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Abstract

This work introduces a new thermodynamically consistent diffuse model for two-component flows of incom-
pressible fluids. For the introduced diffuse interface model, we investigate physically admissible sharp interface
limits by matched asymptotic techniques. To this end, we consider two scaling regimes where in one case we
recover the Euler equations and in the other case the Navier-Stokes equations in the bulk phases equipped with
admissible interfacial conditions. For the Navier-Stokes regime, we further assume the densities of the fluids are
close to each other in the sense of a small parameter which is related to the interfacial thickness of the diffuse
model.

1 Introduction

In recent years, for the description of flows of multi-component fluid mixtures, diffuse interface models have emerged
as a powerful tool for both theoretical and numerical treatments. In this work, we introduce a new thermodynamically
consistent diffuse interface model describing flows of two incompressible fluids, which might be different substances
or two phases of one substance. The model permits the transfer of mass between the phases due to diffusion
and phase transitions. A basic diffuse interface model for two incompressible, viscous Newtonian fluids having
the same densities has been introduced by Hohenberg and Halperin in [HH77]. That model has been modified in
a thermodynamically consistent way in several works, see e.g. [GPV96, LT98]. The thermodynamically consistent
versions have been investigated analytically in [Abe09, Abe12], where existence of strong local-in-time solutions and
weak solutions has been shown. In the present work, we will derive a diffuse interface model for two incompressible
constituents, in which phase transitions may occur. The densities of the fluids may be different, which leads to
quasi–incompressibility of the mixture. In addition, we study sharp interface limits for two different scalings, which
we deduce by using formally matched asymptotic expansions. For one scaling, we recover the incompressible
Euler system in the bulk and Young–Laplace and generalized Gibbs–Thomson laws at the interfaces between the
two fluids. In the other scaling, we obtain the incompressible Navier–Stokes system in the bulk phases and Young–
Laplace and generalized Gibbs–Thomson laws at the interfaces between the two fluids.

The newly introduced diffuse interface model is of Navier-Stokes-Korteweg/Cahn–Hilliard/ Allen–Cahn type. It is
given by the following system of PDEs in [0, Tf )× Ω:

∂tϕ+ div(vϕ) = c+

(
mj∆−mr

)
(c+µ(ϕ) + c−λ),

ρ(ϕ)(∂tv + (v · ∇)v) +∇p(ϕ) +∇λ
= ∇(η(ϕ)divv) + div(η̂(ϕ)(∇v +∇vT )) + γϕ∇∆ϕ,

divv = c−
(
mj∆−mr

)
(c+µ(ϕ) + c−λ),

(NSK-CH-AC)

where the chemical potential µ and the non-monotone pressure p are given by

µ(ϕ) = W ′(ϕ)− γ∆ϕ and p(ϕ) = ϕW ′(ϕ)−W (ϕ). (1)

Here, the basic variables are the (volumetric) phase fraction ϕ, the (barycentric) velocity v, and the Lagrange
multiplier λ which takes care for the incompressibility of the constituents. The phase fractionϕ is an order parameter
such that the pure constituents correspond to ϕ = ±1. The total density of the mixture is determined by ϕ via

ρ(ϕ) = ρ̃1

2 (1 + ϕ) + ρ̃2

2 (1− ϕ) . (2)
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Here, ρ̃1 > 0 and ρ̃2 > 0 denote the constant densities of the incompressible constituents. The constant coeffi-
cients c+ > 0 and c− ≥ 0 in (NSK-CH-AC) are given by the following relation

c± = 1
ρ̃1
± 1

ρ̃2
with ρ̃2 ≥ ρ̃1.

We like to emphasize that the order parameter ϕ is related to the volumetric fraction of the constituents unlike the
approach in [Wit10] which relates it to the concentration of the fluids.

The Lagrange multiplier λ is the analogue of the hydrodynamic pressure in the case of a single incompressible
fluid. We assume that the local part of the free energy of the system, i.e.W (ϕ), is a double-well potential of ϕ (see
Section 4 for further assumptions on W ). The free energy then reads

ρψ(ϕ,∇ϕ) = W (ϕ) +
γ

2
|∇ϕ|2,

where the gradient term γ
2 |∇ϕ|

2 models capillarity effects. Although the details of the derivation of the model are
given later, we like to note here that the ϕ-dependent Navier-Stokes viscosity coefficients of the mixture, η(ϕ)
and η̂(ϕ), are given as the interpolation between the two constant viscosities of the individual fluids. The further
coefficients mj ≥ 0 and mr ≥ 0 are the mobility constant of the diffusion flux and the production rate of ϕ.

The work is organized as follows. In the upcoming section we derive the thermodynamically consistent model
for two-phase flows with phase transitions. The third section is devoted to the non-dimensionalization and the
introduction of two interesting scaling regimes of the system. Then, in Section 4, we present the setting of asymptotic
analysis. Finally, in Sections 5 and 6, we determine the sharp interface models for the two different scaling regimes
derived previously.

2 Derivation of the Quasi–incompressible Two-phase Model

In this section, we will derive the model (NSK-CH-AC) starting from the balances of mass, momentum and en-
ergy for the constituents. Note that the modeling includes the non–isothermal case, although we only consider the
sharp interface limits in the isothermal case. The core of the modeling is the dissipation inequality, and a suitable
decomposition for the determination of the constitutive relations.

We consider a binary mixture in an open set Ω ⊂ Rd whose constituents may either be different substances or two
phases of a single substance. The constituents are described by two mass densities (ρi)i∈{1,2} : [0, Tf )× Ω→
R+, two velocities (vi)i∈{1,2} : [0, Tf )× Ω→ Rd and a common temperature T : [0, Tf )× Ω→ R+. These
quantities are the basic variables that describe the thermodynamic state of the mixture.

2.1 Equations of balance

The field equations for the basic variables rely on the partial balance equations for mass, momentum and energy.

2.1.1 Partial balances of mass, momentum and energy.

When external forces are neglected, these equations read for i ∈ {1, 2}, cf. [Mül85b]:

∂tρi + div(ρivi) = ri, (3)

∂t(ρivi) + div(ρivi ⊗ vi − σi) = fi, (4)

∂t(ρiei + 1
2ρiv

2
i ) + div((ρiei + 1

2ρiv
2
i )vi + qi − σivi) = hi. (5)
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The partial balance equations contain mass production rates ri, stresses σi, momentum production rates fi, inter-
nal energies ei, heat fluxes qi, and energy production rates hi.

2.1.2 Description of the total mixture.

The quantities that are assigned to the constituents are used to define the corresponding quantities that are as-
signed to the total mixture.

The total mass density and the barycentric velocity are given by

ρ =
2∑
i=1

ρi and v =
1
ρ

2∑
i=1

ρivi. (6)

The internal motion of the constituents is described by the diffusion velocities ui = vi − v.

The total stress has the form

σ̃ =
2∑
i=1

(σi − ρiui ⊗ ui) = σ −
2∑
i=1

ρiui ⊗ ui,

and the total internal energy density and total heat flux are given by

ρẽ =
2∑
i=1

(ρiei +
1
2
ρiu2

i ) = ρe+
2∑
i=1

1
2
ρiu2

i ,

q̃ =
2∑
i=1

(qi + ρieiui − σiui +
1
2
ρiu2

iui) = q +
2∑
i=1

1
2
ρiu2

iui.

(7)

2.1.3 Conservation laws of mass, momentum and energy.

Total mass, momentum and energy are conserved quantities. Thus, we have

2∑
i=1

ri = 0,
2∑
i=1

fi = 0, and
2∑
i=1

hi = 0.

2.1.4 Balance equations for the total mixture.

We sum up the partial balances and obtain the balance equations for the total mixture:

∂tρ+ div(ρv) = 0, (8)

∂t(ρv) + div(ρv ⊗ v − σ̃) = 0, (9)

∂t(ρẽ+ 1
2ρv

2) + div((ρẽ+ 1
2ρv

2)v + q̃− σ̃v) = 0. (10)

Remark 2.1. The given setting forms the basis of our treatment of two-phase flows. It relies, in particular, on the
following meta-rules given by Truesdell, [Tru68]:

1. So as to describe the motion of a constituent, we may in imagination isolate it from the rest of the mixture,
provided we allow properly for the actions of the other constituents upon it.

2. The motion of the mixture is governed by the same equations as a single body.
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2.1.5 Incompressibility of constituents.

We are interested in a mixture whose constituents are incompressible. However, the total mixture is not incom-
pressible. For illustration of that fact, we consider a small homogeneous portion of the total volume V of the mixture
which contains the masses m1 and m2 of the two constituents. The partial mass densities are then defined by
ρ1 = m1/V and ρ2 = m2/V . Note that partial mass densities are defined via the total volume of the mixture
such that additivity of mass densities is guaranteed. The notion of incompressibility is not related to the partial mass
densities but to the real densities of the constituents, namely ρ̃1 = m1/V1 and ρ̃2 = m1/V2 with V = V1 + V2.
By definition, the volumes V1 and V2 are the volumes of the pure constituents if they were isolated under the pres-
sure of the mixture. By means of the volume fraction V1/V ≡ (1 + ϕ)/2, we may write ρ1 = ρ̃1(1 + ϕ)/2 and
ρ2 = ρ̃2(1− ϕ)/2.

If the densities ρ̃1 and ρ̃2 are constants, we call the constituents incompressible. In this case the two variables ρ1

and ρ2 reduce to a single variable ϕ : [0, Tf )× Ω→ R. In the following we have to take care for that constraint.

2.1.6 Partial mass balance equations for incompressible constituents.

We replace the two partial densities ρ1 and ρ2 in (3) by the volume fraction ϕ. Then we subtract and add, respec-
tively, the two balance equations to obtain two equivalent equations that may be written as

divv = c−(r − divj) and ∂tϕ+ div(ϕv + c+j) = c+r, (11)

where c± = 1/ρ̃1 ± 1/ρ̃2 are constants, r = r1, and j = j1 denotes the diffusion flux, where ji = ρiui.

For equal mass densities, i.e. ρ̃1 = ρ̃2, equation (11)1 reduces to the classical constraint divv = 0 of a single
incompressible liquid.

Remark 2.2. Recently, a similar theory for two incompressible fluids was introduced in [AGG12] and [Boy99]. The
main difference to the model at hand is the different definition of the mixture velocity. In contrast to (6), the authors
of [AGG12] define the mixture velocity (in our notation) according to

v =
1
2

(1 + ϕ)v1 +
1
2

(1− ϕ)v2

which is the volume averaged velocity. This changes the mass and momentum balance, such that they can deal
with divv = 0 even for unequal mass densities ρ̃1 and ρ̃2.

2.1.7 Relevant equations of balance.

The various equations of balance from above play different roles in our treatment of a two-constituent mixture. We
use the constraint (11)1, the partial mass balance (11)2, the barycentric momentum balance (9) and the energy
balance (10) as the PDE system to determine the reduced set of variables ϕ, v and T plus a Lagrange multiplier,
which we will introduce below.

The balance equations for partial energies do not occur here because a common temperature is assigned to the
constituents. However, in order to derive the constitutive model we need to know the decompositions (7) of internal
energy and energy flux. Accordingly, the partial momentum balance equations (4) are also only needed to establish
the constitutive model.

An inspection of the relevant balance equations shows that we need constitutive equations for the reaction rate r,
the stress σ and the diffusion flux j. These will be derived in the following subsection.
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2.2 The 2nd law of thermodynamics.

The constitutive model for an incompressible two-constituent system is restricted by the 2nd law of thermodynamics.
It consists of five axioms, cf. [DK10].

1. There exists an entropy density/entropy flux pair (ρη,Φ) that satisfies an equation of balance

∂t(ρη) + div(ρηv + Φ) = ξ, (12)

where ξ is the entropy production.

2. The entropy flux Φ is an objective vector.

3. The flux has to be determined such that

(i) the entropy production ξ is non-negative for every solution of the system of balance equations,

(ii) ξ consists of a sum of binary products flux × driving force:

ξ =
N∑
A=1

FADA ≥ 0,

(iii) the entropy production is zero in equilibrium.

4. The entropy density ρη is an objective scalar. For an incompressible two-constituent system it is given by a
concave constitutive function of the general form

ρη = h(ρe, ϕ,∇ϕ), (13)

where ρe is the thermal part of the internal energy density ρẽ.

5. The (absolute) temperature and chemical potential are defined by

1
T

=
∂h

∂ρe
and

µ

T
= −(

∂h

∂ϕ
−∇ · ∂h

∂∇ϕ
). (14)

Remark 2.3. The entropy principle is slightly alternative to those versions given in Rational Thermodynamics by
Müller in [Mül85a] and Alt in [Alt09]. The axiom on the representation of the entropy production requires preliminary
knowledge on equilibrium thermodynamics, where the driving forces are to be identified as those quantities that
vanish in equilibrium. In addition we have to identify in advance the various mechanisms that drive a body to
equilibrium. Each mechanism contributes with a binary product to the entropy production.

2.2.1 Exploitation of the 2nd law, I: Balance of thermal energy and diffusion approximation of partial mo-
menta.

According to (13), the entropy function depends on the thermal energy ρe rather than on the internal energy ρẽ.
For this reason we need the corresponding balance equation for ρe. It results from (10) by the following two steps:
1. Eliminate the kinetic energy ρv2/2 by means of the balance equations of mass and barycentric momentum. 2.
Eliminate the kinetic energy of the diffusion velocity

∑2
i=1 ρiu

2
i /2 by the partial balance equations of mass and

momentum. This strategy leads to

∂t(ρe) + div(ρev + q) = ∇v : σ −
2∑
i=1

ui(fi − rivi + divσi + 1
2riui).
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Next, we eliminate in (4) the time derivatives of the partial mass densities by (3) and divide the resulting equations
by the corresponding mass densities. After subtraction of the equations from each other we obtain

(∂tv1 + v1 · ∇v1)− (∂tv2 + v2 · ∇v2) =
1
ρ1

divσ1 −
1
ρ2

divσ2 +
1
ρ1

(f1 − r1v1)− 1
ρ2

(f2 − r2v2).

(15)

The diffusion approximation ignores the acceleration of the relative motion on the left hand side of (15). Its cancel-
lation removes sound waves due to diffusional motion. In [BD12] the reader finds detailed conditions that guarantee
the validity of the approximation

1
ρ1

divσ1 −
1
ρ2

divσ2 +
1
ρ1

(f1 − r1v1)− 1
ρ2

(f2 − r2v2) = 0.

2.2.2 Exploitation of the 2nd law, II: Calculation of the entropy inequality.

We insert the entropy function (13) in the equation of balance (12), then we apply the chain rule and eliminate
the time derivatives ∂tρe, ∂tϕ and ∂t∇ϕ by the corresponding balance equations. Moreover, we decompose the
stress into the Navier-Stokes and the Korteweg part: σ = σNS + σK, in such a way that σK neither depends on
v nor on its derivatives. Finally, we take care of the incompressibility constraint (11)1 by introducing a Lagrange
multiplier λ/T , i.e. we add

λ

T
(divv − c−r) + c−div(

λ

T
j)− c−j · ∇(

λ

T
) = 0

to the entropy production. After some rearrangements, we obtain

ξ = div
(

Φ− q
T

+
(c+µ+ c−λ) j

T
+ (∂tϕ+ v · ∇ϕ)

∂h

∂∇ϕ

)
+

1
T
∇v :

(
σK − T∇ϕ⊗ ∂h

∂∇ϕ
− (ρe− Th− ϕµ)1

)
+

1
T
∇v : (σNS + λ1) + q · ∇ 1

T
− r

(
c+µ+ c−λ

T
+

u2
1

2
− u2

2

2

)
− j ·

(
∇c+µ+ c−λ

T
− (e11−

σ1

ρ1
− (e21−

σ2

ρ2
)) · ∇ 1

T

)
≥ 0.

2.2.3 Exploitation of the 2nd law, III: Interpretation of the results.

The entropy inequality consists of six different terms. The first line is used to define the entropy flux as

Φ =
q
T
− (c+µ+ c−λ) j

T
− (∂tϕ+ v · ∇ϕ)

∂h

∂∇ϕ
.

The second line is linear in ∇v, as σK, ∂h
∂∇ϕ and µ do not depend on ∇v. For that reason its factor must be

zero, because otherwise it would become possible to violate the restriction of a non-negative entropy production for
arbitrary solutions of the balance equations that will constitute the PDE system. There results a representation of
the Korteweg stress, namely

σK = T∇ϕ⊗ ∂h

∂∇ϕ
+ (ρe− Th− ϕµ)1. (16)

The remaining lines give the sum of four binary products that form the non-negative entropy production. In other
words: there are four mechanisms leading to dissipation. They are due to (i) viscosity, (ii) heat flux, (iii) phase
transition, and (iv) diffusion.
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2.2.4 Exploitation of the 2nd law, IV: Constitutive model for the isothermal case.

From now on we exclusively consider isothermal processes, i.e. we have ∇T = 0. The simplest possibility to
identically satisfy the non-negative entropy production is to propose linear relations between fluxes and driving
forces. In this setting the constitutive model contains the following laws:

1. The Navier-Stokes stress

σNS = −λ1 + η(ϕ)divv + η̂(ϕ)(∇v +∇vT )

with interpolated viscosities, see (A3) in Section 4.

2. The diffusion law

j = −mj∇
(
c+µ+ c−λ

T

)
with the diffusion mobility mj ≥ 0.

3. The phase transition law

r = −mr

(
c+µ+ c−λ

T
+

u2
1

2
− u2

2

2

)
with the transition mobility mr ≥ 0.

These three laws and the representation (16) of the Korteweg stress form our constitutive model for an isothermal
two-phase system.

2.2.5 Exploitation of the 2nd law, V: Legendre transform and free energy density.

If the entropy function h(ρe, ϕ,∇ϕ) were explicitly given, the constitutive laws would become explicit functions of
the variables ρe, ϕ and of the Lagrange multiplier λ/T . However, what usually is known is not the entropy function
but the free energy density ρψ = ρe−Th. By means of a Legendre transform, that substitutes the energy density
as a variable by the temperature, the entropy function h(ρe, ϕ,∇ϕ) and the free energy function ρψ̂(T, ϕ,∇ϕ)
are related to each other by

h = −∂ρψ̂
∂T

,
∂ρψ̂

∂ϕ
= −T ∂h

∂ϕ
,

∂ρψ̂

∂∇ϕ
= −T ∂h

∂∇ϕ
.

2.2.6 Summary of the isothermal incompressible two-phase model.

For the application of the model we choose a free energy function

ρψ = W (T, ϕ) +
γ

2
|∇ϕ|2, (17)

and consider a temperature where W is a double–well function of ϕ. As a further simplification we ignore the
quadratic dependence of the stress σ and the reaction law r, on the diffusion flux, which occurs in both laws via
the quadratic dependence on the diffusion velocities. In this case the summary of the isothermal incompressible
two–constituent model is as follows.

The variables are the volume–fraction ϕ, the barycentric velocity v and the Lagrange multiplier λ. The system of
coupled PDEs reads

divv = c−(r − divj), ∂tϕ+ div(ϕv + c+j) = c+r, ρ(ϕ)(∂tv + v · ∇v)− divσNS = divσK. (18)
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The constitutive laws are given by the stresses

σNS = −λ1 + η(ϕ)divv + η̂(ϕ)(∇v +∇vT ), σK = −∇ϕ⊗ ∂ρψ

∂∇ϕ
+ (ρψ − ϕµ)1, (19)

and the diffusion and phase transition rate laws

j = −mj∇ (c+µ+ c−λ) and r = −mr (c+µ+ c−λ) . (20)

The special choice (17) gives explicit expressions for the chemical potential (14) and the Korteweg stress:

µ = W ′(ϕ)− γ∆ϕ, σK = −γ∇ϕ⊗∇ϕ+ (W (ϕ)− ϕW ′(ϕ) + γϕ∆ϕ+
γ

2
|∇ϕ|2)1.

Moreover a straightforward calculation gives

divσK = −∇p(ϕ) + γϕ∇∆ϕ with p(ϕ) = ϕW ′(ϕ)−W (ϕ).

Remark 2.4. Concerning boundary conditions on ∂Ω an energy argument shows that

∇ϕ · ν = 0, ∇λ · ν = 0, v = 0

is a reasonable choice, see e.g. [ADD+12].

3 Non-dimensionalization and Scaling

In order to obtain a physically relevant scaling for the system derived in the previous section, we introduce the
dimensionless quantities as follows:

x∗ = x
xc
, t∗ = t

tc
, v∗ = v

vc
, ρ∗ = ρ

ρc
, η∗i = ηi

ηc
, η̂∗i = η̂i

ηc
, p∗ = p

pc
,

γ∗ = γ
γc
, µ∗ = µ

pc
, λ∗ = λ

λc
, m∗j = mj

mj,c
, m∗r = mr

mr,c

for i ∈ {1, 2}, where the subscript c refers to the corresponding characteristic unit of the physical quantity. We use
pc to non-dimensionalize W and µ and choose vc = xc

tc
as the characteristic velocity. Note that the phase field

variable ϕ, interpolating the density between ρ̃1, ρ̃2, is already a non-dimensional quantity, see (2). We expect that
ϕ is near ±1. Moreover, we set

c∗± = ρcc±

and like to mention that, while the quantities c∗± are dimensionless, they are not necessarily of order 1. In particular,
c∗− is small in case the densities ρ̃1, ρ̃2 are similar.

Then we rewrite the system (18)-(20) in terms of the dimensionless quantities. We obtain

∂tϕ+ div(vϕ) = c+
tcpc

ρ2
c

(mj,c

x2
c
mj∆−mr,cmr

)
(c+µ(ϕ) + c−

λc
pc
λ),

ρ(ϕ)(∂tv + (v · ∇)v) + pc

v2
cρc
∇p(ϕ) + λc

v2
cρc
∇λ = ηc

vcxcρc
(∇(η(ϕ)divv)

+div(η̂(ϕ)(∇v +∇vT ))
)

+ γc

v2
cx

2
cρc
γϕ∇∆ϕ,

divv = c−
tcpc

ρ2
c

(mj,c

x2
c
mj∆−mr,cmr

)
(c+µ(ϕ) + c−

λc
pc
λ),

(21)

where
µ(ϕ) = W ′(ϕ)− γc

x2
cpc
γ∆ϕ, and p(ϕ) = ϕW ′(ϕ)−W (ϕ)

and the superscript ∗ is omitted for the sake of brevity.

There are several possibilities for scaling the characteristic units. Some scalings with mr = 0 have been treated
in [ADD+12]. In this work, we will consider different scalings with mr > 0. In particular, we study two scalings:
the so-called Euler regime where the viscosity is small, and the Navier-Stokes regime for similar densities. In both
cases, we obtain physically admissible sharp interface models.
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3.1 Euler regime

In this regime, we aim to recover the Euler equations in the bulk with admissible interface conditions in the sharp
interface limit. To this end, we consider a small parameter ε > 0 and scale the characteristic units such that

M =
√

ρc

pc
vc ∼

√
ε, Re = ρc

ηc
vcxc ∼

1
ε
,

λc
pc
∼ ε, tcpcmj,c

ρ2
cx

2
c

∼ 1
ε
,

mj,c

mr,c
∼ 1,

γc
v2
cx

2
cρc

= ε, (22)

where M and Re are the Mach and Reynolds number, respectively. Moreover, we assume here that c∗− is inde-
pendent of ε.

A particular choice of the characteristic units satisfying (22) is given by:

tc ∼
1
ε
, mj,c,mr,c ∼

1
ε
, xc ∼ 1, ρc ∼ 1, pc ∼ ε, ηc ∼ ε2, λc ∼ ε2, γc ∼ ε3.

Note that this choice of scaling addresses the long time limit, i.e. t→ εt.

Using (22) and (21), we obtain the following scaled system:
∂tϕ+ div(ϕv) = 1

εc+

(
mj∆−mr

)
(c+µ(ϕ) + εc−λ),

ρ(ϕ)(∂tv + (v · ∇)v) + 1
ε∇p(ϕ) +∇λ = ε∇(η(ϕ)divv) + εdiv(η̂(ϕ)(∇v +∇vT ))

+ γεϕ∇∆ϕ,
divv = 1

εc−
(
mj∆−mr

)
(c+µ(ϕ) + εc−λ),

(E)

where
µ(ϕ) = W ′(ϕ)− γε2∆ϕ and p(ϕ) = ϕW ′(ϕ)−W (ϕ).

3.2 Navier-Stokes regime with similar densities

In this case, we scale the characteristic units in such a way that we recover the Navier-Stokes system in the bulk. The
scaling is based on the assumption that the densities are similar, i.e. c∗− ∼ ε. Further, we scale the characteristic
quantities such that

M =
√

ρc

pc
vc ∼

√
ε, Re = ρc

ηc
vcxc ∼ 1,

λc
pc
∼ 1,

tcpcmj,c

ρ2
cx

2
c

∼ 1
ε
,

mj,c

mr,c
∼ 1,

γc
v2
cx

2
cρc

= ε. (23)

For example, a possible choice fulfilling (23) is:

tc ∼
1
ε
, mj,c,mr,c ∼

1
ε
, xc ∼ 1, ρc ∼ 1, pc ∼ ε, ηc ∼ ε, λc ∼ ε, γc ∼ ε3.

Thus, the similar densities scaling leads to the following system:
∂tϕ+ div(ϕv) = 1

εc+

(
mj∆−mr

)
(c+µ(ϕ) + ελ),

ρ(ϕ)(∂tv + (v · ∇)v) + 1
ε (∇p(ϕ) +∇λ) = ∇(η(ϕ)divv) + div(η̂(ϕ)(∇v +∇vT ))

+ γεϕ∇∆ϕ,
divv =

(
mj∆−mr

)
(c+µ(ϕ) + ελ),

(N-S)

where
µ(ϕ) = W ′(ϕ)− γε2∆ϕ and p(ϕ) = ϕW ′(ϕ)−W (ϕ).
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4 Asymptotic Analysis

In this section, we state fundamental assumptions and definitions which we will use when we perform (formal)
matched asymptotic expansions for solutions (ϕε,vε, λε) of the systems (E) and (N-S) in order to derive their
sharp interface limits in the forthcoming sections. The technique of matched asymptotic expansions is a powerful
tool to understand the asymptotic behavior of the phase field variables when the small parameter ε tends to zero,
e.g. [CF88, FP95]. It has been employed in fluid dynamics, see e.g. [AGG12, AW11, DGKR12, HKK11, Wit10],
where the phase field models, i.e. Cahn-Hilliard or Allen-Cahn equations, are coupled to the Navier-Stokes systems
in both compressible and incompressible cases.

For the convenience of the reader we summarize the properties and the assumptions of the model:

(A1) The mixture density is given by ρ(ϕ) = ρ̃1

2 (1 + ϕ) + ρ̃2

2 (1− ϕ).

(A2) The constant mobility coefficients of the diffusion flux and the production rate are denoted by mj ≥ 0 and
mr ≥ 0, respectively.

(A3) The interpolation function η is given by η(ϕ) = η1

2 (1 +ϕ) + η2

2 (1−ϕ) and accordingly for η̂(ϕ). The bulk
viscosity satisfies ηi + 2

3 η̂i ≥ 0 and the shear viscosity fulfills η̂i > 0 for the pure constituents, i ∈ {1, 2}.

(A4) The capillarity constant satisfies γ > 0.

(A5) W : R→ [0,∞) is a double-well potential with W (−1) = W (1) = 0, and ∃ a1, a2 ∈ (−1, 1) such that
W ′′ > 0 in (−∞, a1) ∪ (a2,∞) and W ′′ < 0 in (a1, a2).

4.1 Outer setting

We define the two bulk phases for t ∈ [0, Tf ) by

Ω−(t; ε) := {x ∈ Ω : ϕε(t,x) < 0} and Ω+(t; ε) := {x ∈ Ω : ϕε(t,x) > 0}.

We assume that the solution (ϕε,vε, λε) to the system (E) or (N-S) admits an expansion in ε in the outer regions
Ω+(t; ε) and Ω−(t; ε):

ϕε(t,x) =
∞∑
i=0

εiϕi(t,x), vε(t,x) =
∞∑
i=0

εivi(t,x), and λε(t,x) =
∞∑
i=0

εiλi(t,x). (24)

Therefore, we may expand µ(ϕε) and p(ϕε) into their Taylor series, i.e.

µ(ϕε) = W ′(ϕ0) +W ′′(ϕ0)ϕ1ε+ (W ′′(ϕ0)ϕ2 + 1
2W

′′′(ϕ0)ϕ2
1 − γ∆ϕ0)ε2 +O(ε3),

p(ϕε) = p(ϕ0) + p′(ϕ0)ϕ1ε+ (p′(ϕ0)ϕ2 + 1
2p
′′(ϕ0)ϕ2

1)ε2 +O(ε3),

as ε→ 0. This motivates the following abbreviations:

µ0 = W ′(ϕ0), p0 = ϕ0W
′(ϕ0)−W (ϕ0), (25)

µ1 = W ′′(ϕ0)ϕ1, p1 = ϕ0W
′′(ϕ0)ϕ1. (26)
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4.2 Inner setting

We assume that Γ(t; ε) defined by

Γ(t; ε) := {x ∈ Ω : ϕε(t,x) = 0}

is a set of smoothly evolving C1,2-hypersurfaces in Rd. Moreover, we assume that a limiting curve Γ = Γ(t) exists
when ε tends to zero. This corresponds to the zeroth order of the interface. The limiting bulk regions are denoted
by Ω+(t) and Ω−(t). Further orders of Γ(t; ε) are not required in our treatment. They would be needed if we
considered higher order jump conditions, see [DGKR12].

In a neighborhood of Γ, we introduce a new coordinate system. To this end, we consider a local parametrization %
of Γ:

% : [0, Tf )× U → Rd,

where [0, Tf ) ⊂ R and U ⊂ Rd−1 are the time interval and the spatial parameter domain, respectively. We
denote by ν the unit normal to Γ pointing towards Ω+. For details on the assumptions on Γ and ν we refer to the
appendix.

Next, we introduce a local parametrization of a neigborhood of %([0, Tf )× U) in [0, Tf )× Rd as follows:

(t,x) = (t,%(t, s) + εzν(t, s)) (27)

with 0 ≤ ε ≤ ε0 for some ε0 > 0. The normal and tangential velocity of the interface Γ are given by

wν = wνν = (∂t% · ν)ν and wτ = ∂t%− (∂t% · ν)ν. (28)

Let f be a generic function depending on outer variables. The corresponding function in inner variables is denoted
by capital F , i.e.

F (t, s, z) = f(t,x).

The partial derivatives of these functions transform as follows:(
∇f
∂tf

)
=

(
(1 + εzκ) 1

|T|2 T ε−1ν 0
−(1 + εzκ)(wτ − εz 1

|T|2 (∂tν)TT) −ε−1wν 1

)∇ΓF

∂zF

∂tF

+O(ε2)

where T is a d× (d− 1)-matrix whose columns are given by a basis of tangent vectors. Furthermore, we have

div f = 1
ε∂zF · ν + divΓF +O(ε),

∆f = 1
ε2
∂zzF − 1

εκ∂zF − z|κ|
2∂zF + ∆ΓF +O(ε),

where ∇Γ,divΓ,∆Γ are the surface gradient, the surface divergence, and the surface Laplacian on Γ, and κ is
the mean curvature, respectively, cf. the appendix.

For the inner counterpart (Φε,Vε,Λε) of the outer functions (ϕε,vε, λε), we assume:

Φε(t, s, z) =
∞∑
i=0

εiΦi(t, s, z), Vε(t, s, z) =
∞∑
i=0

εiVi(t, s, z), Λε(t, s, z) =
∞∑
i=0

εiΛi(t, s, z). (29)

Remark 4.1. Note that by our definitions of Γ(t; ε) and Γ(t) we cannot expect Φ0(t, s, 0) = 0 but there will be
a translational quantity dependending on t and s, see Lemma 5.7. Alternatively, we could expand the interface
position in ε which would automatically ensure Φ0(t, s, 0) = 0. However, we prefer the first possibilty as in the
orders studied here no interfacial mass density appears. This is in contrast to [DGKR12], where an interfacial mass
density occurs.
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4.3 Matching relations

In matched asymptotic techniques, inner and outer quantities are linked together by certain matching conditions,
see e.g. [CF88]. We impose the following asymptotic behavior for a generic quantity f as z → ±∞ at x = %(s):

F0(t, s, z)− f±0 = o(1/z), (30)

F1(t, s, z)− f±1 − (∇f±0 · ν(t, s))z = o(1/z), (31)

F2(t, s, z)− f±2 − (∇f±1 · ν(t, s))z − 1
2(ν(t, s) ·D2f±0 ν(t, s))z2 = o(1/z), (32)

∂zF2(t, s, z)−∇f±1 · ν(t, s)− (ν(t, s) ·D2f±0 ν(t, s))z = o(1/z), (33)

where the superscript ± denotes limδ↘0 f(t,%(t, s)± δν(t, s)). Moreover, we have

lim
z→±∞

∂zF0(t, s, z) = 0, (34)

lim
z→±∞

∂zzF0(t, s, z) = 0, (35)

lim
z→±∞

∂zF1(t, s, z) = ∇f±0 · ν(t, s), (36)

lim
z→±∞

∇ΓF0(t, s, z) = ∇f±0 − (∇f±0 · ν(t, s))ν(t, s), (37)

where we assume the convergence is superlinearly fast. The idea behind this matching method is that the large-
z behavior (for very small ε) of the inner quantities should coincide with the traces of the outer quantities, see
e.g. [Lag88]. To this end, a formal term-by-term matching of the ε-expansion of the inner quantities to the Taylor
polynomials of the outer ones is made, see [CF88, GS06].

5 Sharp Interface Limit of the Euler Regime

The outer equations are obtained by inserting (24) into (E) and considering the equations order by order.

Definition 5.1. (Outer solution) A tuple (ϕ0, ϕ1,v0, λ0) such that

ϕ0 ∈ C1([0, Tf ), C0(Ω̄±)) ∩ C0([0, Tf ), C2(Ω̄±)),

ϕ1, λ0 ∈ C0([0, Tf ), C2(Ω̄±)),

v0 ∈ C1([0, Tf ), C0(Ω̄±,Rd)) ∩ C0([0, Tf ), C1(Ω̄±))

satisfying (
mj∆−mr

)
µ0 = 0,
∇p0 = 0,

∂tϕ0 + div(ϕ0v0) = c+

(
mj∆−mr

)
(c+µ1 + c−λ0),

ρ(ϕ0)(∂tv0 + (v0 · ∇)v0) +∇p1 +∇λ0 = 0,
divv0 = c−

(
mj∆−mr

)
(c+µ1 + c−λ0)

(38)

in Ω+ ∪ Ω− and the boundary condition

∇ϕ0 · ν = 0 on ∂Ω,

where p0, p1, µ0, and µ1 are given by (25) and (26), is called an outer solution of the Euler regime.
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The inner equations are obtained from (E) by performing the coordinate change (27), inserting (29) and gathering
terms of the same order.

Definition 5.2. (Inner solution) A tuple (Φ0,Φ1,V0,Λ0) such that

Φ0 ∈ C0([0, Tf ), C2(Ū , C2(R))) ∩ C0([0, Tf ), C0(Ū , C4(R))),

Φ1 ∈ C0([0, Tf ), C0(Ū , C4(R))),

Λ0 ∈ C0([0, Tf ), C0(Ū , C2(R))),

V0 ∈ C0([0, Tf ), C0(Ū , C2(R,Rd)))

is called an inner solution with the normal velocity wν of the Euler regime provided it satisfies

∂zzM0 = 0, ∂zz(c+M1 + c−Λ0)− κc+∂zM0 = 0, (39)

∂zP0 − γΦ0∂zzzΦ0 = 0, (40)

−∂z(ρ(Φ0)V0)wν + ∂z(ρ(Φ0)(V0 ⊗V0))ν + ∂zP1ν +∇ΓP0 + ∂zΛ0ν (41)

= ∂z(η(Φ0)∂zV0 · ν)ν + ∂z
(
η̂(Φ0)(∂zV0 + (∂zV0 · ν)ν)

)
+γΦ1∂zzzΦ0ν + γΦ0∂zzzΦ1ν − κγΦ0∂zzΦ0ν + γΦ0∇Γ(∂zzΦ0),

∂zV0 · ν = c−
c+
∂z(Φ0(V0 · ν − wν)), (42)

∂z(Φ0(V0 · ν − wν)) = c+mj∂zz(c+M2 + c−Λ1)− κc+mj∂z(c+M1 + c−Λ0) (43)

+ c2
+mj(∆ΓM0 − z|κ|2∂zM0)− c2

+mrM0,

where

P0 = Φ0W
′(Φ0)−W (Φ0), P1 = Φ0W

′′(Φ0)Φ1, (44)

M0 = W ′(Φ0)− γ∂zzΦ0, M1 = W ′′(Φ0)Φ1 − γ∂zzΦ1 + κγ∂zΦ0, (45)

and

M2 = W ′′(Φ0)Φ2 +
1
2
W ′′′(Φ0)Φ2

1 − γ∂zzΦ2 + γκ∂zΦ1 + γ|κ|2z∂zΦ0 − γ∆ΓΦ0. (46)

Definition 5.3. (Matching solution) We call a tuple (ϕ0, ϕ1,v0, λ0,Φ0,Φ1,V0,Λ0) a matching solution with
the normal velocity wν of the Euler regime when (ϕ0, ϕ1,v0, λ0) is an outer solution and (Φ0,Φ1,V0,Λ0) is an
inner solution with the normal velocity wν and both are linked by the matching conditions (30)-(36).

Now we are in the position to formulate one of our main results:

Theorem 5.4. Let (ϕ0, ϕ1,v0, λ0,Φ0,Φ1,V0,Λ0) be a matching solution with the normal velocity wν of the
Euler regime then the following equations hold in the bulk:

ϕ0 = ±1 in Ω±, (47)(
mj∆−mr

)
(c+µ1 + c−λ0) = 0 in Ω+ ∪ Ω−, (48)

ρ(ϕ0)(∂tv0 + (v0 · ∇)v0) +∇(p1 + λ0) = 0 in Ω+ ∪ Ω−, (49)

divv0 = 0 in Ω+ ∪ Ω−. (50)
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In addition, the following jump conditions are satisfied at the interface:

[[ρ0(v0 · ν − wν)]] = 0, (51)

[[j0v0 · ν + p1 + λ0]] = κγ

∫ ∞
−∞

(∂zΦ0)2dz, (52)

[[v0 · ν]] = c−
c+

2〈v0 · ν − wν〉, (53)

[[c−λ0 + c+µ1]] = 0, (54)

[[µ1]] = ρ̃2−ρ̃1

2

(
1
2c−c+ j

2
0

∣∣
Γ

+ j0|Γ
∫ ∞
−∞

(η(Φ0) + 2η̂(Φ0))∂z
(

1
ρ(Φ0)

)2
dz
)
, (55)

[[v0 − (v0 · ν)ν]] = 0, (56)

where j0 := ρ0(v0 · ν − wν). Moreover,

wν = 〈v0 · ν〉 −
mj

2 c+[[c+∇µ1 · ν + c−∇λ0 · ν]]. (57)

Here, we denote the jump of a quantity f across the interface by [[f ]] = f+ − f−, whereas 〈f〉 = 1
2(f+ + f−)

denotes the mean value.

Remark 5.5. Equations (51), (52) and (56) correspond to the conservation of mass across the interface, the Young-
Laplace law for the normal componet of the momentum flux and the continuity of the tangential velocity, respectively.
Note that p1 + λ0 appears as the (hydrodynamic) pressure in bulk equation (49). Equation (53) is just an algebraic
reformulation of (51). Equation (54) states the continuity of the diffusion potential. According to (55) the jump of the
chemical potential is related to the mass flux across the interface. This is the kinetic relation of our model in the
Euler regime. Equation (57) can be interpreted as the Stefan law for the phase fraction.

The case of a flow without mass transfer across the interface, which is described by [[v0 · ν]] = 0 and wν =
〈v0 · ν〉, is included in Theorem 5.4.

Corollary 5.6. If j0 = 0 the interface conditions from Theorem 5.4 reduce to

wν = v0|Γ · ν,
[[v0]] = 0, [[µ1]] = 0, [[λ0]] = 0,

[[p1]] = κγ

∫ ∞
−∞

(∂zΦ0)2dz,

µ1|Γ = 1
2κγ

∫ ∞
−∞

(∂zΦ0)2dz,

[[c+∇µ1 · ν + c−∇λ0 · ν]] = 0.

Proof. Conditions wν = v0|Γ · ν, [[v0]] = 0, [[µ1]] = 0, and [[λ0]] = 0 are obvious. For the pressure jump we
compute

[[p1]] = [[ϕ0W
′′(ϕ0)ϕ1]] = 2〈W ′′(ϕ0)ϕ1〉 = 2〈µ1〉 = 2µ1|Γ.

The continuity of c+∇µ1 · ν + c−∇λ0 · ν follows from (57).

We proceed with the proof of Theorem 5.4, which is based on several lemmata. Our first lemma shows that we have
pure phases in the bulk.
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Lemma 5.7. Let ϕ0 be given as in Definition 5.3, then

ϕ0 ∈ {−1, 1}.

Furthermore, for every z̄ ∈ R there exists a uniquely determined monotonically increasing function Φ0 ∈ C1([0, Tf )×
U ;C3(R)) satisfying

W ′(Φ0)− γ∂zzΦ0 = 0 (58)

with ∂zΦ0 → 0,Φ0 → ±1 as z → ±∞ and Φ0(t, s, z̄) = 0 independently of s and t. In particular, all Φ0 as in
Definition 5.3 are given by the one parameter family

Φ0(t, s, ·) = Φ̄0(· − z̄(t, s)), z̄ ∈ R,

where Φ̄0 is the unique solution of (58) satisfying Φ̄0(0) = 0.

Proof. We consider (39)1 and obtain

M0(s, z) = C0(t, s)z + C1(t, s) with C0(t, s) = 0, C1(t, s) = W ′(ϕ+
0 ) = W ′(ϕ−0 )

by the matching conditions. Next, we multiply equation (45) by ∂zΦ0 and integrate over z to obtain

W (ϕ+
0 )−W (ϕ−0 ) = W ′(ϕ±0 )(ϕ+

0 − ϕ
−
0 ). (59)

Due to the assumptions on the double-well potential W , we derive that

ϕ+
0 = 1, ϕ−0 = −1, and C1(t, s) = 0. (60)

From (59), we obtain that ϕ+
0 and ϕ−0 are the Maxwell points. Thus, we have µ±0 = µ(ϕ±0 ) = 0. Now we use

(38)1 and the boundary condition on ∂Ω which gives

(mj∆−mr)µ0 = 0 in Ω− ∪ Ω+,

∇µ0 · ν = 0 on ∂Ω,
µ0|Γ = 0 on Γ.

(61)

Equation (61) is uniquely solvable with µ0 = W ′(ϕ0) ≡ 0 in Ω. Now ϕ0 ∈ {−1, 1} follows from ϕ±0 = ±1 and
the continuity of ϕ0 on Ω̄±.

The result on Φ0 follows from M0 = 0, i.e.

γ∂zzΦ0 −W ′(Φ0) = 0 with ∂zΦ0 → 0 for z → ±∞,

and a phase portrait analysis, which can be found in [BDDJ07].

Our second lemma deals with the normal velocities of the fluids and the interfacial velocity.

Lemma 5.8. Let v0 and wν be elements of a matching solution as in Definition 5.3, then

[[v0 · ν]] = 2 c−c+ 〈v0 · ν − wν〉, (62)

which is equivalent to the continuity of the mass flux across the interface, i.e.

[[ρ0(v0 · ν − wν)]] = 0 with ρ+
0 = ρ̃1, ρ

−
0 = ρ̃2, (63)

where ρ0 = ρ(ϕ0). In fact, J0 := ρ0(V0 · ν − wν) satisfies

∂zJ0 = 0. (64)

Furthermore,

wν = 〈v0 · ν〉 −
mj

2 c+[[c+∇µ1 · ν + c−∇λ0 · ν]]. (65)
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Proof. Equation (62) follows from (42) by integration and applying the matching conditions. The continuity of the
mass flux (63) is a simple algebraic consequence of (62) using the definition of c±. Similarly, (64) follows from (42).
To prove (65), note that (39)2 reduces to ∂z(c+M1 + c−Λ0) = C(t, s), see the proof of Lemma 5.7. We can
deduce that C(t, s) = 0 by the matching conditions, i.e ∂zM1 → (∇µ0)± · ν = 0 and ∂zΛ0 → 0. Thus, (43)
becomes

∂z(Φ0(V0 · ν − wν)) = c+mj∂zz(c+M2 + c−Λ1).

Finally, we obtain (65) by integration, keeping in mind that D2µ0 ≡ 0, see Lemma 5.7.

Lemma 5.9. Let the assumptions be given as in Theorem 5.4. Then

[[c+µ1 + c−λ0]] = 0. (66)

Proof. From Lemma 5.7 we obtain M0 = 0 and (∇µ0)± · ν = 0. By integrating (39)2, the claim follows.

Remark 5.10. We note that the lowest order momentum equation (40) does not yield any further information,
because it is satisfied due to (58).

Now we use the next order of the balance of momentum to derive the continuity of the tangential fluid velocity

Lemma 5.11. Let the assumptions of Theorem 5.4 be given. Then

[[v0 − (v0 · ν)ν]] = 0.

Proof. Let τ ∈ Rd with τ · ν = 0 be arbitrary. Then multiplying (41) by τ yields

∂z(ρ(Φ0)(V0 · ν − wν)V0) · τ + (∇ΓP0) · τ = ∂z(η̂(Φ0)(∂zV0) · τ ) + γΦ0∇Γ(∂zzΦ0) · τ . (67)

We have
(∇ΓP0)− γΦ0∇Γ(∂zzΦ0) = Φ0∇Γ(W ′(Φ0)− γ∂zzΦ0) = 0

and recall ∂zJ0 = 0. Thus, (67) becomes

J0∂zV0 · τ = ∂z(η̂(Φ0)(∂zV0 · τ )). (68)

For J0 6= 0 integrating (68) yields [[v0 · τ ]] = 0. In case J0 = 0, we infer the same by integrating (68) twice and
noting η̂(Φ0) > 0.
It remains to deduce the solvability conditions for the normal part of the first order momentum balance, equation
(41).

Lemma 5.12. Let the assumptions of Theorem 5.4 be given. In addition, let Φ̃1 ∈ C∞(R) fulfilling Φ̃1(z) = ϕ±1
for |z| > 1.

(i) The operator L : W 3,1 → L1

LΨ := −(c+ − c−Φ0)∂z(W ′′(Φ0)Ψ− γ∂zzΨ) (69)

is well defined and Ψ := Φ1 − Φ̃1 satisfies

LΨ = f(Φ0, V0, Φ̃1) (70)

with

f(Φ0,V0, Φ̃1) = −c−∂z
(
ρ(Φ0)(V0 · ν − wν)V0 · ν

)
+ c−∂z

(
(η(Φ0) + 2η̂(Φ0))∂zV0 · ν

)
+ κγ(c+ − c−Φ0)∂zzΦ0 + (c+ − c−Φ0)∂z(W ′′(Φ0)Φ̃1 − γ∂zzΦ̃1).
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(ii) Equation (70) admits a solution if and only if∫ ∞
−∞

f(Φ0,V0, Φ̃1)dz = 0,
∫ ∞
−∞

f(Φ0,V0, Φ̃1)
c+ − c−Φ0

dz = 0. (71)

(iii) The following jump conditions are satisfied:

[[j0v0 · ν + p1 + λ0]] = κγ

∫
(∂zΦ0)2dz, (72)

[[µ1]] = ρ̃2−ρ̃1

2

(
1
2c−c+ j

2
0

∣∣
Γ

+ j0|Γ
∫ ∞
−∞

(η(Φ0) + 2η̂(Φ0))∂z
(

1
ρ(Φ0)

)2
dz
)
. (73)

Proof. We start with the first assertion:
Proof of (i) Multiplying (41) by ν, we obtain

∂z(ρ(Φ0)(V0 · ν − wν)V0 · ν) + ∂zP1 + ∂zΛ0 = ∂z((η(Φ0) + 2η̂(Φ0))∂zV0 · ν) (74)

+γΦ1∂zzzΦ0 + γΦ0∂zzzΦ1 − κγΦ0∂zzΦ0.

Next substituteP1,M1 using (44)2, (45)2 and Λ0 via (39), which we integrate. Here we use once more thatM0 = 0
by (58). This yields

c−∂z(Φ0W
′′(Φ0)Φ1)− c+∂z(Φ1W

′′(Φ0)) + c+γ∂zzzΦ1 − c−γ(Φ1∂zzzΦ0 + Φ0∂zzzΦ1) (75)

= −c−∂z(ρ(Φ0)(V0 · ν − wν)V0 · ν) + c−∂z((η(Φ0) + 2η̂(Φ0))∂zV0 · ν)
+κγ(c+ − c−Φ0)∂zzΦ0.

Here Φ0 and V0 · ν are known by Lemma 5.7 and (42), respectively. Now (70) follows from (75) by inserting
Φ1 = Ψ + Φ̃1 in (75) and recalling the relation W ′′(Φ0)∂zΦ0 = γ∂zzzΦ0.

It only remains to show that f(Φ0,V0, Φ̃1) ∈ L1(R). This is an easy consequence of the matching conditions as
∂zΦ̃1(z) = 0 for |z| > 1.
Proof of (ii) This assertion essentially follows from the Fredholm alternative theorem which states that equation (70)
is solvable if and only if the right hand side satisfies∫ ∞

−∞
f(Φ0,V0, Φ̃1)φ dz = 0

for all solutions φ ∈ L∞(R) of the homogeneous problem for the adjoint operator L∗ : L∞(R) → (W 3,1)∗(R)
given by

L∗φ = (W ′′(Φ0)∂z − γ∂zzz)
(
(c+ − c−Φ0)φ

)
.

Therefore, we need to find all linearly independent solutions to L∗φ = 0 which are in L∞(R). As L∗ is a third
order operator there are three linearly independent solutions in C∞(R). Thus, there are at most three linearly
independent solutions in L∞(R).

First we observe that due to the relation W ′′(Φ0)∂zΦ0 = γ∂zzzΦ0 via (58) every constant is a solution, i.e.
φ1 = constant, which already implies (71)1. Next we find that L∗φ = 0 can be written as

0 = (c+ − c−Φ0)(W ′′(Φ0)g − γ∂zzg) + 3γc−(∂zg∂zΦ0 + ∂zzΦ0g), (76)

for g = ∂zφ. Thus, it remains to determine two linearly independent solutions to (76), whose primitives are in
L∞(R). To this end, we employ the ansatz g(z) = h(Φ0(z))∂zΦ0(z) to find that (76) turns into

0 = γ(∂zΦ0)3
(

(c+ − c−Φ0)h′′(Φ0)− 3c−h′(Φ0)
)

(77)
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+ 3γ∂zΦ0∂zzΦ0

(
(c+ − c−Φ0)h′(Φ0)− 2c−h(Φ0)

)
,

where we use the relation W ′′(Φ0)∂zΦ0 = γ∂zzzΦ0. The solution to equation (77) is given by

h(Φ0) =
1

(c+ − c−Φ0)2
with sup

x∈[−1,1]
h(x) < C,

where C is a positive constant. Thus we have a solution g to (76) satisfying

g(z) = h(Φ0(z))∂zΦ0(z) and φ2(z) = − 1
c−(c+ − c−Φ0(z))

.

This implies φ2 ∈ L∞(R), as we know Φ0(z) ∈ [−1, 1] and c+ > c−. This implies (71)2. It remains to show that
there is no further solvability condition.

By the d’Alembert reduction principle we construct the second linearly independent solution g̃ to (76). We define
r := ∂z g̃, then (76) turns into a system of ODEs for (g̃, r) as follows(

∂z g̃
∂zr

)
=

(
0 1

1
γW ′′(Φ0) + 3c−∂zzΦ0

c+−c−Φ0

3c−∂zΦ0

c+−c−Φ0

)(
g̃
r

)
.

We make the following ansatz for the solutions g̃ and r:

g̃(z) = q(z)g(z),
r(z) = q(z)∂zg(z) + r̂(z).

In consequence, we obtain 
∂zq =

r̂

g
,

∂z r̂ = − r̂∂zg
g

+
3c−∂zΦ0

c+ − c−Φ0
r̂,

which admits the following solutions:

r̂(z) =
1
g(z)

1
(c+ − c−Φ0(z))3

, q(z) =
∫ z

0

1
g2(z̃)

1
(c+ − c−Φ0(z̃))3

dz̃.

We recall that g = ∂zΦ0/(c+ − c−Φ0)2. Therefore, g̃ satisfies

|g̃(z)| =
∣∣∣∣g(z)

∫ z

0

c+ − c−Φ0

(∂zΦ0)2
dz̃
∣∣∣∣ −→ +∞ as z → ±∞

by a slight modification of Lemma 7.3 in [DGKR12]. Consequently, there exists no third linearly independent solution
in L∞(R).

Proof of (iii) Condition (71)1 implies

0 = −c−[[j0v0 · ν]] + c−κγ

∫ ∞
−∞

(∂zΦ0)2dz + c−

∫ ∞
−∞

(∂zΦ0)(W ′′(Φ0)Φ̃1 − γ∂zzΦ̃1)dz

+[[(c+ − c−ϕ0)W ′′(ϕ0)ϕ1]],
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where we recall that the asymptotic behavior of Φ̃1 is the same as Φ1. Next, we observe that
∫∞
−∞ ∂zΦ0∂zzΦ̃1dz =∫∞

−∞ ∂zzzΦ0Φ̃1dz via integration by parts with vanishing boundary values. Then the third term on the right hand
side vanishes due to (58). It remains

c−[[j0v0 · ν]]− [[(c+ − c−ϕ0)W ′′(ϕ0)ϕ1]] = c−κγ

∫ ∞
−∞

(∂zΦ0)2dz.

Therefore, recalling µ±1 = W ′′(ϕ±0 )ϕ±1 and p±1 = ϕ±0 W
′′(ϕ±0 )ϕ±1 , we have

c−[[j0v0 · ν]]− c+[[µ1]] + c−[[p1]] = c−κγ

∫ ∞
−∞

(∂zΦ0)2dz.

This is equivalent to the Young-Laplace law (72) using Lemma 5.9.

Condition (71)2 can be written as follows:

0 =
∫ ∞
−∞

(
− c−∂z

(
J0V0 · ν − (η(Φ0) + 2η̂(Φ0))∂zV0 · ν

)
+ κγ(c+ − c−Φ0)∂zzΦ0

+ (c+ − c−Φ0)∂z(W ′′(Φ0)Φ̃1 − γ∂zzΦ̃1)
)

(c+ − c−Φ0)−1dz.

By inserting

V0 · ν =
J0

ρ(Φ0)
+ wν and c+ − c−Φ0 = 2

ρ̃2ρ̃1
ρ(Φ0),

we find

0 = − ρ̃2−ρ̃1

2

∫ ∞
−∞

∂z

(
J2

0
ρ(Φ0) − (η(Φ0) + 2η̂(Φ0))∂z

(
J0

ρ(Φ0)

))
1

ρ(Φ0)dz + [[W ′′(ϕ0)ϕ1]],

where ∂zΦ0 vanishes at the boundary. Now using (1/ρ)z1/ρ = (1/(2ρ2))z and partial integration for the stress
term, we find

[[µ1]] = ρ̃2−ρ̃1

2

(
1
2c−c+ j

2
0

∣∣
Γ

+
∫ ∞
−∞

(η(Φ0) + 2η̂(Φ0))J0∂z

(
1

ρ(Φ0)

)2
dz
)
,

where we recall µ±1 = W ′′(ϕ±0 )ϕ±1 . This finishes the proof of Lemma 5.12.

Proof of Theorem 5.4. Let us start with the equations in the bulk. Equation (47) follows from Lemma 5.7. Inserting
(38)3 into (38)5, we find, using Lemma 5.7,

c−
c+

divv0 = divv0,

which implies (50). Moreover, inserting (50) into (38)3 gives (48). Finally, (49) is (38)3. The interface conditions
follow from Lemmata 5.7–5.12.

6 Sharp Interface Limit of the Similar Densities Regime

Let us start by defining outer, inner, and matching solutions. The outer equations are obtained by inserting (24) into
(NS) and gathering terms of the same order in ε.
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Definition 6.1. (Outer solution) A tuple (ϕ0, ϕ1,v0, λ0, λ1) such that

ϕ0 ∈ C1([0, Tf ), C0(Ω̄±)) ∩ C0([0, Tf ), C2(Ω̄±)),

ϕ1, λ0 ∈ C0([0, Tf ), C2(Ω̄±)),

λ1 ∈ C0([0, Tf ), C1(Ω̄±)),

v0 ∈ C1([0, Tf ), C0(Ω̄±,Rd)) ∩ C0([0, Tf ), C2(Ω̄±,Rd))

satisfying (
mj∆−mr

)
µ0 = 0,

∇p0 +∇λ0 = 0,
∂tϕ0 + div(ϕ0v0) = c+

(
mj∆−mr

)
(c+µ1 + λ0),

ρ0(∂tv0 + (v0 · ∇)v0) +∇p1 +∇λ1 = div(η̂(ϕ0)(∇v0 +∇v0
T ))

divv0 = 0,

(78)

in Ω+ ∪ Ω− and the boundary condition

∇ϕ0 · ν = 0 on ∂Ω,

where p0, p1, µ0, and µ1 are given by (25) and (26), is called an outer solution of the similar densities regime.

We like to point out that the evolution system is derived by assuming that the density ρ(ϕ) is constant in the leading
order ρ0. The inner equations are obtained by changing the variables according to (27) and inserting the expansions
(29) into (N-S).

Definition 6.2. (Inner solution) A tuple (Φ0,Φ1,V0,V1,Λ0,Λ1) such that

Φ0 ∈ C0([0, Tf ), C2(U,C2(R))) ∩ C0([0, Tf ), C0(U,C4(R))),

Φ1 ∈ C0([0, Tf ), C0(U,C4(R))),

V0 ∈ C0([0, Tf ), C1(U,C1(R,Rd))) ∩ C0([0, Tf ), C0(U,C2(R,Rd))),

V1 ∈ C0([0, Tf ), C0(U,C2(R,Rd))),

Λ0 ∈ C0([0, Tf ), C1(U,C0(R))) ∩ C0([0, Tf ), C0(U,C2(R))),

Λ1 ∈ C0([0, Tf ), C0(U,C2(R))),

is called an inner solution with the normal velocitywν of the similar densities regime provided it satisfies (39), (43)
and

(∂zP0 + ∂zΛ0)ν = ∂z(η(Φ0)∂zV0 · ν)ν + ∂z
(
η̂(Φ0)(∂zV0 + (∂zV0 · ν)ν)

)
+ γΦ0∂zzzΦ0ν, (79)

∂zV0 · ν = ∂zz(c+M1 + Λ0)− κc+∂zM0 = 0, (80)

∂z (Φ0(V0 · ν − wν)) = c+ (divΓV0 + ∂zV1 · ν) , (81)

−∂z(ρ0V0)wν + ∂z(ρ0(V0 ⊗V0))ν + ∂zP1ν +∇ΓP0 + ∂zΛ1ν +∇ΓΛ0 (82)

= ∂z

(
η′(Φ0)Φ1(∂zV0 · ν)ν + η(Φ0)(∂zV1 · ν)ν + η(Φ0)divΓV0 ν

)
+∇Γ

(
η(Φ0)∂zV0 · ν

)
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+∂z
(
η̂′(Φ0)Φ1

(
∂zV0 + (∂zV0 · ν)ν

)
+ η̂(Φ0)

(
∂zV1 + (ν ⊗ ∂zV1)ν + (∇ΓV0)Tν

))
+divΓ

(
η̂(Φ0)

(
∂zV0 ⊗ ν + ν ⊗ ∂zV0

))
+γ(Φ0∂zzzΦ1 + Φ1∂zzzΦ0 − κΦ0∂zzΦ0)ν + γΦ0∇Γ(∂zzΦ0),

where we have used (39) to obtain the second equality in (80). In addition, the quantities P0, P1,M0,M1 and M2

are given by (44)-(46).

As in the outer setting, the evolution system is deduced by the fact that the leading order density ρ0 is constant.

Definition 6.3. (Matching solution) A tuple (ϕ0, ϕ1,v0, λ0, λ1,Φ0,Φ1,Λ0,Λ1,V0,V1) is called a matching
solution with the normal velocity wν of the similar densities regime provided (ϕ0, ϕ1,v0, λ0, λ1) is an outer
solution, (Φ0,Φ1,Λ0,Λ1,V0,V1) is an inner solution with the normal velocity wν and both are linked by the
matching conditions.

Now we have all prerequisites to formulate our second main result:

Theorem 6.4. Let (ϕ0, ϕ1,v0, λ0, λ1,Φ0,Φ1,V0,V1,Λ0,Λ1) be a matching solution of the similar densities
regime, then the following equations are satisfied in the bulk:

ϕ0 = ±1 in Ω±, (83)

∇λ0 = 0 in Ω+ ∪ Ω−, (84)

divv0 = 0 in Ω+ ∪ Ω−, (85)(
mj∆−mr

)
(c+µ1 + λ0) = 0 in Ω+ ∪ Ω−, (86)

ρ(ϕ0)(∂tv0 + (v0 · ∇)v0) +∇p1 +∇λ1 = div(η̂(ϕ0)(∇v0 +∇v0
T )) in Ω+ ∪ Ω−. (87)

Moreover, the following conditions are fulfilled at the interface:

[[λ0]] = 0, (88)

[[v0]] = 0, (89)

[[µ1]] = 0, (90)

µ1|Γ =
1
2
κγ

∫ ∞
−∞

(∂zΦ0)2dz, (91)

[[p1 + λ1]]ν − [[η̂(ϕ0)(∇v0 +∇vT
0 )]]ν = κγ

∫ ∞
−∞

(∂zΦ0)2dzν, (92)

[[p1]] = κγ

∫ ∞
−∞

(∂zΦ0)2dz, (93)

wν = v0|Γ · ν − c2
+

mj

2
[[∇µ1]] · ν. (94)

Remark 6.5. Equation (92) is the Young–Laplace law corresponding to the bulk equation (87). Note that the accel-
eration terms in (87) are not reflected in the jump conditions because we have [[v0]] = 0 by (89). Nevertheless,
according to (94) a mass flux across the interface is possible because the leading order densities are equal in both
phases in the regime at hand.

The kinetic relation reduces here to the classical Gibbs–Thomson law (90), (91). The jump of p1 in (93) follows from
(91) because of the Gibbs relation between µ and p.

21



We proceed with the proof of Theorem 6.4 for which we need several lemmata to deduce the interface conditions.
Let us note that all requirements of Lemma 5.7 are also satisfied in the similar densities regime. First we establish
the continuity of the Lagrange multiplier and the velocity.

Lemma 6.6. Under the assumptions of Theorem 6.4 the following equations are satisfied:

∂zV0 = 0 and ∂zΛ0 = 0. (95)

In particular,
[[v0]] = 0 and [[λ0]] = 0. (96)

Proof. Multiplying (79) by ν we obtain
∂zΛ0 = 0 (97)

because of (58) and (80). Integrating (97) gives [[λ0]] = 0. Now we return to (79), which due to (80), (97) and (58),
yields

0 = ∂z(η̂(Φ0)∂zV0).

By the matching condition (34) and η̂(Φ0) > 0, we derive ∂zV0 = 0 which implies (96)1 because of the matching
condition (30).

Lemma 6.7. Under the assumptions of Theorem 6.4 the chemical potential is continuous across the interface

[[µ1]] = 0, (98)

and its value is determined by

µ1|Γ =
1
2
γκ

∫ ∞
−∞

(∂zΦ0)2dz. (99)

Moreover,

[[p1]] = γκ

∫ ∞
−∞

(∂zΦ0)2dz. (100)

In addition, the normal velocity of the interface is given by

wν = v0 · ν − c2
+

mj

2
[[∇µ1]] · ν. (101)

Proof.

Because of (58), which implies M0 = 0, and Lemma 6.6 equation (39)2 simplifies to ∂zM1 = (∇µ0)± · ν = 0.
Hence, we have

W ′′(Φ0)Φ1 − γ∂zzΦ1 + γκ∂zΦ0 = W ′′(ϕ+
0 )ϕ+

1 = W ′′(ϕ−0 )ϕ−1 . (102)

This, in particular, implies (98) by definition of µ1. Now we are going to determine the value of µ1 on the interface.
We multiply (102) by ∂zΦ0 and integrate which yields∫ ∞

−∞
W ′′(Φ0)∂zΦ0Φ1 − γ∂zzΦ1∂zΦ0dz =

∫ ∞
−∞

W ′′(ϕ±0 )ϕ±1 ∂zΦ0 − γκ(∂zΦ0)2dz.

Using integration by parts, (58), and the matching conditions, we infer

0 = 2W ′′(ϕ±0 )ϕ±1 − γκ
∫ ∞
−∞

(∂zΦ0)2dz.
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This implies (99). Now, applying (26)2 and Lemma 5.7, we obtain

[[p1]] = [[ϕ0W
′′(ϕ0)ϕ1]] = W ′′(ϕ+

0 )ϕ+
1 +W ′′(ϕ−0 )ϕ−1 = 2µ1|Γ

which proves (100) because of (99).

Due to ∂zM1 = 0, (58) and Lemma 6.6 equation (43) becomes

−wν∂zΦ0 + ∂z(Φ0V0 · ν) = c+mj∂zz (c+M2 + Λ1) (103)

and integration gives (101) because of (78)2 and the matching condition (33).

Lemma 6.8. Let the conditions of Theorem 6.4 be satisfied, then

[[p1 + λ1]]ν − [[η̂(ϕ0)(∇v0 +∇vT
0 )]]ν = κγ

∫ ∞
−∞

(∂zΦ0)2dz.

Proof. Because of Lemma 5.7, (95)2, (78)2 and the matching relation (37) we find

∇ΓΛ0 = 0 and ∇ΓP0 − γΦ0∇Γ(∂zzΦ0) = 0. (104)

Due to (95)1 and (104), equation (82) becomes

∂zP1ν + ∂zΛ1ν =∂z
(
η(Φ0)

(
(∂zV1 · ν)ν + divΓV0 ν

))
(105)

+ ∂z

(
η̂(Φ0)

(
∂zV1 + (∂zV1 ⊗ ν)Tν + (∇ΓV0)Tν

))
+ γ(Φ0∂zzzΦ1 + Φ1∂zzzΦ0 − κΦ0∂zzΦ0)ν.

From the matching relations (36) and (37), we observe that for z → ±∞:

∂zV1 · ν + divΓV0 − (divv0)± = o(1), (106)

∂zV1 ⊗ ν +∇ΓV0 − (∇v0)± = o(1). (107)

Therefore, integrating (105) and recalling divv0 = 0, we find

[[p1 + λ1]]ν = [[η̂(ϕ0)(∇v0 + (∇v0)T)]]ν + γκ

∫ ∞
−∞

(∂zΦ0)2 dz ν

which is the assertion of the Lemma.

Remark 6.9. Equation (81) does not contribute any new information to the leading order terms. Applying the
matching condition (106) to (81) yields

(divv0)± = 0

which is already known from (78)5.

Proof of Theorem 6.4. We know ϕ0 = ±1 in Ω± from Lemma 5.7. The other bulk equations follow by inserting
ϕ0 = ±1 into (78). The interface conditions are already known from Lemma 6.6, Lemma 6.7 and Lemma 6.8.
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Appendix

Moving surfaces. A family (Γ(t))t∈(0,Tf ) is called an orientedC1,2-family of hypersurfaces if for each point (t0,x0) ∈
(0, Tf )× Rd with x0 ∈ Γ(t0) the following properties are satisfied:

(i) There exists an open subset O ⊂ Rd containing x0, δ > 0 and a function u ∈ C1,2((t0− δ, t0 + δ)×O)
such that

O ∩ Γ(t) = {x ∈ O | u(t,x) = 0} and ∇u(t,x) 6= 0, x ∈ O ∩ Γ(t).

(ii) There exists a unit normal field ν such that ν ∈ C0
(⋃

0<t<Tf
({t} × Γ(t),Rd)

)
and ν(t, ·) ∈ C1(Γ(t),Rd).

For the representation of the hypersurface Γ(t), we define the signed distance function d by

d(t,x) =


dist(x,Γ(t)), x ∈ Ω+(t),
0, x ∈ Γ,
− dist(x,Γ(t)), x ∈ Ω−(t).

Note that d(t, ·) is Lipschitz continuous and that there exists a δ > 0 such that

d(t, ·) ∈ C2(Γδ(t)), where Γδ(t) = {x ∈ Rd | |d(t, x)| < δ}.

Now, for each point x(t) ∈ Γδ(t), t ∈ (0, Tf ), there exists a unique point x0(t) ∈ Γ(t) such that |x(t)−x0(t)| =
d(t,x(t)), where the points satisfy

x(t) = x0(t) + ν(t,x0(t)) d(t,x(t)).

Hence,∇d(t,x(t)) = ν(t,x0(t)) with |d(t,x(t))| = 1 for x(t) ∈ Γδ(t), t ∈ (0, Tf ).

Let γ ∈ C1((t0 − h, t0 + h),Rd) for some h > 0 fulfill γ(t0) = x0 and γ(t) ∈ Γ(t) for |t− t0| < h. Then the
normal velocity at the point (t0,x0), x0 ∈ Γ(t0), is given by

wν(t0,x0) = ∂tγ(t0) · ν(t0,x0).

New coordinate system. In this paragraph, we give a short sketch how the spatial derivatives translate into a local
coordinate system around the interface Γ, cf. [AGG12]. We consider a local parameterization of Γ, i.e.

% : (0, Tf )× U,

where U ⊂ Rd−1 is the spatial parameter domain. Now, we introduce a local parameterization of a neighborhood
of %((0, Tf )× U):

Υε(t, s, z) =
(
t,%(t, s) + εzν(t, s)

)
By this transformation, a new locally covariant basis in a neighborhood of Γ forms as

(gεi )i=1,...,d =

(
Ds%+ εzDsν

εν

)
, where Dsf := (∂s1f , . . . , ∂sd−1

f)T.

Therefore, an ε-dependent metric is defined by

gεij = gεi · gεj for i, j = 1, . . . , d,
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with gεid = gεdi = 0 for i = 1, . . . , d−1 and gdd = ε2. Next, we denote the inverse matrix by (gijε ) with gddε = ε−2

and gidε = gdiε = 0 for i = 1, . . . , d− 1. The∇-operator in the new coordinates is then given by

∇ =
d−1∑
i=1

giε∂si + 1
εν∂z,

where the elements of contravariant basis are given by giε =
∑d

j=1 g
ij
ε gεj . Hence, the gradient of a scalar function

f(t,x) = F (t, s, z) is given by

∇f = ∇ΓεF + 1
ε∂zF ν,

where∇Γε denotes the surface (tangential) gradient on Γε(t; z) := {%(t, s) + εzν(t, s) : s ∈ U}, t ∈ (0, Tf ).
Similarly, for a vector valued quantity f(t,x) = F(t, s, z) we have

div f = divΓεF + 1
ε∂zF · ν,

where divΓε is the surface divergence on Γε. Now, we compute the Laplace operator:

∆f = div(∇f) = div
(
∇ΓεF + 1

ε∂zF ν
)

= divΓε

(
∇ΓεF + 1

ε∂zF ν
)

+ 1
ε∂z

(
∇ΓεF + 1

ε∂zF ν
)
· ν

= ∆ΓεF + 1
εκε∂zF + 1

ε2
∂zzF,

where κε = divΓεν is the mean curvature of Γε. Note that for the last equation we have used the following
identities for a function B(s, z):

∂z(∇ΓεB · ν) = 0 and (∂z∇ΓεB) · ν = 0

which follow from∇ΓεB · ν = 0 and ∂zν = 0. The explicit expression for the operator ∆Γε is given by

∆Γε = 1√
det(gε

ij)

d−1∑
i,j=1

∂si(
√

det(gε
ij)gijε ∂sj ).

Next we identify the expansions in ε for the operators ∇Γε , divΓε ,∆Γε and for the mean curvature κε. Since
gεij = gij +O(ε) with

gij(s) = ∂si%(s) · ∂sj%(s) for i, j = 1, . . . , d− 1

we obtain the following expansions:

∇Γε = ∇Γ +O(ε), divΓε = divΓ +O(ε), ∆Γε = ∆Γ +O(ε)

The mean curvature κε = ∆d|Γε is given by

κε =
d−1∑
i=1

−κi

1− εκiz
=−

d−1∑
i=1

κi − ε
d−1∑
i=1

(κi)2z +O(ε2)

=− κ− ε|κ|2z +O(ε2),

where κi are the principal curvatures, κ and |κ| are the mean curvature and the root mean square curvature of Γ,
respectively, see for instance [GT98].
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