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Abstract

This paper is concerned with the time-harmonic elastic scattering by a finite number N of point-
like obstacles in Rn (n = 2, 3). We analyze the N -point interactions model in elasticity and derive
the associated Green’s tensor (integral kernel) in terms of the point positions and the scattering co-
efficients attached to them, following the approach in quantum mechanics for modeling N -particle
interactions. In particular, explicit expressions are given for the scattered near and far fields corre-
sponding to elastic plane waves or point-source incidences. As a result, we rigorously justify the Foldy
method for modeling the multiple scattering by finitely many point-like obstacles for the Lamé model.
The arguments are based on the Fourier analysis and the Weinstein-Aronszajn inversion formula of
the resolvent for the finite rank perturbations of closed operators in Hilbert spaces.

1 Introduction

We consider the time-harmonic elastic scattering byN point-like scatterers located at y(j), j = 1, · · · , N
in Rn(n = 2, 3). We set Y := {y(j) : j = 1, 2, · · · , N}. Physically, such point-like obstacles are
related to highly concentrated inhomogeneous elastic medium with sufficiently small diameters compared
to the wave-length of incidence. Define the Navier operator

Hω u := (−∆∗ − ω2)u, ∆∗ := µ∆ + (λ+ µ) grad div (1)

where λ, µ are the Lamé constants of the background homogeneous medium, and ω > 0 denotes the
angular frequency. Denote by U tol = U I + US the sum of the incident field U I and the scattered field
US . TheN -point interactions mathematical model we wish to analyze is the following: find the total elastic
displacement U tol such that

Hω(U tol) =
N∑
j=1

aj δ(x− y(j)) I in Rn\Y, (2)

lim
r→∞

r(n−1)/2(
∂Up
∂r
− ikpUp) = 0, lim

r→∞
r(n−1)/2(

∂Us
∂r
− iksUs) = 0, r = |x|, (3)

where the last two limits are uniform in all directions x̂ := x/r ∈ S := {|x̂| = 1}. Here kp :=
ω/
√
λ+ 2µ, ks := ω/

√
µ are the compressional and shear wavenumbers, and

Up := −k−2
p grad divUS, Us = −k−2

s curlcurlUS

denote the longitudinal and transversal parts of the scattered field, respectively. The conditions in (3) are
referred to as the Kupradze radiation condition in elasticity [10].

The equation (2) formally describes the elastic scattering by N obstacles with densities concentrated on
the point y(j). This concentration is modeled by the Dirac impulses δ(·−y(j)). In (2), the notation I stands
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for the n × n identity matrix, and aj ∈ C is the coupling constant (scattering strength) attached to the
j-th scatterer, which can be viewed as the limit of the density coefficients for approximating the idealized
δ-functions in (2).

Let us describe the Foldy method, see Refs. [4, 11] for more details in the acoustic case, to solve the
problem (2)-(3). Let Γω(x, z) be the fundamental tensor of the Lamé model. Using (2) and (3), we obtain
formally the following representation

U tol(x) = U I(x) +
N∑
j=1

aj Γω(x, yj)U
tol(yj), x 6= yj, j = 1, 2, . . . , N. (4)

There is no easy way to calculate the values of U tol(yj), j = 1, 2, . . . , N, and we cannot evaluate
(4). There are several approximations to handle this point. We can cite the Born, Foldy and also the
intermediate levels of approximations, see Refs. [11, 3] for more details about these approximations.
Here, we only discuss the Foldy method. Following this method, proposed in [4] to model the multiple
interactions occuring in the acoustic scattering, see also [11] for more details, the total field U tol(x) has
the form

U tol(x) = U I(x) +
N∑
j=1

aj Γω(x, yj)Uj(yj), (5)

where the approximating terms Uj(yj)’s can be calculated from the Foldy linear algebraic system given
by

Uj(yj) = U I(yj) +
N∑
m=1
m6=j

am Γω(yj, ym)Um(ym), ∀ j = 1, . . . , N. (6)

This last system is invertible except for some particular distributions of the points yj ’s, see Ref. [3] for a
discussion about this issue. Hence the systems (5)-(6) provides us with a close form of the solution to the
scattering by N-point scatterers. As it can be seen, the system (6) is obtained from (5) by taking the limits
of x to the points ym’s and removing the singular part.

Our objective is to rigorously justify and give sense to this method in the framework of elastic propagation.
To do it, we follow the approaches, presented in Ref. [1], known in quantum mechanics for describing the
interaction of N-particles. As pointed out in Ref. [1] for quantum mechanical systems, the Dirac potentials
on the right hand side of (2) cannot be regarded as an operator or quadratic form perturbation of the
Laplacian operator in Rn. This is also our main difficulty to deal with the scattering problem in elasticity.
One way to solve this problem is to employ the self-adjoint extensions of symmetric operators and the
Krein’s inversion formula of the resolvents; see e.g. Ref. [1, Part I] and Ref. [5] for the basic mathematical
framework in quantum mechanics. An alternative approach is the renormalization techniques, see Ref.
[1, Part 2], based on introducing appropriate coupling constants which vanish in a suitable way in the
process of approximation such that the resolvent of the model makes sense. Precisely, replacing the
scattering coefficients aj by parameter dependent coefficients aj(ε), ε ∈ R+, decaying in a suitable
way when ε → 0, and the Fourier transform of the delta distribution by its truncated part, up to 1

ε
, one

obtains a parameter family of self-adjoint operators, with ε as a parameter, in the Fourier variable. These
operators are finite-rank perturbations of the multiplication operator (which is the Fourier transform of the
Laplacian). Based on the Weinstein-Aronszajn inversion formula, one shows that the resolvent of this
family of operators converges, as ε → 0, to the resolvent of a closed and self-adjoint operator. This last
operator is taken to be the Fourier transform of the operator modeling the finitely many pointlike obstacles
scattering problem.
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The purpose of this paper is to develop the counterpart in elasticity for the model (2), following this
renormalization procedure. As a result, we show that the Foldy system (5)-(6) is indeed a natural model
to describe the scattering by N -point scatterers provided that we take the coefficients aj of the form
(cj − κ)−1 with cj being real valued and

κ :=

 −
1
4π

[ λ+3µ
µ(λ+2µ)

C + λ+µ
µ(λ+2µ)

− 1
2
( lnµ
µ

+ ln(λ+2µ)
λ+2µ

)] in R2,

iω 2λ+5µ
12πµ(λ+2µ)

in R3.
(7)

The constant C in (7) denotes Euler’s constant. Let us finally mention that the system (5)-(6) is used in
Refs. [3, 6] as a model for the detection of point-like obstacles from the longitudinal or the transversal
parts of the far field pattern.

The rest of the paper is organized as following. In Section 2 we present a detailed investigation of the
N point interactions in elasticity in R2. Section 2.1 gives the Green’s tensors for the Navier and Lamé
equations, in the absence of the obstacles, and the limit of their difference as the argument tends to
origin. Such a limit will be used in Section 2.2 for deriving the Green’s tensor (integral kernel) of the
model in the presence of the obstacles. An immediate consequence of this tensor is the explicit far field
pattern for plane wave incidence in terms of point positions and the associated scattering coefficients;
see Section 2.2. Finally, in Section 3 we extend the main Theorem 2.6 in two-dimensions to the case of
three-dimensions.

2 Elastic scattering by point-like obstacles in R2

Throughout the paper the notation (·)> means the transpose of a vector or a matrix, and ej, j =
1, 2, · · · , N denote the Cartesian unit vectors in Rn. We first review some basic properties of the funda-
mental solutions to the Navier and Lamé equations in R2.

2.1 Fundamental solutions

We begin with the Green’s tensor for the operator Hω, given by

Γω(x, y) :=
i

4µ
H

(1)
0 (ks|x− y|) I +

i

4ω2
grad xgrad >x [H

(1)
0 (ks|x− y|)−H(1)

0 (kp|x− y|)] (8)

for x, y ∈ R2, x 6= y, where H(1)
0 (t) denotes the Hankel function of the first kind and of order zero. For

u = (u1, u2)
> and ω = 0, we have the Lamé operator

H0 u := −∆∗u = −
(

(λ+ 2µ)∂2
1u1 + µ∂2

2u1 + (λ+ µ)∂1∂2u2

(µ∂2
1u2 + (λ+ 2µ)∂2

2u2 + (λ+ µ)∂1∂2u1

)
, ∂j := ∂xj, j = 1, 2.

Define the Fourier transform F : L2(R2)2 → L2(R2)2 by

(Ff)(ξ) = f̂(ξ) :=
1

2π
lim
R→∞

∫
|x|≤R

f(x)e−ix·ξdx, ξ = (ξ1, ξ2)
>.
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Its inverse transform is given by

(F−1g)(x) :=
1

2π
lim
R→∞

∫
|ξ|≤R

g(ξ)eix·ξdξ.

With simple calculations, we obtain

(FH0)u =

(
(λ+ 2µ)ξ2

1 + µξ2
2 (λ+ µ)ξ1ξ2

(λ+ µ)ξ1ξ2 µξ2
1 + (λ+ 2µ)ξ2

2

)(
û1

û2

)
=: M0(ξ)û

where û := Fu. Moreover, we have the non-vanishing determinant of M0:

det(M0) = (λ+ 2µ)µ |ξ|4 6= 0, if |ξ| 6= 0,

implying that M0 is invertible, with its inverse M−1
0 given by

M−1
0 (ξ) =

1

(λ+ 2µ)µ |ξ|4

(
µξ2

1 + (λ+ 2µ)ξ2
2 −(λ+ µ)ξ1ξ2

−(λ+ µ)ξ1ξ2 (λ+ 2µ)ξ2
1 + µξ2

2

)
=

1

µ|ξ|2
I− λ+ µ

µ(λ+ 2µ)|ξ|4
Ξ(ξ) (9)

for |ξ| 6= 0, where

Ξ(ξ) := ξ>ξ =

(
ξ2
1 ξ1ξ2

ξ1ξ2 ξ2
2

)
for ξ = (ξ1, ξ2) ∈ R2.

Setting Mω = M0 − ω2 I, we then analogously have

M−1
ω (ξ) =

1

µ|ξ|2 − ω2
I− λ+ µ

(µ|ξ|2 − ω2) [(λ+ 2µ)|ξ|2 − ω2]
Ξ(ξ). (10)

Let Γ0(x, y) = Γ0(|x−y|) be the Green’s tensor to the operatorH0, i.e., the Kelvin matrix of fundamental
solutions to the Lamé system, given by (see Ref. [7, Chapter 2.2])

Γ0(x, 0) =
1

4π

[
− 3µ+ λ

µ(2µ+ λ)
ln |x| I +

µ+ λ

µ(2µ+ λ) |x|2
Ξ(x)

]
. (11)

Then, there holds

1

2π
(F−1M−1

0 )(x) = Γ0(x, 0),
1

2π
(F−1M−1

ω )(x) = Γω(x, 0), |x| 6= 0, x ∈ R2.

The following lemma gives the entries of the matrix Γω − Γ0 taking the value at the origin.

Lemma 2.1. There holds the limit

lim
|x|→0

[Γω(x, 0)− Γ0(x, 0)] = η I,

where

η := − 1

4π

[
λ+ 3µ

µ(λ+ 2µ)
(ln

ω

2
+ C − iπ

2
) +

λ+ µ

µ(λ+ 2µ)
− 1

2
(
lnµ

µ
+

ln(λ+ 2µ)

λ+ 2µ
)

]
, (12)

with C = 0.57721 · · · being Euler’s constant.
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Proof. Recall Ref. [9] that Γω can be decomposed into

Γω(x, 0) =
1

π
ln(|x|) Γ̃1(x) + Γ̃2(x), (13)

with the matrices Γ̃j taking the form

Γ̃1(x) := Ψ̃1(|x|) I + Ψ̃2(|x|)
1

|x|2
Ξ(x), Γ̃2(x) := χ1(|x|) I + χ2(|x|)

1

|x|2
Ξ(x), (14)

where χj(τ) (j = 1, 2) are C∞ functions on R+ and

Ψ̃1(τ) = − 1

2µ
J0(ksτ) +

1

2ω2τ
[ksJ1(ksτ)− kpJ1(kpτ)] ,

Ψ̃2(τ) =
1

2ω2

[
k2
sJ0(ksτ)− 2ks

τ
J1(ksτ)− k2

pJ0(kpτ) +
2kp
τ
J1(kpτ)

]
.

Here Jn denotes the Bessel function of order n. Moreover, making use of the asymptotic behavior

J0(t) = 1− 1

4
t2 +

1

64
t4 +O(t6), J1(t) =

1

2
t− 1

16
t3 +O(t5), t→ 0+,

we get (see also Ref. [9])

Ψ̃1(τ) = −η1 + η2 τ
2 +O(τ 4), Ψ̃2(τ) = η3 τ

2 +O(τ 4), (15)

χ1(τ) = η +O(τ 2), χ2(τ) = η4
1

π
+O(τ 2)

as τ → 0, where

η := − 1
4πω2

[
k2
s ln ks

2
+ k2

p ln kp

2
+

k2
s−k2

p

2
+ (C − iπ

2
)(k2

s + k2
p)
]
,

η1 := 1
4ω2 (k2

s + k2
p), η2 := 1

32ω2 (3k4
s + k4

p), η3 := 1
16ω2 (k4

p − k4
s), η4 :=

k2
s−k2

p

4ω2 ,

with Euler’s constant C = 0.57721 · · · . Note that the coefficients η, η1, η4 can be respectively rewritten
as (12) and

η1 =
λ+ 3µ

4µ(λ+ 2µ)
, η4 =

λ+ µ

4µ(λ+ 2µ)

in terms of the Lamé constants λ and µ. Insertion of (14) and (15) into (13) yields the asymptotic behavior

Γω(x, 0) =
1

π
ln |x| [−η1 + o(1)] I + η I +

η4

π |x|2
Ξ(x) + o(1) as |x| → 0,

which together with (11) proves Lemma 2.1.

2.2 Solvability of elastic scattering by N point-like obstacles

Consider a new operator

H u = H0u−
N∑
j=1

aj δ(x− y(j)) I, y(j) = (y
(j)
1 , y

(j)
2 )> ∈ R2.
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The objective of this section is to give a mathematically rigorous meaning of this operator and describe the
scattered field corresponding to incident plane waves or point-sources. As mentioned in the introduction,
our arguments are in the lines of the approach known in quantum mechanics for describing the point
interactions of N particles; see Ref. [1].

To start, we set

H̃ := FHF−1 = FH0F−1 −
N∑
j=1

aj F [δ(x− y(j)) I]F−1.

For f = (f1, f2)
> ∈ L2(R2)2, we have (FH0F−1) f̂ = (FH0)f = M0f̂ , and formally

(Fδ(x− y(j))F−1 f̂)(ξ) = (Fδ(x− y(j))f)(ξ)

= (2π)−1f(y(j))e−iy
(j)·ξ

= (2π)−1e−iy
(j)·ξ
(

1

2π

∫
R2

f̂(ξ)eiy
(j)·ξdξ

)
=

〈
f̂ , ϕ1

y(j)

〉
ϕ1
y(j)(ξ) +

〈
f̂ , ϕ2

y(j)

〉
ϕ2
y(j)(ξ),

where ϕi
y(j)

(ξ) := φy(j)(ξ) (ei)
> for i = 1, 2, with φy(j)(ξ) := (2π)−1e−iy

(j)·ξ. Here we used the inner
product

〈f, g〉 :=

∫
R2

f(ξ) · g(ξ) dξ, for f, g ∈ L2(R2)2.

Therefore, formally we have

H̃f = (FH0F−1) f = M0(ξ) f −
N∑
j=1

{〈
aj f, ϕ

1
y(j)

〉
ϕ1
y(j)(ξ) +

〈
aj f, ϕ

2
y(j)

〉
ϕ2
y(j)(ξ)

}
.

Our aim is to prove the existence of the resolvent of H̃ and to deduce an explicit expression of its Green’s
tensor. To make the computations rigorous, we introduce the cut-off function

χε(ξ) =

{
1, if ε ≤ |ξ| ≤ 1/ε,
0, if |ξ| < ε or |ξ| > 1/ε,

for some 0 < ε < 1,

and define the operator

H̃εf := M0(ξ) f −
N∑
j=1

2∑
i=1

〈
aj(ε) f, ϕ

ε,i

y(j)

〉
ϕε,i
y(j)

(ξ), ϕε,i
y(j)

(ξ) := χε(ξ)ϕ
i
y(j)(ξ). (16)

We will choose the coupling constants aj(ε) in a suitable way such that the resolvent of H̃ε has a rea-
sonable limit as ε tends to zero. Let us first recall the Weinstein-Aronszajn determinant formula from Ref.
[1, Lemma B.5], which is our main tool for analyzing the resolvent of H̃ε.

Lemma 2.2. LetH be a (complex) separable Hilbert space with a scalar product
〈
·, ·
〉
. LetA be a closed

operator inH and Φj, Ψj ∈ H, j = 1, ...,m. Then(
A+

m∑
j=1

〈
·,Φj

〉
Ψj−z

)−1

=
(
A−z

)−1−
m∑
j=1

[
Π(z)

]−1

j,j′

〈
·, [
(
A−z

)−1
]∗Φj′

〉(
A−z

)−1
Ψj (17)
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for z in the resolvent set of A such that det
[
Π(z)

]
6= 0, with the entries of Π(z) given by[

Π(z)
]
j,j′

:= δj,j′ +
〈(
A− z

)−1
Ψj′ ,Φj

〉
. (18)

Note that in Lemma 2.2, the notation [Π(z)
]−1

j,j′
denotes the (j, j′)-th entry of the matrix [Π(z)

]−1
, and

[ ]∗ stands for the adjoint operator of [ ]. To apply Lemma 2.2, we take H := L2(R2)2, A := M0,
m := 2N and Φj := Φε

j , Ψj = −ãjΦε
j for j = 1, · · · , 2N , with ãj and Φε

j defined as follows:

ãj(ε) = al(ε) if j ∈ {2l − 1, 2l}, Φε
j :=

{
ϕε,1
y(l)

if j = 2l − 1,

ϕε,2
y(l)

if j = 2l,

for some l ∈ {1, 2, · · · , N}. The multiplication operator A is closed with a dense domain

D(A) :=
{
û ∈ L2(R2)2, M0û ∈ L2(R2)2

}
in L2(R2)2 hence H̃ε, ε > 0, is also closed with the same domain. Moreover, we set z := ω2 for ω ∈ C
such that Imω > 0. For such complex-valued number ω, one can observe that det(M0 − ω2I) 6= 0 so
that (M0 − ω2I)−1 always exists. Further, it holds that

[(M0 − ω2I)−1]∗ = [(M0 − ω2I)−1]T = (M0 − ω2I)−1,

where [ ]T denotes the conjugate transpose of a matrix, and ω denotes the conjugate of ω. Simple
calculations show that

(A− z
)−1

Ψj = −ãj(M0 − ω2I)−1Φε
j

and

δj,j′ +
〈(
A− z

)−1
Ψj′ ,Φj

〉
= ãj [ã−1

j δj,j′ −
〈
(M0 − ω2I)−1Φε

j′ ,Φ
ε
j′

〉
].

Therefore, by Lemma 2.2 we arrive at an explicit expression of the inverse of H̃ε − ω2, given by

(H̃ε − ω2)−1f = (M0 − ω2I)−1f +
2N∑

j,j′=1

[Πε(ω)]−1
j,j′

〈
f, χε F

(j′)
−ω

〉
χε F

(j)
ω , Imω > 0, (19)

with

Πε(ω) :=
[
ã−1
j δj,j′ −

〈
(M0 − ω2I)−1Φε

j′ , Φε
j

〉]N
j,j′=1

, χεF
(j)
ω := (M0 − ω2I)−1Φε

j, (20)

provided that Imω > 0 and det[Πε(ω)] 6= 0.

In order to obtain (H̃ − ω2)−1, we need to remove the cut-off function in (19) by evaluating the limits of

Πε(ω) and
〈
f, χεF

(j′)
−ω

〉
χεF

(j′)
ω as ε→ 0. This will be done in the subsequent Lemmas 2.3 and 2.5.

Lemma 2.3. The coefficients ãj(ε) can be chosen in such a way that the limit ΠB,Y (ω) := limε→0 Πε(ω)
exists and takes the form

ΠB,Y (ω) =


(b1 − η)I −Γω(y(1) − y(2)) · · · −Γω(y(1) − y(N))

−Γω(y(2) − y(1)) (b2 − η)I · · · −Γω(y(2) − y(N))
. . . .
. . . .
. . . .

−Γω(y(N) − y(1)) −Γω(y(N) − y(2)) ... (bN − η)I

 , (21)
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where η is given in (12) and B := (b1, · · · , bN) is an arbitrary vector in C1×N . If in addition we choose

bl := cl −
λ+ 3µ

4πµ(λ+ 2µ)
(ln

ω

2
− iπ

2
), l = 1, 2, · · · , N, (22)

with cl ∈ R arbitrary, then we have

(ΠB,Y (ω))∗ = ΠB,Y (−ω̄). (23)

Remark 2.4. In this paper, the number η is referred to as the normalizing constant and bl ∈ C is viewed
as the scattering coefficient attached to the l-th scatterer. The coefficient bl characterizes the scattering
density concentrated at y(l). The relation between the scattering coefficient bl and the scattering strength
al will be given in Remark 2.7.

Proof. The proof will be carried out in the following three cases of j, j′ ∈ {1, · · · , 2N}.
Case 1: |j′ − j| = 1, and j, j′ ∈ {2l − 1, 2l} for some l ∈ {1, · · · , N}.
We have j′ − j = 1 if j is an odd number, and j − j′ = 1 if j is an even number. Assume firstly that
j = 2l−1, j′ = 2l for some l = 1, · · · , N . Then, we have Φε

j = χεϕy(j)(1, 0)>, Φε
j′ = χεϕy(j)(0, 1)>.

Hence 〈
(M0 − ω2I)−1Φε

j,Φ
ε
j′

〉
=
〈
(M0 − ω2I)−1χε(1, 0)>, χε(0, 1)>

〉
since ϕy(l)(ξ) ϕy(l)(ξ) = 1. Consequently, it holds that〈

(M0 − ω2I)−1Φε
j,Φ

ε
j′

〉
=

∫
ε<|ξ|<1/ε

(M0 − ω2I)−1(1, 0)> · (0, 1)>dξ = 0

because the scalar function (M0 − ω2I)(ξ)−1(1, 0)> · (0, 1)> is odd in both ξ1 and ξ2; see (10). By
symmetry, we have also

〈
(M0 − ω2I)−1Φε

j′ ,Φ
ε
j

〉
= 0.

Case 2: j = j′ ∈ {2l − 1, 2l} for some l ∈ {1, 2, · · · , N}.
In this case, we set

ã−1
j (ε) :=

1

4π2

∫
ε<|ξ|<1/ε

M0(ξ)
−1Φε

j · Φε
j dξ + bl, bl ∈ C.

Hence, if j = 2l − 1 is an odd number, then by (9) we have

ã−1
j (ε) =

1

4π2

∫
ε<|ξ|<1/ε

M0(ξ)
−1(1, 0)> · (1, 0)>dξ + bl

=
1

4π2

∫
ε<|ξ|<1/ε

µξ2
1 + (λ+ 2µ)ξ2

2

µ(λ+ 2µ)|ξ|4
dξ + bl

= − (λ+ 3µ)

2π(λ+ 2µ)µ
ln ε+ bl. (24)

Moreover, by the choice of ãj(ε),

lim
ε→0

[
ã−1
j (ε)−

〈
(M0 − ω2I)−1Φε

j, Φε
j

〉]
= lim

ε→0

1

4π2

∫
ε<|ξ|<1/ε

[
M0(ξ)

−1 − (M0(ξ)− ω I)−1
]

(1, 0)> · (1, 0)>dξ + bl

=
1

4π2

∫
R2

[
M0(ξ)

−1 − (M0(ξ)− ω I)−1
]

(1, 0)> · (1, 0)>dξ + bl (25)
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From the definition of the inverse Fourier transformation, we have

lim
|x|→0

[ Γ0(x, 0)− Γω(x, 0)] =
1

4π2
lim
|x|→0

∫
R2

[
M0(ξ)

−1 − (M0(ξ)− ω I)−1
]
eiξ·xdξ

=
1

4π2

∫
R2

[
M0(ξ)

−1 − (M0(ξ)− ω I)−1
]
dξ,

where the last step follows from the uniform convergence[
M0(ξ)

−1 − (M0(ξ)− ω I)−1
]
m,n

(1− eiξ·x)→ 0, as |x| → 0, m, n = 1, 2,

in ξ ∈ R2, which can be easily proved using the expressions of M0(ξ)
−1 and (M0(ξ)− ω I)−1 given in

(9) and (10). Therefore, the first term on the right hand side of (25) is just the (1, 1)-th entry of the matrix
Γ0(x, 0)− Γω(x, 0) taking the value at |x| = 0. Recalling Lemma 2.1, we obtain

lim
ε→0

[
ã−1
j (ε)−

〈
(M0 − ω2I)−1Φε

j, Φε
j

〉]
= −η + bl,

where η is given in (12).

Analogously, if j = 2l for some l = 1, · · · , N , then ã−1
j takes the same form as in (24) and

lim
ε→0

[
ã−1
j (ε)−

〈
(M0 − ω2I)−1Φε

j, Φε
j

〉]
= lim

ε→0

1

4π2

∫
ε<|ξ|<1/ε

[
M0(ξ)

−1 − (M0(ξ)− ω2 I)
]−1

dξ (0, 1)> · (0, 1)> + bl

= [Γ0(x, 0)− Γω(x, 0)]|x|=0 (0, 1)> · (0, 1)> + bl

= −η + bl.

To sum up Cases 1 and 2, we deduce that the 2×2 diagonal blocks of the matrix ΠB,Y := limε→0 Πε(ω)
are given by the 2× 2 matrices(

−η + bl 0
0 −η + bl

)
, l = 1, 2, · · · , N.

Case 3: j ∈ {2l − 1, 2l}, j′ ∈ {2l′ − 1, 2l′} for some l, l′ ∈ {1, · · · , N} such that |l − l′| ≥ 1, i.e.
the element [ΠB,Y ]j,j′ lies in the off diagonal-by-2× 2-blocks of ΠB,Y .

Without loss of generality we assume j = 2l − 1, j′ = 2l′ − 1. Then,

Φε
j = χεϕ

1
y(l) = χε(1, 0)>φy(l) , Φε

j+1 = χεϕ
2
y(l) = χε(0, 1)>φy(l) ,

Φε
j′ = χεϕ

1
y(l

′) = χε(1, 0)>φy(l′) , Φε
j′+1 = χεϕ

2
y(l

′) = χε(0, 1)>φy(l′) ,

Define the 2× 2 matrix Υl := (Φε
j,Φ

ε
j+1) = χεφy(l) I. A short computation shows〈

(M0 − ω2I)−1(ξ)Υl(ξ), Υl′(ξ)
〉

=

∫
ε<|ξ|<1/ε

(M0 − ω2I)−1(ξ)φy(l)(ξ)φy(l′)(ξ) dξ

=
1

4π2

∫
ε<|ξ|<1/ε

(M0 − ω2I)−1(ξ) exp[i(y(l′) − y(l)) · ξ] dξ

→
[
Γω(y(l′) − y(l))

]
as ε→ 0,
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where the last step follows from the inverse Fourier transformation.

Finally, combining Cases 1-3 gives the matrix (21).

In addition, if we choose the vector B in the form (22) with cl ∈ R, l = 1, ..., N , then from the explicit
forms of ΠB,Y (ω) in (21) and η in (2.1), we obtain (ΠB,Y (ω))∗ = ΠB,Y (−ω).

We next prove the convergence of the operator Kε
j,j′ : L2(R2)2 → L2(R2)2 defined by

Kε
j,j′(f) :=

〈
f, χεF

(j′)
−ω

〉
χεF

(j)
ω , f ∈ L2(R2)2.

To be consistent with the definitions of Φε
j and χεF

(j)
ω , we introduce the functions

Φj(ξ) :=

{
(2π)−1e−iξ·y

(l)
(1, 0)> if j = 2l − 1,

(2π)−1e−iξ·y
(l)

(0, 1)> if j = 2l,
, F (j)

ω := (M0 − ω2I)−1Φj(ξ), (26)

With these notations, we define the matrix

Θl,ω(ξ) := (F (2l−1)
ω , F (2l)

ω ) = (M0 − ω2I)−1 exp(−iξ · y(l))(2π)−1 ∈ C2×2, Imω > 0 (27)

for l = 1, ..., N.

Lemma 2.5. Suppose that Imw > 0. Then the operator Kε
j,j′ converges to Kj,j′ in the operator norm,

where the operator Kj,j′ : L2(R2)2 → L2(R2)2 is defined by

Kj,j′(f) :=
〈
f, F

(j′)
−ω

〉
F (j)
ω .

Proof. It is easy to see

(F−1Θl,ω)(x) =
1

4π2

∫
R2

(M0 − ω2I)−1(ξ) exp(iξ · (x− y(l))) dξ = Γω(x− y(l)). (28)

By the definition of Γω and the asymptotic behavior of Hankel functions for a large complex argument,
it follows that both F (j)

ω and F (j)
−ω belong to L2(R2)2 for every j provided Im (ω) > 0. Then obviously

χεF
(j′)
−ω − F

(j′)
−ω and χεF

(j)
−ω − F

(j)
−ω tend to zero in L2(R2)2 when ε tends to 0. We write〈

f, χεF
(j′)
−ω

〉
χεF

(j)
ω −

〈
f, F

(j′)
−ω

〉
F (j)
ω

=
〈
f,
(
χεF

(j′)
−ω − F

(j′)
−ω

)〉(
χεF

(j)
ω − F (j)

ω

)
−
〈
f, F

(j′)
−ω

〉(
F (j)
ω − χεF (j)

ω

)
+
〈
f,
(
χεF

(j′)
−ω − F

(j′)
−ω

)〉
F (j)
ω ,

which combined with the Cauchy-Schwartz inequality implies the convergence

sup
f∈L2(R2)2

‖
〈
f, χεF

(j′)
−ω

〉
χεF

(j)
ω −

〈
f, F

(j′)
−ω

〉
F

(j)
ω ‖L2(R2)2

‖f‖L2(R2)2
→ 0, ε→ 0.

This proves the convergence ||Kj,j′ −Kε
j,j′||L2(R2)2→L2(R2)2 → 0 as ε→ 0.
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Combining Lemmas 2.3 and 2.5, we obtain the convergence in the operator norm of (H̃ε − ω2)−1 to

L(ω)f̂ := (M0 − ω2I)−1f̂ +
2N∑

j,j′=1

[
ΠB,Y (ω)

]−1

j,j′

〈
f̂ , F

(j′)
−ω

〉
F (j)
ω , ∀ f̂ ∈ L2(R2)2, (29)

for all Imw > 0 such that det[ΠB,Y (ω)] 6= 0. Recall again that [ΠB,Y (ω)]−1
j,j′ stands for the (j, j′)-th

entry of the matrix [ΠB,Y (ω)]−1. The main theorem of this paper is stated as the following.

Theorem 2.6. Suppose that the operator H̃ε is given by (16), with

ãj(ε) =

[
− (λ+ 3µ)

2π(λ+ 2µ)µ
ln ε+ bj

]−1

, bj ∈ C, j ∈ {1, 2, · · · , N}.

Write B = (b1, · · · , bN) satisfying the condition (22), and let ΠB,Y , F
(j)
ω be defined by (21), (26) re-

spectively. Then

(i) The operator H̃ε converges in norm resolvent sense to a closed and self-adjoint operator ∆̂B,Y

as ε → 0, where the resolvent of ∆̂B,Y is given by (29). That is, for Imω > 0 such that
det[ΠB,Y (ω)] 6= 0,

(∆̂B,Y − ω2)−1 = (M0 − ω2I)−1 +
2N∑

j,j′=1

[
ΠB,Y (ω)

]−1

j,j′

〈
· , F (j′)

−ω

〉
F (j)
ω .

(ii) For ω > 0 such that det[ΠB,Y (ω)] 6= 0, the resolvent of ∆B,Y reads as

(∆B,Y − ω2)−1 = Γω +
N∑

l,l′=1

Γω(· − y(l))
[
Π−1
B,Y (ω)

]
l,l′

〈
· ,Γω(· − y(l′))

〉
,

with the Green’s tensor

(∆B,Y − ω2)−1(x, y) = Γω(x, y) +
N∑

l,l′=1

Γω(x, y(l))
[
Π−1
B,Y (ω)

]
l,l′

Γω(y(l′), y),

for x 6= y and x, y 6= y(l). Here
[
Π−1
B,Y

]
l,l′

denotes the 2-by-2 blocks of the matrix
[
ΠB,Y

]−1
.

Proof. (i) Let us first show that L(ω) is invertible for Imω > 0 and det
[
ΠB,Y (ω)

]
6= 0. We recall

that H̃ε are densely defined and closed operators. From Lemma 2.2, we know that H̃ε − ω2, and hence

(H̃ε − ω2)−1, are invertible for Imω > 0 and det
[
Πε(ω)

]
6= 0. In particular, (H̃ε − ω2)−1 are

surjective for Imω > 0 and det
[
Πε(ω)

]
6= 0. Hence its limiting operator L(ω) is also surjective for

Imω > 0 and det
[
ΠB,Y (ω)

]
6= 0. Remark that, due to Lemma 2.3, if det

[
ΠB,Y (ω)

]
6= 0 then

det
[
Πε(ω)

]
6= 0 for ε small enough. From the explicit form (29) we can show that L(ω) is also injective.

Indeed, let f̂ ∈ L2(R2)2 such that L(ω)f̂ = 0. Then (M0 − ω2I)L(ω)f̂ = 0, which we can write as

f̂(ξ) = −
2N∑

j,j′=1

[
ΠB,Y (ω)

]−1

j,j′

∫
R2

[
(M0 − ω2)−1(ζ) Φj′(ζ)f̂(ζ)

]
dζ Φj(ξ) (30)
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using (29). However, the left hand side of (30) cannot be in L2(R)2 unless f̂ = 0. Hence the operator L
is injective.

Since L(ω) is invertible, in the open set of ω ∈ C such that Imω > 0 and det
[
ΠB,Y (ω)

]
6= 0, and it

is the limit, in the operator norm sense, of the resolvent of closed operators, i.e. H̃ε, then from Theorem
VIII.1.3 of Ref. [8] we deduce that it is the resolvent of a closed operator. We denote this operator by
∆̂B,Y , i.e.

L(ω) = (∆̂B,Y − ω2)−1, Imω > 0 and det
[
ΠB,Y (ω)

]
6= 0. (31)

Let us show that ∆̂B,Y is densely defined and self-adjoint. Since L(ω) is invertible, then its range is
given by the domain of its inverse. Then D(∆̂B,Y ) = R(L(ω)). Hence g ∈ D(∆̂B,Y ) can be written as
g = L(ω)h with h ∈ L2(R2)2. Let f ∈ D(∆̂B,Y )⊥, then < f, g >= 0, ∀g ∈ D(∆̂B,Y ) and then
< f, L(ω)h >= 0, ∀h ∈ L2(R2)2. From (29) and (23), we see that L∗(ω) = L(−ω̄) (remark that
Im (−ω̄) = Imω > 0), which implies that < L(−ω̄)f, h >= 0; ∀h ∈ L2(R2)2. We deduce that

L(−ω̄)f = 0 and then f = 0, i.e., D(∆̂B,Y ) = L2(R2)2.

Regarding the self-adjointness, we write

(∆̂B,Y )∗ − ∆̂B,Y = (L−1(ω))∗ + ω̄2 − L−1(ω)− ω2 = L−1(−ω̄)− L−1(ω) + ω̄2 − ω2 (32)

based on (31) and (29). From the resolvent identity

(∆̂B,Y (α)− α2)−1 − (∆̂B,Y (β)− β2)−1 = (α2 − β2) (∆̂B,Y (α)− α2)−1 (∆̂B,Y (β)− β2)−1

for α, β ∈ C, we deduce that

(∆̂B,Y (β)− β2)− (∆̂B,Y (α)− α2) = α2 − β2,

which implies ∆̂B,Y (β) = ∆̂B,Y (α). Therefore, the operator ∆̂B,Y given in (31) is independent of ω,
and it follows from (31) that

L−1(ω)− L−1(−ω̄) = (∆̂B,Y − ω2)− (∆̂B,Y − ω̄2) = ω̄2 − ω2. (33)

Combining (32) and (33) gives the relation ∆̂∗B,Y − ∆̂B,Y = 0, i.e. ∆̂B,Y is self-adjoint.

This proves the first assertion.

(ii) To prove the second assertion, we define the matrix
[
Π−1
B,Y

]
l,l′

as the 2 × 2 blocks of ΠB,Y (ω), i.e.,

for Imω > 0 and det
[
ΠB,Y (ω)

]
6= 0,

[
Π−1
B,Y

]
l,l′

:=

(
[ΠB,Y (ω)]−1

2l−1,2l′−1 [ΠB,Y (ω)]−1
2l−1,2l′

[ΠB,Y (ω)]−1
2l,2l′−1 [ΠB,Y (ω)]−1

2l,2l′

)
∈ C2×2, l, l′ = 1, 2, · · · , N.

In view of the definition of Θl,ω given in (27), via simple calculations we have

2l∑
j=2l−1

2l′∑
j′=2l′−1

[
ΠB,Y (ω)

]−1

j,j′

〈
f̂ , F

(j′)
−ω

〉
F (j)
ω = Θl,ω(ξ)

[
Π−1
B,Y

]
l,l′

∫
R2

[
Θl′,−ω(ξ)

]T
f̂(ξ) dξ. (34)
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Recall again that, in (34) the notation [ ]T denotes the conjugate transpose of a complex valued matrix [ ].
Moreover, employing (27) and the inverse Fourier transform enables us to rewrite the integral on the right
hand side of (34) as∫

R2

[
Θl′,−ω(ξ)

]T
f̂(ξ) dξ = (2π)−1

∫
R2

[
(M0 − ω2I)−1

]T
(ξ) f̂(ξ) exp(iξ · y(l′)) dξ

= F−1
[[

(M0 − ω2I)−1
]T
f̂
]

(y(l′))

= (2π)−1
(
F−1

[
(M0 − ω2I)−1

]T ∗ f) (y(l′))

=

∫
R2

[Γω(y(l′) − y)]T f(y) dy. (35)

Here the operator ∗ stands for the convolution. Taking the inverse Fourier transform in (29) and making
use of (28), (34) and (35), we obtain

[(∆B,Y − ω2)−1f ](x) =

∫
R2

Γω(x− y) f(y) dy

+
N∑

l′,l=1

{
Γω(x− y(l))

[
Π−1
B,Y

]
l,l′

∫
R2

[Γω(y(l′) − y)]T f(y) dy

}
for Imω > 0 such that det[ΠB,Y (ω)] 6= 0.

By construction, the operator (∆B,Y −ω2)−1 is well defined from L2(R2)2 to L2(R2)2 and it is invertible
when Imω > 0 and det[ΠB,Y (ω)] 6= 0. It is also a bounded operator between the Agmon’s spaces
L2
σ(R2)2 and L2

−σ(R2)2 for σ > 1, where the weighted space L2
σ(R2)2 is defined by

L2
σ(R2)2 := {f : ||(1 + |x|2)σ/2f ||L2(R2)2 <∞}.

In addition, from the explicit form of (∆B,Y −ω2)−1, the limiting (absorption) operator limImω→0(∆B,Y −
ω2)−1 is also well defined and bounded in the above mentioned Agmon’s spaces. More precisely, for
f ∈ L2

σ(R2)2, σ > 1, we have

lim
Imω→0

[(∆B,Y −ω2)−1f ](x) = (Γωr ∗f)(x)+
N∑

l,l′=1

Γωr(x, y(l))
[
Π−1
B,Y (ωr)

]
l,l′

(Γωr ∗f)(y(l′)) (36)

where ωr := Reω denotes the real part of ω, whenever det ΠB,Y (ωr) 6= 0. Note that in deriving (36),
we have used the symmetry

[Γωr

]T
=

1

2π
F−1

[[
(M0 − ω2

r I)−1
]T]

=
1

2π
F−1

[
(M0 − ω2

r I)−1
]

= Γωr

for the real number ωr. The formula (36) reveals the resolvent of the operator modeling the scattering by
the point scatterers y(j), j = 1, 2, ..., N . Obviously, the kernel (Green’s tensor) of the operator (36) is
given by

Gω(x, y) := Γω(x, y) +
N∑

l,l′=1

Γω(x, y(l))
[
Π−1
B,Y

]
l,l′

(ω) Γω(y(l′), y) (37)

for ω ∈ R+ such that det ΠB,Y (ω) 6= 0.
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In classical scattering theory, (37) describes the total field by the collection of point like scatterers Y
corresponding to the incident point source Γω(x, y) located at y. As an application of the Green’s tensor
(37), we next derive the scattered near and far fields for elastic plane waves.

For a fixed vector d ∈ S, the far-field pattern Γ∞ω (ŷ;x, d) of the function y → Γω(x, y)d is given by
(after some normalization)

Γ∞ω (ŷ;x, d) = exp(−ikpŷ · x)(ŷ · d) ŷ + exp(−iksŷ · x)(ŷ⊥ · d) ŷ⊥ (38)

as y → ∞, where ŷ := y/|y| = (cos θ, sin θ)> for some θ ∈ (0, 2π], and ŷ⊥ := (− sin θ, cos θ)>.
We refer to the first resp. second term of (38) as the pressure resp. shear part of Γω∞(ŷ;x, d). We define
the elastic plane pressure wave, U I

p (x,−ŷ), as the far field of the point source Γω(x, y)(−ŷ) when the
source y is far away from x (i.e. y tends to infinity), that is,

U I
p (x, d) = d exp(ikpx · d), d := −ŷ. (39)

Then, multiplying (37) by −ŷ and letting y →∞ we obtain the total field

U tol(x, d) = U I
p (x, d) +

N∑
l,l′=1

Γω(x, y(l))
[
Π−1
B,Y (ω)

]
l,l′
U I
p (y(l′), d) (40)

for scattering of the elastic plane wave (39) by point-like scatterers y(l), l = 1, 2, · · · , N . Here d := − y
|y|

is referred to as the direction of incidence.

Analogously, defining the plane shear waveU I
s (x, d), with the incident direction d = −ŷ, as Γ∞(ŷ;x, d⊥),

i.e.

U I
s (x, d) = d⊥ exp(iksx · d), d := −ŷ.

we end up with the same formula as in (40) with U I
p replaced by U I

s . For the general elastic plane wave
of the form

U I(x, d, α, β) := α d exp(ikpx · d) + β d⊥ exp(iksx · d), α, β ∈ C, d ∈ S, (41)

by superposition principle we have U tol(x, d, α, β) = U I(x, d, α, β) +US(x, d, α, β), where the scat-
tered field is given by

US(x, d, α, β) =
N∑

l,l′=1

Γω(x, y(l))
[
Π−1
B,Y (ω)

]
l,l′
U I(y(l′), d, α, β). (42)

In view of (38), we get the longitudinal and transversal parts of the far-field pattern of (42)

U∞p (x̂) = x̂

{
N∑

l,l′=1

exp(−ikpy(l) · x̂)
([

Π−1
B,Y (ω)

]
l,l′
U I(y(l′), d, α, β)

)
· x̂

}
, (43)

U∞s (x̂) = x̂⊥

{
N∑

l,l′=1

exp(−iksy(l) · x̂)
([

Π−1
B,Y (ω)

]
l,l′
U I(y(l′), d, α, β)

)
· x̂⊥

}
. (44)

Obviously, there holds the reciprocity relations

U I(x, d, α, β) = Γ∞(−d;x, αd+ βd⊥), US(x, d, α, β) = (Gω − Γω)∞(−d;x, αd+ βd⊥)

where (Gω−Γω)∞(ŷ;x, d) denotes the far field pattern corresponding to the scattered field (Gω(x, y)−
Γω(x, y)) d due to the point source incidence Γω(x, y) d (cf. (37)).
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Remark 2.7. Comparing (42) with the Foldy model (5)-(6), we see that the scattering coefficient bj is
related to the scattering strength aj via

aj = (bj − η)−1 = (cj − κ)−1, j = 1, 2, · · · , N,

where cj and κ are given in (22) and (7) respectively in the case of 2D.

3 Elastic scattering by point-like obstacles in R3

Let us now turn to studying the elastic scattering problem in 3D. We only need to make necessary changes
related to the Green’s tensor in R3. The Kupradze matrix Γ̃ω of the fundamental solution to the Navier
equation is given by (see Ref. [10, Chapter 2] )

Γ̃ω(x, 0) =
1

µ
Φks(x)I +

1

ω2
grad x grad >x [Φks(x)− Φkp(x)],

where Φk(x) = 1/(4π) exp(ik|x|) denotes the free-space fundamental solution of the Helmholtz equa-
tion ∆ + k2u = 0 in R3. Using Taylor series expansion for exponential functions we can rewrite the
matrix Γ̃ω(x, 0) as the series (see also Ref. [2])

Γ̃ω(x, 0) =
1

4π

∞∑
n=0

(n+ 1)(λ+ 2µ) + µ

µ(λ+ 2µ)

(iω)n

(n+ 2)n!
|x|n−1 I

− 1

4π

∞∑
n=0

λ+ µ

µ(λ+ 2µ)

(iω)n(n− 1)

(n+ 2)n!
|x|n−3 Ξ(x), (45)

from which it follows that

Γ̃ω(x, 0) =
λ+ 3µ

8πµ(λ+ 2µ)

1

|x|
I + iω

2λ+ 5µ

12πµ(λ+ 2µ)
I +

λ+ µ

8πµ(λ+ 2µ)

1

|x|3
Ξ(x) + o(1)ω2 (46)

as |x| → 0. Taking ω → 0 in (45), we obtain

lim
w→0

Γ̃ω(x, 0) =
λ+ 3µ

8πµ(λ+ 2µ)

1

|x|
I +

λ+ µ

8πµ(λ+ 2µ)

1

|x|3
Ξ(x) =: Γ̃0(x, 0). (47)

This is just the Kelvin matrix of the fundamental solution of the Lamé system in R3. Note that the above
convergence (47) was proved in Ref. [10, Chapter 2] via the estimate

|Γ̃ω(x, 0)− Γ̃0(x, 0)| ≤ C(λ, µ) |ω|

for some unknown constant C(λ, µ) > 0. Combining (46) and (47) gives the limit of the entries

lim
|x|→0

[Γ̃ω(x, 0)− Γ̃0(x, 0)] = η̃ I,

with

η̃ := iω
2λ+ 5µ

12πµ(λ+ 2µ)
. (48)
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In order to generalize Theorem 2.6 to 3D , we employ the cut-off function

χε(ξ) =

{
1, if |ξ| ≤ 1/ε,
0, if |ξ| > 1/ε,

for ε > 0, ξ = (ξ1, ξ2, ξ3)
>.

For Imω > 0, define the operator

H̃εf := M̃0(ξ) f −
N∑
j=1

3∑
i=1

〈
ãj(ε) f, ϕ

ε,i

y(j)

〉
ϕε,i
y(j)

(ξ), ϕε,i
y(j)

(ξ) := χε(ξ)ϕ
i
y(j)(ξ), (49)

where M̃0(ξ) is the Fourier transform of the matrix Γ̃0(x, 0), and

ϕiy(j)(ξ) := (2π)−3/2 exp(−iy(j) · ξ) (ei)
>, i = 1, 2, 3, j = 1, 2, · · ·N.

For j = 1, 2, · · · , N , m = 1, 2, 3, choose

ã−1
j (ε) := ã−1

j,m(ε) =
1

8π2

(∫
|ξ|<1/ε

M̃0(ξ)
−1e>m dξ

)
e>m + bj

=
1

8π2

∫
|ξ|<1/ε

(
1

µ|ξ|2
− (λ+ µ)ξ2

m

µ(λ+ 2µ)|ξ|4

)
dξ + bj,

for some bj ∈ R, that is,

ãj(ε) = 1/
[
(6π2(λ+ 2µ) ε)−1 + bj

]
. (50)

Define

F̃ (j)
ω := (2π)−3/2 exp(−iξ · y(l))(M̃0 − ω2I)−1(e3−m)>, if j = 3l −m, m = 0, 1, 2,

for some l = 1, 2, · · · , N , and define the 3N × 3N matrix Π̃B,Y by

Π̃B,Y (ω) =



(b1 − η̃)I −Γ̃ω(y(1) − y(2)) · · · −Γ̃ω(y(1) − y(N))

−Γ̃ω(y(2) − y(1)) (b2 − η̃)I · · · −Γ̃ω(y(2) − y(N))
. . . .
. . . .
. . . .

−Γ̃ω(y(N) − y(1)) −Γ̃ω(y(N) − y(2)) ... (bN − η̃)I


,

with B = (b1, · · · , bN) ∈ R1×N . Then, arguing analogously to Theorem 2.6 we obtain

Theorem 3.1. Suppose that the operator H̃ε is given by (49), with

ãj(ε) = 1/
[
(6π2(λ+ 2µ) ε)−1 + bj

]
, bj ∈ R, j ∈ {1, 2, · · · , N}.

Then

(i) The operator H̃ε converges in a norm resolvent sense to a closed and selfadjoint operator ∆̂′B,Y as

ε→ 0, where the resolvent of ∆̂′B,Y is given by

(∆̂′B,Y − ω2)−1 = (M̃0 − ω2I)−1 +
3N∑

j,j′=1

[
Π̃B,Y (ω)

]−1

j,j′

〈
· , F̃ (j′)

−ω

〉
F̃ (j)
ω .

16



(ii) For ω > 0 such that det[Π̃B,Y (ω)] 6= 0, the resolvent of ∆′B,Y takes the form

(∆′B,Y − ω2)−1 = Γ̃ω +
N∑

l,l′=1

Γ̃ω(· − y(l))
[
Π̃−1
B,Y (ω)

]
l,l′

〈
· ,Γω(· − y(l′))

〉
,

with the Green’s tensor

(∆′B,Y − ω2)−1(x, y) = Γ̃ω(x, y) +
N∑

l,l′=1

Γ̃ω(x, y(l))
[
Π̃−1
B,Y (ω)

]
l,l′

Γ̃ω(y(l′), y), (51)

for x 6= y and x, y 6= y(l). Here
[
Π̃−1
B,Y

]
l,l′

denotes the 3-by-3 blocks of the matrix
[
Π̃B,Y

]−1
.

Similar to the 2D case, (51) is no thing but the Foldy model (5)-(6) taking the scattering strengths aj of
the form (bj − η̃)−1 where bj ∈ R, j = 1, ..., N . One can also get analogous formulas to (42), (43) and
(44) for the scattered near and far fields associated with incident plane waves in R3.
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