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Abstract

In the first part, it is proved that a C2-regular rigid scatterer in R3 can be uniquely identified by the

shear part (i.e. S-part) of the far-field pattern corresponding to all incident shear waves at any fixed

frequency. The proof is short and it is based on a kind of decoupling of the S-part of scattered wave

from its pressure part (i.e. P-part) on the boundary of the scatterer. Moreover, uniqueness using the

S-part of the far-field pattern corresponding to only one incident plane shear wave holds for a ball or

a convex Lipschitz polyhedron. In the second part, we adapt the factorization method to recover the

shape of a rigid body from the scattered S-waves (resp. P-waves) corresponding to all incident plane

shear (resp. pressure) waves. Numerical examples illustrate the accuracy of our reconstruction in

R2. In particular, the factorization method also leads to some uniqueness results for all frequencies

excluding possibly a discrete set.

1 Introduction

1.1 Direct elastic scattering problems

Consider a time-harmonic elastic plane wave uin (with the time variation of the form e−iωt, with a fixed fre-

quency ω > 0) incident on a rigid scatterer D ⊂ R3 embedded in an infinite isotropic and homogeneous

elastic medium in R3. This can be modeled by the reduced Navier equation (or Lamé system)

(∆∗ + ω2)u = 0, in R3\D, ∆∗ := µ∆ + (λ + µ) grad div (1.1)

where u denotes the total displacement field, and λ, µ are the Lamé constants satisfying µ > 0, 3λ +
2µ > 0. Throughout the paper we suppose that D ⊂ R3 is a bounded open set such that R3\D is

connected, and that the unit normal vector ν to ∂D always points into R3\D. Denote the linearized

strain tensor by

ε(u) :=
1

2

(
∇u + ∇u>

)
∈ R3×3, (1.2)

where ∇u ∈ R3×3 and ∇u> stand for the derivative of u and its adjoint, respectively. By Hooke’s law

the strain tensor is related to the stress tensor via the identity

σ(u) = λ (div u) I + 2µ ε(u) ∈ R3×3, (1.3)

where I denotes the 3× 3 identity matrix. The surface traction (or the stress operator) on ∂D is given by

Tνu := σ(u)ν = (2µν · grad + λ ν div + µν × curl )u. (1.4)

As usual, a · b denotes the scalar product and a × b denotes the vector product of a, b ∈ R3. In this

paper the incident wave is allowed to be either a plane shear wave taking the form

uin = uin
s := q exp(iksx · d), q, d ∈ S2 := {x ∈ R3 : |x| = 1}, (1.5)
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with the incident direction d and the polarization direction q satisfying q⊥d, or a plane pressure wave

taking the form

uin = uin
p := d exp(ikpx · d), d ∈ S2. (1.6)

Here, ks := ω/
√

µ and kp := ω/
√

λ + 2µ denote the shear wave number and the compressional

wave number, respectively. For a rigid body D, the total field u satisfies the first kind (Dirichlet) boundary

condition

u = 0 on ∂D. (1.7)

Since the scattered field usc := u − uin also satisfies the Navier equation (1.1), it can be decomposed

into the sum

usc := usc
p + usc

s , usc
p := − 1

k2
p

grad div usc, usc
s :=

1

k2
s

curl curl usc,

where the vector functions usc
p and usc

s are referred to as the pressure (longitudinal) and shear (transver-

sal) parts of usc respectively, satisfying

(∆ + k2
p)u

sc
p = 0, curl usc

p = 0, in R3\D,

(∆ + k2
s)u

sc
s = 0, div usc

s = 0, in R3\D.

Moreover, the scattered field usc is required to satisfy the Kupradze radiation condition (see, e.g. [1])

lim
r→∞

(
∂usc

p

∂r
− ikpu

sc
p

)
= 0, lim

r→∞

(
∂usc

s

∂r
− iksu

sc
s

)
= 0, r = |x|, (1.8)

uniformly in all directions x̂ = x/|x| ∈ S2. The radiation conditions in (1.8) lead to the P-part (longitudinal

part) u∞
p and the S-part (transversal part) u∞

s of the far-field pattern of usc, given by the asymptotic

behavior

usc(x) =
exp(ikp|x|)

4π(λ + µ)|x|u
∞
p (x̂) +

exp(iks|x|)
4πµ|x| u∞

s (x̂) + O(
1

|x|2 ), |x| → +∞, (1.9)

where u∞
p (x̂) is normal to S2 and u∞

s (x̂) is tangential to S2. In this paper, we define the far-field pattern

u∞ of the scattered field usc as the sum of u∞
p and u∞

s , that is,

u∞(x̂) := u∞
p (x̂) + u∞

s (x̂).

The direct scattering problem (DP) is stated as follows.

(DP): Given a scatterer D ⊂ R3 and an incident plane wave uin, find the total field u = uin + usc in

R3\D such that the Dirichlet boundary condition (1.7) holds on ∂D and that the scattered field

usc satisfies Kupradze’s radiation condition (1.8).

We refer to the monograph [21] for a comprehensive treatment of the boundary value problems of elas-

ticity, including the boundary conditions of the third and fourth kinds. It is well-known that (see [21]) the

direct scattering problem admits one solution u ∈ C2(R3\D)3∩C1(R3\D)3 if ∂D is C2-smooth, while

u ∈ H1
loc(R

3\D)3 if ∂D is Lipschitz.
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1.2 Inverse elastic scattering problems

We are interested in the following inverse problems arising from elastic scattering.

(IP): Determine the shape of the scatterer D from the knowledge of the transversal far-field pattern

u∞
s (x̂) for all x̂ ∈ S2 corresponding to one or more incident plane shear waves at a fixed frequency.

(IP’): Determine ∂D from the longitudinal far-field pattern u∞
p (x̂) for all x̂ ∈ S2 associated with all

incident plane pressure waves at a fixed frequency.

There is already a vast literature on inverse elastic scattering problems using the full far-field pattern u∞.

We refer to the first uniqueness result proved in [12], the sampling type methods for impenetrable elastic

bodies developed in [1, 2] and those for penetrable ones in [4, 25]. Note that in the above works, not

only the pressure part of far-field pattern for all plane shear and pressure waves are needed, but also the

shear part of far-field pattern. The aim of this paper is to reduce these measurement data to only the S- or

P-part of the far-field pattern over all directions of measurement corresponding to the same type of plane

elastic waves. We will study uniqueness issues and inversion algorithms for both (IP) and (IP’).

The first uniqueness results using only one type of elastic waves was proved in [11] by D. Gintides and

M. Sini. The authors proved that a C4-smooth obstacle can be uniquely determined from the S-part of

the far-field pattern corresponding to all incident plane pressure (or shear) waves. Moreover, the same

uniqueness result remains valid using the shear part of the far-field pattern. This shows that any of the

two different types of waves is enough to detect obstacles at a fixed frequency. The arguments in [11],

which are applicable for both the two and three dimensions and also for different boundary or transmission

conditions, mainly rely on the asymptotic analysis, near the boundary of the obstacle, of the pressure and

shear parts of reflected solutions when the P-part or S-part of the fundamental solution to the Navier equa-

tion (1.1) is taken as an incident field. This analysis requires the C4-smoothness assumption mentioned

above. We also refer to [10] for a MUSIC type algorithm applied to the detection of point-like scatterers

using only one type of scattered elastic waves. However, apart from the inversion scheme proposed in

[11], no inversion algorithms have been proposed and tested for identifying an extended obstacle using

one type of elastic waves.

In the first half of this paper, we present a new uniqueness proof to (IP) for C2-smooth obstacles, following

Isakov’s idea of using singular solutions (see [15]). Since only the S-part of scattered fields can be recon-

structed from the transversal far-field pattern, a boundary condition (see (2.16) or (2.31)) will be derived in

order to couple the incident shear wave and the S-part of scattered waves on ∂D. This shows some kind

of decoupling of the S-part of the scattered waves from the P-parts. Based on this observation, our proof

seems more straightforward than the arguments used in [11] and can be extended to Lipschitz scatterers

as well as the fourth kind boundary conditions. Moreover, we prove that a ball or a convex polyhedron

can be uniquely identified from the S-part of the far-field pattern corresponding to only one incident shear

wave. However, our approach (essentially the boundary condition (2.31)) is only valid for problem (IP) in

3D and cannot be generalized to problem (IP’); see Remarks 2.4 and 2.5 for a brief discussion of what

goes wrong in these cases.

In the second half, we adapt the factorization method to recover ∂D from the scattered S-waves (resp.

P-waves) for all incident plane shear (resp. pressure) waves. In particular, the factorization method also

implies some uniqueness results provided ω2 is not the Dirichlet eigenvalue of −∆∗ in D. It is well

known that such eigenvalues form a discrete set with the only accumulating point at infinity. Our numerical

experiments demonstrate satisfactory results from the S-part or P-part of the far-field pattern compared

to the reconstruction from the full far-field pattern.
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2 Uniqueness using S-part of far-field pattern

Concerning the regularity of the boundary ∂D, it is supposed that either ∂D is of class C2 or D is a

convex polyhedron defined as below.

Definition 2.1. A scatterer D ⊂ R3 is called a convex polyhedron if D is the intersection of a finite

number of half spaces with connected, non-void and bounded interior.

Note that the boundary of a convex polyhedron consists of a finite number of cells without any cracks.

Here a cell is defined as the closure of an open connected subset of a two-dimensional plane. As a

notation convention we shall employ the symbol

U(·) = U(·; d, q,D), U = usc, u, u∞
p , u∞

s , usc
p , usc

s ,

to indicate the dependence of U(·) on the obstacle D, the incident direction d and the polarization q. In

some cases we write U(·; d, q,D) = U(·; d, q) for brevity. Here is our main result on the uniqueness of

(IP).

Theorem 2.2. If there are two scatterers D and D̃ such that

u∞
s (x̂; d, q) = ũ∞

s (x̂; d, q), for all x̂, d, q ∈ S2, q⊥d, (2.1)

then D = D̃. Moreover, if D and D̃ are both balls or convex polyhedral scatterers, then the relation

u∞
s (x̂; d0, q0) = ũ∞

s (x̂; d0, q0), for all q0⊥d0, x̂ ∈ S2, (2.2)

with one incident direction d0 ∈ S2 and one polarization q0 ∈ S2 is enough to imply that D = D̃.

Theorem 2.2 will be proved in Section 2.1 for general C2-smooth scatterers, in Section 2.2 for balls and

in Section 2.3 for convex polyhedral scatterers. To prove Theorem 2.2, we need the fundamental solution

(Green’s tensor) to the Navier equation given by

Π(x, y) =
k2

s

4πω2

eiks|x−y|

|x − y| I +
1

4πω2
grad x grad >

x

[
eiks|x−y|

|x − y| − eikp|x−y|

|x − y|

]
. (2.3)

Let the vector a ∈ S2 be fixed. Denote by Gin(x; y) = Gin(x; y, a) the shear part of Π(x, y)a, i.e., for

x 6= y,

Gin(x; y, a) :=
1

k2
s

curl xcurl x[Π(x, y)a]

=
k2

s

4πω2

[
eiks|x−y|

|x − y| I +
1

k2
s

grad x grad >
x

eiks|x−y|

|x − y|

]
a. (2.4)

In the sequel, we view Gin(x; y, a) as an incident point source wave, and correspondingly, denote by

Gsc(x; y, a), G(x; y, a), G∞
s (x̂; y, a) the scattered, total waves and the transversal far-field pattern as-

sociated with Gin, respectively. Since the function Gin(x; y, a) satisfies (see e.g. [23])

curl xcurl x Gin(x; y, a) − k2
s Gin(x; y, a) =

k2
s

4πω2
δ(x − y)a,

for x 6= y, it is easy to check that

(∆∗ + ω2)Gin = −δ(x − y)a, (2.5)

i.e., Gin(x; y, a) is one of the Green’s functions to the Navier equation (1.1). The relation (2.5) will be

used in Section 2.1 below.
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2.1 Uniqueness for a general scatterer

The aim of this section is to prove the first assertion of Theorem 2.2, i.e., the unique determination of a

C2-smooth scatterer using only the S-part of the far-field pattern for all incident shear waves. Our proof is

based on the mixed reciprocity relation between the transversal far-field pattern G∞
s (x̂; y, a) correspond-

ing to Gin and the S-part usc
s (x; d, q) of the scattered field corresponding to uin

s . The following Lemma

2.3 extends the mixed reciprocity relations of R. Potthast in acoustic and electromagnetic scattering (see

[24]) to the elastic case.

Lemma 2.3. For y ∈ R3\D, we have

q · G∞(−d; y, a) = q · G∞
s (−d; y, a) = a · usc

s (y; d, q) for all q⊥d. (2.6)

Proof. Since Gsc and usc both fulfill the Kupradze radiation condition, there holds

∫

∂D

Gsc(z) · Tν(z)u
sc(z) − Tν(z)G

sc(z) · usc(z) ds(z) = 0, (2.7)

where Tν is the stress operator defined in (1.4). Note that in (2.7) we wrote Gsc(z; y, a) = Gsc(z) and

usc(z; d, q) = usc(z) for simplicity. This notational rule also applies to the total fields G(z), u(z) and

the transversal far-field patterns G∞
s (x̂), u∞

s (x̂). From Betti’s integral theorem, for radiating solutions

Gsc ∈ C2(R3\D)3 ∩ C1(R3\D)3 to the Navier equation, one can derive the integral representation

Gsc(x) =

∫

∂D

[Tν(z)Π(x, z)]>Gsc(z) − Π(x, z)Tν(z)G
sc(z) ds(z), x ∈ R3\D, (2.8)

where TνΠ = (TνΠ1, TνΠ2, TνΠ3) with Πj being the j-th column of Π. Letting |x| → ∞ in (2.8) and

using the definitions of u∞
p and u∞

s in (1.9), it follows that (see also [1])

G∞
p (x̂) =

∫

∂D

{
[Tν(z) {x̂x̂>e−ikpx̂·z}]>Gsc(z) − x̂x̂>e−ikpx̂·z Tν(z)G

sc(z)
}

ds(z), (2.9)

and

G∞
s (x̂) =

∫

∂D

{
[Tν(z){(I − x̂x̂>)e−iksx̂·z}]>Gsc(z)

−(I − x̂x̂>)e−iksx̂·zTν(z)G
sc(z)

}
ds(z). (2.10)

Since q · d = 0, we deduce from (2.9), (2.10) with x̂ = −d that

q · G∞
p (−d) = 0, (2.11)

q · G∞
s (−d) =

∫
∂D

{
Gsc(z) · Tν(z) [qeiksd·z] − qeiksd·z · Tν(z)G

sc(z)
}

ds(z). (2.12)

Combining (2.11), (2.12) and (2.7) gives

q · G∞(−d; y, a)

= q · G∞
s (−d; y, a)

=

∫

∂D

{
Gsc(z) · Tν(z) u(z; d, q) − u(z; d, q) · Tν(z)G

sc(z)
}

ds(z). (2.13)

This proves the first identity in Lemma 2.3. Again using Betti’s integral theorem, we have (cf. (2.8))

usc(x) =

∫

∂D

{
[Tν(z)Π(x, z)]>usc(z) − Π(x, z)Tν(z)u

sc(z)
}

ds(z), x ∈ R3\D,
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implying that

a · usc
s (x; d, q)

= a · 1

k2
s

curl xcurl x {usc(x; d, q)}

= a · 1

k2
s

curl xcurl x

{∫

∂D

[Tν(z)Π(x, z)]>usc(z) − Π(x, z)Tν(z)u
sc(z) ds(z)

}

=

∫

∂D

{
usc(z) · Tν(z)G

in(x; z) − Tν(z)u
sc(z) · Gin(x; z)

}
ds(z).

Moreover, applying Betti’s second integral theorem to uin and Gin in D yields

0 =

∫

∂D

{
uin(z) · Tν(z)G

in(x; z) − Tν(z)u
in(z) · Gin(x; z)

}
ds(z), x ∈ R3\D.

Adding up the previous two equalities with x = y, we arrive at

a · usc
s (y; d, q) =

∫

∂D

{
u(z) · Tν(z)G

in(y; z) − Tν(z)u(z) · Gin(y; z)
}

ds(z)

=

∫

∂D

{
u(z) · Tν(z)G

in(z; y) − Tν(z)u(z) · Gin(z; y)
}

ds(z), (2.14)

where the last equality sign follows from the symmetry of Gin(z; y) in z and y. Combining (2.14) and

(2.13), we find

q · G∞
s (−d; y, a) − a · usc

s (x; d, q)

=

∫

∂D

{
[Tν(z) u(z; d, q)]> · G(z) − u(z; d, q) · Tν(z)G(z)

}
ds(z)

= 0.

This proves the second identity in (2.6).

Our proof of the first assertion of Theorem 2.2 relies on a refinement of the arguments in [15, 18, 12] using

singular solutions and the simplified version (see e.g. [23, Theorem 14.6]) using the mixed reciprocity

relations. Note that in our proof only the S-part of scattered fields can be uniquely determined from the

transversal far-field pattern.

Proof of Theorem 2.2 for a general obstacle. Let D and D̃ be the two rigid obstacles in Theorem

2.2 satisfying (2.1). Let Ω denote the unbounded connected component of R3\D ∪ D̃, and define the

incident point source waves Gin(x; y, a) as in (2.4) for y ∈ Ω, with some polarization vector a ∈ S2 to

be determined later. From the identity (2.1) and the Rellich lemma it follows that

a · usc
s (y; d, q) = a · ũsc

s (y; d, q), for all d, q ∈ S2, d⊥q, y ∈ Ω,

which, combined with the reciprocity relation in Lemma 2.3, gives

q · G∞
s (−d; y, a) = q · G̃∞

s (−d; y, a), for all d, q ∈ S2, d⊥q, y ∈ Ω.

Together with the relation d · G∞
s (−d; y, a) = d · G̃∞

s (−d; y, a) = 0, the previous identity implies

G∞
s (x̂; y, a) = G̃∞

s (x̂; y, a), for all x̂ ∈ S2, y ∈ Ω.
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Again applying the Rellich lemma, we have the coincidence of the shear parts of Gsc and G̃sc,

Gsc
s (z; y, a) = G̃sc

s (z; y, a), for all z, y ∈ Ω. (2.15)

Since the compressional part Gsc
p of Gsc is irrotational and the total field G(z; y) = Gin(z; y) +

Gsc
p (z; y) + Gsc

s (z; y) = 0 on ∂D for all y ∈ R3\D, we get

ν(z) · curl z(G
in(z; y) + Gsc

s (z; y)) = ν(z) · curl zG(z; y)

= −Divz (ν(z) × G(z; y))

= 0 (2.16)

for z ∈ ∂D, where Div(·) stands for the surface divergence operator which is well-defined on the C2-

smooth boundary ∂D. Analogously, there holds ν(z) · curl z(G
in(z; y) + G̃sc

s (z; y)) = 0 for z ∈ ∂D̃.

Assuming that D 6= D̃, we next derive a contradiction from (2.15) and the boundary condition (2.16).

Without loss of generality, we may choose a point y∗ ∈ ∂Ω and a vector a∗ = a∗(y∗) ∈ S2 such that

y∗ ∈ ∂D, y∗ /∈ ∂D̃ and a∗ × ν(y∗) 6= 0. In particular, for sufficiently large N ∈ N+, we may assume

yn = y∗+a∗(y∗)/n ∈ Ω, n ≥ N. Choose the polarization vector a ∈ S2 such that a·(ν(y∗)×a∗) 6= 0.

Taking z = y∗, y = yn in (2.15) and setting ν = ν(y∗) , we find

ν(y∗) · curl z(G
sc
s (z; yn))|z=y∗ = ν(y∗) · curl z(G̃

sc
s (z; yn))|z=y∗ , for all n ≥ N. (2.17)

On the one hand, the right hand side of (2.17) is uniformly bounded, due to the well-posedness of the

forward scattering problem and the fact that y∗ ∈ R3\D̃. On the other hand, it follows from (2.16) and

the definition of Gin(z, y) that

ν(y∗) · curl z(G
sc
s (z; yn))|z=y∗ = −ν(y∗) · curl z(G

in(z; yn))|z=y∗

=
k2

s

4πω2
ν(y∗) · (a ×∇z

eiks|z−yn|

|z − yn|
)|z=y∗

=
k2

s

4πω2
(ν(y∗) × a) · [∇z

eiks|z−yn|

|z − yn|
]|z=y∗

=
k2

s

4πω2
(iksn − n2) exp(iks/n) (ν(y∗) × a) · a∗

which tends to infinity as n → ∞, since (ν(y∗) × a) · a∗ 6= 0. This contradiction implies that D = D̃.

2

Remark 2.4. Our arguments do not work using the longitudinal far-field pattern of plane shear waves. To

see this, we need the compressional part of Π(x, y)a given by

H in(x; y, a) = − 1

k2
p

grad xdiv x[Π(x, y)a] = − 1

4πω2
grad x grad >

x

eikp|x−y|

|x − y| a, x 6= y.

Similarly, denote by H∞
s (x; y, a), H∞

p (x̂; y, a) the transversal and longitudinal far-field pattern associ-

ated with the incident wave H in. Analogously to Lemma 2.3, one can prove the reciprocity relation

q · H∞(−d; y, a) = q · H∞
s (−d; y, a) = a · usc

p (y; d, q), y ∈ R3\D, (2.18)

for all d⊥q. However, since curl xH
in(x; z) = 0 for x 6= z we cannot generalize the arguments from

Section 2.1 to the present case by employing the boundary condition (2.16) with Gsc
s replaced by Hsc

s .

Further, we point out that our proof cannot be applied to the second (Neumann) or third kind boundary

conditions, even in the case of two-dimensional elastic scattering.
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Remark 2.5. Our approach for proving the first assertion of Theorem 2.2 cannot apply to incident plane

pressure waves. Given the incident pressure wave uin
p defined in (1.6), we can establish the following

mixed reciprocity relations

d · G∞(−d; y, a) = d · G∞
p (−d; y, a) = a · usc

s (y; d), (2.19)

d · H∞(−d; y, a) = d · H∞
p (−d; y, a) = a · usc

p (y; d), (2.20)

for all d⊥q, where usc
s and usc

p denote the S-part and P-part of the scattered field usc(y; d) corresponding

to uin
p . Again the boundary condition (2.16) cannot be employed with the transversal part Gsc

s replaced

by the irrotational longitudinal part Gsc
p or Hsc

p .

Note that the mixed reciprocity relations (2.6), (2.18), (2.19) and (2.20) remain true for other boundary

conditions and penetrable scatterers. It is worth mentioning the more general identity established in [3,

Theorem 7] between full far-field patterns, the proof of which is based on the reciprocity relation for two

point source incidences. Our Lemma 2.3 provides a more straightforward proof of these mixed reciprocity

relations. See also [3, 7, 8] for the reciprocity principles due to two incident plane elastic waves.

2.2 Uniqueness for balls

Continue of the proof of Theorem 2.2. To prove the second assertion of Theorem 2.2 for balls, we

will follow Kress’ arguments from [19] for proving uniqueness in inverse electromagnetic scattering by

perfectly conducting balls. Let Q be a rotation matrix in R3. We have the following relation between

u∞(x̂; d, q,D) and u∞(x̂; d, q, QD) (see [22, Section 5])

Q u∞
α (x̂; d, q,D) = u∞

α (Qx̂; Qd, Qq, QD), for all x̂, d, q ∈ S2, q⊥ d, α = p or s. (2.21)

If D is a ball centered at the origin, then the relation (2.21) with α = s reduces to

Q u∞
s (x̂; d, q,D) = u∞

s (Qx̂; Qd, Qq,D), for all x̂, d, q ∈ S2, d⊥q. (2.22)

Letting D and D̃ be the two balls given in Theorem 2.2, one can conclude from the explicit expression

of the S-part of the scattered field that usc
s (x; d, q) resp. ũsc

s (x; d, q) can be analytically extended into

the interior of D resp. D̃ with the exception of its center; see Appendix for the proof in elasticity. Since

usc
s (x; d, q) and ũsc

s (x; d, q) are radiating solutions to the Helmholtz equation, by the Rellich lemma the

centers of D and D̃ must coincide. Without loss of generality we may assume the center is located at

the origin. Thus QD = D and QD̃ = D̃ for any rotation matrix Q. We claim that the identity (2.2) with

one incident direction d0 and one polarization direction q0 implies the relation (2.1) for all incident and

polarization directions. Therefore, the uniqueness for balls with one incident wave follows directly from

the first assertion in Theorem 2.2. In fact, given d1, q1 ∈ S2 such that d1⊥q1, there exists a rotation Q

satisfying either Qq0 = q1, Qd0 = d1 or Qq0 = −q1, Qd0 = d1. Applying the rotation Q to both sides

of (2.2) and making use of (2.22) for D and D̃, we obtain

u∞
s (Qx̂; Qd0, Qq0, D) = ũ∞

s (Qx̂; Qd0, Qq0, D̃), for all x̂ ∈ S2,

which implies

u∞
s (Qx̂; d1, q1, D) = ũ∞

s (Qx̂; d1, q1, D̃), for all x̂ ∈ S2. (2.23)

Note that u∞
s and ũ∞

s depend linearly on the polarization. By the arbitrariness of x̂, d1, q1 ∈ S2, we arrive

at the identity (2.1). Therefore, we obtain D = D̃ as a consequence of the uniqueness result in Theorem

2.2 for all incident and polarization directions. This completes the proof of Theorem 2.2 for balls. 2
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The well-known Karp’s theorem in two-dimensional acoustics states that, a scatterer is a disc if the far-field

pattern only depends on the angle between the incident and observation directions; see e.g. [6, Chapter

5.1] in acoustics and [6, Chapter 7.1] in electromagnetics. The elastodynamic analogue of Karp’s theorem

was proved in [22] by applying the uniqueness results in inverse elastic scattering with an infinite number

of incident waves. Following [22], we next prove another elastodynamic analogue of Karp’s theorem using

only the transversal far-field pattern.

Corollary 2.6. Suppose that u∞
s (x̂; d0, p0, D) is the S-part of the far-field pattern associated with the

incident shear wave (1.5) with d = d0, q = q0. Then, D is a ball if there holds for any rotational matrix Q

that

Q u∞
s (x̂; d0, q0, D) = u∞

s (Qx̂; Qd0, Qq0, D), for all x̂ ∈ S2. (2.24)

Proof. It follows from (2.22) and (2.24) that

u∞
s (Qx̂; Qd0, Qq0, QD) = u∞

s (Qx̂; Qd0, Qq0, D), for all x̂ ∈ S2. (2.25)

With the similar arguments used to derive (2.23), we deduce from (2.25) that

u∞
s (x̂; d, q, QD) = u∞

s (x̂; d, q,D), for all x̂, q, d ∈ S2, q⊥d. (2.26)

Applying Theorem 2.2, we conclude that QD = D for all rotational matrices Q. Hence D is a ball.

Remark 2.7. The results in Section 2.2 are also true for other boundary conditions using P- or S-part

of the scattered waves corresponding to P- or S-incident waves, since the arguments are based on the

corresponding results using many incident waves.

2.3 Uniqueness for convex polyhedrons

Continue of the proof of Theorem 2.2. Suppose that (2.2) holds for two different convex Lipschitz

polyhedral obstacles D and D̃. Without loss of generality, we may always assume that there exists a

corner point A ∈ R3 of ∂D such that A /∈ ∂D̃. Denote by Γ̃j , j = 1, 2, 3 three cells of ∂D meeting at

A, and by Γj the extension of Γ̃j to R3\D̃. Obviously, each cell Γ̃j can be extended to infinity in R3\D̃
due to the convexity of both D and D̃. Since the total field u = uin

s + usc
s + usc

p = 0 on ∂D, there holds

the boundary condition

νj · curl u = −Div (νj × u) = 0 on Γ̃j, j = 1, 2, 3, (2.27)

with νj being the normal direction of Γj . Note that the differential operators in (2.27) make sense, because

Γ̃j is flat so that u is smooth up to the boundary except for a finite number of corner points and edges.

Analogously to (2.16), we have

νj · curl (uin
s + usc

s ) = 0 on Γ̃j, j = 1, 2, 3, (2.28)

since curl usc
p = 0 in R3\D. By the Rellich lemma, the relation (1.9) yields usc

s (x) = ũsc
s (x) for all

x ∈ Ω := R3\(D ∪ D̃). In particular, we have curl usc
s = curl ũsc

s on Γ̃j\D̃ using standard elliptic

regularity of usc
s (x) and ũsc

s (x). Thus, the identity (2.28) implies the relation

νj · curl (uin
s + ũsc

s ) = 0 on Γ̃j\D̃, j = 1, 2, 3, (2.29)
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which combined with the analyticity of the function U := uin + ũsc
s in R3\D̃ gives

νj · curl (uin
s + ũsc

s ) = 0 on Γj, j = 1, 2, 3,

that is,

iksνj · (d0 × q0) exp(iksx · d0) + νj · curl ũsc
s (x) = 0 on Γj, j = 1, 2, 3. (2.30)

Letting |x| → +∞ in (2.30) for x ∈ Γj , we obtain νj · (d0 × q0) = 0, j = 1, 2, 3, since curl ũsc
s (x)

decays uniformly in all directions (see the radiation condition in (1.8)). Noting that νj are three linearly

independent vectors, we get d0 × q0 = 0. However, this is impossible because d0⊥q0. This contradiction

gives D = D̃. 2

Remark 2.8. We have no uniqueness for non-convex polyhedrons. If D and D̃ are not necessarily convex

polyhedrons, one can only conclude that the convex hulls of D and D̃ coincide. For global uniqueness

results within non-convex polyhedral obstacles, we refer to [9] by J. Elschner and M. Yamamoto using

the full far-field patten of one or several incident plane elastic waves. Their proofs were based on the

reflection principle for the Navier equation under the third or fourth kind boundary conditions. However,

there seems no reflection principle for the Navier equation under the Dirichlet boundary condition.

To sum up, our uniqueness proofs for (IP) are essentially based on the identity

ν · curl (uin
s + usc

s ) = −Div(ν × u) = 0 on ∂D. (2.31)

One may observe further that the relation (2.31) is still true under the fourth kind boundary conditions

(see e.g. [21])

ν × u = 0, ν · Tu = 0 on ∂D, (2.32)

where T is the stress operator given in (1.4). Hence, we have

Corollary 2.9. The uniqueness results in Theorem 2.2 remain valid if the Dirichlet boundary condition

(1.7) is replaced by the fourth kind boundary conditions (2.32).

Relying on the boundary condition (2.31), some existing numerical methods, e.g., linear sampling method

[6], probe method [14] or singular sources method [24] can be utilized to recover the shape of a rigid

scatterer from only the transversal far-field pattern associated with all incident shear waves. We next

adapt the factorization method established in [16] (see also the monograph [17]) to this case. Moreover,

the factorization method also allows us to handle the problem (IP’) using only pressure waves.

3 Factorization method

We first review the F ∗F -method in inverse elastic scattering problems (see [1]) involving the full far-field

pattern, and then use a modified version to reconstruct ∂D using only one part of the far-field pattern.

In this section, the boundary ∂D of D ⊂ R3 is allowed to be Lipschitz, and D may consist of several

components.

For g(d) ∈ L2(S2)3, d ∈ S2, there holds the decomposition

g(d) = gs(d) + gp(d), gs(d) := d × g(d) × d, gp(d) := (g(d) · d) d, (3.1)
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where gs(d) belongs to the space

L2
s(S

2) := {gs : S2 → C3 : gs(d) · d = 0, |gs| ∈ L2(S2)} (3.2)

of transversal vector fields on S2, while gp(d) belongs to the space

L2
p(S

2) := {gp : S2 → C3 : gp(d) × d = 0, |gp| ∈ L2(S2)}
of longitudinal vector fields on S2. For g ∈ L2(S2)3, introduce the incident field

vin
g (x) :=

∫

S2

[
gs(d)eiksx·d + gp(d)eikpx·d

]
ds(d).

The far-field pattern v∞
g corresponding to the incident wave vin

g defines the far-field operator F from

L2(S2)3 into itself by Fg = v∞
g . Denote by v∞

g,s ∈ L2
s(S

2) and v∞
g,p ∈ L2

p(S
2) the S-part and P-part of

v∞
g , which are defined in the same way as in (3.1). The following properties of F have been derived in

[1].

Lemma 3.1. (i) The far-field operator F is compact, normal with dense range in L2(S2)3, and the scat-

tering matrix I + i
2π

F is unitary. Here I denotes the identity operator.

(ii) If ω2 is not the Dirichlet eigenvalue of the operator −∆∗ in D, then F is injective and its normalized

eigenfunctions form a complete orthonormal system in L2(S2)3.

Let the Herglotz operator H : L2(S2)3 → H1/2(∂D)3 be defined by Hg := vin
g (x)|∂D. Then, the

adjoint operator H∗ : H−1/2(∂D)3 → L2(S2)3 of H is given by

H∗ϕ(x̂) :=

∫

∂D

[
ϕs(y)e−iksy·x̂ + ϕp(y)e−ikpy·x̂ds(y)

]
, x̂ ∈ S2,

which is, by our normalization, just the far-field pattern of the function

w(x) =

∫

∂D

Π(x, y)ϕ(y) ds(y), x /∈ D,

where Π(x, y) is the Green’s tensor to the Navier equation (see (2.3)). Note that, for some non-trivial

vector a ∈ S2, the far-field pattern of the function x → Π(x, y)a is given by

Π∞
y (x̂) = e−iksx̂·y [x̂ × (a × x̂)] + e−ikpx̂·y (x̂ · a) x̂, for all y ∈ R3. (3.3)

Define the data-to-pattern operator G : H1/2(∂D)3 → L2(S2)3 by f → v∞, where v∞ is the far-field

pattern of the radiating solution v which satisfies the Navier equation (1.1) in R3\D with the boundary

data f ∈ H1/2(∂D)3. With these definitions, we have the decomposition

Fg = −GHg, H∗(ϕ) = G(w|∂D) = GS(ϕ), (3.4)

where S : H−1/2(∂D)3 → H1/2(∂D)3 denotes the classical single-layer operator

(Sϕ)(x) =

∫

∂D

Π(x, y)ϕ(y) ds(y), x ∈ ∂D.

From (3.4), it follows the factorization

F = −GS∗G∗. (3.5)

The sampling method developed in [1] is based on the factorization (3.5) combined with some properties

of the single-layer operator S (see [1, Lemmas 6.1, 6.2]), which extends Kirsch’s results [16] from acoustic

scattering to the elastic case in 3D. It is seen from [1, Section 6] that all the assumptions of [17, Theorem

1.23] are fulfilled, so that we have (see [1, Theorem 6.3])
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Lemma 3.2. If ω2 is not the Dirichlet eigenvalue of −∆∗ in D, then the ranges of G and (F ∗F )1/4

coincide.

Further, it is proved in [1, Theorem 6.4] that the function Π∞
y (x̂) given in (3.3) belongs to the range of G

if and only if y ∈ D. Thus, by Lemma 3.2 we can characterize the scatterer D in terms of the range of

(F ∗F )1/4. Using the orthogonal system of eigenfunctions of F , it follows from Picard’s theorem that

Theorem 3.3. If ω2 is not the Dirichlet eigenvalue of −∆∗ in D, then

y ∈ D ⇐⇒ W (y) :=

[
∞∑

n=1

|(gn, Π
∞
y )L2(S2)|2
|ηn|

]−1

> 0, (3.6)

where ηn ∈ C denote the eigenvalues of F with the corresponding orthonormal eigenfunctions gn ∈
L2(S2)3, and (·, ·)L2(S2) denotes the usual inner product in the space L2(S2)3.

Remark 3.4. Analogously to the factorization method in acoustics, the eigensystem (ηn, gn) in Theorem

3.3 can be replaced by the eigensystem of F# defined by

F# := |Re F | + |Im F |, Re F :=
1

2
[F + F ∗], Im F :=

1

2i
[F − F ∗].

This is mainly due to the inequality

1√
2
[ |Re ηn| + |Im ηn| ] ≤ |ηn| ≤ |Re ηn| + |Im ηn|.

We note that the eigensystem of F used in Theorem 3.3 are determined by both the P-part and S-part

of the far-field pattern for all incident pressure and shear plane waves. Relying on the previous analysis,

we now turn to the study of the factorization method for (IP) and (IP’) where the incident fields consist of

plane shear or pressure waves only.

Introduce the orthogonal projection operator Ps : L2(S2)3 → L2
s(S

2)3, where L2
s(S

2)3 is given in (3.2),

i.e. Ps g(d) = gs(d). The adjoint P∗
s : L2

s(S
2)3 → L2(S2)3 of Ps is just the inclusion from L2

s(S
2)3 to

L2(S2)3. Therefore, the operator Fs := Ps F P∗
s , which maps L2

s(S
2)3 to L2

s(S
2)3, is the projection of

the restriction of F to L2
s(S

2)3. By (3.5), it has the factorization

Fs := Ps F P∗
s = −(PsG) S∗ (PsG)∗. (3.7)

In contrast to F the operator Fs fails to be normal. Therefore, Theorem 1.23 of [17] is not applicable. We

further note that the characterization (3.6) is essentially based on the normality of the far-field operator

F and the unitarity of the scattering operator I + i
2π

F . Instead of [17, Theorem 1.23], we now apply the

range identity [17, Theorem 2.15] to the operator Fs.

Lemma 3.5. If ω2 is not the Dirichlet eigenvalue of −∆∗ in D, then the ranges of PsG and F
1/2
s# coincide,

where Fs# := |Re Fs| + |Im Fs|.

Proof. We need to justify all the conditions in [17, Theorem 2.15]. Obviously, the operator

PsG : H1/2(∂D)3 → L2
s(S

2)3

is compact with dense range, since the data-to-pattern operator G : H1/2(∂D)3 → L2(S2)3 is compact

with dense range. We collect the following properties of the single-layer operator S from [1, Section 6].
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(a) Im S = 1
2i

(S − S∗) is non-negative, that is,

Im (Sϕ, ϕ)L2(∂D) ≥ 0 for all ϕ ∈ Cα(∂D)3 .

More generally, it holds that

Im 〈ϕ, Sϕ〉 ≤ 0 for all ϕ ∈ H−1/2(∂D)3 ,

where 〈·, ·〉 denotes the duality pairing in
〈
H−1/2(∂D)3, H1/2(∂D)3

〉
.

(b) The strict inequality in the assertion (a) holds for all ϕ 6= 0 provided ω2 is not an interior Dirichlet

eigenvalue.

(c) Let Si be the single-layer operator corresponding to ω = i. Then Si is self-adjoint and coercive;

that is, there exists c > 0 such that

〈ϕ, Siϕ〉 ≥ c‖ϕ‖2
H−1/2(∂D) for all ϕ ∈ H−1/2(∂D)3 .

Furthermore, S − Si is compact from H−1/2(∂D)3 into H1/2(∂D)3.

Now, the range identity of Theorem 2.15 of [17] yields that the ranges of PsG and F
1/2
s# coincide.

To characterize the scatterer D in terms of the operator Fs, we need the following lemma.

Lemma 3.6. Let the function Π∞
y (x̂) be given as in (3.3). The function Ps(Π

∞
y ) belongs to the range of

Ps G if and only if y ∈ D.

Proof. If y ∈ D, then the trace of the function x → Π(x, y)a on ∂D belongs to H1/2(∂D)3. Thus

Ps(Π
∞
y ) = PsG(f) with f = Π(x, y)a|x∈∂D. Assume that Ps(Π

∞
y ) = PsG(f̃) for some f̃ ∈

H1/2(∂D)3, that is, the S-part Π∞
y,s of Π∞

y coincides with the S-part v∞
s of v∞, where v∞ is the far field

pattern of the radiating solution v in H1
loc(R

3\D)3 with v = f on ∂D. Denote by [Π(x, y)a]s and vs the

shear parts of Π(x, y)a and v, respectively. If y /∈ D, it follows from the Rellich identity and the unique

continuity of solutions of the Helmholtz equation that vs(x) = [Π(x, y)a]s for all x ∈ R3\{D ∪ {y}}.

Therefore,

curl x [Π(x, y)a]s = curl vs = curl v ∈ L2
loc(R

3\D)3. (3.8)

However, it follows from (2.4) that

curl x [Π(x, y)a]s = curl x Gin(x; y, a) ∼ O(|x − y|−2), as x → y in R3\{D ∪ {y}},

which contradicts (3.8). Thus y ∈ D.

Combining the previous two lemmas, we get

Theorem 3.7. If ω2 is not the Dirichlet eigenvalue of −∆∗ in D, then

y ∈ D ⇐⇒ Ws(y) :=

[
∞∑

n=1

|(gn, Π
∞
y,s)L2(S2)|2
ηn

]−1

> 0, (3.9)

where Π∞
y,s := Ps(Π

∞
y ) = exp(−iksx̂ · y) [x̂ × (a × x̂)] for some a ∈ S2, and {ηn, gn} is an

eigensystem of the positive operator Fs# defined in Lemma 3.5.
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The same technique is also applicable to the inverse problem (IP’). Let Pp denote the orthogonal projec-

tion operator from L2(S2)3 to L2
p(S

2)3, i.e., Ppg(d) = gp(d). Define the operator Fp := Pp F P∗
p . We

then have the factorization

Fp = −(PpG) S∗ (PpG)∗. (3.10)

The arguments in Lemmas 3.5 and 3.6 can be immediately applied to the operator Pp. As a consequence,

we obtain

Theorem 3.8. If ω2 is not the Dirichlet eigenvalue of −∆∗ in D, then

y ∈ D ⇐⇒ Wp(y) :=

[
∞∑

n=1

|(gn, Π
∞
y,p)L2(S2)|2
ηn

]−1

> 0, (3.11)

where Π∞
y,p := Pp(Π

∞
y ) = exp(−ikpx̂ · y)(x̂ · a)x̂ for some a ∈ S2, and {ηn, gn} is an eigensystem

of the (positive) operator Fp# := |Re Fp| + |Im Fp|.

Obviously, Theorems 3.7 and 3.8 provide new uniqueness results by using only one type of elastic waves.

Corollary 3.9. Assume that the rigid body D ∈ R3 has a Lipschitz boundary, and that ω2 is not the

Dirichlet eigenvalue of −∆∗ in D. Then D can be uniquely identified from the S-part of the far-field

pattern for all incident plane shear waves. The uniqueness is also true by employing the P-part of the

far-field pattern for all incident plane pressure waves.

4 Numerical examples

We suppose that D = Ω × R ⊂ R3 is an infinitely long cylinder, and turn to the presentation of

some numerical simulations in R2 for constructing the boundary ∂Ω ⊂ R2. We refer to [2] for the linear

sampling method and F ∗F -method in the two-dimensional inverse elastic scattering where the full far-

field pattern is involved.

Recall that in R2, the Green’s tensor of the Navier equation is given by

Γ(x, y) :=
1

4µ
H

(1)
0 (ks|x − y|) I +

i

4ω2
grad xgrad >

x [H
(1)
0 (ks|x − y|) − H

(1)
0 (kp|x − y|)]

for x, y ∈ R2, x 6= y, where H
(1)
0 (t) denotes the Hankel function of the first kind and of order zero. To

be consistent with the presentation in R3 we define the far-field pattern

u∞ := x̂ u∞
p (x̂) + x̂⊥ u∞

s (x̂), (x1, x2)
⊥ := (−x2, x1).

Here, note that u∞
p (x̂) = u∞(x̂) · x̂, u∞

s (x̂) = u∞(x̂) · x̂⊥ are two scalar functions given by the

asymptotic behavior

usc(x) =
exp(ikpx + iπ/4)√

8πkp|x|
u∞

p (x̂) x̂ +
exp(iksx + iπ/4)√

8πks|x|
u∞

s (x̂) x̂⊥ + O(|x|−3/2)

as |x| → ∞. With this normalization, for a fixed vector a ∈ C2 the far-field pattern Γ∞
y (x̂) of the function

x → Γ(x, y)a is given by

Γ∞
y (x̂) = exp(−ikpx̂ · y)(x̂ · a) x̂ + exp(−iksx̂ · y)(x̂⊥ · a) x̂⊥ =: Γ∞

y,p(x̂) x̂ + Γ∞
y,s(x̂) x̂⊥.
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We make the ansatz for the scattered field usc in the form

usc(x) =

∫

∂Ω

Γ(x, y) φ(y) ds(y), x ∈ R3\Ω,

with some function φ(y) ∈ L2(∂Ω)2. Assume that ∂Ω can be parameterized by (r1(t), r2(t)), t ∈
[0, 2π]. Then the P-part and S-part of the far-field pattern of usc are given by

u∞
p (x̂) =

∫ 2π

0

e−ikpx̂·(r1(t),r2(t))> [x̂ · φ(r1(t), r2(t))]
√

r′1(t)
2 + r′2(t)

2 dt,

u∞
s (x̂) =

∫ 2π

0

e−iksx̂⊥·(r1(t),r2(t))> [x̂⊥ · φ(r1(t), r2(t))]
√

r′1(t)
2 + r′2(t)

2 dt,

respectively, in terms of the density function φ.

Now, let N plane pressure waves dj exp(ikpx·dj) or N plane shear waves d⊥
j exp(iksx·dj) be given at

equidistantly distributed directions, that is, dj = (cos θj, sin θj) with θj = (2πj)/N , j = 1, 2, · · · , N .

Denote by u∞
p (x̂, dj), u

∞
s (x̂, dj) the P-part, S-part of the far-field pattern corresponding to the incident

pressure wave dj exp(ikpx · dj), and by u∞
p (x̂, d⊥

j ), u∞
s (x̂, d⊥

j ) the counterparts associated with the

incident shear wave d⊥
j exp(iksx · dj). We perform our numerical experiments in three cases.

SS case: Reconstruct ∂D from u∞
s (dk, d

⊥
j ) for N incident plane shear waves d⊥

j exp(iksx · dj).

PP case: Reconstruct ∂D from u∞
p (dk, dj) for N incident plane pressure waves dj exp(ikpx · dj).

FF case: Reconstruct ∂D from the full far-field pattern u∞(dk, dj)dk + u∞(dk, d
⊥
j )d⊥

k for N incident

plane elastic waves of the form dj exp(ikpx · dj) + d⊥
j exp(iksx · dj).

The operators Fs := PsFP∗
s (in the SS case) and Fp := PpFP∗

p (in the PP case) can be approximated

by the N × N matrices given by M = (u∞
s (dk, d

⊥
j ))k,j and M = (u∞

p (dk, dj))k,j , respectively. Let

(τn, Vn) be the eigensystem of the matrix M , where τn ∈ C, Vn = (vn,1, · · · , vn,N) ∈ C1×N . Define

ηn := |Re τn| + |Im τn| ∈ R and b = (b1, b2, · · · , bN) ∈ C1×N with bk given by

SS case: bk = b
(s)
k := exp(−iksdk · y)(d⊥

k · a) ∈ C,

PP case: bk = b
(p)
k := exp(−ikpdk · y)(dk · a) ∈ C,

k = 1, 2, · · · , N. (4.1)

By Theorems 3.7 and 3.8, for each sampling point y ∈ R2 and some fixed polarization vector a ∈ S, we

need to compute the indicator function

W (y) =

[
N∑

n=1

|ρ(y)
n |2
ηn

]−1

, ρ(y)
n := b · V >

n =
N∑

k=1

bkvn,k

and plot the contour (or the level) lines of the function y → W (y). The values of W (y) should be much

smaller for y /∈ D than for y ∈ D.

In the FF case, discretizing the far-field operator F gives rise to the 2N × 2N matrix (see also [2])

M =

(
(u∞

p (dk, dj))k,j (u∞
p (dk, d

⊥
j ))k,j

(u∞
s (dk, dj))k,j (u∞

s (dk, d
⊥
j ))k,j

)
, k, j = 1, 2, · · · , N.

In this case we only need to redefine b := (b(p), b(s)) ∈ C1×2N , where

b(p) = (b
(p)
1 , b

(p)
2 · · · , b

(p)
N ) ∈ C1×N , b(s) = (b

(s)
1 , b

(s)
2 · · · , b

(s)
N ) ∈ C1×N
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are defined in terms of b
(p)
j , b

(s)
j , j = 1, 2, · · · , N given in (4.1).

Figure 1 shows the two obstacles to be recovered through the factorization method. In both examples,

we compare the reconstruction results in the SS case, PP case and FF case; see Figures 2 and 3.

Using the S-part or P-part of the far-field pattern still produces satisfactory reconstruction, but it is less

reliable compared to the FF case. A possible explanation for the worse reconstruction lies in the stronger

singularities of the S-part and P-part of the scattered field Gsc(z; z) than itself as z approaches ∂Ω
from R2\Ω, where Gsc(x; z) denotes the scattered field due to the point source wave generated by the

Green’s tensor. Let r denote the distance between z and ∂Ω. Following the arguments in [11], developed

for the 3D case, we can show that |Gsc(z; z)| ∼ O(r−2) as r → 0+, while the P-part and S-part of

Gsc(z; z) behave as O(r−4). This suggests that the level curves, corresponding to the same level, will be

closer to ∂Ω in the FF case than in the SS or PP cases. From Figures 2 and 3, it seems hard to conclude

which one is better in the SS case and PP case. We use the kite-shaped obstacle to test the sensitivity

of the method to the polarization vector a ∈ S, and employ the peanut-shaped obstacle to examine noisy

effects. It is seen from Figures 2 and 3 that the reconstructions in the SS case and PP case are more

sensitive than the FF case to the polarization vector a and to the white noise of level δ.

It remains an interesting question to investigate the mixed PS case (resp. SP case), i.e., to reconstruct ∂Ω
from the S-part (resp. P-part) of the far-field pattern corresponding to all incident plane pressure (resp.

shear) waves. In our experiments, the F#-method fails if we apply the same inversion procedure to the

SP or PS case. This is understandable, because the factorization of the corresponding far-field operators

in the mixed case (see (3.7) in the SS case and (3.10) in the PP case) is no longer symmetric and thus

the range identity of [17, Theorem 2.15] is not applicable. A further investigation of these cases will be

written in a future work.
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Figure 1: The obstacles to be reconstructed.

5 Appendix

In this section, we give an explicit solution of the S-part of the scattered field for a ball D = BR :=
{|x| ≤ R} in terms of radiating spherical vector wave functions and prove its analytical extension to

R3\{0}. Let jn and yn be the spherical Bessel and Neumann functions of order n, and recall that the

linear combination h
(1)
n := jn + i yn are known as spherical Hankel functions of the first kind of order n.

In our calculations it is more convenient to employ spherical coordinates. For x = (x1, x2, x3) ∈ R3, let

16



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2: Reconstruction of a kite-shaped obstacle for N = 64, µ = 1, λ = 1, ω = 2
√

2 with different

polarization vectors a = (cos α, sin α). α = 0 in (2a), (2b) and (2c), α = π/2 in (2d), (2e) and (2f),

α = 5π/4 in (2g),(2h) and (2i), and α = 7π/4 in (2j), (2k) and (2l). We used unpolluted far-field data.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3: Reconstruction of a peanut-shaped obstacle for N = 64, µ = 1, λ = 1, ω = 3
√

2 from

noised far-field pattern with the noise level δ. In (3a),(3b) and (3c), δ = 0. In (3d),(3e) and (3f), δ = 1%. In

(3g),(3h) and (3i), δ = 5%. In (3j),(3k) and (3l), δ = 8%. We used a fixed polarization vector a = (1, 0).
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r = |x|, x1 = r sin θ cos φ, x2 = r sin θ cos φ, x3 = r cos θ, and set

−→er = x̂ := x/r, −→eθ := (cos θ cos φ, cos θ sin φ,− sin θ), −→eφ := (− sin φ, cos φ, 0).

Suppose that uin is a plane wave to the Navier equation (1.1) in R3. Then there holds the expansion

uin =
∞∑

n=1

n∑

m=−n

{
Am

n

1

kp

∇x [jn(kpr)Y
m
n (x̂)] + Bm

n

1√
n(n + 1)

curl x[xjn(ksr)Y
m
n (x̂)]

+Cm
n

1√
n(n + 1) ks

curl xcurl x[xjn(ksr)Y
m
n (x̂)]

}
(5.2)

for some constants Am
n , Bm

n , Cm
n ∈ C, where Y m

n denote the spherical harmonics. The first term on the

right hand side of (5.2) stands for the longitudinal mode, while the second and third terms represent the

two transverse modes. Elementary calculations show that on |x| = R there holds

1

kp

∇x [jn(kpr)Y
m
n (x̂)]|r=R = j′n(tp)Y

m
n (x̂)x̂ + jn(tp)

1

tp
Grad Y m

n (x̂),

curl x[xjn(ksr)Y
m
n (x̂)]|r=R = jn(ts)Grad Y m

n (x̂) × x̂,

1

ks

curl xcurl x[xjn(ksr)Y
m
n (x̂)]|r=R =

n(n + 1)

ts
Y m

n (x̂)x̂ +
1

ts
[jn(ts) + tsj

′
n(ts)]Grad Y m

n (x̂),

where tp = kpR, ts = ksR and Grad Y m
n := −→eθ ∂θY

m
n + (sin θ)−1−→eφ ∂φY

m
n denotes the surface

gradient of Y m
n over the unit sphere. Note that the tangential fields Grad Y m

n (x̂), Grad Y m
n (x̂) × x̂ are

called vector spherical harmonics of order n. Inserting the previous three identities into (5.2) gives

uin|r=R =
∞∑

n=1

n∑

m=−n

{
[j′n(tp)A

m
n + t−1

s

√
n(n + 1)Cm

n ] Y m
n (x̂) x̂

+
1√

n(n + 1)
Bm

n jn(ts)Grad Y m
n (x̂) × x̂

+[t−1
p jn(tp)A

m
n +

1√
n(n + 1) ts

(jn(ts) + tsj
′
n(ts)) Cm

n ]Grad Y m
n (x̂)

}
. (5.3)

Since the scattered field usc = usc
p + usc

s satisfies the radiation condition (1.8), the P-part usc
p and the

S-part usc
s can be expanded into

usc
p =

∞∑

n=1

n∑

m=−n

Ãm
n

1

kp

∇x [h(1)
n (kpr)Y

m
n (x̂)],

usc
s =

∞∑

n=1

n∑

m=−n

{B̃m
n

1√
n(n + 1)

curl x[xh(1)
n (ksr)Y

m
n (x̂)] +

C̃m
n

1√
n(n + 1) ks

curl xcurl x[xh(1)
n (ksr)Y

m
n (x̂)]}

for |x| ≥ R with some complex valued constants Ãm
n , B̃m

n , C̃m
n . On the surface |x| = R the scattered

field usc admits an expansion analogous to (5.3) only with jn, A
m
n , Bm

n , Cm
n replaced by h

(1)
n , Ãm

n , B̃m
n , C̃m

n ,

respectively. Taking into account the Dirichlet boundary condition, we obtain

B̃m
n h(1)

n (ts) = −Bm
n jn(ts), M̃n(tp, ts)

(
Ãm

n

C̃m
n

)
= −Mn(tp, ts)

(
Am

n

Cm
n

)
, (5.4)

19



where M̃n(tp, ts) is the 2 × 2 complex valued matrix given by

M̃n(tp, ts) =

(
h

(1)
n

′(tp) t−1
s

√
n(n + 1)

t−1
p h

(1)
n (tp)

1

ts
√

n(n+1)
[h

(1)
n (ts) + tsh

(1)
n

′(ts)]

)

and Mn(tp, ts) is defined analogously to M̃n(tp, ts) only with h
(1)
n , h

(1)
n

′ replaced by jn, j
′
n. By the

uniqueness of the forward elastic scattering problem, the above system (5.4) for Ãm
n , B̃m

n , C̃m
n is uniquely

solvable.

Suppose that uin = uin
s is an incident plane shear wave taking the form (1.5). The vector analogue of

the Jacobi-Anger expansion yields the expression (5.2) for uin
s with (see [20])

Am
n = 0, Bm

n =
−4πin√
n(n + 1)

(d × Grad Y m
n (d) · q), Cm

n =
−4πin+1

√
n(n + 1)

Grad Y m
n (d) · q.

Consequently, we derive from (5.4) that

B̃m
n =

in4πjn(kpR)√
n(n + 1) h

(1)
n (kpR)

(d × Grad Y m
n (d) · q), C̃m

n = D̃m
n

in+14π√
n(n + 1)

Grad Y m
n (d) · q,

with the coefficient

D̃m
n =

fn(kpR) − [jn(ksR) + ksR j′n(ksR)]

fn(kpR) − [h
(1)
n (ksR) + ksR h

(1)
n

′(ksR)]
, fn(kpR) :=

n(n + 1)h
(1)
n (kpR)

kpR h
(1)
n

′(kpR)
.

Therefore we arrive at an explicit representation of the S-part usc
s of usc with the coefficients B̃m

n and C̃m
n

given above. By the addition theorem (see e.g. [6, Theorem 2.8]) it can be further concluded that usc
s is a

function of cos β, where β denotes the angle between x̂ and the incident direction d.

Since usc
s satisfies the Maxwell equation, to prove its analytical extension into {x : |x| < R, x 6= 0} we

only need to justify the convergence of the tangential component of usc
s in the mean square sense on the

sphere |x| = R0 for any 0 < R0 < R; see [6, Theorem 6.26]. Using Parseval’s equality,

∫

|x|=R0

|ν × usc
s |2ds(x) = R2

0

∞∑

n=1

n∑

m=−n

|B̃m
n |2 |h(1)

n (ksR0)|2

+R2
0

∞∑

n=1

n∑

m=−n

{
|C̃m

n |2
∣∣h(1)

n
′(ksR0) + (ksR0)

−1 h(1)
n (ksR0)

∣∣2
}

.

By the asymptotic behavior of the spherical Bessel and Hankel functions as n → ∞ and their differential

formulas (see e.g. [6, Chapter 2.4] or [23]), we have

jn(t) =
(2t)n n!

(2n + 1)!

(
1 + O(

1

n
)

)
,

tj′n(t) =
n(2t)n n!

(2n + 1)!

(
1 + O(

1

n
)

)
,

h(1)
n (t) =

(2n − 1)!

i 2n−1(n − 1)! tn

(
1 + O(

1

n
)

)
,

th(1)
n

′(t) = − n (2n − 1)!

i 2n−1(n − 1)! tn

(
1 + O(

1

n
)

)
.

Then we can check that indeed ||ν × usc
s ||2L2(BR0

)3 < ∞ for any 0 < R0 < R.
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