. In that case at the fixed-point in the middle (<p = <f'~,o = arccos(~)) a 
double zero of :F1~~k) had to occur. This is not only a situation which Theorem 2.2 could 
not handle, but furthermore, the D3 fixed-point in the middle would be a degenerate 
fixed-point for the flow (yielding a non hyperbolic equilibrium), which is not a generic 
situation. 

6.2 Basic Flows for L = ([) Symmetry 

In the case H = 0(2)- (this corresponds to irreducible representations of kerA(.Xo) with 
l odd) we have found in Section 5~2 that Fizco,O(a)/0(2)-) contains only isolated points. 
Theorem 2.2 is not applicable, since there are no connections of((), 0(3)/0(2)-). 

In the case H = 0(2)EBZ~ (i.e. l even), however, Fiz(o,O(a)/(0(2)eZ2)) contains the same 
connections as Fizcoez2,o(a)/(0(2)eZ2))· By Theorem 4. 7 the polynomials with precisely 
Q) symmetry are r3f 6Roez2. These perturbations give just the trivial flow (which means 
Theorem 2.2 is again not applicable): 

Theorem 6.3 For all irreducible representations of 0(3) on kerA(.A0 ) and with H = 
0(2)EBZ~ (which corresponds to even l) we obtainfor all perturbations p E 73f 6Roez2 C 
R 0 just the trivial flow (k E IN}: 
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Proof. Consider for instance 

~(p,k) ( ) d ( - ( ) k) .rz,x. 'P = dc.p p, Xz c.p L2(S2), c.p E (0, 7r /2] . 

xz( c.p) is a sum of homogeneous polynomials of degree l. Hence xz( c.p )k is a sum of homo-
geneous polynomials of degree k · l and since l is even, so is k · l. On the other hand, 
p E f 3r6ft()ESZ2 is a sum of homogeneous polynomials of odd degree, since the generators 
of ft ()ESZ2 have only even degree. Altogether, p · xz ( c.p )k is a sum of homogeneous poly-
nomials of odd degree. However, integration of homogeneous polynomials of odd degree 
yields 0 ( cf. ( 6. 7)) and the proof is established. D 

6.3 Basic Flows for L = o- Symmetry 

From Subsection 5.2 we know that Fix(()-,0(3)/(0(2)E9Z2)) contains connections which are 
parametrized by w and x, whereas the relevant connections in Fixj()-,0(3)/0(2)-) are 
given by x only. The <0- perturbations of interest are of the form f 3 'R.()ESZ2. Hence, for 
H = 0(2)$7.l~ we have for the same reason as in Theorem 6.3: 

Theorem 6.4 For all irreducible representations of 0(3) on kerA(..Ao) and with H = 
0(2)$7.l~ (i.e. l even) any perturbation p E f 3 ft()ESZ2 C ft()- gives just the trivial flow 
(k E JN): 

For H = 0(2)- (and l odd) we just have to consider the connection X· Note that the con-
nection of (<O-, 0(3)/0(2)-) which connects two D~ equilibria is only half parametrized 
by x ( cf. Figure 7). This, however, does not matter, since the flow on the other part is 
obtained by a reflection. Similar to Theorem 6.4 we have for even k the trivial flow: 

Theorem 6.5 For all irreducible representations of 0(3) on kerA(..Ao) and with H = 
0(2)- {i.e. l odd} we get for all perturbations p E f 3ft()ESZ2 C ft()- and for even k E JN 
just the trivial flow: 
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Proof. The proof is done along the lines of the proof of Theorem 6.3. D 
Therefore only for odd k and odd l ~--perturbations might yield situations, where 
Theorem 2.2 is applicable. Some of them indeed do. 

Theorem 6.6 The flow {direction) in case k == 1, l == 3 and p == fa is given by 

(6.8) 

Thus, in case the assumptions of Theorem 2.2 {L == ~- and H == 0(2t} are satisfied for 
the l == 3 representation on kerA(.Xo), we find for the semilinear parabolic equation {1.8} 
with perturbation {6.1}, p == f 3 and G(w) == 1, heteroclinic orbits. Q?- is shown in Figure 
9. 

Remark 6. 7 Again this kind of flow occurs quite frequently (up to a multiple). It is 
achieved for instance by the following perturbations (p; k) and l == 3: (fa; k == 3, 5, 7), 
(fap4; 1), (fa/36; 1), (fa,O~; 1), (fap~; 1), (rap4p5; 1). 

Other evaluations of the flow formula give e.g. g~r(cp) :== (cos2 (cp) · (7 cos2(cp)- 8)). 
9?-(cp) or 9T~(cp) :== (cos4 (cp) sin2 (cp)) ·9f-(cp), but Theorem ~.2 does not apply, except, 
if flows do appear combined with 9?- and 9?- is dominant (use for instance ( fap4; 3) 
and (fap6; 3) for l == 3). · 

6.4 B·asic Flows for L = 1IEB7l2 Symmetry 

Here we have to consider ( cf. Subsection 5.3) 

~(p,/c)( ) d (- ( )le) 
Jl,w Cf' == dcp p, Wz Cf' L2(s2), 

which parametrizes all three important connections at once. 

Theorem 6.8 The flow (direction} with k == 3, l == 2 and p == i6 is given by 

_ -
1152 

'Tf sin( cp) cos( cp) (5 (1 - 6 sin2( cp) cos2( cp)) - v'5~12( cp )) 
5005 

1152'"' . f?:U:EB7l2 ( ) • 
-. 5005" ~ 1 cp 

If the usual assumptions of Theorem 2.2 {L = 1IEB7l~ and H == 0(2)EB7LV are satisfied, we 
find heteroclinic orbits as in Figure 10. 
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In the g~ez2 picture, the D 5 equilibria are unstable and the D3 equilibria are stable. Only 
the D2 equilibria are hyperbolic. 

Remark 6.9 Other perturbations (p; k) which yield this flow (up to a multiple) are e.g.: 
(t:6; k = 4, 5, 6), (£~; k = 3, 4) for l = 2 and (£6 ; k = 2, 4), (£~; k = 2) for l = 3 (i.e. 
H = 0(2t}. . . 

·Another basic flow which occurs is 

g:ez2 ( cp) .- cos3( cp) sin3( cp) 
· ((1 - 5 cos2(cp) sin2(cp)) + Vs(l - 6 sin2(cp) cos 2 (cp))~12(cp)), 

but it contains nonsimple zeros. A sum of g~ez2 and g:ez2, where Theorem 2.2 can be 
applied, is achieved e.g. by (£~; k = 5, l = 2). In this case, as for L = OE97.l~, heteroclinic 
cycles cannot be generic, because both the D3 and the D 5 fixed-point would be non 
hyperbolic saddles for the flow. 

6.5 Basic Flows for L = 'Jl\BZ2 Symmetry 

The only relevant connection in this case is w = wz ( cp) for cp E [ 0, ~]. We are :firstly going 
to consider perturbations p E ft'lrez2 which are sums of polynomials from ftOez2 and 
ft][ez2. Due to the special structure of the forced zeros of flows related to OE97.l~ and 
1IE97.l~ symmetry, we expect that the sum of these two flows contains not only the zeros 
which are forced by the group action. 
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Theorem 6.10 

1152 ( 2 4 ) - 1001 7r 1- 6 cos (cp) + 6 cos (cp) cos(cp) sin(cp) 

_ 1152 gTmz~ ( ) 
-. 1001 7r 1 cp . 

Hence, under the usual assumptions of Theorem 2.2 (L = TE97l~ and H = 0(2)E97lV 
for the l = 2 representation of kerA(..\o), we find heteroclinic orbits for p = f 6 and 
8(w) = 3w2 • g~mz2 is illustrated in Figure 10. 

Remark 6.11 The same kind of flow is also achieved by perturbations (p; k) like: (r6 , k = 
4, 5, 6), (rsp4; k = 3, 4), (rsfis; k = 3, 4), (rs,O~; k = 3, 4), (rs,04,0s; k = 3, 4), (r6p~; k = 3, 4) 
for l = 2 and (rs; k = 2, 4), (rsp4; 2), (rs,Os; 2), (rsp~; 2), (rs,O~; 2), (r6p4p6; 2) for l = 3. 

We also observe g~mz2 ( cp) := ( 1 - 5 cos2 ( cp) sin2 ( cp)) sin3 ( cp) cos3 ( cp) as an evaluation of 
Tmzc Tmzc the flow formula, but Theorem 2.2 is here not applicable. A sum of Q1 

2 and Q2 
2 , 

where Theorem 2.2 still applies, appears e.g. for (r6,04; k = 5, l = 2). 

Invariants in wn 
Following our obse~vations from above, the only. chance left to find a heteroclinic cycle 
for perturbations of the reaction term is using p E wn ( cf. Section 4.1). We obtain for 
instance 

.r-J::,~, 7) ( cp) = 

= 2~~:~~~5 rr sin2 (cp) cos2 (cp) 1t12(cp)(l - 5 cos2 (cp) sin2(cp)) (1 - 9 cos2 (cp) sin2 (cp)). 

To this flow not only Theorem 2.2 is not applicable, but furthermore it contains lots of 
additional zeros. 

6.6 A Summary: Basic Flows for L = 1r 

Since any of the precedingly discussed groups for L have been supergroups of T, we observe 
all these flows for T perturbations all well. Moreover, flows related to the same k might 
be added (as long as the zeros remain simple) to obtain new kinds of flows. Therefore, so 
far we were able to show the existence of many heteroclinic orbits for equations, where the 
forced symmetry-breaking is not too strong (e > 0 small). However, in all these ·examples 
we found no heteroclinic cycle connecting only the equilibria which were forced by our 
symmetry (these are for L = T only the D2 fixed-points). 
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The reason for this is simply, that even our perturbed equation still possesses variational 
structure. At this point however, a more convenient way to understand that problem is 
to look at (6.3). In case that p E ft'Jr, necessarily 

holds. Therefore d~ (p, w1( cp )k)L2(s2) must vanish somewhere in (O,-ir /2), i.e. F~~J will 
l 

have an additional zero. We conclude that, in order to see heteroclinic cycles, we have to 
look at perturbations of a different structure. 

7 Heteroclinic Cycles 

We now want to consider perturbations of non-variational structure. After all that pre-
liminary work our mission to find heteroclinic cycles will now easily be accomplished. 

7.1 Perturbation of the Diffusion Term 

In case that p is a 'Jr-invariant polynomial on Ra, we obtain that 

B(e) : D c L2 (Ra) -+ L2 (1Ra) 
u 1-7 div((l + ep)Vu) 

(7.1) 

is 'Jr-equivariant. Expanding B(e), we find that the solutions of B(e)u + f(u) = 0 solve 

(1 + ep).6.u + e < Vp, Vu> +f(u) = 0, 

(where < ·, · > is the scalar product in Ra) or, 

~u + e < Vp, Vu> +(1 - ep)f(u) = o(e). 

The perturbation of the reaction term is not very helpful for finding heteroclinic cycles, 
as we saw in the last section. We therefore consider u 1-7< Vp, Vu>, or, more general 

D c L2 (Ra) -+ L2(Ra) 
u 1-t q· < Vp, Vu> 
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with q and p E R'Jr as a 'lr-equivariant mapping. This kind of perturbation is achieved 
(in part) by multiplying (7.1) with (1 + eq). Obviously, any function u E L2 (S2 ) might 
be extended (at least to an annulus) by u(x,y,z) := u(x/r,y/r,z/r), r = l(x,y,z)I. 
Therefore, the restriction 

h: D c L2 (S2
) --+ L 2(S2

) 

u r-+ ii·< \i'p, Vu> (7.2) 

with ij and p E R'Jr is a 'lr-equivariant mapping (of L2 ( S2)) as well. In the sequel we 
consider such mappings as perturbations for {1.1) (cf. also (1.8)). For convenience, we 
note that the gradient of a restriction u := u1s2 of a smooth L2(R3 ) function can be 
obtained by projecting the gradient of u to the tangent space of the sphere 

VU ( n Vu ( n- <Vu ( n , ( n >- ( n , ( n E S
2

• 

This is the kind of gradient, we have to plug into· h, because our functions are usually 
obtained from restrictions of functions defined on R 3 • On the connection Y~,'Jr (cf. (5.8)) 
we find for the flow (direction) (2.22) 

h 1 d Frw,T(cp) := -d wz(cp) · h(wl(cp))dS, 
l 52 cp cp E [O, tr /2], 

considered in Theorem 2.2: 

Theorem 7.1 Using q = T6 and p = p4 for h defined in (7.2} the flow {direction) for the 
l = 2 representation is 

Thus, under the assumptions of Theorem 2~2 {L = '][' and H = 0(2)EBZV for the l = 
2 representation of kerA(Ao), we find for the semilinear parabolic equation {1.8} with 
perturbation (7.2}, ij = r6 and p = p4, a heteroclinic cycle for the perturbed flow. This 
basic flow Q'f ( cp) := sin( cp) cos( cp) is illustrated in the next figure. 

Proof. Simple computation as already used in Section 6 or use Maple. For details confer 
Section 9. D 

Some remarks are in order. 
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Figure 11: Q'f 

Remark 7.2 The flow Q'f is of a quite stable structure (against T-equivariant perturba-
tions, i.e. perturbations of the form eh(u)+e2h(u) with any other T-equivariant mapping 
h, yields, fore > 0 small enough, again the heteroclinic cycle. 

Remark 7 .3 Other pairs of polynomials ( q; p), which give {up to a multiple) the Q'f flow 
are e.g. (p4; fa), (pa; fa), (ra; ,Oa), (ra; p~), (p~; fa), (p4; p4ra), (p4'fs; p4), (p~,Oa; iii~), and 
(iii~; p~,Oa) for l = 2. Flows which still give heteroclinic cycles, but which are not exactly 
the Q'f flow are achieved for instance by (fa; ,04), (ra; ,06), and (fa; p~) in case l = 3 (i.e. 
H = 0(2t). 
Remark 7.4 Despite some computational. effort and using the knowledge of the space 
wn, we have not been able to find heteroclinic cycles for h( u) = ft"" • \7 p\7 u · uk with 
m, k E 1N0 • However, we still find all heteroclinic orbits of Section 6. 

7.2 Perturbations using 'Jr-Equivariant Polynomial Mappings 

An obvious generalization ofthe perturbation (7.2) is 

h: D c L2(S2
) -+ L 2(S2

) 

u t-+ < €, \7u > ·uk 
(7.3) 

with some € E .Alf'.l'. Since € : 8 2 -+ lR.3 is T-equivariant, it follows easily tha~ h 
is T-equivariant as well. Section 4.2 was devoted to the question which elements are 
precisely T-equivariant. These are the elements in WM ( cf.Theorem 4.19), two of which 

-M d -M. are w 3 an w 7 . 

Using € := iiFf and k = 0 for h defined in (7.3) the flow for the l = 2 representation is 
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This is again a 9'f flow. Another tetrahedral flow can be observed with € :== iirf and 
k == 2 for h defined in (7.3). The flow for the l == 2 representation is 

h 41472 . 13824 3 13824 
Fr~·T(cp) == 55055 7rcos(cp)sm(cp)- 5005 7rcos (cp)sin(cp)+ 

5005 
7rcos5 (cp)sin(cp). (7.4) 

This gives a combination of 9'f with the basic flow 9'[(cp) :== sin3 (cp) cos3 (cp). Although 
Theorem 2.2 is not directly applicable to 9'[, it is applicable to the flow in (7.4) giving 
qualitatively again the picture in Figure 11. 

Remark 7.5 Other pairs (l; k), which give together with iirf the 9'f flow (up to multiples) 
are e.g. (3; 0), (4; 0), (2; 1), (2; 2), (2; 3), and (4; 1). The 9'[ flow combined with 9'f as 
in (7.4} can also be observed for wf with the following pairs (l; k): (2; 3), (2; 4), (3; 2), 
(4; 0), (4; 1), and (4; 2). Of course these lists are by·no means complete. 

8 Applications to Reaction Diffusion Systems 

·Here we want to address the questi~n of applying the ·previous results. to systems .. As an 
example we di'.scuss. the equations of the brusselator on the 2-sphere s; of radius p. We 
consider these equations to be a test case for more interesting equations. Our equations 
have the following form 

au 
at 
av at == D2fl v - U2V + BU, 

(8.1) 

where D1 , D2 are positive and A, BE 1R (compare Golubitsky and Schaeffer (4], Chapter 
VII §5). We find easily a family of spatially constant equilibria, namely 

U == A and V = B /A. (8.2) 

Usually one considers B to be a control parameter, while D1 , D2 , A and p are fixed. 
The stability analysis for this family of equilibria is the same as the stability analysis for 
the brusselator discussed in [ 4]. Therefore we just present the results. If one considers 
spatially constant perturbations only, one has to consider the system of ODE's 

au 
at 
av 
at 

U2V - (B + l)U +A 
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The family discussed before is stable if B < 1 + A 2 • At B = 1 + A 2 we have a Hopf 
bifurcation and a family of spatially constant periodic solutions occurs. If we are interested 
in stable non-spatially constant solutions we have to consider the full system of PDE's. 
The system under consideration is obviously 0(3)-equivariant. If we look for points where 
the family (8.2) looses the stability it is natural to ask which representation of 0(3) occurs 
on the eigenspace corresponding to purely imaginary eigenvalues. 
By changing the parameters one can also find other interesting bifurcations. In fact we 
show 
Theorem 8.1 For each .f. E JN there exist diffusion constants Di, D2 and parameters A, p 
and a critical number Bt such that for B < Bt the trivial solution (8.2) is linearly stable, 
and unstable for B > Bt. Moreover, for B = Bt the kernel of the linearization at the 
trivial solution is the absolutely irreducible representation of 0(3) of dimension 2.f. + 1. 
Proof. The proof of this theorem proceeds along the lines of the proof in [4]. Write 
U =A+ u, V = ~ + v, then the system (8.1) takes the form 

8u 
8t D1~u + (B - l)u + A2v + f(u, v) 

8v 
Bt == D2~v-Bu-A~v-f(u,v), 

(8.3) 

where f is given by f( u, v) = ~u2 + 2Auv + u2v. Let Y~, m = -.f., ... , .f. be the spherical 
harmonics of order .f.. The Laplace operator applied to Y~ considered on the sphere of 
radius p gives 

Therefore the linearization of (8.3) leads to 

8u 
8t 

8v 
Bt = D2~v - Bu - A 2v, 

and the eigenfunctions of this system have the form 

For Y to be an eigenvector the vector ( :: ) has to satisfy the condition 
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where µ(l) = l(~~i). Looking for steady state bifurcations means that we set 

det [ µDi + (B - 1) A2 2 ] = 0. 
-B µD2 -A (8.8) 

In order to prove the theorem we have to show that for given 10 E 1N the parameters 
A, Di, D2, and p can be arranged such that there exists a number B1.o < 1 + A2 such 
that for B < Blo the given branch (8.2) is stable, for B = Blo there exists some solution 
to (8.8) with µ(l) = µ(lo) and for all other l the determinant is positive. Moreover the 
kernel of (8. 7) is one-dimensional. It is just a matter of some computations to verify these 
claims. D 
Choosing the parameters as Di = 1, D2 = 4, A= 3, p = 2, and B = B2 = 77 /8 we get 
the 5-dimensional irreducible representation of 0(3) as the one through which the trivial 
solution looses its stability. 

We consider symmetry-breaking perturbations of the following type 

e ( hi(B, u, Vu, z)) 
h2(B, u, Vu, z) (8.9) 

with hi(B, u, Vu, x) =< €1, Vu > and h2(B, u, Vu, x) =< €2, Vu·>, where €i,2 E M'lr. 
In order to apply the methods developed in this paper we calculate the arcs Y within 
function space L2 (S 2 ). In order to get the drift along these arcs we have to compute the 
scalar product between the tangent vectors and the perturbation terms, as we have seen 
in Section 2 and 7. The computations are the same as in the previous cases, therefore we 
just state the results. 

Theorem 8.2 There exist perturbations of the form {8.9} of degree 3, and an e0 > 0, 
such that for each perturbation with e < e0 there exist heteroclinic cycles, as described 
before. 

9 Appendix: Computation of Flows Using Maple 

To calculate the flow formula (2.22) we have to find a way to integrate efficiently over 
the sphere 8 2 • We will outline, how the symbolic computation program Maple (actually 
we use Maple V, Release 2) can be used to integrate polynomials p = p(x, y, z) over 82 • 

Writing 

p(x,y,z) = _L a;,j,mXiyizm and iJ(i,j,m) := fs
2 

3iyizmdS, 
i,3,m 

we find 
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fs2 p(~,y,z)dS == -~ ai,j,m19(i,j,m). 
i,3,m 

Therefore the knowledge of the numbers 19( i, j, m) is crucial for our problem. As already 
remarked in (6.6) and (6.7), we have for any permutation <J" of (i,j, m) 

19(i,j, m) == 19(<J"(i), <J"(j), <J"(m)), 

and 

19(i,j,m) == 0 for i,j,m E 1N0 and i,j or m odd. 

Hence only 19(i, j, m) for i, j and m even is of interest. The recursion formula 

.?(i,j,m+2)=. i:n+l l(i,j,m), i,j,mElNo i+J +m+ 

(9.1) 

is not hard to see. Using (9.1) we get similar expressions for increasing i arid j, whence all 
needed values of 19 can be calculated easily using 19(0, 0, 0) == vol(S2 ) == 47r. Provided for 
even i ~ j ~ m the values of integ([i,j,m]) :== 19(i,j,m) are known, the following maple 
procedure will calculate fs2 p dS. 

polyint:= proc(p) 
local q,value,dx,dy,dz, set,s,t; 
#the values for integ(i,j,m) must be known 

value:= O; 
simplify(p); expand("); 
collect(",[x,y,z],distributed); q:=combine("); 
while (q<>O) 

do 
s:=lcoeff(q,[x,y,z],'t'); q-s*t; #extracts one coefficient x-i y-j z-m of q 
q:=simplify("); 
if s*t=O then q:= combine("); #usually not necessary 
else 

dx:= degree(t,x); 
if type(dx,even) then # only x-i y-j z-m with i,j,m even needed 

dy:= degree(t,y); 
if type(dy,even) then 

dz:= degree(t,z); 
if type(dz,even) then 

set := [dx,dy,dz]; # this coefficient yields a nontrivial integral 
set:=sort(set); 
value:= value+ s* integ(set); 
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fi: # {dz} 
fi: # {dy} 

fi: # {dx} 
fi: # {else} 

od: 
value:=simplify(value); 
RETURN(value); 

end; 

To obtain the flows of Section 6 e.g., we use: 

flow:=proc(p,k) 
local wdiff, prod; 
wdiff:=diff(w,phi); 
prod := wdiff*p*w~k; 

#Input p=polynomial, k=integer 
#w=w_l(phi) must be known 

subs(cos(phi)=ccc, 11
); subs(sin(phi)=sss, 11

); 

prod:="; value:= polyint(prod); 
subs(ccc=cos(phi), 11

); subs(sss=sin(phi), 11 ); 

value:=simplify("); RETURN(value); 
end; 

. Here a parametrization of a; connection, for instance w = wz(cp) ·(see Section 5), must be 
known. The sub- and resubstitution of sin( cp) and cos( cp) is not really necessary, but it 
speeds things up enormously. 
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