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Abstract

A droplet size distribution in a turbulent flow field is considered and modeled by
means of a population balance system. This paper studies different numerical meth-
ods for the 4D population balance equation and their impact on an output of interest,
the time-space-averaged droplet size distribution at the outlet which is known from
experiments. These methods include different interpolations of the experimental data
at the inlet, various discretizations in time and space, and different schemes for com-
puting the aggregation integrals. It will be shown that notable changes in the output of
interest might occur. In addition, the efficiency of the studied methods is discussed.

1 Introduction

Population balance systems model particle populations where not individual par-
ticles are of importance but the behavior of particle distributions. They are widely
used for simulating processes in chemical engineering [1]. Another application,
which will be considered in this paper, is the modeling of the behavior of droplet size
distributions (DSD) in flows [2, 3], which is of importance, e.g., for the simulation of
processes in clouds. The dominating mechanism for the evolution of the DSD in this
application is the aggregation of droplets.
The basic form of a population balance system consists of an equation for the
flow field and an equation for the DSD. Additional equations might be present,
which model, e.g., energy and mass balances. The equation for the DSD possesses
some properties which make its numerical simulation challenging. First, the DSD
depends not only on time and space, as e.g. the velocity of the flow field, but also
on properties of the droplets, the so-called internal coordinates. Consequently, this
equation is defined in a higher-dimensional domain than the other equations of the
system. Second, the modeling of aggregation leads to integral terms of convolution-
type whose efficient numerical evaluation is difficult. And third, the equations are

1



transport-dominated, such that the application of special discretization techniques
is necessary.

There are many ways to treat the difficulties of simulating the equation for the
DSD. An often used way to avoid the increase in the dimension consists in using
methods of moments (MOM), see [4] for the first approach in this direction. In this
technique, only the first moments of the DSD are simulated. This approach requires
the closure of the system for the first moments. The currently most popular way
is the quadrature MOM (QMOM) [5] which applies a numerical quadrature whose
weights and nodes depend on the DSD (of a previous time). The direct QMOM
(DQMOM) [6] simulates the weights and the nodes of the quadrature directly. How-
ever, it is well known that the reconstruction of a DSD from its first moments is
a severely ill-posed problem and only a few reconstruction algorithms are available
[7, 8].

This paper considers direct discretizations of the equation for the DSD, that
means the equation is considered in the higher-dimensional domain. To our best
knowledge, numerical comparisons of direct and moment-based methods are not yet
available. But we think that the direct approach possesses the potential for more
accurate results. The use of many different numerical methods is also possible in
this approach. Some investigations of the effect of different methods in the direct
approach for population balance systems on output quantities of interest can be
found already in [9, 10]. For instance, it turned out in these studies that in certain
situations different discretizations of the transport terms might lead to qualitatively
different results.

In the numerical studies presented in this paper, the quantity of interest is a
time-space-averaged DSD at the outlet of the flow domain. This quantity is among
the most insensitive quantities of interest which can be considered. At any rate, it
is less sensitive than the quantities studied in [9, 10]. The droplets are contained
in a turbulent flow field. Experimental data are available for both the flow field
and the DSD, see [11, 12]. With respect to the numerical methods for the DSD,
different approximations of the inlet boundary condition, different discretizations
for the temporal and transport-dominated spatial derivatives, and different methods
for evaluating the aggregation term are studied.

The paper is organized as follows. The model for the DSD in a flow field is
introduced in Section 2. Then, Section 3 describes shortly the numerical method for
the simulation of the turbulent flow field. The numerical methods for the equation
of the DSD are explained in detail in Section 4. Numerical studies are presented in
Section 5. Finally, a summary and an outlook are given.

2 The Population Balance Model for the Simula-
tion of the DSD

The droplets are considered in an incompressible flow field which is modeled by the
incompressible Navier–Stokes equations

ρut − 2µ∇ · D(u) + ρ(u · ∇)u +∇p = 0 in (0, te)× Ω, (1)

∇ · u = 0 in (0, te)× Ω, (2)

where u (m/s) is the fluid velocity vector, p (Pa) is the pressure, ρ = 1.2041
kg/m3 is the density of air at 293.15 K, µ = 18.15 · 10−6 kg/(m s) is the dynamic
viscosity of air at the same temperature, D(u) = (∇u + (∇u)T )/2 is the velocity
deformation tensor, and te denotes the final time. Because of the low Mach numbers
in the experiments, the density is assumed to be constant. The term describing the
gravitational acceleration is included into the pressure.
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Appropriate boundary conditions and an initial condition are needed to close the
Navier–Stokes equations (1), (2). The experiments were conducted in a wind tunnel.
The section for the measurements was of hexahedral shape and it was situated
in the lower half of the wind tunnel. Because of some uncertainties concerning
correct boundary conditions at the outlet, the computational domain Ω = (0, 0.5)×
(−0.225, 0.225)×(−0.18, 0) m3 is chosen to be somewhat longer than the section for
the measurement, which had a length of 0.4 m. In this way, a slight incorrectness
of the applied outlet boundary condition does not influence the computed values
at the plane that corresponds to the outlet of the measurement section. Hence, an
error source in the comparison of experimental and numerical data was eliminated.

Fully developed flow fields, which were computed in a pre-processing step, are
used as initial conditions. The boundary conditions at the inflow boundary Γin =
{0} × (−225, 225) × (−180, 0) are based on experimental data. To model time–
dependent inflows, a time-averaged experimental velocity uexp(0, y, z) is disturbed
with Gaussian noise

u(t, 0, y, z) = uexp(0, y, z) + randnormal(t, 0, y, z)σexp(0, y, z) on (0, te)× Γin,

where σexp(0, y, z) is the corresponding standard deviation, which is also known
from the experiments, and randnormal(t, 0, y, z) denotes a normally distributed ran-
dom number. The computation of the random number is performed with the Box–
Muller scheme. Additional values at the inlet can be computed using bilinear inter-
polation. The second and third component of the inlet velocity are set to be zero
for all flows.

Experimental data at the outlet Γout = {0.5} × (−225, 225)× (−180, 0) are not
available. In all numerical simulations, the so-called do-nothing condition

(2νD(u)− pI) · n = 0 on (0, te)× Γout

is used. From the location of the measurement section, it follows that the top
plane Γtop = (0, 0.5) × (−0.225, 0.225) × {0} is a symmetry plane. This symmetry
condition is given by

u · n = 0 on (0, te)× Γtop,
nT (2νD(u)− pI) τ k = 0 on (0, te)× Γtop, k = 1, 2,

where n denotes the unit normal vector on the boundary in outer direction and
τ i, i ∈ 1, 2, are two tangential vectors on the boundary. This condition describes
free slip without penetration. On all other boundaries Γ = ∂Ω \ (Γin ∪ Γout ∪ Γtop),
a free slip with penetration condition is used.

nT (2νD(u)− pI) n = 0 on (0, te)× Γ,
nT (2νD(u)− pI) τ k = 0 on (0, te)× Γ, k = 1, 2.

The DSD is modeled by a population balance equation which includes the trans-
port of the droplets along the streamlines, their growth in supersaturated air, and
the aggregation of droplets

∂f

∂t
+ udrop · ∇f +

∂

∂d

(a
d
f
)

= A+ +A− in (0, te)× Ω× (dmin, dmax). (3)

In (3), f (no./m4) is the DSD, d (m) is the droplet diameter with d ∈ [dmin, dmax],
udrop (m/s) is the velocity of the droplets, a (m2/s) is the growth rate, A+ is the
source of aggregation and A− is the aggregation sink. The growth constant is given
by a = 5.0613 · 10−12 m2/s, see [12] for the derivation of this value. Experimental
data for the droplet velocity are available at the planes x = 0 m, x = 0.2 m, and
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x = 0.4 m. A linear interpolation in [0, 0.4] m and a constant extrapolation in
[0.4, 0.5] m are used to define udrop in Ω, see [12] for details.

The model for the aggregation is explained best by considering the volume of
the droplets, e.g. see [4, 13]. Let fV be the DSD and A+,V , A−,V be source and
sink, all with respect to the volume of the droplets. Then, the source term describes
the amount of droplets of volume V which are created by the aggregation of two
droplets with volume V ′ and V −V ′, V ′ ∈ (0, V ). There are two realizations of this
event, namely the first droplet is of volume V ′, the second one has volume V − V ′,
and vice versa. Hence, the model has the form

A+,V =
1

2

∫ V

0

κagg(V − V ′, V ′)fV (V − V ′)fV (V ′) dV ′. (4)

The sink term models the amount of droplets of volume V which disappear because
they aggregate with other droplets of volume V ′ ∈ (0, Vmax)

A−,V = −
∫ Vmax

0

κagg(V, V ′)fV (V )fV (V ′) dV ′ = −fV (V )

∫ Vmax

0

κagg(V, V ′)fV (V ′) dV ′.

(5)
Consequently, A+,V +A−,V models the change of droplets of volume V due to the
aggregation. In (4) and (5), the term κagg (m3/s) is the aggregation kernel.

It is also possible to define the aggregation integrals in terms of the diameter,
see [13],

A+ =
d2

2

∫ d

dmin

κagg

((
d3 − (d′)3

)1/3
, d′
)

(d3 − d′3)2/3
f
((
d3 − (d′)3

)1/3)
f(d′) dd′, (6)

A− = −f(d)

∫ dmax

dmin

κagg(d, d′)f(d′) dd′. (7)

The aggregation kernel, which will be described in terms of volume, is the prod-
uct of two factors κagg(V, V ′) = pcol(V, V

′)peff(V, V ′). The first factor describes the
probability of the collision of two droplets with volume V and V ′. The efficiency of
the collisions, that means the amount of collisions which actually lead to aggrega-
tions, is modeled by the second factor. This factor is chosen to be constant since
other models are not available. This constant can be included into scaling factors
for the individual terms of the following kernel, see [14, 15],

κagg(V, V ′) = Cbrown
2kBT

3µ

(
3
√
V +

3
√
V ′
)( 1

3
√
V

+
1

3
√
V ′

)
+Cshear

√
2∇udrop : ∇udrop

(
3
√
V +

3
√
V ′
)3

, (8)

where kB = 1.3806504 10−23 J/K is the Boltzmann constant. The first part in (8)
is Brownian-motion-generated. It is of importance if small droplets are involved
in the aggregation since in this case the last factor becomes large. The second
term is shear-induced [16] and it is important if both droplets are large. The
identification of the model parameters Cbrown and Cshear was the main topic of the
studies performed in [12]. Using one of the methods which is described below for
simulating the population balance system, see Section 5, the values Cbrown ' 1.5·106

and Cshear ' 0.1 were obtained.
The boundary condition for the droplets at the inlet is based on experimental

data. Measurements were performed at a grid of nodes at the inlet. A detailed
description of the conversion of the experimental data to values for the DSD in
these nodes, denoted by fin,exp(x, d), and the corresponding standard deviation
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σf (x, d) can be found in [12]. The values in the nodes are interpolated to the inlet
boundary and the boundary condition reads as follows

f(t,x, d) =

{
fin,exp(x, d) + randnormal(t,x)σf (x, d), x = (0, y, z) ∈ Γin

0, at d = dmin,art.

Here, dmin,art = 0 m is an artificial smallest diameter for the droplets which is
introduced to define the necessary boundary conditions because of the positive
growth rate, see [12] for a discussion of this topic. In [dmin,art, dmin), the DSD
is set to be f(t,x, d) = 0. The initial condition is given by f(0,x, d) = 0 in
Ω× (dmin,art, dmax).

The general solution strategy for the population balance system is as follows.
In each discrete time, first the Navier–Stokes equations (1), (2) are solved and the
flow field is computed. Then, the equation for the DSD (3) is solved, where the
aggregation terms are always treated explicitly with respect to the DSD. With this
approach, the problem in 4D becomes linear.

3 A Finite Element Variational Multiscale (FEVMS)
Method for the Simulation of Turbulent Flows

The turbulent flow field is simulated with a projection-based FEVMS method. VMS
methods control the influence of the turbulence model in an appropriate way. To this
end, so-called small resolved scales are defined to which the direct influence of the
turbulence model is restricted. In the projection-based FEVMS method, standard
finite element spaces are used to model all resolved scales. An additional finite
element space is necessary to perform the decomposition of the resolved scales. The
large scales are defined by a variational projection into this large scale space, which
is given explicitly as an additional equation in the considered method. Together
with the unresolved scales, a three-scale decomposition of the flow field is defined.

VMS methods are based on a variational formulation of the underlying equation.
Let V h ×Qh be the pair of inf-sup stable, conforming finite element spaces for the
velocity and the pressure. The additional large scale finite element space is a space
of symmetric 3 × 3 tensor-valued functions LH ⊂ {L ∈ (L2(Ω))3×3,LT = L}.
The semi-discrete (continuous in time) projection-based FEVMS method reads as
follows: Find uh : [0, te]→ V h, ph : (0, te]→ Qh, and GH : [0, te]→ LH such that

(uht , vh) + (2νD(uh), D(vh)) + ((uh · ∇)uh, vh)

−(ph, ∇ · vh) + (νT (D(uh)−GH), D(vh)) = (f , vh), ∀vh ∈ V h,
(qh, ∇ · uh) = 0, ∀qh ∈ Qh, (9)

(D(uh)−GH , LH) = 0, ∀LH ∈ LH .

The parameter νT ≥ 0 in (9) is the so-called turbulent viscosity. By definition,
the large scales of D(uh) are defined by GH , the L2-projection of D(uh) into LH .
Consequently, the resolved small scales are given by D(uh) − GH . Thus, the ad-
ditional viscous term (νT (D(uh) − GH), D(vh)) in the momentum equation of (9)
acts directly only on the small resolved scales.

The first parameter in (9) is the turbulent viscosity. In the simulations presented
below, the static Smagorinsky model [17] νT = CSδ

2 ‖D (ū)‖F is applied. The
second parameter is the large scale space LH . This space must be in some sense
a coarser space than the finite element space for the velocity V h, which represents
all resolved scales. Provided that V h is a higher order space, LH can be chosen
on the same grid as V h, see [18] for a discussion of this topic. Numerical studies
[19, 20, 21, 22] revealed that the choice of LH possesses a significant influence on the
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computed results. For efficiency reasons, LH must be a discontinuous finite element
space, see [19]. The first implementations of the projection-based FEVMS method
used a space LH with the same polynomial degree on all mesh cells. Recently, in
[23, 24], an approach for an adaptive, a posteriori choice of LH was presented which
allows to use different polynomial degrees in different mesh cells K. The aim of this
approach consists in adjusting the local influence of the turbulence model according
to the local turbulent character of the flow by an appropriate local scale separation.

As inf-sup stable pair of velocity-pressure finite element spaces, the pairQ2/P
disc
1

is used. This finite element is a popular choice [25] as it combines a high accuracy
and the possibility of solving the arising saddle point problems efficiently [26, 27].
The adaptive FEVMS uses the following measure of the small resolved scales as
indicator of the amount of local turbulence

ηK =
‖GH − D(uh)‖L2(K)

‖1‖L2(K)
=
‖GH − D(uh)‖L2(K)

|K|1/2
, K ∈ T h,

where {K} are the mesh cells of the triangulation T h. This indicator assumes that
in regions with high turbulence, where the size of the unresolved scales is large, also
the size of the adjacent class of scales (the small resolved scales) is large. The local
contributions ηK are compared to the arithmetic mean η of the local indicators in
order to decide which local space LH(K) is chosen: given 0 ≤ C1 ≤ C2 ≤ C3, define
η := ηK/η, then

1. for cells K with η ≤ C1: LH(K) = P disc
2 (K), νT (K) = 0,

2. for cells K with C1 < η ≤ C2: LH(K) = P disc
1 (K),

3. for cells K with C2 < η ≤ C3: LH(K) = P0(K),
4. for cells K with C3 < η: LH(K) = P00(K).

The space P00(K) consists only of the zero tensor. In this case, the turbulence
model is applied locally to all resolved scales. In the simulations presented below,
the space LH is updated at each discrete time. The parameters in the adaptive
choice of the large scale space are chosen to be C1 = 0.3, C2 = 1, and C3 = 2.

4 Numerical Methods for Equation (3) for the DSD

4.1 Obtaining an Inlet Boundary Condition

Measurements were performed in the nodes of a grid with the y-z coordinates
(−0.225,−0.215, . . . , 0.225) m × (−0.18,−0.17, . . . , 0) m at the plane x = 0 m for
the obtaining boundary conditions at the inlet and at the plane x = 0.4 m for the
comparison of experimental data and numerical results. Experimental data for the
droplets and for the standard deviation, both in (no./cm3), are available for the
diameters 1 µm, 3 µm, . . . , 171 µm. In [12], a way is described for converting the
experimental data in values for the DSD at the grid points in (no./m4). This way
is used in the numerical simulations presented below.

An interpolation of the DSD at the inlet is necessary if a grid for the internal
coordinate is used whose nodes do not coincide with the measurement points with
respect to the internal coordinate. In the simulations presented below, two kinds of
interpolation are used. The first one is the continuous piecewise linear interpolation
between the given values at the diameters for which measurement data are available,
both for the DSD and the standard deviation.

A second way is the use of a prescribed form of the DSD which obeys a certain
function. The experimental data suggest a log-normal interpolation of the form

fin,exp(x, d;σ, µ, cf ) =
cf

dσ
√

2π
e−

(ln d−µ)2

σ2 , d > 0, (10)
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with the parameters σ, µ and cf . Exemplary, Fig. 1 shows a representative result for
the approximation in an arbitrary grid point at the inlet plane. The computation
of the parameters in (10) was performed with a damped Gauss–Newton method for
each grid point at the inlet in a pre-processing step. In the simulations presented
below, all values for diameters larger or equal than 125 µm are set to be zero. This
approach prevents the creation of nonphysically large droplets which else would
arise in the evaluation of the aggregation terms. The standard deviation at the
inlet is approximated with the ansatz (10).

Figure 1: Log-normal interpolation of the DSD (left) and the standard deviation
(right) at the inlet.

4.2 Discretization of the Left Hand Side

Two finite difference methods in combination with explicit time stepping schemes
are considered. The tensor-product form of the 4D domain allows an easy appli-
cation of finite difference methods. Finite element methods are much more flexible
with respect to the form of the domain and therefore they are of great interest
for many applications. A finite element method in combination with an implicit
time stepping scheme will be considered, which has been proved to be among the
best performing finite element methods for transport-dominated equations in recent
studies. For this method, a standard realization and a more efficient non-standard
realization are included in the studies presented below. This section describes the
methods in some detail. The current discrete time is denoted by tn, the length of
the time step by ∆t, and functions at tn possess the subscript n.

The Forward Euler Finite Difference Upwind (FWE-UPW) Method

The Forward Euler scheme applied to (3) has the form: Find fn+1 such that

fn+1 = fn −∆t

(
∂

∂d

(a
d
fn

)
+ udrop,n+1 · ∇fn −A+,n −A−,n

)
. (11)

Note that the velocity field at tn+1 is used, also in the evaluation of the aggregation
kernel in A+,n and A−,n. For the sake of stability, the convective terms at the right
hand side of (3) require a special discretization. Consider a node (xi, yi, zi, di), then
the (simple) upwind discretization approximates, e.g., the term with the x-derivative
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in the form(
u1∂xfn

)
(xi, yi, zi, di)

≈


(
u1fn

)
(xi, yi, zi, di)−

(
u1fn

)
(xi−1, yi, zi, di)

xi − xi−1
if u1(xi, yi, zi, di) ≥ 0(

u1fn
)
(xi+1, yi, zi, di)−

(
u1fn

)
(xi, yi, zi, di)

xi+1 − xi
if u1(xi, yi, zi, di) < 0

.

Here u1 denotes the first component of udrop,n+1, and (xi−1, yi, zi, di), (xi+1, yi, zi, di)
are the neighbor nodes of (xi, yi, zi, di) with respect to the x-coordinate.

The properties of the FWE-UPW scheme are well known. This scheme is of first
order in space and time, its solutions do not possess spurious oscillations but layers
are strongly smeared.

In [12], also a backward Euler scheme

fn+1 + ∆t

(
∂

∂d

(a
d
fn+1

)
+ udrop,n+1 · ∇fn+1

)
= fn + ∆t (A+,n +A−,n)

with upwind discretization was studied. The results obtained with this scheme
showed only very slight differences to the results from FWE-UPW but the simula-
tions using the backward Euler scheme were more time-consuming. For this reason,
the backward Euler scheme is not included in the studies presented below.

A Total Variation Diminishing Essentially Non-Oscillatory (TVD-ENO)
Finite Difference Method

A serious drawback of FWE-UPW is its low accuracy. However, many higher order
methods in time and space possess the disadvantage that the computed solutions
show non-negligible spurious oscillations. There exist only few exceptions. One of
them is the combination of a TVD scheme in time and an ENO finite difference
scheme in space. In general, the appearance of spurious oscillations cannot be
excluded with this method. But if such oscillations appear, they are generally
small. In the numerical studies presented below, the combination of a third order
TVD Runge–Kutta scheme and a third order ENO scheme is included.

Write equation (3) in the generic form ∂f/∂t = F (t, f). Then, an optimal third
order TVD Runge–Kutta method has the form [28]

k1 = F (tn, fn),

k2 = F (tn + ∆t, fn + ∆tk1),

k3 = F

(
tn +

∆t

2
, fn +

∆t

4
k1 +

∆t

4
k2

)
,

fn+1 = fn + ∆t

(
k1

6
+
k2

6
+

4k3

6

)
. (12)

The first order derivatives on the right hand side of (12) are approximated by
finite differences. The construction of a higher order scheme than simple upwinding
requires the use of higher order information. The basic idea of ENO schemes consists
in constructing several interpolation polynomials of a certain order and using as
approximation the smoothest polynomial. Here, smoothness is measured in terms
of the absolute value of the second order divided differences, which is proportional
to the curvature.

Consider for simplicity of notation a one-dimensional situation. For a third order
ENO scheme, the seven nodes xi−3 < xi−2 < . . . < xi+3 are used. Let P1(x) be the
polynomial that interpolates the function f at the nodes {xi, xi+1, xi+2, xi+3}, P2(x)
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be the polynomial based on the nodes {xi−1, xi, xi+1, xi+2}, P3(x) be the polynomial
based on the nodes {xi−2, xi−1, xi, xi+1}, and finally P4(x) be the polynomial based
on the nodes {xi−3, xi−2, xi−1, xi}. If necessary, Dirichlet boundary conditions are
extended off the domain to define values for the interpolations. Then fx(tn, xi) will
be approximated by one of the values (Pj)x(xi), j = 1, · · · , 4. Depending on the
direction of the convection at xi, one of the polynomials P1(x) and P4(x) is not
needed. Hence, this scheme has a stencil with the six nodes {xi−3, . . . , xi+2} or
{xi−2, . . . , xi+3}.

Let the convection at xi be non-negative. The ENO strategy tries to find the
smoothest approximation. As first smoothness indicator, a quantity is compared
which is proportional to the absolute value of the second derivative of the second
order polynomials through the nodes {xi−2, xi−1, xi} and {xi−1, xi, xi+1}, respec-
tively. Let the interpolation polynomial through {xi−1, xi, xi+1} be the smoother
one. Then, in the second step, a quantity is compared which is proportional to the
absolute value of the third derivative at xi of the polynomials P2(x) and P3(x).
The smaller value gives the index j which defines the approximation (Pj)x(xi) of
fx(tn, xi). All other cases are treated in the same way, see [29] for a detailed algo-
rithm.

A Linear Crank–Nicolson Finite Element Flux-Corrected Transport (CN-
FCT) Method

A linear finite element FCT scheme in combination with the Crank–Nicolson scheme
has been shown the best ratio of accuracy and efficiency in numerical studies of
stabilized finite element methods for transport-dominated problems in [30, 31]. For
this reason, two variants of this method will be included in the numerical studies.
This section describes the basic ideas of this method and a standard realization.

Consider a continuous 4-linear finite element space Q1 with the basis {ϕi}Ni=1.
The starting point of CN-FCT is the discretization of (3) with the Crank-Nicolson
scheme in time and the Galerkin finite element method in space. This step leads to
an algebraic equation of the form(

MC +
∆t

2
A

)
fn+1 =

(
MC −

∆t

2
A

)
fn +

∆t

2
(an + an+1) . (13)

Here, (MC)ij = (ϕj , ϕi)
N
i,j=1 is the consistent mass matrix and A is the matrix

of the Galerkin discretization of the transport terms in (3). In our implementa-
tion, A is assembled with udrop,n+1. The DSD is a Q1 finite element function and
fn = (f1,n, . . . , fN,n)T denotes the vector of nodal unknowns, i.e. f(tn,x, d) =∑N
j=1 fj,nϕj(x, d). The values for the aggregation are computed in the vertices

of the mesh cells. For this reason, the aggregation can be interpreted also as a
Q1 finite element function. That means, there is a representation of the form
A+,n + A−,n =

∑N
j=1 ãj,nϕj(x, d). With this representation, the finite element

right hand side becomes

(A+,n +A−,n, ϕi)
N
i=1 =

 N∑
j=1

ãj,n(ϕj , ϕi)

N

i=1

=: an.

Discretization (13) is instable for transport-dominated problems. The FCT
methodology changes in the first step the matrix to a stable matrix. This step
introduces a lot of diffusion. In the second step, this diffusion is removed where it
is not needed by modifying the right hand side of (13). For the definition of the
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stable matrix, let

L = A+D,

D =


−max{0, aij , aji} = min{0,−aij ,−aji} for i 6= j,

−
N∑

j=1,j 6=i

dij , for i = j,

ML = diag(mi), mi =

N∑
j=1

mij .

The diagonal matrix ML is called lumped mass matrix. The over-diffusive dis-
cretization after the first step has the form(

ML +
∆t

2
L

)
fn+1 =

(
ML −

∆t

2
L

)
fn +

∆t

2
(an + an+1) . (14)

The system matrix possesses properties of an M-matrix.
The linear FCT scheme adds to the right hand side of (14) an anti-diffusive

contribution a∗(fn). This term is defined with the help of the residual vector,
which is the difference of (14) and (13). A straightforward calculations leads to the
following representation of this vector

r = (ML −MC) (fn+1 − fn) +
∆t

2
D(fn+1 + fn).

Then, the modification of the right hand side of (14) is given by

a∗(fn) =

 N∑
j=1

αijrij

N

i=1

, (15)

with the weights αij ∈ [0, 1]. FCT methods determine these weights in such a
way that they become close to one in smooth regions (this recovers the Galerkin
finite element method) and that they are close to zero at layers (this recovers the
stable low order scheme). The so-called fluxes are defined by a decomposition of

the residual vector ri =
∑N
j=1 rij with

rij =
[
mij

[
(fn+1,i − fn+1,j)− (fn,i − fn,j)

]
−∆t

2
dij
[
(fn+1,i − fn+1,j) + (fn,i − fn,j)

]]
(16)

= 2mij

[
(fn+1/2,i − fn,i)− (fn+1/2,j − fn,j)

]
−∆tdij

[
(fn+1/2,i − fn+1/2,j)

]
,

where fn+1/2 = (fn+1 + fn)/2.
The linear finite element FCT scheme, which will be used, is a special case of

one of the schemes presented in [32]. In this scheme, the vector fn+1/2 in the flux rij
is replaced by an approximation that is computed with an explicit scheme. To this
end, the forward Euler scheme with the length of the time step ∆t/2 is used, which
is applied in combination with the low order method (14). The result obtained with
this scheme is inserted into (17). Note that this predictor step is performed with
an explicit method such that a CFL condition applies, see [32].

The computation of the weights uses Zalesak’s algorithm [33]. This algorithm is
described and discussed also in [34]. In the simulations presented below, the version
of Zalesak’s algorithm is used which is given in [29].

The linear system (14) with the modification (15) of the right hand side is solved
with a BiCGSTAB method with an SSOR preconditioner [35]. Very few iterations
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were always necessary for decreasing the Euclidean norm of the residual vector
below 10−12.

The matrix A depends on the time-dependent velocity field udrop. Hence, a
new matrix is needed in every discrete time. The standard approach consists in
assembling this matrix over and over again using the bilinear form

4∑
k=1

N∑
j=1

(
vk∂kϕj , ϕi

)
(17)

for the matrix entry (i, j). Here, vk stands for the convection, i.e. udrop or the
growth. In our implementation, a two-point Gaussian quadrature rule in each di-
mension is used to keep the quadrature errors sufficiently small. This quadrature
rule possesses 16 quadrature points in each 4D mesh cell. In the simulations, it
turned out that the assembling of A took much longer than all other operations
which were performed in the simulation of the DSD.

A Linear Crank–Nicolson Group Finite Element FCT (CN-GFCT) Method

The most serious drawback of CN-FCT is the computational cost which arises in
the assembling of the matrices. This section presents an alternative approach to
obtain the matrices, which is much more economical and which leads to very similar
results. It is called group finite element method and it was proposed, e.g., in [36].
The group finite element method was applied in combination with FCT schemes
already, e.g., in [32, 34].

The starting point of the group finite element method is the divergence formu-
lation of the transport term of (3)

udrop · ∇f +
∂

∂d

(a
d
f
)

=: ∇ · (vf), (18)

where for simplicity of notation the fourth component of v is the growth rate a/d
and the divergence is defined in four dimensions. The velocity udrop is considered to
be divergence-free. In the simulations, udrop is the sum of interpolations of exper-
imental data and a finite element approximation of a turbulent flow field. Hence,
the divergence-free constraint will be violated somewhat but it can be assumed that
this violation is small.

The basic idea of the group finite element method consists in not only using
f as variable in (3) but to use for (18) the group (vf) as finite element variable

(vf)h =
∑N
j=1(vjfj)ϕj , where vj are the degrees of freedom of the convection and

fj are the unknown degrees of freedom of the DSD. Inserting this ansatz in (18)
gives

(vf) ≈ (vf)h =

4∑
k=1

 N∑
j=1

(∂kϕj , ϕi)(vj)kfj

 . (19)

The matrices Ck = (∂kϕj , ϕi)
N
i,j=1, k = 1, . . . , 4, have to be assembled only once.

To obtain the approximation of the transport matrices from (19), each row of Ck
has to be multiplied with the k-th component of the convection.

Instead of applying numerical quadrature, an approximation of the transport
matrices is obtained by some multiplications of pre-computed matrices and the
current convection vectors in the group finite element method. Comparing (17)
with (19), one can see that in the group finite element method the value of the
convection at the node j is used instead of the values at the quadrature points
around the node j in the standard approach.

11



4.3 Computation of the Aggregation Term

Let 0 = d0 < d1 = dmin < . . . < dM = dmax be the grid points with respect to
the internal coordinate. As explained above, the grid point d0 is introduced for the
application of boundary conditions with respect of the internal coordinate and f(d)
vanishes in (d0, d1). The DSD is assumed to be continuous within each interval.

Standard Numerical Quadrature

The simplest approach consists in using quadrature formulas for the evaluation of
the integrals (4) – (7). In our simulations, Gaussian quadrature formulas are used
with three, four, or five quadrature points for each interval [di, di+1]. The results
were always rather similar.

The use of standard quadrature formulas possesses disadvantages. The source
term is of convolution type and the application of a time-consuming double loop over
the intervals of the internal coordinates is necessary. If the diameter formulation
(6) is used, then the term in the integral is almost singular for d′ close to d. Because
the DSD f is set to zero for diameters smaller than dmin, it is prevented that the
term in the integral becomes in fact singular.

Pre-Computation of Certain Integrals

The basic idea of this approximation of the integrals consists in approximating the
DSD within each interval [di, di+1] by a single value. Then, this value of the DSD
can be written outside the integrals and integration of only the kernel is necessary.
Since the kernel is known, these integrals can be computed in a pre-processing step.

This approach will be illustrated exemplary for the sink term (7) where the
dependency of the DSD on time and space is neglected for simplicity of presentation.
The sink term at the diameter dj , j ∈ {1, . . . ,M}, is approximated as follows

f(dj)

∫ dmax

dmin

κagg(dj , d)f(d′) dd′ = f(dj)

M−1∑
i=1

∫ di+1

di

κagg(dj , d
′)f(d′) dd′

≈ f(dj)

M−1∑
i=1

f(di+1) + f(di)

2

∫ di+1

di

κagg(dj , d
′) dd′.

For the integral of the kernel holds∫ di+1

di

κagg(dj , d
′) dd′ = Cbrown

2kBT

3µ

∫ di+1

di

(d+ d′)

(
1

d
+

1

d′

)
dd′

+Cshear

√
2∇udrop : ∇udrop

∫ di+1

di

(d+ d′)
3
dd′,

i = 1, . . . ,M − 1. Since the grid with respect to the internal coordinate is given,
the integrals on the right hand side can be computed in a pre-processing step. A
similar approach can be performed for the source term.

For the pre-computation of the integrals, the package MAPLE was used because
it was not possible to evaluate all integrals analytically. The numerical computation
of the integrals in MAPLE was performed with the option to be exact for 14 digits.

A Mass-Conserving Method for Computing Convolution Integrals

The method, which was developed in [37, 38, 39], will be applied to the volume
formulations of the aggregation terms (4) and (5). One of its main properties is the
conservation of mass. For this feature, the use of special grids with respect to the
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internal coordinate is necessary. This method was used in the simulations of the
urea synthesis in [40].

In the studied situations, much more small droplets are contained in the flow
than large droplets. For this reason, it might be advantageous to use a grid for the
DSD, that is refined towards the smallest droplets. The requirement of the used
method is that this grid is locally uniform with respect to the internal coordinate,
which is here the volume of the droplets. A grid with the following property fulfills
this requirement: |Vi+1 − Vi|/|Vi − Vi−1| = l, l ∈ {1, 2}, i = 1, . . . ,M − 1, where | · |
denotes the length of an interval. On such a grid, a piecewise linear ansatz space S
for the DSD is chosen.

A property of the kernel, which is exploited in the method, is its separability, i.e.
the aggregation kernel can be written in the form κagg(V, V ′) =

∑k
i=1 ai(V )bi(V

′).
Then, the aggregation term becomes

A(V ) = A+(V ) +A−(V ) =

=
1

2

∫ V

0

κagg(V − V ′, V ′)fV (V − V ′)fV (V ′) dV ′ − fV (V )

∫ Vmax

0

κagg(V, V ′)fV (V ′) dV ′

=

k∑
i=1

[
1

2

∫ V

0

ai(V − V ′)bi(V ′)fV (V − V ′)fV (V ′)dV ′

−fV (V )ai(V )

∫ Vmax

0

bi(V
′)fV (V ′) dV ′

]
.

The difficult part is the evaluation of the source term since it is the sum of convo-
lutions ϕi ∗ ψi, where ϕi = aif and ψi = bif . The functions ai(V ) and bi(V ) are
approximated by piecewise constants on the same grid as fV (V ). Legendre poly-
nomials are used as an orthonormal basis of S. Special properties of these polyno-
mials allow the computation of the convolution with the complexity O(M logM).
Essentially, some discrete convolutions with the fast Fourier transform have to be
computed. For details of the rather involved algorithm, see [37, 38, 39].

The exact convolution ωexact =
∑M
i=1 ϕi ∗ψi does not belong to the space S. In

the simulations presented below, the L2 projection ωcomp of ωexact into the ansatz
space is used. Since ωexact−ωcomp is L2 orthogonal to all piecewise linear functions,
one gets for all intervals [Vi, Vi+1]

massi(ωexact) =

∫ Vi+1

Vi

V ′ωexact(V
′) dV ′ =

∫ Vi+1

Vi

V ′ωcomp(V ′) dV ′ = massi(ωcomp),

i.e. the mass (volume) is locally preserved. However, a change in total mass might
occur from the fact that the support of the convolution is larger than the support of
the convolved functions. In the case of aggregation, only non-negative contributions
will be neglected by not considering the complete support of the convolution such
that the mass will always decrease. To avoid the decrease of mass, the following
correction to the aggregation term is applied

A(V ) := A(V )−mass(A(V ))
2

V 2
max − V 2

min

.

Then, although local mass conservation is violated, the total mass of the computed
aggregation term is zero, which is in accordance with the physics. Other forms of
corrections to obtain mass conservation are possible. But the presented way turned
out to be the best in our studies, see also the discussion of this topic in [40].
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5 Numerical Studies

The numerical studies presented below were performed with the code MooNMD
[41]. They are based on non-dimensional equations using the following reference
values

l∞ = 1 m, u∞ = 1 m/s, t∞ =
l∞
u∞

s, p∞ = ρu2
∞ Pa, f∞ = 1012 no./m

4
.

The minimal diameter of the droplets is set to be dmin = 10−6 m, which corresponds
to the smallest droplets in the experiments.

A hexahedral grid consisting of 51 × 46 × 19 nodes, which is equi-distant in
each direction, was used for the triangulation of Ω. With this grid, the positions
of the measurement points were located at nodes. For the internal coordinate,
two types of grids are considered. The first one is essentially uniform with the 89
nodes at (0, 1, 3, 5, . . . , 175) µm. Hence, the nodes coincide with the diameters for
which experimental data are available. The number of nodes of the 4D grid for
the DSD is 3 967 086, which corresponds to the number of degrees of freedom for
the Q1 finite element method. For this grid, the value d∞ = dmax = 175 · 10−6 m
is used. The second grids is refined towards small diameters. It consists of 94
nodes and the local refinement is performed as described in the presentation of the
mass-conserving integration scheme. Because quite long intervals are used for large
particles, the simulations are performed on a somewhat larger domain with respect
to the internal coordinate using d∞ = dmax = 249 · 10−6 m. With the used grid,
[124.5 · 10−6, 249 · 10−6] m is just covered with three intervals. This grid possesses
4 189 956 nodes.

All simulations are performed in the time interval [0, 1] s and the data are
averaged in [0.5, 1] s. The length of the time step is set to be ∆t = 10−3 s.

A snap shot of the flow field is presented in Figure 2. The Q2/P
disc
1 leads to

1 020 201 velocity degrees of freedom and to 162 000 pressure degrees of freedom.
The number of degrees of freedom for the projection space changes during the
adaption process. It was around 125 000 for each component of the symmetric
tensor. Because of the imposed noise at the inlet Γin, the temporal variation of the
minimal and maximal value of the stream-wise velocity is quite large. The mean
value of the stream-wise velocity shows that the average residence time of a droplet
in the measurement section is less than 0.25 s. Hence, a fully developed process is
present in the time interval for computing the averaged data.

Figure 2: Snap shot of the stream-wise component of the velocity field.

Results for different discretizations for the temporal derivative and the spatial
derivatives of the transport terms in Equation (3) for the DSD are presented in
Figure 3 and Table 1. The curves for the finite difference schemes FWE-UPW and
TVD-ENO fit very well to the time-space-averaged experimental data. This is not

14



surprising since the fit of the model parameters Cbrown and Cshear in the kernel (8)
was performed with FWE-UPW in [12]. The results of CN-FCT and CN-GFCT
are rather similar. They predict too few small droplets. This is a hint that the
parameter Cbrown is too large. In fact, we could observe that with the parameter
Cbrown = 1 · 106 a better agreement of the results obtained with CN-FCT and CN-
GFCT to the experimental data is obtained. These observation demonstrates the
influence of numerical methods on the calibration of model parameters.

Figure 3: Comparison of discretizations for temporal and transport-dominated spa-
tial derivatives, uniform grid for DSD, pre-computed integrals for aggregation.

Table 1: Mode (value where maximum is taken), maximum, and computing time
per time step for different discretizations of the temporal and spatial derivatives,
uniform grid for DSD, pre-computed integrals for aggregation.

method mode (m) maximum (no./m4) comp. time (s)
experimental data outlet 9 · 10−6 9.0987 · 1013

FWE-UPW 9 · 10−6 9.0641 · 1013 127
TVD-ENO 9 · 10−6 9.0006 · 1013 140
CN-FCT 9 · 10−6 8.7379 · 1013 995
CN-GFCT 9 · 10−6 8.6794 · 1013 322

Figure 4 and Table 2 present the effect on the time-space-averaged data of using
a log-normal interpolation of the inlet boundary condition for the DSD in each
measurement point. A shift of the peak towards smaller droplets can be observed.
This shift is still present in the computed results at the outlet, see Figure 5. The
approximations of the DSD for droplets with diameter in [10, 25] µm is considerably
worse for the log-normal interpolation compared with using the data and nodes of
the experiment directly. Also in this case, we could observe that it is possible to
obtain results for the log-normal interpolation that are closer to the experiments by
using different model parameters Cbrown and Cshear.

Table 2: Mode and maximum for different approximations of the space-averaged
inlet boundary condition for the DSD.

method mode (m) maximum (no./m4)
experimental data inlet 7 · 10−6 1.1560 · 1014

log-normal interpolation, adaptive grid 6.0688 · 10−6 1.1767 · 1014
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Figure 4: Time-space averaged inlet condition for the DSD.

Figure 5: Comparison of different approximations of the inlet boundary condition
for the DSD with TVD-ENO (left) and CN-GFCT (right), pre-computed integrals.

The effect of applying different methods for computing the aggregation integrals
is studied in Figures 6, 7 and in Tables 3, 4. It can be seen that the choice of
this method possesses only little influence on the time-space-averaged DSD at the
outlet.

Table 3: Mode, maximum, and computing time per time step for different methods
for computing the aggregation integrals, TVD-ENO, log-normal interpolation.

method mode (m) maximum (no./m4) comp. time (s)
Gauss3 7.0697 · 10−6 8.6010 · 1013 271
Gauss4 7.0697 · 10−6 8.5887 · 1013 309
Gauss5 7.0697 · 10−6 8.6096 · 1013 338
pre-computed integrals 7.0697 · 10−6 8.5981 · 1013 174
mass-conserving method 7.0697 · 10−6 8.5434 · 1013 215

Computing times per time step for different methods are given in Tables 1,
3, and 4. The simulation of the flow field takes around 100 s. As expected, the
finite difference methods with explicit time stepping schemes are faster than the
finite element methods with implicit temporal discretization. Among the first class,
FWE-UPW is a little bit faster than TVD-ENO. CN-GFCT takes more than twice
as long as TVD-ENO. The slowest scheme is CN-FCT, whose simulation time is
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Figure 6: Comparison of Gaussian quadrature methods for computing the aggrega-
tion with TVD-ENO (left) and CN-GFCT (right), adaptive grid with log-normal
interpolation for DSD.

Figure 7: Comparison of different methods for computing the aggregation with
TVD-ENO (left) and CN-GFCT (right), adaptive grid with log-normal interpolation
for DSD.

three times longer than CN-GFCT. With respect to the method for computing the
aggregation, it can be seen that Gaussian quadrature is the least efficient approach.
The application of the method with pre-computed integrals is fastest.

6 Summary and Outlook

The numerical studies presented in Section 5 reveal that the use of different numer-
ical methods for solving Equation (3) for the DSD might possess a non-negligible
impact on the computed time-space-averaged DSD at the outlet. Unlike [9, 10],
where more sensitive outputs of interest were studied, the changes are rather quan-
titative than qualitative. For the considered problem, the interpolation of the inlet
boundary condition and the discretization of the temporal and transport-dominated
first order spatial derivatives have the most significant influence on the numerical
results. Different choices of the method for computing the aggregation integrals
lead to very similar results. However, this situation might change if long-term sim-
ulations are performed where, e.g., the loss of mass in some methods might become
crucial.

For the assessment of the methods, two situations will be distinguished. The
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Table 4: Mode, maximum, and computing time per time step for different methods
for computing the aggregation integrals, CN-GFCT, log-normal interpolation.

method mode (m) maximum (no./m4) comp. time (s)
Gauss3 7.4425 · 10−6 8.6318 · 1013 376
Gauss4 7.4425 · 10−6 8.6165 · 1013 414
Gauss5 7.4425 · 10−6 8.6285 · 1013 442
pre-computed integrals 7.4425 · 10−6 8.6196 · 1013 276
mass-conserving method 7.4425 · 10−6 8.5768 · 1013 303

first one is the case of a tensor-product domain Ω where finite difference methods
can be applied easily. Then, from the point of view of efficiency, FWE-UPW and
the use of pre-computed integrals for the aggregation are the best methods. But,
because of their better mathematical properties, we would recommend the use of
TVD-ENO and the mass-conserving quadrature method. Their overhead with re-
spect to the fastest methods is modest. Note that the mass-conserving quadrature
method requires special grids with respect to the internal coordinate. In the second
situation, that the flow domain is not of tensor-product form, our method of choice
for the discretization of the temporal and spatial derivatives will be CN-GFCT.

An interesting extension of the studies is the consideration of more sensitive
outputs of interest. It can be expected that in such situations larger differences can
be observed if different methods are used. The difficulty consists in assessing the
computational results, see also [9, 10], since it will be hard to obtain experimental
data for such outputs. Another important topic is the inclusion of moment-based
methods into the studies since these methods are often used in practice. This topic
will be pursued next in our future work.
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