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Landau-Ginzburg Model for a 
Deformation-Driven Experiment 

on Shape Memory Alloys 

Nikolaus Bubner 

Weierstrass Institute for Applied Analysis and Stochastics, 
Mohrenstr. 39, 10117 Berlin, FRG 

Abstract 

A Landau-Ginzburg model describing first order martensitic phase transitions in 
shape memory alloys is considered. The model developed by Falk is transformed 
in order to simulate deformation-driven experiments. done ~y I. Miiller and his 
co-workers. In these experiments, they do not only observe load-deformation 
hysteresis loops but also small loops inside these hysteresis loops. Numerical 
simulations for a CuZnAl single crystal show good agreement with the exper-
iment. We find, for example, nucleation processes, moving phase boundaries, 
rate-independent hysteresis loops and, for the first time, interior loops. 

1 Introduction 

Shape memory alloys1 (SMA) have received increasing attention in recent years partly 
due to the wide range of their technical applicability in active structures. They show a 
noticeable change in their mechanical behaviour, i.e. stress-strain relation in different 
temperature ranges: elastic at high temperatures and pseudo- or quasiplastic at low 
temperatures. An alloy can be permanently deformed (up to 10%) without fracture 
and recovers its old shape under heating or cooling. This is the so-called shape memory 
effect. It is due to first order structural phase transitions between different equilibrium 
configurations of the metallic lattice, named austenite and martensite. Austenite is 

1CuZnAl, AuCuZn, NiTi, ... 
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the undeformed crystal lattice which is stable at high temperatures. By deforming 
the lattice, one obtains 24 crystallographically equivalent variants. These martensite 
variants prevail at low temperatures. 
A large number of papers deal with experimental observations, physical modelling, 
mathematical investigation and numerical simulations, such as [FA1,FA2,FA3,WIL,RO, 

SMA 

HM,FHM,SP,NS,KL] to name only a 
few. Here, we transfer the model devel-
oped by Falk [FA1,FA2,FA3,SP] for load-
and temperature-driven experiments to 
deformation-driven ones (see Figure 1). 
A thin rod of a SMA is clamped on one 
side, and on the other side it is pulled 
and pushed in the course of time by an 
elongation m( t). The numerical scheme 

Figure 1: Deformation-Driven Experiment of [NS,KL] is modified to simulate an ex-
periment for a CuZnAl single crystal done 
by [GL]. We show the results obtained by 

[BU]. The mathematical investigation (local and global existence, uniqueness, control 
problem) also given in that work will be presente~ in a forthcoming paper. 

2 The model 

Falk considers a one-dimensional problem. In this case of a thin rod, we only have two 
variants of martensite, called M + and M- (see Figure 2). The momentum balance 
here reads 

\\ m II 
M_ A M+ 

Figure 2: M_, A, and M+ 

(2.1) 

where p is the constant mass density2 , 

u the displacement perpendicular to the 
rod, a the stress in the rod, and µ the 
couple stress." One takes the couple stress 
into account because the lattice curva-
ture due to the different phases of the rod 
should not be neglected. The tempera-
ture depending on the stress, Falk also 

considers the energy balance (see also [STO]): 

pet+ qx - O"Uxt - µuxxt =g. 
2The change in volume due to the phase transitions is negligible. 
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Here, e denotes the specific internal energy, q the heat flux, Ux the shear strain (per-
pendicular to the rod) and g the density of heat sources and sinks. Taking a specific 
free energy F, the thermodynamic relations 

EJF 
s = - ae' EJF 

e = F + Bs = F - B-ae ' (2.3) 

and Fourier's law for the heat flux ( q = -/'i,Bx; B denotes the absolute temperature and 
"'the thermal heat conductivity), one can show that the Clausius-Duhem-Inequality 

is complied with if one chooses: 

s is the specific entropy. 

EJF (]" = p-
OUa; 

EJF 
and µ = p--; 

OUa;a; 

(2.4) 

(2.5) 

Now, a Landau-Devonshire ansatz is chosen to describe the first order phase transitions. 
In order to model the energy stored between different phases, a term containing the 
gradient of the strain is added to the free energy. It is the change of the strain which 
has to be penalised in some way, the most simple possibility being 5u~x' 8 > 0, the 
so-called Ginzburg-term, 8 being the Ginzburg-coefficient. So, we have the' following 
free energy density: 

(2.6) 

a, /3, r, and 81 are material constants which have to be determined for each specimen. 
Below Bi, austenite is unstable. A typical form of F0 ( B) is: 

F0 (6) =-c. 6 log(~) +c. 6 + C, (2.7) 

where Ce is the specific heat, B a material constant, and C is a constant to be chosen. 
Thus, for high temperatures, we find that F( ., Uxx, B) becomes convex, only austenite 
is stable, and 

a(ux, B) = 
8
8p = r(B - B1)ux(x, t) - {3u~(x, t) + au!(x, t) (2.8) 

Ux 

becomes a strictly increasing function: the rod shows an elastic behaviour. Low 
temperatures show F(.,uxx,B) with two minima (only M+ and M- are stable) at 
Ux = ±m0 > 0, a(., B) is shown in Figure 3. We refer to this as ferro- or quasiplastic-
ity. 
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Figure 3: stress-strain relation for low 
temperatures 

Figure 4: stress-strain relation for in-
termediate temperatures 

A hysteresis is obtained by following the lines indicated by the arrows. In an inter-
mediate temperature range, we have a pseudoelastic behaviour shown in Figure 4. 
All phases may occur. So, the linearized strain e := Ux plays the part of the order 
parameter: e ~ 0: austenite; e ~ ±m0 : M± (mo depends on the material). 

In three space dimensions, however, a force acting on the lattice leads to .strains m 
all spatial directions. Considering an intersection of two dimensions, one obtains sche-
matically what is depicted in Figure 5. We now look into the displacement field i1 as 
having two components which themselves depend only on one coordinate, i.e. x. Up 

~{ oY 

(X) au 

---1 --
1 --- I 
I --- I -----;- I 

to now, the displacement component per-
pendicular to the rod was investigated, 
in the above mentioned papers. For in-
stance, they simulated a rod clamped on 
both sides and looked into phase tran-

1 / sitions due to temperature changes or a 
I I / / force acting perpendicularly on the rod. 

I I 
/ / <n In order to simulate an experiment where 

I -,-- au 
I ----- 1 ax the phase transitions are caused by an 

-- I r-----------"---'1-_,,,_--r::. X elongation m( t) at one side of the rod, ....,.., 
(X) 

au 
ax 

Figure 5: Deformed crystal (see [MM]) 

we examine the displacement in the di-
rection of the rod. Since it is a one-
dimensional approach, it still depends on 
x only. Thus, it turns out that the order 

parameter is no longer the shear strain e = 8~~) ( (y) indicates the spatial direction, 
see Figure 5) but the strain e = a~~:r!) in the direction of the elongation m(t) which is 
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called the deformation. This means that the momentum balances for x and y decouple: 

where 

a (x) a _a_ Txy _ (x) (x) 
ax + 8y - putt + µxx ' 
~ 

=0 

8r. 8a(y) ( ) 
____.!:_ + -- = pu y + µ(Y) ax 8y tt ~' ..._____, 

=O 

(2.9) 

(2.10) 

(2.11) 

is the symmetric stress tensor. Equation (2.10) has been concentrated on up to this 
point; now we apply equation (2.9). We end up with a structure of the system com-
parable to the one before, but the meanings of the physical quantities have partly 
changed: u (that is u(x) in (2.9); in the sequel we will only refer to this direction, so 
for simplicity we continue omitting the index) is now the displacement in the direction 
of the rod, i.e. the difference between the initial state and the elongated one. All that 
has been said about the former model is valid for this one, too. The material constant 

· m0 may have another value. 
Choosing the length of the rod l := 1, we have the following boundary conditions: 

u(O, t) = 0, u(l, t) = m(t). (2.12) 

Furthermore, we do not wish to prescribe any strain on the boundary, so we choose 

Uxx(O, t) = Uxx(l, t) = 0. (2.13) 

There is an initial state u(O, x) = u0(x), and the initial velocity will be 

(2.14) 

In the experiment, the rod is in a bath, meaning that all the latent heat which may 
occur is immediately absorbed; the experiment is isothermal. The energy balance is 
essential in our model, we do not want to neglect it by taking () = const. and looking 
only into the momentum balance. Also, g can be taken as a control variable as well as 
m or the outside temperature Br. In order to simulate the experiment, we take 

-KBx(l, t) = K(B(l, t) - Br(t)), Bx(O, t) = 0, (2.15) 

as boundary conditions for the energy balance. Choosing the heat exchange coefficient 
K big enough, we have an isothermal behaviour of our system at x = 1. Thus, we can 
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compare physical quantities at x == 1 (such as a) with the experimental data. We are 
aware of the fact that the Falk model was developed in order to describe the dynamical 
behaviour in contrast to this quasistatic experiment. We will come back to this while 
discussing the numerical results in the last section. 

Summarizing, we have the following system (n :== (0, 1), nT :== n x (0, T)): 

u(O, t) 
Bx(O,t) 
u(x,O) 
B( x, 0) 

(!(B - B1)ux - (3u~ + au~)x + 8uxxxx == 0, m f2T, 

K,Bxx - 1BuxUxt == g(x, t), m f2T, 
Uxx(O, t) == Uxx(l, t) == o, u(l, t) == m(t), \ft E [O, T], 
0, -K,Bx(l, t) == ~(B(l, t) - Br(t)), \ft E [O, T], 

uo(x), 
Bo(x ), 

Ut( X, 0) == 0, 

\:/x E n. 
\:/x E f2, 

(2.16a) 

(2.16b) 

(2.16c) 

(2.16d) 

(2.16e) 

(2.16f) 

We can prove [BU] that this system has a unique cla~sical solution such that B remains 
positive for any time T > 0. 

3 The Numerical Scheme 

In this section, we lay out the numerical algorithm to solve the system (2.16), whereas 
in the next one, the physical parameters will be determined. For the mathematical 
analysis as well as for the numerical approximation, the system is transformed by 
u(x, t) :== u(x, t) - x · m(t). Thus, we deal with homogeneous boundary conditions. 
An additional term p · x · m(t) appears only on the left hand side of the momentum 
balance. For simplicity, the tilde is omitted. The results presented in the last section, 
of course, refer to the original problem. 

We do need some notations. The mesh sizes and the time step size, respectively, are 

h 
1 - 1 

N == nx · l, (3.1) .- ' h:= N' nx 
k 

T 
(3.2) ·- ' nt 

where nx, l, nt E IN and nx ~ 2. Let Bn:i: denote the set of cubic splines on n and Xi :== 

::c, i == -3, -2, ... , nx+3. Then the set of functions {B-3, B_2, B_1, Bo, B1, ... , Bn:c-d 
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with 

. 1 
Bv(x) := 6h3 

(x-xv) 3 

h3 + 3h2(x - Xv+i) 
+3h(x - Xv+i) 2 - 3(x - Xv+i) 3 , 

h3 + 3h2 (xv+3 - x) 
+3h(xv+3 - x) 2 - 3(xv+3 - x)3 , 

(xv+4 -x)3 

0 

Xv+2 :::; X < Xv+3 
Xv+3 :::; X < Xv+4 
else, 

(3.3) 

defines a basis of Bna: c H3 ( n). The set of functions { w _ 1, Wo' W1' ... ' Wn:::-3} with 

l B_1(x) - B_3(x) , i = -1 
wi(x) := Bi(x) i = 0, ... ,nx - 4 

Bn:::-3(x) - Bn:::-i(x) i = nx - 3, 
(3.4) 

defines a basis of Wna: C H~(f2) := { u E H 3 (f2) 1-z.t(O) = u"(O) = u(l) = u"(l) = 0 }. 
For the displacement u, the finite element ansatz 

n:::-3 
ui ( x) = L vf Wi ( x), 0 :::; x :::; 1, (3.5) 

i=-1 

is used, where j = 0, ... ,nt denotes the time step and .vi .- (v~ 1 ,v~, ... ,v~a:_3 ) E 
m.n:::- 1

. So, the first derivative with respect to space then reads 

n:::-3 
u~(x) = L vfw~(x); (3.6) 

i=-1 

higher order derivatives are defined analogously. Furthermore, Bf are approximate 
solutions for B( i · h, j · k) and we define Bi := ( B~, B{, ... , B:j.,) E IRN+i, GI := g( i · h, j · k ), 
and Bf:= Br(j · k), 0:::; i:::; N, 0:::; j:::; nt. The constants p, a, /3, /, 8, B1, ce, K, 7 and 
K; have real values. 
We introduce the projection 

Pna: := H 1 (f2)-orthogonal projektion onto Wna: 

and consider the semi-discretized system: 

l (P(ui(x) - 2ui-~~x) + ui-2(x) + xih(j. k))w;(x) + Ju~x(x)w;'(x))dx 

7 
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+ f ( (Oi- 1(x) - B1)Ft(ei(x)) + F;(ei(x))) w;(x)dx - 0, 

Vwi E Wn:z:, 0 < J.:::; nt, (3.8a) 

ef - e1-1 ef+i - 2ef + ef-1 ((t:i(i. h))2 -2k(t:i-1(i. h))2) e1-1 = a1 
Ce k - K, • h 2 - f i i ' 

0 :::; i :::; N, 0 < j :::; nt , (3.8b) 

uo - u-1 
k = Pn:z:(u1) = 0, B0 = B0 (i · h), 0 ~ i:::; N. (3.8c) 

Here we have 8~ 1 := B{, B~+i := 8~_ 1 - 2h~(B~ - e?), t:i(x) := u~(x) + m(j · k), 
F{(t:) = /c, and F~(c) = -/3t:3 + at:5 • Bi : n --+ 1R denotes the linear interpolating 
function to the grid points ( i · h, B{), 0 :::; i :::; N. 
In (3.8) the equations are decoupled, and thus we first solve the discretized version of 
the momentum balance and then the one of the energy balance. 
In order to deal with the nonlinearities of the momentum balance, we apply the ansatz 
developed in [NS] and we approximate: 

(fJi-1 - B1 )F;(t:i) + F~(t:i) 
r. ·-1 1 ( t:i)2 - ( cf-1 )2 1 ( ci)4 - ( cj-1 )4 1 ( t:i')6 - ( cj-1 )6 

~ ( B.1 - 81 )21 t:i _ t:i-1 - 4/3 t:i _ t:i-1 + 6a t:i - t:i-1 

(fJi-1 _ 81 )~/(t:i + cj-1) _ ~/3 t(t:i)3-k(t:i-l)k +~a t(t:i)s-k(t:i-l)k. 
2 4 k=O 6 k=O 

(3.9) 

So, the momentum balance at grid point i reads: 

n:z:i-3 {1 
+8 L vt ·Jo w~(x )w~'(x )dx 

v=-1 O 

(3.10) 

where H : IRn:z:-l --+ IRn:z:i-1 . We solve this equations using a Newton method. 
Each interval of length h is subdivided into l subintervals (see (3.1)). We calculate 
the integrals over these subintervals. In case there occur only cubic splines in the 
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integrals, they can be evaluated analytically. Otherwise, we make use of the extended 
trapezoidal rule for numerical evaluation. One has to evaluate the integrals only where 
the supports of the cubic splines do not vanish, i.e. if i - 3 ::; v ::; i + 3. We use a 
Householder transformation and exploit symmetries. 
For the discretized energy balance, after invoking the boundary conditions, we end 
up with a linear system Axi bi which is solved with the help of a standard LU 
decomposition. 

4 The physical parameters 

·auu· 
700 
600 
:500 
400 
300 

......... 200 
~ 100 

In this section, we determine the parame-
ters for the specimen used by Glasauer 
in his experiments [GL]. He obtained 
the load-deformation diagrams shown in 
Figures 6.a-e (the temperature increases 
from Figure 6.a to 6.e). The elongation 
was prescribed, and the necessary load for 
that elongation was measured. We want 
to compare the experimental load at the 
elongated side with the stress inside the 
rod (2.8) at the right boundary which can 

0'+--H-~~~---+-~~~~--+i..... 

be calculated numerically. The stress at 

·-e -100 
~ -200 

-JOO 
-400 
-~ 
-600 
-700 
-800 

-(.0 -J.O 

V1: T•l:I 
- Cu"lnN: V1: T•70 

-2.0 -1.0 0.0 1.0 2.0 J.O . 4.0 

Deformation (mm] 

Figure 6.a 

the right boundary of the rod ( x = 1) is equal to the pressure from outside, that is 

F(t) 
o-(1, t) = A(t)' ( 4.1) 

at any time t. F(t) is the measured load, A(t) denotes the time-dependent cross-
section of the rod. No volume change is considered, so we have 

Ao· .6.xo = A(t) · .6.x(t). (4.2) 

Ao is the cross-section of the rod without any elongation, ..6.x0 denotes the length of a 
small volume element at the right boundary at this time, .6.x(t) denotes that length at 
time t. Ao is known, and thus one has 

( ) _ F(t) · .6.x(t) 
O" 1, t - A A 

0. D.Xo 

F(t) . 1 + u(l, t) - ((1 - .6.xa) + u(l - .6.xo, t)) 
Ao 
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F(t) ~xo + u(l, t) - u(l - ~xo, t) 
Ao ~Xo 

F(t) 
Ao · (1 + Ux(l, t)), ~Xo -7 Q. (4.3) 

As mentioned in the introduction, we have to determine a, (3, /, and 81 . 81 can easily 
be found with the help of the experimental results [MU]. For si::r;riplicity (which will not 
be done in calculating a in the next section), we set 1 + ux(x, t) ~ 1, the error will be 
less than 9%. using graphical approximation and the least squares fitting, we are able 

OOO 
700 
600 
SOO 

'°° JOO 
""""' 209 
~ 100 

o+---.,__~~~--t~---------t--e -100 
~ -200 

-JOO 
-400 
-500 
.:..500 
-700 
-800 - Cull\AI: v1: f• 100 

-4.0 -3.0 -2.0 -1.0 o.o 1.0 2.0 J.O • 4.0 

E~ 
~1 
JOO. 

:z:· 200 
- 100 

Oeformolion [mm) 

Figure 6.b 
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Figure 6.d 

800 
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SOO 
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200 3 100 
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~ -200 
-m 

-'()01 -500 
-600 :: 

-•.o 

§l 
~001 
~· 

....... 200: 
3 100 

..... cuZMI: V2: r-105 

' ' ' ' " z'.o J'.o ~o -3.0 -2.0 -1.0 0.0 1.0. 

Oeformotion [m.fTI] 

Figure 6.c 

~ o+--------~~---~1--------------------E -100 
x -:-lQO 

-JOO 
-400 
-SOO 
-600 
-100 - CvlMI: VI: t•IZO 

-a~,.o -3.o -2.0 -1.0 o.o 1.0 io J.o "·o 
Deformation [mm 1 

Figure 6.e 

to determine the material constants. The areas inside the experimental hysteresis loops 
do not differ more than 10% from the theoretical ones. The theoretical curve does not 
comply with the experimental one in the first of the five diagrams (Figure 6.a: lowest 
temperature). In a Landau-Devonshire model, the hysteresis loops always grow with 
decreasing temperature. In the experiments, however, one does not observe a growth 
of the hysteresis loops below a certain temperature. So, below this temperature, a 
Landau-Devonshire ansatz looses its validity. Furthermore, we remark that, if the 
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constants depended on the temperature, we would be able to fit the parameters nearly 
perfectly. 
The values for p and Ce are taken from [FHM] because it is the same material. The 
values for K, and 8 are the same as in [KL], and R is chosen as big as necessary to 
simulate a bath at the right boundary. Altogether, we have the following values: 

8 J a= 2.49·10 - 3 , 
cm 

f3 = 2.343 · 106~, cm 

J r = 190.18~K' cm 

8 = 2.0 . 10-10 __.:!_' 
cm 

81 = 348.75 K. 

The other quantities have the following units: 

g 
p = 8.23-3, 

cm 

. J 
Ce = 3.1274--3 -, 

cm K 

w 
K, = 2.39--, 

cmK 

- 9 w 
K,= 10 ~K' cm 

(4.4) 

cm 
[u] = [m] =cm, [u,x] = 1, [utt] = -2' fuxxxx] = crn-3

. (4.5) sec 
In the beginning (no elongation), the specimen has a length of l0 = 3.4 · 10-2 m, and 
a cross-section of Ao = 4.5 · 10-6m 2 . We choose as units l~~3N for the momentum 
balance,. and cm~ sec for the energy balance. 

5 Numerical simulations 

For all simulations, we have an initial temperature 00 in the entire rod, and a surround-
ing temperature Br of 373.1 K. This corresponds to Figure 6.b. With the parameters 
of the foregoing section, the free energy shows, at this temperature, three minima: The 
two variants of martensite are stable, as well as austenite. Thus, we have the case of 
a state between the two states shown in Figures 3 and 4. The resulting stress-strain 
relation still exhibits a quasiplastic hysteresis. Furthermore, the parameter l (3.1) is 
always chosen so that N = 600. The time step size k = 1'... varies between 5 · 10-8 s 

nt 

and 10-7 s. All other parameters have the values given in ( 4.4) or in the foregoing 
simulation, respectively. 3 

Simulation 1: length of cycle: T = 0.5 s 
3 All simulations were done on a digital DEC 3000 600-Workstation (187 SPECfp92). 
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time step size: k == 10-7 s 

no. of grid points (momentum balance): nx == 24 

maximal elongation: m0 == 0.088 cm 

The initial state is: 

0 :::; x :::; 0.25 M+, 
0.25 :::; x :::; 0. 75 

0. 75 :::; x :::; 1.0 

This complies with the 
boundary 
conditions and the rod 
has a vanishing result-
ing displacement. The 
cycle consists of five 
parts of equal length: 
first, the rod is pulled 
till m0 ; this is called 
the initial loading path 
in the stress-elongation 
diagrams (SED). Then, 
the cycle itself starts: 
the rod is pushed back 
to zero and further to 
-ma. Afterwards, it 
is pulled back to zero 
again, and is moved to 
m0 • In Figure 7, the dis-
placement u in the rod 
is plotted in the course 
of time. The rod is 
shown on the x-axis: at 
x == 0, we have the left 
end of the rod where it 
is clamped; at x == 1, we 

u [cm] 
0.1 -

0.05 

0 

-0.05 

-0.1 

0.0 

Simulation 1 

space [cm] 

time(s] 

Figure 7: Simulation 1: displacement u 

Simulation 1 

0.05 

0 

-0.05 

-0.1 

0.0 

Figure 8: Simulation 1: strain Ux 

(5.1) 

0.5 

0.5 

have the right end where we have the heat exchange with the surroundir}g tempera-
ture, and where the rod is elongated. The y-axis shows the time. Since u(l, t) == m(t), 
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we can see the curve (t, m(t)) at x = 1. At t = 0, the initial state u0 can be seen. 
In the same way, we have plotted the strain Ux in Figure 8. One clearly sees the two 
boundaries at t = 0 which start moving towards each other until the whole rod exhibits 
the M +-phase. Then, pushing the rod back to m = -m0 causes one phase boundary 
propagating through the rod which has started at x = 1. The rod, at that time, only 
shows the M --phase. Pulling the rod back leads again to one phase boundary starting 
at x = 1 and ends up with only one phase, i.e. M +. It depends sensitively on the 
parameters how the phases develop in the course of time. The behaviour depends, e.g., 
on the way of pulling and pushing or whether there is a heat exchange or not. For 
instance, it is possible to obtain a development of the phases which has the form of a 
"V" instead of a "corridor" or more than one phase boundary. We will see this in some 
of the next simulations. 
In Figure 9, 
the temperature evolu-
tion is shown. One ob-
serves the temperature 
increasing ·and decreas-
ing due to the phase 
transitions. We ex-
plain this in the fol-
lowing. In a fransi-
tion from one marten-
si te variant to t11:e other, 
one particle describing 
the system (i.e. one grid 
point), coming out of its 
metastable minimum of 
potential energy, has to 

theta [K] 

400-
390 
380 
370 
360 
350 
340 

0.0 

Simulation 1 

space [cm] 

time[s] 

Figure 9: Simulation 1: temperature B 

0.5 

overcome a little potential barrier in order to fall into the deeper global minimum of 
potential energy. 4 Thus, first kinetic energy is transformed into potential energy (the 
particle climbs up the barrier), one observes a decrease in temperature. When the par-
ticle falls down into the global minimum, potential energy is transformed into kinetic 
energy: the temperature increases. In Figure 8, one can see that a grid point needs 
approximately 8 time intervals to change its phase. Plotting only every 50.000th time 
step, we see that a grid points needs 400.000 time steps for a phase transition. Thus, 

4When there is no force acting on the rod, the two minima of the martensite variants are, of 
course, of the same depth. In the current case, austenite does not occur although it is stable and, for 
simplicity, we only focus on the transition between the two martensite minima. 
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we are able to see how the temperature decreases and increases. 
Therefore, we have the following temperature profile for a phase transition from one 
martensi te structure to the other: there is a heat sink followed by a pole of heat. This 
temperature profile is moving together with the phase boundary. Thus, we explain 
the temperature distribution in Figure 9. To make the picture clear, we have plotted 

380 

378 

376 

374 

372 

g 
s 370 
& 

368 

366 

364 

362 

360 
0.0 0.2 

Simulation 1 

0.4 0.6 
Ort[cm] 

0.8 1.0 

the temperature distribution B again at 
t = 0.05 s in Figure 10. We see the dis-
cussed temperature profile twice coming 
from both ends to the middle of the rod, 
together with the two phase boundaries. 
At this time, the phase boundaries have 
nearly merged. Due to the boundary con-
ditions ( x = 0: isolated end; x = 1: heat 
exchange with the surrounding temper-
ature Br = 373.1 K = 80 ), the tempera-

Figure 10: Simulation 1: B at t = 0.05 s ture at the left end has increased, whereas 
at the right boundary, the corresponding 

heat could flow out, and we have B = 373.1 K at x = 1. 
One observes differences in temperature of more than 20 K. These are no realistic 
values, but we obtain differences of less than 5 K by choosing cycle lenghts T 2:: 2.0 s. 
This coincides with the experiments [MU]. Sinc;:e our calculations do take up to 5 
weeks on our workstation (depending on the number of grid points), we have chosen 
such a short cycle because all relevant phenomena occur at least qualitatively. The big 
increase of temperature at the turning points of m are due to numerical effects. 
In a second simulation (Figures 11 to 13) we have only austenite in the beginning. 

Simulation 2: T = 1.0 s 

k = 5. 10-s s 

mo = 0.0812 cm 

"Ff;= 0 (5.2) 

Now the rod is pulled and pushed in a different way: at the turning points of m, it 
lingers for some time which can be seen in Figure 11. In Figure 12, one observes, in the 
first part of the cycle, that the rod first behaves elastically and then there is a transition 
to M + at random positions which spread out until the entire rod exhibits the M +-
phase. We think that this nucleation process, which is observed in the experiments, is 
due to rounding errors of the computer. We obtain this behaviour in the course of the 
whole cycle and we see, in contrast. to the foregoing simulation, that austenite occurs 
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during the transition from one martensite structure to the other. 
The temperature evolu-
tion (Figure 13) shows 
very well the latent 
heats at points where 
a phase transition takes 
place: the tempera-
ture increases when go-
ing from austenite to 
one martensite variant, 
it decreases going the 
opposite direction. 
In the following, we will 
focus 
on SED's. The stress 
at the right boundary 
stress(l, t) .-

. a ( 1, t) / ( 1 + Ux (1, t)) (see 
( 4.3)) is plott~d over the 
elongation m( t). Figure 
14 shows this for simula-
tion 1. After the initial 
loading path ( m = 0 to 
m = m 0 ) we find a hys-
teresis. Pushing the rod 
leads to negative stress, 
pulling to positive. The 
big fluctuations at the 
turning points of m are 
due . to the above men-
tioned numerical effects. 

u [cm] 
0.1 -

0.05 

0 

-0.05 

-0.1 

0.0 

Ort[cm] 

Simulation 2 

Zeit[s] 

Figure 11: Simulation 2: displacement u 

· Simulation 2 

0.05 

0 

-0.05 

-0.1 

0.0 

Figure 12: Simulation 2: strain Ux 

1.0 

1.0 

The smaller fluctuations between the turning points correspond to the number of grid 
points. Every phase change of a grid point leads to a small oscillation. Such effects are 
also observed in [MV]. 
In order to get rid of these oscillations or, at least, to smoothen the hysteresis, we take 
more grid points in the momentum balance. 

Simulation 3: (5.3) 
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Simulation 4: 

theta [K] 
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Zeit[s] 

Looking into Figures 14 
to 16, one finds out that 
the hysteresis vanishes: 
it is due to a numer-
ical effect. So, think-
ing that the Ginzburg-
coeffi.cient given by Falk 
is a lot too small in or-
der to model the energy 
between the phases, we 
choose bigger values for 
8. We find that with 
8 = 2 · 10-1 J /cm (for 24 
grid points) the stress-
strain relation starts to 
change. Taking 8 = LO 

Figure 13: Simulation 2: temperature() 

(5.4) 

1.0 

J /cm, we have a much better hysteresis; choosing ~even bigger than that, the resulting 
behaviour makes no sense any more. Figures 17 to 19 show the same simulations again 

. . 
but with 8 = 1.0 J /cm: 

Simulation 5: 8 = 1.0 J/cm, nx = 24 (5.5) 

Simulation 6: 8 = 1.0 J/cm, nx == 50 (5.6) 

Simulation 7: 8 = 1.0 J/cm, nx = 100 (5.7) 

Now, we find a hysteresis which is stable concerning discretization. More grid points 
give a smoother hysteresis loop which one would expect naturally. There are still 
some fluctuations at the turning points of m which are caused by the above mentioned 
numerical effects (see Figure 9). To get rid of them, one would have to choose another 
numerical scheme. 
This difference in the stress-strain relation for such different values of 8 can be con-
firmed in the next two simulations. All the parameters are the same as in the simula-
tions 1 and 5, respectively, except for the cycle length: 

Simulation 8: 

Simulation 9: 

8 = 2 · 10-10 J /cm, T = 2.0 s 

8 = 1. 0 J /cm, T = 2. 0 s 

16 
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Figure 14: Simulation 1 
8 = 2 · 10-10 J /cm, 24 grid points 
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Figure 15: Simulation 3 
8 = 2 · 10-10 J /cm, 50 grid points 
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Figure 16: Simulation 4 
8 = 2 · 10-10 J /cm, 100 grid points 
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Figure 17: Simulation 5 
8 = 1.0 J /cm, 24 grid points 
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Figure 18: Simulation 6 
8 = 1.0 J /cm, 50 grid points 
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Figure 19: Simulation 7 
8 = 1.0 J /cm, 100 grid points 

Simulation 8 (Figure 20) shows again that the hysteresis loop vanishes, this time, 
because the velocity of pushing and pulling decreases. In simulation 9 (Figure 21), 
the hysteresis is also partly vanishing but this is due to another reason: As we have 
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mentioned above, the time evolution of the phases may change even though the change 
in parameters is small. Here, we observe that the evolution is different than in all the 
others before; up to now, they have always been as in Figure 8. In this simulation, we 
have martensite at the right end only around the turning points. Austenite is stable, 
so it is "allowed" to occur. So, where the loop is smaller, now, it is due to the fact that 
we have austenite instead of martensite. This is clearly to be seen, of course, plotting 
ux(x, t) for this simulation (which is not shown here). The hysteresis loop is as big 
as in simulation 5, where we have martensite as before; this can be seen around the 
turning points of m in Figure 21.5 So, we find that the hysteresis is rate independent, 
if 8 is big enough. 

Simula~ons 
400......----------------. 

300 

200 

100 

-100 

·200 

-JOO 

-400-r----.---.----.---.----..--.----..-_,...____,_--1 
·0.1 ·0.08 ·0.06 ·0.04 ·0.02 0 0.02 0.04 0.06 0.00 0.1 

m~)[cm) 

Figure 20: Simulation 8 
8 = 2 · 10-10 J /cm, T = 2.0 s 
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·0.1 ·0.08, '-0.06 -0.04 ·0.02 0 0.02 0.04 0.06 0.00 0.1 
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Figure 21: Simulation 9 
8 = 1. 0 J /cm, T = 2.0 s 

Summarizing, we have the following result: The small value 8 = 2 · 10-10 J /cm leads 
to a hysteresis which depends on the discretization and which is not rate independent. 
In this case, one finds the Maxwell line which one would have expected for a pure 
Landau-Devonshire model: 8 = 0. Choosing the Ginzburg-coefficient big enough, we 
end up with a hysteresis that does not depend on the discretization and that is rate 
independent. In this case, we even find quantitative agreement with the experiment 
(Figure 6b and 19: the arrows in Figure 19 indicate the size of the experimental loop 
at m = 0. Since stress(l, t) = F(t)/A0 , one has to divide the values for the load by 
A0 = 4.5 · 10-6 m2 ; furthermore, the y-axis is shown too far left in Figure 21. The 
length of the rod is 3.4 cm, in our simulation, we have l = 1 cm.) 
The hysteresis can be seen even more clearly plotting ux(l, t) over m(t) (Figure 22; 
here: Simulation 7). The polynom a(l, t), underlying the Landau-Ginzburg model, is 

5This is an example where the simulation basing on this model for the dynamical behaviour does 
not completely comply with the quasistatic behaviour; for another example we refer to [BU]. 
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shown in Figure 23 (simulation 5). The expected transitions according to this diagram 
agree with the corresponding SED. 
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Figure 22: strain at x - 1 
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Figure 23: a(l, t) over ux(l, t) 

The following simulations show the 
stress-strain relation inside the hysteresis 
loop. All parameters are the same as in 
simulation 6, except for the form of m(t). 
This can easily be seen in the diagrams. 
Simulation 10 (Figure 24) shows that the 
rod behaves elastically if one interrupts 
the cycle (here, it is shown in the last 
part of the cycle), pushes the rod a little 
bit back and continues then the cycle as 

Figure 24: Short interruption of the cycle before.6 This behaviour is also observed 
experimentally [MU]. In Figures 25 and 

26, we compare inner loops fou,:µd in the experiments by Glasauer [GL] and numerical 
simulated ones. Here, we have good agreement in the lower part of the loops and less 
good agreement in the upper part. The temperature is slightly different. 
Altogether, we sum up with the three following features: 

• The simulations, i.e. displacement, strain and temperature evolution show the ex-
perimentally observed phenomena: Phase transitions between variants of marten-
site or between austenite and one variant, respectively, changes of temperatures 
and latent heats, nucleation processes, moving and propagation of phase bound-
anes. 

6The velocity of the pushing and pulling does not change in one simulation. 
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Figure 25: Interior loops [GL) Figure 26: Simulation 13 

• We find that the coefficient of the term modelling the interfacial energy deter-
mines the size of the loop. There is a value for this Ginzburg-coefficient leading 
to quantitative agreement with the experiment. This corresponds with the ansatz 
of [FHM]: They introduce a coherency energy which depends on the number of 
interfaces. The coefficient of this term is proportional to the size of the hysteresis 
loop. Thus, the connection between the ansatz of [FHM] and a nonlocal one for 
the interfacial energy as it has been found out by Rogers [RO] is con:firme.d by 
our numerical investigation. On~ has to consider another derivation of the value 
for 8 than the one given by Falk [FA2]. 

• For the first time, we have numerical simulations of the inner structure of a hys-
teresis loop. Qualitatively, the simulations 
comply in parts with the experiments. We 
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z 550 

find loops having the form of "drops" which 
can also be found in ferromagnetism (see 
[MA]). On the other hand, we are not able 
to simulate interior loops which indicate the 
existence of the phase equilibrium line which 
is also part of the ansatz of [FHM] or [WIL], 
respectively. This line goes from the up-
per left corner to the lower right one of the 
outer loop. The stress-strain behaviour al-

....... 
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300 - Inter 

o.o 0.4 0.8 1.2 1.6 2.0 2.4 

d [m/kg] 

Figure 27: Interior loops [FHM] 

ways changes when coming to this line. The 
phase equilibrium line is observed in most of 
the experiments (see Figure 27). One possi-
ble explanation could be that these experi-
ments only refer to the pseudoelastic range 
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while our simulations concern the quasiplastic one. We are now investigating the pseu-
doelastic range. 
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