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Abstract

We study the propagation of few-cycle optical solitons in nonlinear media with an
anomalous, but otherwise arbitrary, dispersion and a cubic nonlinearity. Our theory extends
beyond the slowly varying envelope approximation. The optical field is derived directly from
the Maxwell equations under the assumption that generation of the third harmonic is a non-
resonant process or at least cannot destroy the pulse prior to inevitable linear damping. The
solitary wave solutions are obtained numerically up to nearly single-cycle duration using a
modification of the spectral renormalisation method originally developed for the envelope
solitons.

1 Introduction

Optical solitons are robust localized pulses arising from the interplay of nonlinearity and disper-
sion. They are usually described by the pulse envelope governed by the nonlinear Schrödingier
equation (NLSE) [15, 2]. The latter is known to be integrable [34] with its fundamental soliton
solution being the central item of studies in nonlinear optics. As the NLSE is derived using the
slowly varying envelope approximation (SVEA), such a fundamental soliton must contain suf-
ficiently large number of optical oscillations. Recent progress in generation of few-cycle [9, 4]
and even sub-cycle [16, 25, 10] optical pulses boosted interest to ultrashort optical solitons.
Several exact solutions have been found both for the generalized NLSE beyond the SVEA
[29, 14, 11, 35, 26, 5] as well as for the non-envelope propagation equations derived specif-
ically to describe ultrashort pulses [21, 18, 27, 20, 30, 8, 23]. These solutions and the present
work presuppose that the pulse carrier frequency is well separated from any resonant frequency
of the medium. Another important case is that of the resonant ultrashort solitons [17, 24, 22].

Non-envelope solitons are less universal then the fundamental soliton of the NLSE. The exact
solutions known so far require either specific relations between the equation parameters in the
case of the generalised NLSE or simplified dispersion profiles. For example, Drude’s dispersion
in a wide spectral window is required for the so called short pulse equation [19, 28]. Typically
non-envelope solutions belong to continuous families and they are characterised by the pulse
duration t0, among other parameters. As the pulse duration increases, the ultrashort soliton
moving along z-axis with the velocity V approaches the standard cosh−1(τ/t0) shape for τ =
t − z/V and the fundamental soliton of the NLSE is recovered. This simple limit motivates
a backward search for the few-cycle solitons. Let’s first start with a fundamental soliton of the
NLSE and transform it into an exact solution of the properly simplified set of Maxwell equations.
By doing so we avoid the use of the envelope and the NLSE. Thereafter one can trace the
solution shape while solving Maxwell equations and decreasing the soliton duration. This turns
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out to be an effective strategy at least for systems, where nonlinear generation of the third
harmonics can be ignored even for spectrally wide short pulses.

We have found that envelope solitons can be naturally transformed into ultrashort solitary so-
lutions. These solutions can be traced down to nearly single-cycle duration but only as long as
one can ignore contributions of both the higher harmonic generation and the soliton-specific
Cherenkov radiation [3]. If this is the case, one can even observe formation of a non-smooth
cusp profile which prohibits existence of sub-cycle solitons. This fact agrees with the proper-
ties of the exact ultrashort solitary solutions obtained previously both for the generalized NLSE
[5] and for the non-envelope propagation model with the idealized dispersion [30, 8]. From the
practical side, the ultrashort solitons presented in this paper provide natural initial conditions
for direct modeling of solitons using Maxwell equations, where imperfect ultrashort fundamental
solitons are used instead [12, 13, 31]. Last but not least, the non-envelope ultrashort solitons are
obtained using a simple and effective numerical procedure. The latter is a natural generalization
of the spectral renormalization method, originally developed for the NLSE [1].

2 Basic equations

For the sake of simplicity, we consider a single-mode waveguide and characterize the propagat-
ing pulse by a single field component. The latter depends on the propagation distance and time,
E = E(z, t), as prescribed by the scalar nonlinear wave equation

∂2
zE −

1

c2
∂2
t

(
ε̂E + χ(3)E3

)
= 0 (1)

where c is the speed of light and parameter χ(3) is the nonlinear susceptibility of the third order.
A nonlocal pseudo-differential operator ε̂ is defined by a suitable medium response function
h(t)

ε̂E(z, t) = E(z, t) +

∫ ∞
0

E(z, t− t′)h(t′)dt′,

such that for a single harmonic E ∼ e−iωt we obtain

(ε̂E)ω = ε(ω)Eω, ε(ω) = 1 +

∫ ∞
0

h(t′)eiωt
′
dt′, (2)

where Eω = Eω(z) denotes the Fourier component of E(z, t). The dielectric constant ε(ω)
accounts for the combined medium and waveguide dispersion.

Note, that any nontrivial ε(ω) from Eq. (2) is a complex-valued function. The corresponding
dispersion relation β2(ω)c2 = ω2ε(ω) for the monochromatic linear wave E ∼ exp i(βz −
ωt) provides a complex-valued propagation constant β(ω) for each frequency. In other words,
damping is in the very nature of Eq. (1) and all optical solitons are a priory approximate solutions
in the transparency window. Consequently, looking for a soliton, one has a right to ignore, e.g.,
higher harmonics and Cherenkov radiation, if their effect is below the linear damping. This is
particularly valid for ultrashort solitons which are wide in the frequency domain and experience
higher rates of linear and nonlinear damping. In practice, such a soliton is a long-living robust
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solution that persists despite other pulses being destroyed by nonlinearity and dispersion but it
still can be destroyed by damping.

Optical pulses which propagate with a constant velocity without changing their shape, were ex-
amined in Ref. [33] based on Eq. (1) with a real-valued positive, but otherwise arbitrary, dielectric
constant. These solutions may only be expected if Re[ε(ω)] has either a maximum at some ω
for a focusing nonlinearity or a minimum for a defocusing one. Unfortunately this is not the case
for the vast majority of material dispersions. Besides, all extrema of Re[ε(ω)] typically correlate
to a high damping. The lack of the ultra-short solitons is in a sharp contrast to the variety of the
envelope solitons. The latter exist for any carrier frequency ω = ω0 in the transparency window
provided that χ(3) and β2 = β′′(ω0) are of different sign. To be specific, we assume focusing
nonlinearity and anomalous dispersion:

χ(3) > 0 and β′′(ω) < 0. (3)

The latter condition applies to some interval of frequencies. Normal dispersion is allowed in the
transparency window outside this region.

In what follows, we show how to obtain non-envelope solitary wave solutions for Eq. (1). To this
end, one has to ignore contributions of higher harmonics. The most natural way to do so is to
use the analytic signal representation for the electric field [32]. This approach is also a useful
tool for the treatment of the pulse propagation problem such as the one presented in [7].

3 Reduction

Keeping in mind that we are interested in describing solitons for arbitrary dispersion, at some
stage, we have to deal with the numerical solution. It is then convenient to replace a continuous
ω with a sufficiently dense discrete set of frequencies by introducing a large period T in the time
domain. Thus, the electric field is represented by a discrete sum

E(z, t) =
∑
ω

Eω(z)e−iωt, ω ∈ 2π

T
Z, (4)

where

Eω(z) =

∫ +T/2

−T/2
E(z, t)eiωt

dt

T
, E−ω = E∗ω, (5)

such that E and Eω have the same physical dimension. Performing numerical calculations, we
actually keep only part of harmonics, namely those belonging to the transparency window

ωL < ω < ωR. (6)

Of course, all our results can be easily rewritten to apply to the continuous spectrum.

In what follows, we assume that the four-wave resonance conditions

β(ω1) + β(ω2) + β(ω3) = β(ω4),

ω1 + ω2 + ω3 = ω4, ωi > 0,
(7)
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are not satisfied simultaneously for any four positive frequencies from the transparency win-
dow (6) whether they are discrete or not. Consequently, generation of the third harmonics is a
non-resonant process.

To utilise the above feature, we introduce a complex field E(z, t) which by definition is governed
by the equation

∂2
zE −

1

c2
∂2
t

(
ε̂E +

3

4
χ(3)|E|2E +

1

4
χ(3)E3

)
= 0, (8)

where ε̂E is naturally defined in the frequency domain

ε̂E(z, t) =
∑
ω

ε(ω)Eω(z)e−iωt, (9)

and Eω(z) denotes Fourier components of E(z, t). We stress that E is a complex-valued field
and therefore E−ω and (Eω)∗ are different in contrast to the standard relation (5). Actually the
positive-frequency part of E(z, t) will dominate over the negative-frequency part (see below).

In what follows, E∗ω always denotes a complex conjugate of Eω. Fourier components of the
conjugated field E∗ are denoted by (E∗)ω. One can check that

E∗ω = (Eω)∗ = (E∗)−ω. (10)

In addition, using (9), (10), and the standard relation ε(−ω) = ε∗(ω) one can directly check
that

(ε̂E)∗ = ε̂(E∗), (11)

which extends the standard fact that ε̂ transforms an arbitrary real field into a real one.

Equation (8) may be considered as an odd way to solve Eq. (1). Indeed, adding Eq. (8) to its
complex conjugate, using Eq. (11), and defining

E(z, t) =
E(z, t) + E∗(z, t)

2
, (12)

we immediately recover Eq. (1) for the real electric field. To solve Eq. (1) one may introduce
the complex field such that initially E = Re[E ], then solve Eq. (8), and then recover E(z, t)
from (12).

Now we take advantage of the presumably non-resonant dispersion profile by choosing a special
initial value for E(z, t). As usual, we deal with the waves propagating along the z-axis so that
the initial state of the system is that for z = 0. We present the incoming field E(z = 0, t) as a
sum of harmonics (4) and define E(z = 0, t) as the positive-frequency part of this sum

E(0, t) → E(0, t) = 2
∑
ω>0

Eω(0)e−iωt, (13)

where the factor 2 is for E = Re[E ]. The time-averaged field 〈E〉 = Eω=0 is set to zero, the
initial value of the derivative ∂zE is related to ∂zE in a manner similar to Eq. (13).

Initially E(z = 0, t) contains only positive frequencies and thus is an analytic signal for E(z =
0, t). Strictly speaking, this is not true for z > 0, because negative frequency components of
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E(z, t) still may be generated by the |E|2E term. However, the process is non-resonant. For
example, let us assume that a harmonic e−iωt results from the nonlinear interaction of three
positive-frequency harmonics e−iωit through the |E|2E term, such that

β(ω) = β(ω1)− β(ω2) + β(ω3),

ω = ω1 − ω2 + ω3, ωi > 0.

If ω < 0, the latter conditions are equivalent to Eq. (7) and the resonance excitation does not
occur. Therefore, to a large extent, E(z, t) contains only positive frequencies also for z > 0.
More precisely, if the pulse field scales as O(ε), the induced negative-frequency part scales
as O(ε3), its backward effect on the positive-frequency part might be resonant but scales as
O(ε5) which is beyond the accuracy of the initial Eq. (1).

Up to this very moment the transformation from Eq. (8) to Eq. (1) was exact. Now we take
advantage of the above considerations and neglect generation of the third harmonics by ignoring
the E3 term in Eq. (8). The resulting propagation equation

∂2
zE −

1

c2
∂2
t

(
ε̂E +

3

4
χ(3)|E|2E

)
= 0, (14)

is the one that will be used below. All meaningful solutions of Eq. (14) are subject to a simple
criterion: the negative-frequency part of E(z, t), being zero at z = 0 by construction, must
remain small for z > 0. Numerical examples demonstrate that this is a fairly good approximation
at least for the propagation distances typical for ultrashort pulses.

The simplest solution of Eq. (14) is given by a monochromatic nonlinear wave

E = E0e
i[β(ω)z−ωt],

which must satisfy the nonlinear dispersion relation

β2(ω) =
ω2

c2

[
ε(ω) +

3χ(3)

4
|E0|2

]
.

Furthermore, one can introduce a standard nonlinear correction to the refraction index n(ω) =√
ε(ω) such that

neff(ω) = n(ω) +
3χ(3)

8n(ω)
|E0|2. (15)

Equation (14) has the same nonlinearity as the NLSE and possesses a rich set of solitary
solutions which are naturally connected to the fundamental solitons of the NLSE. On the other
hand, Eq. (14) is much more general than the NLSE as it is of the second order, operates with
the electric field, accounts for arbitrary dispersion, and is not the result of the SVEA. We now
turn to the description of solitary wave solutions. To this end, it is convenient to write Eq. (14) in
the frequency representation

∂2
zEω + β2(ω)Eω +

3χ(3)ω2

4c2

(
|E|2E

)
ω

= 0, (16)

where (|E|2E)ω denotes a spectral component of |E|2E .
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4 Solitons

Up until now the dielectric constant was an arbitrary complex-valued function for which Re[ε(ω)]�
Im[ε(ω)] in the transparency window (6). From now on we neglect the imaginary part com-
pletely and simply write ε(ω) instead of Re[ε(ω)]. All derived values, e.g., the propagation
constant and the refraction index, are then real.

To describe solitary wave solutions we introduce a shape function e(τ) for the electric field

e(τ) =
∑
ω

eωe
−iωτ ,

where τ refers to the retarded time τ = t− z/V and parameter V is the velocity of the soliton.
We will consider two different cases.

4.1 Stationary solitons

The simplest case is that the soliton moves with a constant velocity V and is stationary in the
co-moving frame. This corresponds to the classical concept of a soliton. The corresponding
ansatz reads

e(τ) → E(z, t) = e
(
t− z

V

)
(17)

such that
Eω(z) = eωe

iωz/V ,
(
|E|2E

)
ω

=
(
|e|2e

)
ω
eiωz/V . (18)

We insert the ansatz (17) into Eq. (16) to derive that e(τ) is determined by the following relation[
c2

V 2
− ε(ω)

]
eω =

3χ(3)

4

(
|e|2e

)
ω
. (19)

An equation similar to Eq. (19) has been studied in Ref. [33]. Similar analysis applies also to
our case. If for some resonant frequency ωr the corresponding phase velocity equals to that
of the soliton, c/

√
ε(ωr) = V , the pulse will radiate energy and, thus, cannot be a soliton.

To obtain a solitary wave solution, let us assume that ε(ω) has a maximum at ω = ω∗ and
that c2/V 2 > ε(ω∗). The condition ε′(ω∗) = 0 indicates that corresponding phase and group
velocities are the same,

V∗ = Vph(ω∗) = Vgr(ω∗),

the soliton velocity V is somewhat smaller than V∗ so that the term in the square brackets in
Eq. (19) is positive-defined.

Now we introduce a new function ψ(τ) such that

e(τ) = ψ(τ)e−iω∗τ , ψ(τ) =
∑

Ω

ψΩe
−iΩτ

and therefore
eω∗+Ω = ψΩ,

(
|e|2e

)
ω∗+Ω

=
(
|ψ|2ψ

)
Ω
.
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Equation (19) yields [
c2

V 2
− ε(ω∗ + Ω)

]
ψΩ =

3χ(3)

4

(
|ψ|2ψ

)
Ω
. (20)

for ω = ω∗ + Ω.

Equation (20) is an exact consequence of Eq. (19). The SVEA and the fundamental soliton of
the NLSE come into play when Ω� ω∗ and c2/V 2 is just slightly higher than ε(ω∗). Expanding
ε(ω∗ + Ω) and transforming Eq. (20) to the time domain we obtain a simple equation[

c2

V 2
− ε(ω∗)

]
ψ +

ε′′(ω∗)

2
∂2
τψ =

3χ(3)

4
|ψ|2ψ. (21)

Equation (21) yields the standard cosh−1(t/t0) shape solitary wave solution for the focusing
nonlinearity and ε′′(ω∗) < 0. One can check the relationship

ε′(ω∗) = 0 ⇒ ε′′(ω∗)

ε(ω∗)
= 2

β′′(ω∗)

β(ω∗)

indicating that the stationary moving solitons are subject to the condition (3). The soliton duration
t0 is determined by the relation

t20 =
−β′′(ω∗)/β(ω∗)

V 2
∗ /V

2 − 1
,

where ω∗ and V∗ are determined solely by dispersion, V < V∗ parametrizes the family of
solitary solutions.

As one decreases the soliton velocity V , the soliton becomes shorter in time and wider in the
frequency domain. For ultrashort pulses the Taylor expansion of ε(ω∗ + Ω) becomes invalid [6]
and one has to deal with the full Eq. (19). The solitary solutions have to be found numerically
(see Section 4.3). The exact cosh−1 solution of Eq. (21) yields a reasonable first approximation.

The results of this section are easy to interpret. A fundamental soliton moves with the group
velocity whereas it’s carrier wave moves with the phase velocity. Both velocities should be equal
for the solution (17). This can only happen when ε(ω) has an extremum. Multi-parametric fam-
ilies of solutions of Eq. (19) branch out from such maxima [33]. As already mentioned above,
extrema of the dielectric constant typically correlate to a high linear damping and solutions of
the form (17) are unlikely to be observed. We therefore must consider the ultrashort solitons
which are non-stationary in the co-moving frame.

4.2 Non-stationary solitons

In this section we apply a less restrictive two-parametric ansatz for the electric field

E(z, t) = e
(
t− z

V

)
eiKz, (22)

where the soliton shape function e(τ) is determined by K , V and Eq. (14). In what follows, it is
convenient to fix V and to look how e(τ) shrinks with the increase ofK . Equation (22) indicates
that

Eω(z) = eωe
i(K+ω/V )z,

(
|E|2E

)
ω

=
(
|e|2e

)
ω
ei(K+ω/V )z,
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Figure 1: A schematic representation of the dispersion relation β = β(ω) in the transparency
window ωL < ω < ωR. Solitons with the carrier frequency ω0 are parametrized by κ. They can
be found numerically for sufficiently small κ if ω0 belongs to the anomalous dispersion domain
and if the tangent line at ω0 does not intersect with β(ω). The fundamental soliton of the NLSE
is recovered for κ → 0.

c.f., Eq. (18). The corresponding soliton oscillates in the co-moving frame. Inserting Eω(z) into
Eq. (14) we obtain [(

K +
ω

V

)2

− β2(ω)

]
eω =

3χ(3)ω2

4c2

(
|e|2e

)
ω
. (23)

Similar to Eq. (19), if for some ω = ωr it happens that K + ωr/V = β(ωr), the pulse in
question radiates energy. We therefore assume that the line K + ω/V and the curve β(ω),
both plotted against frequency ω, do not intersect with each other as illustrated in Fig. 1. Let κ
be the smallest value of the difference

κ = min
ω

[
K +

ω

V
− β(ω)

]
, (24)

and let the frequency ω0 yield this smallest difference; ω0 is referred to as the carrier frequency.
We use the standard notation

βm = β(m)(ω0)

for the derivatives of β(ω) at ω = ω0. The minimization problem (24) requires that β2 < 0 and
yields V = 1/β1. That is, we define ω0 in such a way that the soliton velocity equals the group
velocity at the carrier frequency. In addition, one identifies that

K +
ω

V
= κ + β̄(ω),

where
β̄(ω) = β0 + β1(ω − ω0)

represents a tangent line to β(ω) at ω = ω0. Equation (23) is transformed to the form

[κ + β̄(ω)− β(ω)]eω =
3χ(3)ω2 (|e|2e)ω

4c2[κ + β̄(ω) + β(ω)]
, (25)
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and is considered for a fixed ω0 and different positive values of κ.

Equation (25) has the same basic features but is much less restrictive than Eq. (19). As ex-
pected, each suitable (β2 < 0) carrier frequency ω0 now generates a family of solitary wave
solutions parametrized by κ > 0. The only restriction is that β(ω) and β̄(ω) intersect only at
ω = ω0, i.e., the resonance radiation does not take place. In practice, it is sufficient that the
possible resonant frequency ωr considerably differs from ω0 and therefore Cherenkov’s radia-
tion is smaller than the linear damping. This, in turn, requires a large region with the anomalous
dispersion where β(ω) is a convex function (see Fig. 1).

The SVEA and the fundamental soliton of the NLSE are recovered from Eq. (25) for κ → 0.
The corresponding solutions are

√
n2e(τ) =

√
c/ω0

t20/|β2|
e−iω0τ

cosh(τ/t0)

and
√
n2E(z, t) =

√
c/ω0

t20/|β2|
exp i[(κ + β0)z − ω0t]

cosh[(t− β1z)/t0]
,

where in accordance with Eq. (15)

n2 =
3χ(3)

8n(ω0)
and κ =

|β2|
2t20

.

As κ increases, the soliton becomes shorter in time. At some κ one has to switch to the nu-
merical solution of Eq. (25). The soliton can be traced up to the largest κ at which it vanishes
usually because of the resonant radiation. For idealized dispersion profiles one may expect cusp
formation as predicted by known exact solutions [30, 5, 8]. The numerical approach is described
in the next subsection.

4.3 Numerical solutions

Equation (25) is now written in a form which suggests an iterative solution

e(τ) = N [e(τ)],
(
N [e]

)
ω

= f(ω)χ(3)
(
|e|2e

)
ω
,

f(ω) =
3ω2/(4c2)[

κ + β̄(ω)
]2 − β2(ω)

,

where we recall that χ+ β̄(ω) > β(ω), as illustrated in Fig. 1, so that f(ω) is positively defined
in the transparency window.

Iterations start with the fundamental soliton solution described in the previous section. The most
simple iterative scheme, en+1 = N [en], diverges. To obtain a correct solution one can apply
the so called spectral renormalization method developed for the NLSE [1]. In the course of
iterations, the transition from en to en+1 is performed in two steps:

en+1/2 = N [en], en+1 = λnen+1/2

9
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Figure 2: A nearly single-cycle solitary solution for the bulk sapphire. Electric field is normalized
by
√
χ(3) and is shown versus the retarded time. The carrier wave corresponds to 3µm. Thin

line: the exact solitary solution. Thick line: the best fit by a fundamental soliton.

where rescaling on the second step is performed in such a way that 〈en+1|en+1〉 = 〈en|en〉, for
a suitably defined scalar product, e.g., the time-averaged value of |e|2. After rescaling, all en(τ)
belong to a ünit sphere", which considerably improves convergence. If the iterations converge
to e∞ and λ∞, we have

e∞ = λ∞N [e∞] ⇒
√
λ∞e∞ = N [

√
λ∞e∞],

just because N [e] represents a cubic nonlinearity. It follows that

e(τ) =
√
λ∞e∞(τ)

solves equation e(τ) = N [e(τ)]. An illustrative single-cycle solitary solution for sapphire is
shown in Fig. 2. For comparison, the best possible fit by a fundamental soliton is also shown.
Surprisingly, the fundamental soliton of the NLSE remains to be a reasonable approximation to
the exact solution for practically all pulse durations.

5 Conclusions

In conclusion, we demonstrated that the analytic signal representation yields a natural way to
ignore generation of the third harmonic for a suitable (non-resonant) dispersion profile. By doing
so the nonlinear wave equation for optical pulses in fibers is transformed to a simplified propaga-
tion equation without introducing the carrier frequency. Neither the slowly varying envelope ap-
proximation nor the unidirectional approximation are used in our analysis. The resulting Eq. (14)
possesses useful similarities to the nonlinear Schrödingier equation but actually is a bidirec-
tional nonlinear wave equation. The latter applies directly to the electric field and describes
pulses with arbitrary durations, as long as one can neglect the third harmonic generation.

Using the analytic signal representation, we investigated solitary wave solutions of the nonlinear
wave equation (14). These solutions directly yield the electric field for the non-envelope ultra-
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short solitons in the case of anomalous, but otherwise arbitrary dispersion. Moreover, each en-
velope soliton generates a continuous family of ultrashort solitons, the family can be effectively
traced up to a few-cycle duration. These solutions are obtained numerically using a modification
of the spectral renormalisation method.
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