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Abstract

We present a multi-parameter family of a soliton on a background solutions to the Sasa-
Satsuma equation. The solution is controlled by a set of several free parameters that con-
trol the background amplitude as well as the soliton itself. This family of solutions admits
a few nontrivial limiting cases that are considered in detail. Among these special cases is
the NLSE limit and the limit of rogue wave solutions.

1 Introduction

Recent progress in the theory of integrable partial differential equations made a revolution in
mathematics and expanded significantly the areas of physical application of these equations
[1]. Sasa-Satsuma equation [22] (SSE) is one of the integrable extensions of the nonlinear
Schrödinger equation (NLSE). Although with fixed relation between higher order terms, it con-
tains the most essential contributions often found in various physical applications: deep water
waves [26, 23] and pulse propagation in optical fibres [21, 10]. Namely, it contains the term with
third order dispersion, the term with self-frequency shift and the term describing self steepening
[25]. These are the most general terms that have to be taken into account when extending the
applicability of the NLSE. According to the original work of Sasa and Satsuma [22] the equation
can be written as:

iψτ +
ψxx
2

+ |ψ|2ψ + iε
[
ψxxx + 3(|ψ|2)xψ + 6|ψ|2ψx

]
= 0. (1)

Here, an arbitrary real parameter ε scales the integrable perturbations of the NLSE. When
ε = 0, Eq. (1) reduces to the standard NLSE which has only the terms describing lowest
order dispersion and self-phase modulation. This form of equation has been used in the series
of works by Mihalache et al [19, 17, 18]. There is a number of publications dealing with the
solutions of SSE [12, 13, 15]. Solutions with nonzero boundary conditions have been presented
by Wright III [20] although the form of the SSE in his work and the technique used are different
from the original version [22] and from the technique presented in [19, 17, 18].

In this paper, we are dealing with the solutions of Eq.(1) written in the form most common in
applications. In particular, we present the soliton solution on a background which has been
found to be important in the theory of rogue waves. Perhaps, not the most general one but
similar to the analogous solution of the NLSE [24, 5], it contains important particular cases such
as breather solution periodic in transverse direction, zero velocity soliton solution and the rogue
wave solution.

One of the deficiencies of the previous works related to SSE is the lack of descriptive illustrative
material. Being mathematically highly nontrivial, derivations remain unused until we can see
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clearly the solutions in picture format. A selection of a few profiles chosen at fixed distances
usually does not help when the soliton has complicated oscillatory behaviour in propagation as
in the SSE case. Modern style 3-D images help in appreciation of their complexity and in further
use in applications. With this aim, we illustrate the general solution that we present as well as a
few particular cases. The latter contains the rogue wave solution that is an important particular
case by itself [9].

Solutions of Eq.(1) are nontrivial in many respects. Firstly, there are several branches of solu-
tions for the same set of parameters. We do not try to consider all of them in one work. A better
answer is to concentrate the attention on just one branch and see variety of possibilities within it.
Another difficulty of operating with solutions of each branch is considering limiting cases. They
are not simple either. Each particular case requires considering the limits carefully. Even the
limit of zero background which seems to be simple in the NLSE case is quite involved when we
are dealing with the solutions of SSE.

One of the constraints used in [20] to obtain the solutions is fixed ε. This is a significant restriction
especially when we are interested in physical extensions of solutions of the NLSE. In most of
the problems of practical interest the last three terms are usually small in comparison with the
basic NLSE terms. Thus, it is important to keep the parameter ε to be arbitrary and, in particular,
consider the limit of small values of ε. Ignoring this possibility, we may end up with singularities
[20] and have the impression that the SSE solutions cannot be considered as an extension of
those for the NLSE.

In order to extend the solutions with fixed ε to include arbitrary ε, we recall that there is a scaling
transformation of the NLSE [2]. Namely, if we have a particular

solution of the NLSE ψ(x, t), a more general solution ψ̃(x, t) with a free parameter µ can be
obtained via the transfromation:

ψ̃(x, t;µ) = µψ(µx, µ2t) (2)

Applying the same transformation to Eq.(1) shows that it transforms the Sasa-Satsuma equation
into

iψ̃t + ψ̃xx + |ψ̃|2ψ̃ + iεµ
(
ψ̃xxx + 3(|ψ̃|2)xψ̃ + 6(|ψ̃|2)ψ̃x

)
= 0. (3)

We notice, that choosing µ = 1/ε eliminates ε from the equation. This is an important obser-
vation as with the help of the transformation we can use the solutions ψd(x, t) developed for a
fixed value of ε = 1, and keep the parameter ε to be arbitrary by setting

ψ(x, τ) =
1

ε
ψd

(x
ε
,
τ

ε2

)
. (4)

In this way, the parameter ε can be incorporated into any solution that have been obtained origi-
nally for ε fixed to a certain value. We note that the equation (4) indeed makes an impression that
the solution is singular when ε → 0. However, this problem can be fixed with a suitable choice
of other free parameters of the solution. Let us illustrate this point using a simple example.

As we are interested in solutions on a background, we start with the plane-wave solutions of the
Sasa-Satsuma equation in the form

ψ0(x, τ) =
c

2ε
exp

[
− i

2ε

(
kx− ω

4ε
τ
)]

(5)
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where the amplitude c, the wavenumber k and the frequency ω are related through

ω = 6c2k + 2c2 − k3 − k2. (6)

We can notice that in here, the coefficient ε is already included into the solution. It again looks
singular at the limit ε→ 0. However, the correct choice of parameters c ∼ ε, ω ∼ ε2 and k ∼ ε
eliminates this singularity and in the ε → 0 limit, we obtain the plane wave of the NLSE with
finite amplitude.

Below, we present soliton solutions of the SSE on a background. This is a multi-parameter
solution with variable background, arbitrary velocity for arbitrary real ε. As a result, there are
several limiting cases that can be calculated using the general expression. Usually, solitons
on a background are pulsating formations for the NLSE. This happens due to the nonlinear
interference between the soliton and the background that have different propagation constants
[7]. The same can be said about the solitons on a background for SSE. They are oscillating along
the direction of propagation. This particular oscillation disappears in the limit of zero background.
This special limit contains soliton solutions that have been obtained earlier [22]. We provide this
correspondence explicitly.

2 Soliton on a background

The technique we use is similar to the one employed in [20]. We omit this cumbersome part
and just present the solution that can be checked using any modern software with symbolic
computation facilities. We stress that this is just one branch of solutions. However, it contains
most of important particular cases. The one-soliton solution on a background ψ(x, τ) of Eq. (1)
is given by:

ψ(x, τ) = ψ0(x, τ)

[
1 +

i(ζ − ζ̄)G(x, τ)

c|ζ|2f3(x, τ)

]
(7)

with

G(x, τ) = (ζ̄f1(x, τ) + ζf̄2(x, τ))×
(ζ|f1(x, τ)|2 + ζ̄|f2(x, τ)|2)

+
1

2
(ζ + ζ̄)(ζf1(x, τ) + ζ̄ f̄2(x, τ))

where

f1(x, τ) =
r11 + r12Γ exp (iMx+ iNτ)

1 + Γ exp (iMx+ iNτ)
(8)

f2(x, τ) =
r21 + r22Γ exp (iMx+ iNτ)

1 + Γ exp (iMx+ iNτ)
(9)

f3(x, τ) = (1 + |f1|2 + |f2|2)2 +
(ζ − ζ̄)2

4|ζ|2
|1 + 2f1f2|2

M = m2 −m1 (10)
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and

rnj =
−i3c

3mj + (−1)nK − ζ
,

where indices n, j = 1, 2 and K = 1 + 3k. Complex conjugation is denoted by ”z̄” throughout
this paper. The parameter ζ ∈ C here is the complex eigenvalue of the spectral problem while
Γ is another arbitrary complex number which is related to ordinary translations x0 and τ0 of
the solution along the x and τ -axes. This can be easily seen if we write Γ in the form Γ =
exp (−iMx0 − iNτ0).

The spatial eigenvalues mj in (8) and (9) are two of the solutions of the 3-rd order polynomial

m3 −m

[
2c2 +

ζ2

3
+

(
K

3

)2
]

+ (11)

+
2

3
ζ

(
c2 −

(
K

3

)2
)

+
2ζ3

27
= 0,

such that each mj depends on the free parameters i.e. mj = mj(ζ, c, k). In this work, we
operate with one of the Riemann surfaces of the solution and choose the pair of mj , that have
similar form:

m1 =
i
[

3
√

3
(
−
√

3 + i
)
u1 +

(√
3 + i

)
u2

9

]
6 32/3u9

(12)

m2 =
i
[

3
√

3
(√

3 + i
)
u1 +

(
−
√

3 + i
)
u2

9

]
6 32/3u9

(13)

where

u1 = 18c2 + 3ζ2 +K2

u2 = 9c2 + ζ2 −K2

u5 = 18c2 +
1

3

(
4−K2

)
u6 = 36c2 −K2 + 3

u7 = 18
(
1− 9c2

)
ζ3 + 2ζu6

(
18c2 +K2

)
− 54ζ5

u9 =
3

√
√

3
√

27ζ2u2
2 − u3

1 − 9ζu2

u4 = 27ζ4 − 27ζ2u5 + u2
6

u0 = u6 − 6ζ2.

Using these expressions, we can specify the spatial frequency M = m2 −m1:

M = −
i
(
u2

9 −
3
√

3u1

)
6 6
√

3u9ε
(14)
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and the temporal frequency N :

N =
3 (3ζu7 − u0u4)M

216ε2 (u0 − 9ζm2) (u0 − 9ζm1)
. (15)

The solution (7) ψ(x, τ ; c, k, ζ; Γ, ε) is thereby completely determined by the parameters of the
plane wave ψ0 (5) with c, ω and k, restricted by (6), and ζ ∈ C.

Figure 1: Soliton solution on a background defined by Eq. (7). Parameters are: ε = 1/2, ζ =
1.5 + i0.5, k = 0.1 (K = 1.3), c = 1, resulting in M = −2.2334 − i0.325551 and
2N = 1.99665− i3.88523. Γ = 1.

An interesting observation is that the solution (7) is periodic along each of the parallel set of
lines

=[Mx+Nτ + const] = 0. (16)

i.e. along the direction of propagation, where the imaginary part, denoted by ”=[z]”, of the
above expression vanishes. This follows from the form of exponential functions in (8) and (9).
The phase and location of the periodic function is given by Γ. A typical example of the solution is
shown in Fig. 1. Here, the background plane wave is controlled by the amplitude c/(2ε), and the
direction of propagation (phase velocity) 4εk/ω. The solitonic part of the solution is controlled
by the complex eigenvalue ζ . In particular, it defines the amplitude, velocity and periodicity of
the soliton. Each peak within the soliton can have double or single maximum depending on the
combination of all parameters. In the particular case shown in Fig. 1 each peak has a double
maximum. Qualitatively, this solution is similar to the NLSE solution presented in Fig.7 of the
work [6].
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3 Spatially periodic breather on a background.

For solutions which are periodic along the x-axis the period is defined by M which has to be
real. The condition of zero imaginary part of M leads to the eigenvalues of inverse scattering ζ
being given by:

ζ = ±
√
α± β (17)

with

α =
c4 + 10c2

[(
K
3

)2 − 3M2

10

)
+ 2Q

(
M2 +

(
K
3

)2
]

2Q

β =
2w

3Q

[
1

4

(
c2 +M2

)
−
(
K

3

)2
]
.

where w =
√

9c4 +K2 (M2 − 4c2) and Q = M2

4
−
(
K
3

)2
. Any choice of signs in (17)

provides us with a valid complex eigenvalue. In all four cases ζ is a function of c, k and M .
When we choose both signs in (17) to be positive, we obtain, explicitly:

ζ =
1

3

√
1

4K2 − 9M2
×
[
− 162c4 − (18)

18c2
(
3
(
w − 9M2

)
+ 10K2

)
+(

4K2 − 9M2
) (

6w + 9M2 +K2
) ]1/2

.

The breather solution in this case is periodic in x and has a single growth-decay cycle along
the τ -axis. It starts with modulation instability, grows to maximum amplitude and decays the
same way as it grew. This solution is similar to the Akhmediev breather solution of the NLSE
[11, 16, 4]. However, there are more parameters to play with in the SSE case.

Two examples of the breather profiles are shown in Fig. 2. For the chosen set of parameters
c = 1 and ε = 1/2 the background amplitude is 1. The parameter M defines the period of the
structure. For k = 1, like in Fig. 2a, each maximum of the breather profile has a double peak
structure while for k = 1.9, like in Fig. 2b, the two peaks join into a single one.

4 Temporal periodic solitons on a background.

The temporal frequency N contains the real part (frequency λ) and an exponential decay coef-
ficient ν:

N = λ+ iν. (19)

To obtain purely periodic solutions along the τ -axis N must be purely real, i.e. ν = 0. Pa-
rameters for this condition to be fulfilled can be found numerically. An example of such solution
is shown in Fig. 3. The parameter ζ for this example calculated numerically along with other
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Figure 2: Breather solution of SSE defined by Eq. (7) becomes spatially periodic for purely real
M . Parameters used in this case are: ε = 1/2, c = 1, M = 1, In (a) (top) k = 1 (K = 4),
resulting in ζ = 0.957906 + i1.81754 and 2N = 3 − i6.245. In (b) (bottom), k = 1.9
(K = 6.7) resulting in ζ = 2.00943 + i1.76148 and 2N = −6.63− i11.2103. In each case,
Γ = +1.
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parameters is given in the caption to Fig. 3. In this example, the solution has a double peak
structure. This can be seen from the fact that the adjacent maxima in the figure are slightly
shifted relative to the centre-line of the soliton. Choosing a different set of parameters we can
obtain a solution with a single peak stricture. This solution is analogous to the Kuznetsov-Ma
soliton of the NLSE [14].

Figure 3: Soliton solution on a background for the case of purely real N . The profile is given
by Eq. (7) with the following parameters: ε = 1/2, k = 0.1 (K = 1.3), c = 1, resulting in
ζ = .5 + i1.672, M = −1.38258− i0.806851, λ = 19.48924 and Γ = 1.

5 Rogue wave solution

If we take long period limit of the solution shown in Fig. 2 and use a specific value of Γ = −1
required to keep the central maximum close to the origin, we are left with just one infinite period.
This way we obtain the solution describing the rogue wave of SSE (1):

ψ(x, t) =
c

2ε

(
1− ζ − ζ̄

c
G

)
exp

[
−i
(
k

2ε
x− ω

8ε2
τ

)]
, (20)
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with ω given by (6) and G given by

G =
|u|2Re[ζ](ζūg + ζ̄uh̄) +

(
ζ|g|2 + ζ̄|h|2

)
(ζ̄ ūg + ζuh̄)

|ζ|2 (|u|2 + |g|2 + |h|2)2 − |u2 + 2hg|2Im[ζ]2
(21)

where

ζ = ±
i

√
9c2 (9c2 + 10K2) + 3c (9c2 − 4K2)3/2 − 2K4

3
√

2K
,

u = (χτ + 2εx) ,

h = 3c

(
u

M1

+ i
12ε2

M1
2

)
,

g = 3c

(
u

M2

− i12ε2

M2
2

)
,

M1 = K + d− ζ,
M2 = K − d+ ζ,

d =

(
b

2
+

2u1

3b

)
,

b =
(
−1 + i

√
3
)

[−ζu2]1/3 ,

χ =
9 (a− 6c2) ζ4 + 3a (a− 1− 18c2) ζ2 + a3

6 (2ζ2 + dζ + a)2 ,

a = −u6

3
.

The solution depends on variables x and τ , as well as on three real parameters ε,K = 1+3k,
and c.

Comparison of this rogue wave solution to the one of the NLSE [3] or Hirota [8] equations shows
that SSE rogue wave has significantly more complicated structure. In particular, it involves poly-
nomials of fourth order rather than second order as in the two previous cases. This can be seen
from the structure of the expression (21) with the nominator and denominator being of fourth
power of u.

Rogue waves do exist provided that 9c2 − 4K2 < 0. This follows from the requirement for the
eigenvalue ζ of the spectral problem to have a nonzero real part. This happens when |1+3k| >
3c/2. Explicitly, the condition is either

k >
c

2
− 1

3
or k < − c

2
− 1

3
. (22)

Thus, the wavenumber k can be zero only when c < 2/3. Otherwise, the plane wave propaga-
tion direction has to be skewed for the rogue wave to exist.

The solution (20) is illustrated in Fig. 4 for the values of parameters c = 1, ε = 0.5 and k =
0.8. It exhibits a double peak and has a maximum amplitude of around 2.5. The background

9



Figure 4: Rogue wave of the Sasa-Satsuma equation when c = 1, ε = 0.5, and plane wave
wavenumber k = 0.8.
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amplitude is c/(2ε), which is equal to 1 here. For c = 1 and any ε, the wavenumber k has
to be larger than 1/6. Thus, the plane wave propagates at an angle to the τ axis. The solution
itself is also tilted. The solution keeps a double peak structure at all values of k in the interval
1/6 < k . 2. However, at larger values of k the two maxima merge and the solution has a
single peak. An example is shown in Fig. 5 where k = 2.

Figure 5: Rogue wave of the Sasa-Satsuma equation when c = 1, ε = 0.5, and plane wave
wavenumber k = 2.

Despite seemingly singular structure of the solution with ε being in the denominator, the ampli-
tude of the background for the rogue wave is finite and equal to ψ0 = c/(2ε) just as in (5). We
can keep it to be constant having the ratio c/ε to be a constant. When taking the limit ε → 0,
we should simultaneously take the limit of c → 0. Then k and ω should also be considered in
the same zero limit. This should be done carefully, to keep k in the limits (22). As a result, when
reducing the parameter ε to zero, and having the plane wave wavenumber k = 0, the limit is
the Peregrine solution of the NLSE [9].
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6 Zero background limit.

The background of solution (7) c/(2ε) is controlled by the parameter c. The limit with zero
background is obtained when c→ 0. The limit is far from being trivial. The difficulty is in finding
the limits of themj-values that enter among others the rnj coefficients. These can be calculated
using a series expansion of mj at small c:

rnj =
−ic

m
(0)
j + (−1)nK

3
− ζ

3
+m

(2)
j c2

. (23)

where m(0)
j = limc→0mj and m(2)

j =
∂2mj
∂c2

∣∣∣
c=0
.

In the limit c→ 0, the mj coefficients become:

m
(0)
1 = −

(√
3 + i

)
R+ + (

√
3− i)(σ)2/3σ2

2R

6
√

3 3
√
σσ2

m
(0)
2 = i

(R+ − (σ)2/3σ2
2R)

3
√

3 3
√
σσ2

where
R =

(
K − i

√
3ζσ

)
, R+ =

(
K + i

√
3ζσ

)
σ = sgn

[
=
(
ζ2K

)]
(24)

σ2 =


e

2iπ
3 ⇔ −π

3
> Arg(w3r) > −π

e−
2iπ
3 ⇔ π > Arg(w3r) >

π
3

1 else.

(25)

w3r =
6
√

3
3
√
iσR. (26)

Hence, various branches given above should be considered, which provide different limits for
the rnj-coefficients. Here, we restrict ourselves in one of these branches given by σ = +1 and
σ2 = +1. This requires the following two conditions:

1. sgn
[
=
(
ζ2K

)]
= 1

2. −π/3 < arg
(

6
√
−3K − (−3)2/3ζ

)
< π/3.

In this case, the 2-nd order coefficients m(2)
1 , m(2)

2 in the expression (23) are

m
(2)
1 = − 3

K − 3ζ
, (27)

m
(2)
2 =

18ζ

K2 − 9ζ2
. (28)

The spatial frequency M (0) = m
(0)
2 −m

(0)
1 then becomes

M (0) =
K

3
− ζ (29)
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The corresponding temporal frequency N (0) = N
(0)
2 −N

(0)
1 is

N (0) =
K

6

(
K2

9
− 1

3

)
− ζ

2

(
ζ2 − 1

3

)
(30)

For brevity, we denote the exponential function appearing in (7) as A:

A = i (Mx+Nτ) =
i

2ε

(
M (0)x+

N (0)

ε
τ

)
. (31)

Along the branch considered here this function takes the form

A =
x

2ε

[
η + i

(
K

3
− ξ
)]
− τ

8ε2

[
η

(
η2 − 3ξ2 +

1

3

)

−iξ
(

3η2 − ξ2 +
1

3

)
− iK

3

(
K2

9
− 1

3

)]

with the real and the imaginary parts of A given explicitly by setting ζ = ξ + iη. The leading
contributions at small c are:

r11 =
3ic

2K
, r12 =

3ic

3ζ +K
(32)

r21 =
i(K − 3ζ)

3c
, r22 =

3ic

3ζ −K
. (33)

Motivated by these expressions we introduce the following notations

Y = (3ζ −K)/3, W = (3ζ +K)/3, S = WY

which will be used in formulae below.

Within the approximations considered above, the form of the solution can be written explicitly in
terms of c:

ψ(x, τ) =
1

2ε
exp

[
− i

2ε

(
kx− ω

4ε
τ
)] [

c+
i(ζ − ζ̄)

|ζ|2
G(x, τ)

f3(x, τ)

]
where in the lowest order of c:

G(x, τ)

f3(x, τ)
= −2ic|ζ|2KW̄Y

G0

f30 + f32c2

with

G0 = −8|ζ|2|S|2|Y |2K3WȲ 2
(
eAΓ + 1

)
f30 = 16K4|ζ|2|Y |4|S|4

f32 = 32K4|ζ|2|S|4
(∣∣Y (eAΓ + 1)

∣∣2 − 2<
[
Ȳ 2ΓeA

])
13



and where ”<[z]” means the real part of z. The solution then can be written in a simpler form:

ψ(x, τ) =
1

2ε
exp

[
−i
(
k

2ε
x− ω

8ε2
τ

)]
× (34)[

c−
(ζ − ζ̄)cȲ |Y |2

(
eAΓ + 1

)
|Y |4 + 2c2

(
|Y (eAΓ + 1)|2 − 2<

[
eAΓȲ 2

])].
The solution (34) is a fundamental sech-shaped soliton. It is illustrated in Fig. 6. When de-
creasing c, the shape and the height of the soliton doesn’t change. However, it moves in the
(x, τ )-plane. This can be seen if we replace c by c = e−ρ and notice, that the variable ρ adds
up to the real part of the exponent A, causing the shift along the x and τ -variables.

Figure 6: Amplitude profile of the solution (34) in the (x, τ )-plane. Parameters chosen for this
illustration are: c = 10−3, K = 1.3 (k = 0.1), ζ = 1/3 + i (ξ = 1/3, η = 1), ε = 0.5, and
Γ = 1.

In the next order of c we include the term∼ G2c
2 in the nominator and the term∼ f34c

4 in the
denominator:

G(x, τ)

f3(x, τ)
= −2ic|ζ|2KW̄Y

G0 +G2c
2

f30 + f32c2 + f34c4

14



where G2 =

4K2(ζY )2|W |2 ×
{
ζeĀΓ̄

(
4KWY 2 − 3|W |2|Y |2

)
−2eAΓK

(
|Y |2

(
2|ζ|2 + ζW

)
− ζWȲ 2

)
−W |Y |2

(
3Y ζ̄ + 2K<[ζ]

)
+ 4ζWKeAΓ<

[
eAΓȲ 2

]
−2|Y |2eAΓK

(
ζeĀΓ̄

(
2ζ̄ +W

)
+ <

[
eAΓζW

])
−2ΓKWe2<[A]+A<[ζ]|Γ|2|Y |2

}
and f34 =

4K2|W |2 ×
{

2|ζ|2
(
2K2 + 9<

[
Y 2
])
|W |2|Y |4 +

K|4W 2Y |2
(
<
[
eAΓζ̄

(
ζK − 3=[ζ]2

)]
+

3

2
ζ2<

[
eAΓW̄

] )
+|4KWY |2<

[
eAΓY W̄ (=[ζ]2 − |ζ|2W̄ )

]
+8K2e2<[A]|Γ|2|Y |2

(
|Y |2<

[
ζ2|Y |2 − 4=[ζ]2Y W̄

]
+2|W |2

(
|Y |2(<[ζ]2 + |ζ|2)−<[Y 2]|ζ|2

) )
−24K|W |2<

[
e2AΓ2ζ̄=[ζ]2W 2Ȳ 2

]
−16K2e2<[A]|Γ|2|Y |2

(
=[ζ]2|Y |2<

[
eAΓWȲ

]
+|W |2

(
|ζ|2<

[
eAΓȲ 2

]
−<[ζ]2<

[
eAΓ

]
|Y |2

) )
+4K2e4<[A]<[ζ]2|Γ|4|W |2|Y |4

}
.

The solution then becomes:

ψ(x, τ) =
1

2ε
exp

[
−i
(
k

2ε
x− ωτ

8ε2
τ

)][
c− 2ic|ζ|2KW̄Y (G0 + c2G2)

f30 + f32c2 + f34c4

]
. (35)

7 The limit of Sasa-Satsuma soliton solution.

To obtain this limit analytically we set c = e−ρ and shift accordingly the real part of the exponent
A by ρ, which moves the solution back to the origin thus removing the dependence of A on ρ.
Taking the limit ρ→∞ in (35) we obtain:

ψ(x, τ) = − i
ε

exp

[
A− i

2ε

(
kx− ωτ

4ε

)]
×

Γζ̄ Ȳ =[ζ]
(
e2<[A]<[ζ]|Γ|2 + ζ|Y |2

)
(e4<[A]<[ζ]2|Γ|4 + 2e2<[A]|Γ|2|ζ|2|Y |2 + |ζ|2|Y |4)

.
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After a straightforward algebra this solution can be transformed into:

ψ(x, τ) =
−ia0a1

2ε|
√
b2b3|

exp

[
i=[A]− i

(
k

2ε
x− ω

8ε2
τ

)]
×

(36)

2 cosh<[A] + (a2/a1 − 1)e−<[A]

cosh[2<[A]− ln |
√
b3/b2|] + b1/(2|

√
b2b3|)

with

a0 = Γζ̄ Ȳ =[ζ]

a1 = <[ζ]|Γ|2

a2 = ζ|Y |2

b1 = 2|Γ|2|ζ|2|Y |2

b2 = <[ζ]2|Γ|4

b3 = |ζ|2|Y |4

<[A] =
η

2ε

[
x− τ

4ε

(
η2 − 3ξ2 +

1

3

)]
=[A] =

τ

8ε2

[
ξ

(
3η2 − ξ2 +

1

3

)
+
K

3

(
K2

9
− 1

3

)]
+
x

2ε

(
K

3
− ξ
)
.

We end up with the same solution (36) if we repeat the limiting process c → 0 including all
higher order terms G4c

4, G6c
6, f36c

6, and f38c
8 6= 0 in the expressions above. It is therefore

the exact zero background (c = 0) limit of the solution (7) along the branch σ = 1, σ2 = 1.
Thus, it is a particular exact solution of the SSE (1). It is illustrated in Fig. 7.

If we replace the real and imaginary parts of the eigenvalue using the following transformations

η = 2εηs and ξ =
1

3
− 2εξs (37)

and choose in particular for Γ:

Γ = (K − 1 + 6ε (ξs − iηs))×
|1− 6εξs| |1 + 6ε(iηs − ξs)|

3 (1− 6εξs) (6ε (ηs − iξs) + i)
, (38)

we obtain the solution in a simpler form:

ψ(x, τ) = ηse
iBs

2 coshAs + (cs − 1)e−As

cosh(2As − log |cs|) + |cs|
(39)

where

As = ηs
[
x−

(
ξs+ε

(
η2
s − 3ξ2

s

))
τ
]
,

Bs = ξs

[
x+

(
η2
s − ξ2

s

2ξs
+ ε
(
ξ2
s − 3η2

s

))
τ

]
,

cs = 1− iηs
ξs − 1

6ε

; |cs| =

√
1 +

36η2
sε

2

(1− 6ξsε)2
.
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Figure 7: Amplitude profile of the solution (36) in the (x, τ )-plane. Parameters chosen for this
illustration are: ζ = 1/3 + i (ξ = 1/3, η = 1), K = 1.3 (k = 0.1), ε = 0.5. According to Eq.
(38) Γ = −0.22136− i0.98.
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Equation (39) represents the original version of Sasa-Satsuma single-soliton solution to (1) with
a small change of notations. Namely, we added the subscript s to the original parameters of
Sasa-Satsuma in order to avoid confusion with other parameters of our work. The plus sign in
front of ε in the expression for As instead of minus in the original Eq.(42) of the paper [22] is a
correction of the typo. It is highlighted here by red colour in the online version.

The solution (39) has the NLSE limit which is the fundamental soliton of the NLSE:

ψ(x, τ)→
ηs exp

[
i
2

(η2
s − ξ2

s ) τ + iξs(x− x1)
]

cosh [ηs(x− x0 − ξsτ)]

when ε→ 0. In addition, the Sasa Satsuma solution has a singular limit

ψ(x, τ)→
4η2

s exp
[(

2η3
sε+ ηs

6ε

)
τ + 2ηs (x+ x0)

][
exp(2η3

sετ + ηs
6ε
τ + 2ηsx0) + 2 exp(2ηsx)

]2
when |cs| → ∞. This happens when ξs → 1

6ε
. This solution is singular either when ε → 0, or

when ε→∞. The velocity of the soliton (39) is given by

v = ξ+ε
(
η2 − 3ξ2

)
. (40)

The velocity is infinite v → ∞ when ε → ∞. On the other hand, the velocity goes to zero
v → 0 when

ξs →
1±

√
12η2

sε
2 + 1

6ε
.

8 Conclusions

In this paper, we considered the simplest case of soliton on a background solutions to the Sasa-
Satsuma equation. This is just one branch of solutions of a complex manifold that has relatively
simple limit when the background amplitude goes to zero. Nevertheless, it has rich structure and
admits several limiting cases that are important for applications. The zero background limit is
complicated and admits known soliton solutions as well as singular solutions. Interestingly, solu-
tions found by Mihalache et al [19, 17, 18] have oscillating structure even with zero background.
As such, they do not belong to the branch that we considered here. These other branches
require separate analysis and will be examined elsewhere.
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