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Abstract

We develop a multi-factor stochastic volatility Libor model with displacement, where each individual for-
ward Libor is driven by its own square-root stochastic volatility process. The main advantage of this approach
is that, maturity-wise, each square-root process can be calibrated to the corresponding cap(let)vola-strike
panel at the market. However, since even after freezing the Libors in the drift of this model, the Libor dy-
namics are not affine, new affine approximations have to be developed in order to obtain Fourier based
(approximate) pricing procedures for caps and swaptions. As a result, we end up with a Libor modeling
package that allows for efficient calibration to a complete system of cap/swaption market quotes that per-
forms well even in crises times, where structural breaks in vola-strike-maturity panels are typically observed.

1 Introduction and summary

The framework of Libor interest rate modeling, initially developed by [18], [7], and [14] almost two decades ago,
is still considered to be the universal tool for evaluation of structured interest rate products. One of the main
reasons for this is the great flexibility of the Libor framework: It allows to include many sources of randomness
of different type, such as Brownian motions, Lévy processes, or even more general semimartingales (see e.g.
[15]). Subsequently, these random sources may be connected with different types of volatility structures, such
as stochastic volatility, local volatility, or deterministic volatilities. In spite of this flexibility, the design of a Libor
model that can be calibrated in a feasible way to a (in some sense) complete set of liquid market quotes (e.g.
caps and swaptions for different strikes and different maturities), remains a delicate problem however. In its early
version, the Libor model was usually driven by a set of Brownian motions and equipped with some deterministic
volatility structure. These Libor models, termed market models, where quite popular because they allow for
analytic cap(let) pricing and (approximate) analytic swaption pricing via Black 76 type formulas. However, a
main drawback of these Libor market models is that they cannot match implied volatility “smile/skew” behavior
observed in the cap and swap markets. Moreover, these smile/skew effects became ever more pronounced over
the years.

For incorporating smile/skew behavior into the Libor model several proposals have been made, for example,
the Constant Elasticity of Variance (CEV) based extension of the Libor market model by [1], and the displaced
diffusion Libor market model by [16]. The implied volatility patterns produced by these two approaches have
the problem that they are of monotonic nature, so only positive or negative skew effects can be imaged. Brigo
and Mercurio propose in [6] a local volatility model consistent with a mixture of lognormal transition densities
and some variations on this. One of the problems in this approach is the rather complicated volatility structure
necessary for Monte Carlo simulation of the model in some fixed (e.g. terminal) measure, and the limited flexibil-
ity for matching too pronounced smile/skew market data. One further line of research on smile/skew explaining
Libor models concentrates on Libor models driven by compound Poisson processes [11], or even infinite ac-
tivity Lévy processes [9]. Particularly, in [4] a specifically structured jump driven Libor model is developed that
allows for feasible sequential calibration to cap volatility-strike data for a whole system of maturities. Generally
speaking, however, Monte Carlo simulation of jump driven Libor models is rather troublesome and expensive
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due to an unavoidable complicated drift term. Recently, in [21] an improvement is established in this respect,
by constructing Lévy approximations to this Libor drift. In the work of [23] a Heston version of the Libor market
model is proposed. In the dynamics of this model, which is related to the models in [20] and [2], the volatility
of each forward Libor Li (spanning over the interval [Ti, Ti+1]) contains a common stochastic volatility factor√
v where v is a Cox-Ingersoll-Ross type square-root process, correlated with Libor driving Brownian motions.

Moreover, [23] shows that their model has strong potential to produce smiles and skews (in particular due to
the correlation of v), and they present Fourier based quasi analytic approximation methods for the pricing of
caps and swaptions. Therefore, in some sense the paper of [23] may be considered as a first important step
towards stochastic volatility Libor modeling. Nonetheless, what is missing in this article and in most of the works
mentioned above is the assessment of the capability of the respective models to be calibrated to a larger sys-
tem of market quotes, including the cap(let) volatility-strike (short capvola-strike) panels for a whole system of
maturities. In particular, it turned out that only one common volatility factor as in the model of [23] may not be
sufficient for matching a larger set of cap volatility-strike panels that vary significantly over different maturities.
The reason is clear: A single stochastic volatility factor determines a specific volatility-strike profile that may be
consistent with the market profile over one or some more maturities, but may not over a complete tenor structure
spanning twenty years for example. As a way out, [3] designed a multi-factor stochastic volatility model involv-
ing a Brownian motion W := (Wk)1≤k<n, where the dimension of W is equal to the number of Libors, and
each component is weighted with a (generally different) square-root type stochastic factor vk, and deterministic
loading factor βik, leading to a stochastic structure

dLi
Li

= ...dt+

n−1∑
k=i

βik
√
vkdWk, 1 ≤ i < n, (1.1)

for the forward Libor Li (under some particular measure). The technical advantage of this approach is that,
after standard freezing of the respective Libors Lj to Lj(0) in the drift of the dynamics of Li, a pure affine
Libor dynamics is produced, and as a consequence, caps and swaptions can be priced quasi-analytically by a
straightforward extension of the pricing methods in [23]. On the other hand, the model of [3] allows for much
greater flexibility with regard to calibration to a full system of capvola-strike-maturity data. Of course the latter
doesn’t come as a surprise since (1.1) is in fact a generalization of the model in [23] (that is retrieved by taking
vk ≡ v). Essentially, in [3] the volatility processes in (1.1) are calibrated sequentially to the capvola-strike data
in the following way. One calibrates the process vn−1 to the (last) vola-strike panel due to Ln−1. Next one
calibrates vn−2 to the vola-strike data involving Ln−2 with vn−1 already being identified, and one so works all
the way back. After carrying out many calibration tests with the model in [3] it turned out that the calibration
works well as long as there are no big structural movements in the capvola-strike patterns when going one step
down from Ti to Ti−1. Indeed, in the particular case when a larger number of volatility processes are already
identified, say v5, ..., v40 with n = 41 for an instance, then a single additional volatility process v4 may not be
able to match a panel at T4 with a sudden strongly deviating vola-strike profile. In fact, such breaks in the vola-
strike patterns where quite typical during the crisis. In this paper we present a new flexible multi-factor stochastic
volatility Libor model that resolves this problem and remains robust even in more critical financial times.

The central theme of the present paper is a generalization of the Wu-Zhang model in the following direction, i.e.
we study processes

dLi
Li

= ...dt+
√
viβ
>
i dW, 1 ≤ i < n, (1.2)

where by taking vi ≡ v the Wu-Zhang model is retrieved again. In contrast to the structure (1.1), the danger of
cumulative cementation of the model in a backward recursive calibration is abandoned. Moreover, the dimen-
sion of W is not strongly restricted anymore to the number of Libors, in order to render a recursive calibration
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as in (1.1). However, several technical issues have to be resolved. As a main point, even after standard Libor
freezing in the drift of the full stochastic differential equation (SDE) corresponding to (1.2), we do not have an
affine Libor model as in [23] and [3] anymore. That is, the Fourier based quasi-analytical approximation for caps
doesn’t carry over directly. The same complication shows up when one attempts to derive an approximate affine
swap market model from (1.2) in order to derive quasi-analytical (Fourier based) swaption approximations. As a
solution we will nevertheless construct affine Libor approximations to (1.2) and affine swap rate approximations
connected with (1.2), that allow for quasi-analytical cap and swaption pricing again. But, the price we have to pay
is that these approximations are typically (a bit) less accurate than the ones in the setting of [23] and [3]. Careful
tests reveal that the approximation procedures developed in this paper are accurate enough for our purposes
however. The bottom line and justification of our new approach is the following “philiosophical” point of view.

A modeling package that contains only moderately accurate procedures for calibrating to liquid market quotes
(e.g. accuracy ∼ 1%), but, which is able to achieve an adequate fitting error (e.g. ∼ 3% due to the 1% off
pricing methods) in an efficient way, is highly preferable in comparison to a modeling package that contains very
accurate pricing procedures for calibration (e.g.≤ 0.2% accurate), but, which is unable to achieve an adequate
fitting error (e.g. ∼ 10%,) despite of the accurate pricing formulas.

Indeed, the former package achieves implicitly a fitting quality with respect to the “true model” of about 4%,
while the latter package remains left at an unsatisfactory fit of ∼ 10.2%. Further, for completeness, we extend
the structure (1.2) with a standard Gaussian part and with displacement factors like in [16], and consider the
structure

dLi
Li + αi

= ...dt+
√
viβ
>
i dW + γ>i dŴ , 1 ≤ i < n, (1.3)

where now W and Ŵ are independent standard Brownian motions, γi are deterministic factor loadings and αi
are displacement constants for 1 ≤ i < n. From a technical point of view this extension goes through without
any difficulties, neither with regard to the approximate pricing formulas, nor with regard to the new calibration
procedure. From a practical point of view it enlarges the flexibility of the model, but in any particular case, the
user can follow her taste and may set γi ≡ 0, or αi ≡ 0, or both.

As a final introductory note we underline that the cap and swaption approximation procedures proposed in this
paper can be performed by (inverse) Fast Fourier Transformation (FFT), and are thus rather fast. However, as
an alternative, the recently developed closed form approximation for put/call options in a Heston model from
[5], may be straightforwardly adapted to closed form cap(let) and swaption pricing formulas in the context of
the (approximate) affine stochastic volatility Libor and swap rate model here presented. Although we consider a
detailed treatment here beyond scope, we anticipate that the present stochastic volatility Libor model equipped
with these formulas might be considered an alternative to so called SABR Libor models (cf. [19], [12] and the
references therein). While SABR based models gain popularity because of their closed form approximations for
vanilla options based on (small time) heat kernel expansions, they are also criticized somehow, for instance,
because of their typically non mean reverting stochastic volatilities.

2 Recap of Wiener driven Libor modeling

Let us fix a sequence of tenor dates 0 =: T0 < T1 < . . . < Tn, called a tenor structure. For each tenor date
we consider a zero bond processes Bi, i = 1, . . . , n, where each Bi lives on the interval [0, Ti] and ends
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with its face value Bi(Ti) = 1. A system of forward Libors on the given tenor structure is now defined by

Li(t) :=
1

δi

(
Bi(t)

Bi+1(t)
− 1

)
, 0 ≤ t ≤ Ti, 1 ≤ i < n, (2.1)

where the periods δi := Ti+1 − Ti, i = 1, . . . , n − 1, between two consecutive tenor dates are termed
day-count fractions. In fact, Li may be seen as the annualized effective rate due to a forward rate agreement for
the period [Ti, Ti+1] contracted at time t. According to this agreement the interest δiLi(Ti) on the notional 1
is to be settled or payed at Ti+1.

In this article we consider a framework where the Libor defining zero-bonds (Bi)i=1,...,n are adapted processes
that live on a filtered probability space (Ω, (Ft)0≤t≤T∞ , P ), where T∞ ≥ Tn is some finite time horizon and
the filtration (Ft) is generated by some d-dimensional standard Brownian motionW. Under some further mild
technical conditions (see [14] and [15] for details) there now exists for each i, 0 ≤ i < n, an Rd-valued
predictable volatility process Γi such that the Libor dynamics are given by

dLi
Li

= −
n−1∑
j=i+1

δjLj
1 + δjLj

Γ>i Γjdt+ Γ>i dW(n), 0 ≤ t ≤ Ti, 1 ≤ i < n, (2.2)

whereW(n) is an equivalent standard Brownian motion under the terminal numéraire measure Pn induced by
the terminal zero coupon bond Bn. That is, for all j, Bj/Bn are Pn-martingales. (In this paper we do not dwell
on issues concerning local versus true martingales.) For some general fixed i, 1 ≤ i < n we may consider
instead the numéraire measure Pi+1 induced by the bond Bj+1, and then for 1 ≤ j ≤ i we obtain from (2.2)
the dynamics

dLj
Lj

= Γ>j

− n−1∑
k=j+1

δkLk
1 + δkLk

Γkdt+ dW(n)


= −

i∑
k=j+1

δkLk
1 + δkLk

Γ>j Γkdt+ Γ>j

(
−

n−1∑
k=i+1

δkLk
1 + δkLk

Γkdt+ dW(n)

)

=: −
i∑

k=j+1

δkLk
1 + δkLk

Γ>j Γkdt+ Γ>j dW(i+1), 1 ≤ j ≤ i. (2.3)

Since due to (2.1) Li is a martingale under Pi+1, it automatically follows that W(i+1) in (2.3) is a standard
Brownian motion under the equivalent measure Pi+1. Finally we note that in the case where the Γj are de-
terministic we have the well documented Libor Market Model (LMM) (see for example [6] and [22] and the
references therein).
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3 A new expiry-wise stochastic volatility model with displacement

The general representation (2.2) for the Libor dynamics will now be structured towards a multi-factor stochastic
volatility model of type (1.3). Let us take

Γj =

 √vj β̃jγ̃j
0

 , W(n)=

 W (n)

Ŵ (n)

W
(n)

 , where

dvj = κj(θj − vj)dt+
√
vj

(
σ>j dŴ

(n) + σ>j dW
(n)
)
, vj(0) = θj , (3.1)

where W (n), Ŵ (n), W
(n)

are mutually independent standard Brownian motions with dimensions m, m̂, and,
m, respectively, with m + m̂ + m = d. Further, for 1 ≤ j < n, β̃j and γ̃j are loading factors (in Rm and
Rm̂ respectively) to be specified below, and vj are square-root volatility processes with parameters κj (mean
reversion speed), θj (mean reversion level), and σ and σ are deterministic “vol of vol” factor loadings (in Rm̂
and Rm respectively), where (for convenience)

|σj |2 + |σj |2 =: ε2j . (3.2)

We thus get

dLj
Lj

= −
n−1∑
k=j+1

δkLk
1 + δkLk

(
β̃>j β̃k

√
vjvk + γ̃>j γ̃k

)
dt (3.3)

+
√
vj β̃
>
j dW

(n) + γ̃>j dŴ
(n),

together with (3.1). We next set

γ̃j =
Lj + αj
Lj

γj , β̃j =
Lj + αj
Lj

βj , (3.4)

for deterministic loading factors βj and γj (in Rm and Rm̂ respectively), and displacement constants αj ,
1 ≤ j < n, and we obtain from (3.3),

dLj
Lj + αj

= −
n−1∑
k=j+1

δk(Lk + αk)

1 + δkLk

(
β>j βk

√
vjvk + γ>j γk

)
dt

+
√
vjβ
>
j dW

(n) + γ>j dŴ
(n), (3.5)

i.e. the new multi-factor stochastic volatility Libor model with displacement and stochastic volatilities driven by
(3.1). By applying Itô’s formula to the log-Libors, (3.5) becomes

d ln (Lj + αj) = −1

2
|γj |2 dt−

1

2
vj |βj |2 dt

−
n−1∑
k=j+1

δk(Lk + αk)

1 + δkLk

(
γ>j γk + β>j βk

√
vjvk

)
dt

+
√
vjβ
>
j dW

(n) + γ>j dŴ
(n). (3.6)

In Section (4) we propose a pragmatic approximation that allows for quasi-analytical caplet pricing in the context
of to (3.6).
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Instantaneous correlations

For the mutual instantaneous Libor correlations we have

CorLj ,Lj′ :=

dLj
Lj
· dLj′Lj′√

dLj
Lj
· dLjLj

√
dLj
Lj
· dLj′Lj′

=
γ̃>j γ̃j′ +

√
vjvj′ β̃

>
j β̃j′√

|γ̃j |2 + vj |β̃j |2
√
|γ̃j′ |2 + vj′ |β̃j′ |2

=
γ>j γj′ +

√
vjvj′β

>
j βj′√

|γj |2 + vj |βj |2
√
|γj′ |2 + vj′ |βj′ |2

,

which yields for γ ≡ 0, CorLj ,Lj′ =
β>
j βj′

|βj ||βj′ |
, and for β ≡ 0, CorLj ,Lj′ =

γ>j γj′

|γj ||γj′ |
as usual. For the instanta-

neous correlations between Libors and the stochastic volatilities we have

CorLj ,vj′ :=

dLj
Lj
· dvj′√

dLj
Lj
· dLjLj

√
dvj′ · dvj′

=

√
vjvj′ β̃

>
j σj′√

|γ̃j |2 + vj |β̃j |2
√
vj′(|σj′ |2 + |σj′ |2)

=

√
vjβ
>
j σj′√

|γj |2 + vj |βj |2εj′
. (3.7)

For γ ≡ 0 we thus obtain

CorLj ,vj′ =
β>j σj′

|βj |εj′
.

For the mutual instantaneous correlations between the stochastic volatilities we get

Corvj ,vj′ :=
dvj · dvj′√

dvj · dvj
√
dvj′ · dvj′

=
σ>j σj′ + σ>j σj′

εjεj′
.

3.1 Discussion of the Wu-Zhang model as a special case

Let us take as a special case γ ≡ 0, αj ≡ 0, κj ≡ κ, θj ≡ θ, and for some fixed unit vectors evol ∈ Rm,
evol ∈ Rm, σj ≡ ερevol, , σj ≡ ε

√
1− ρ2evol where ρ is a fixed correlation constant, −1 ≤ ρ ≤ 1. We

now are in the setting of Wu-Zhang [23], since all volatility processes coincide, i.e. vj′ ≡ v, and (3.7) becomes

CorLj ,vj′ = CorLj ,v = ρe>j evol, (3.8)

where βj ≡ |βj |ej with ej ∈ Rm. We note that (3.8) reflects a short coming of the Wu-Zhang model. The
instantaneous correlations between the Libor Lj and the common stochastic volatility factor may not be chosen

for each j as freely as somehow eqn (2.9) from [23] suggests, and we have
∣∣CorLj ,v

∣∣ ≤ ∣∣∣e>j evol∣∣∣ in particular!

From another point of view, for realistic uniform skew behavior one needs CorLj ,v < 0 for all j, so that e>j evol
has to have at least a fixed sign and may not become too small for all j. This in turn implies severe restrictions
on the mutual Libor correlation structure which is usually taken to be an input.

As an intermediate extension of the Wu-Zhang model above we may consider the case γ ≡ 0, αj ≡ 0, and

then for some unit vectors evol ∈ Rm, evol ∈ Rm, we take σj ≡ εjρjevol, , σj ≡ εj
√

1− ρ2jevol where

6



ρj are fixed correlation constants, −1 ≤ ρj ≤ 1, depending on j, and mean reverting speed and level may
depend on j also. We then have

CorLj ,vj = ρje
T
j evol,

hence for each particular j, any correlation dominated by
∣∣∣e>j evol∣∣∣ may be attained. Furthermore, as a main

feature of the multi-factor model (3.1)-(3.6), we may have full flexibility regarding the correlations (3.8), by the
structure given in Section 4.3.

Remark 1 If αj ≡ 0, a Libor market model is retrieved by taking βj ≡ 0, or by taking vj(0) = θj ≡ 1,

σj ≡ σj ≡ 0. A further reason for including the LMM term γ>j dŴ in the Libor noise might be to have some
extra freedom for calibrating to swaptions due to the fact that caplet prices only depend on |γj | .

4 Approximate caplet pricing and calibration

For quasi-analytical caplet pricing we will construct an (approximate) characteristic function of Lj under Pj+1.
Let us write (3.5) as

dLj
Lj + αj

=
√
vjβ
>
j

dW (n) −
n−1∑
k=j+1

δk(Lk + αk)

1 + δkLk
βk
√
vkdt


+ γ>j

dŴ (n) −
n−1∑
k=j+1

δk(Lk + αk)

1 + δkLk
γkdt


=:
√
vjβ
>
j dW

(j+1) + γ>j dŴ
(j+1).

Since Lj is a martingale under Pj+1, we necessarily have that dW (j+1) and dŴ (j+1) are standard Brownian

motions under Pj+1. Since the covariation processes 〈W (n)
, Bj〉 ≡ 0 for all j, it follows that dW

(j+1)
=

dW
(n)

for all j (cf. [23] and [3]). The dynamics of the stochastic volatility process vj under Pj+1 can thus be
written as

dvj = κj(θj − vj)dt+
√
vjσ
>
j dW

(j+1)

+
√
vjσ
>
j

dW (j+1) +

n−1∑
k=j+1

δk(Lk + αk)

1 + δkLk
βk
√
vkdt


=

κj(θj − vj) +

n−1∑
k=j+1

δk(Lk + αk)

1 + δkLk
σ>j βk

√
vjvk


︸ ︷︷ ︸

(∗)

dt

+
√
vj

(
σ>j dW

(j+1) + σ>j dW
(j+1)

)
.
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Thus, in order to obtain approximate affine dynamics for vj it is enough to approximate (∗) with an expression
that is affine in vj . Let us therefore consider the pragmatic approximation

√
vjvk =

√
vj
vkEvj
Evj

≈

√
vj
vjEvk
Evj

≈ vj

√
θk
θj

(4.1)

(note that E vk = θk due to the initial condition in (3.1)). In the Wu-Zhang setting we have vj ≡ v and thus,
strict equality in (4.1) appears. Combining (4.1) and usual freezing of Libors in (∗) then leads to the following
approximate volatility dynamics,

dvj ≈ κjθjdt+

−κj +
n−1∑
k=j+1

√
θk
θj

[
δk(Lk + αk)

1 + δkLk

]
(0)σ>j βk

 vjdt

+
√
vj

(
σ>j dW

(j+1) + σ>j dW
(j+1)

)
.

With

κ
(j+1)
j = κj −

n−1∑
k=j+1

√
θk
θj

[
δk(Lk + αk)

1 + δkLk

]
(0)σ>j βk

θ
(j+1)
j =

κjθj

κ
(j+1)
j

(4.2)

we thus obtain from (3.6) the approximative system

d ln (Lj + αj) = −1

2
|γj |2 dt−

1

2
vj |βj |2 dt+

√
vjβ
>
j dW

(j+1) + γ>j dŴ
(j+1), (4.3)

dvj = κ
(j+1)
j

(
θ
(j+1)
j − vj

)
dt+

√
vj

(
σ>j dW

(j+1) + σ>j dW
(j+1)

)
, vj(0) = θj .

Now the main point is that, if moreover βj , σj , and σj are constant in time (piece-wise constant would be
enough in fact), (4.3) is an affine structure that allows for Fourier based (approximate) caplet pricing.

4.1 Caplet pricing via characteristic function

In general the price of a Tj -caplet with strike K is given by

Cj(K) = δjBj+1(0)Ej+1(Lj(Tj)−K)+

= Bj+1(0)δjEj+1(Lj(Tj) + αj − (K + αj))
+

= Bj+1(0)δjEj+1((Lj(0) + αj) e
ln
Lj(Tj)+αj
Lj(0)+αj − (K + αj))

+

=: Bj+1(0)δjEj+1(L
disp
j (0)e

ln
L
disp
j

(Tj)

L
disp
j

(0) −Kdisp
j )+.

We may thus apply the Carr-Madan Fourier pricing method (outlined in the next subsection) for caplets using

ϕdispj+1 , L̂
disp
j (0), Kdisp

j ,
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where the characteristic function

ϕdispj+1(z ; v) := Ej+1

eiz ln L
disp
j

(Tj)

L
disp
j

(0)

∣∣∣∣∣∣∣ vj(0) = v

 (4.4)

may be obtained as follows. Let us abbreviate for fixed j, X0,x,v(t) := lnLdispj (t) = ln (Lj(t) + αj) with

X0,x,v(0) = lnLdispj (0) = ln (Lj(0) + αj) =: x, and V 0,x,v(t) := vj(t) with V 0,x,v(0) = vj(0) =: v.
Then by (4.3) (using (3.2)), the generator of the vector process (X,V ) is given by

A := Ax,v :=

(
−1

2
|γj |2 −

1

2
v |βj |2

)
∂

∂x
+ κ

(j+1)
j

(
θ
(j+1)
j − v

) ∂

∂v

+
1

2

(
|γj |2 + v |βj |2

) ∂2

∂x2
+ vσ>j βj

∂2

∂x∂v
+

1

2
ε2jv

∂2

∂v2
.

Let p̂ (z, z′ ; t, x, v) satisfy the Cauchy initial value problem

∂p̂

∂t
= Ap̂, p̂(z, z′ ; 0, x, v) = ei(zx+z

′v). (4.5)

Then
p̂
(
z, z′ ; t, x, v

)
= Eei(zX

0,x,v(t)+z′V 0,x,v(t)).

We are only interested in the solution for z′ = 0. Let us therefore consider the ansatz

p̂ (z ; t, x, v) = exp (A(z; t) +B0(z; t)x+B(z; t)v)

with
A(z; 0) = 0, B0(z; 0) = iz, B(z; 0) = 0. (4.6)

Substitution in (4.5) yields,(
∂A

∂t
+
∂B0

∂t
x+

∂B

∂t
v

)
=

(
−1

2
|γj |2 −

1

2
v |βj |2

)
B0

+ κ
(j+1)
j

(
θ
(j+1)
j − v

)
B +

1

2

(
|γj |2 + v |βj |2

)
B2

0

+ vσ>j βjB0B +
1

2
ε2jvB

2,

and we get the Riccati system

∂A

∂t
= −1

2
|γj |2B0 + κ

(j+1)
j θ

(j+1)
j B +

1

2
|γj |2B2

0

∂B0

∂t
= 0

∂B

∂t
= −1

2
|βj |2B0 − κ(j+1)

j B +
1

2
|βj |2B2

0 + σ>j βjB0B +
1

2
ε2jB

2.

Taking into account (4.6) we get

∂A

∂t
= −1

2
|γj |2

(
iz + z2

)
+ κ

(j+1)
j θ

(j+1)
j B

∂B

∂t
= −1

2
|βj |2

(
iz + z2

)
−
(
κ
(j+1)
j − izσ>j βj

)
B +

1

2
ε2jB

2.
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It is well known (see [13]) that this system can be explicitly solved, but depending on the chosen branch of the
complex logarithm one may have different representations for its solution. We follow Lord and Kahl’s represen-
tation due to the principal branch, see [17]1, and obtain

B(z; t) =
aj + dj
ε2j

1− edjt

1− gjedjt

and

A(z; t) = −1

2

(
iz + z2

) ∫ t

0
|γj |2 ds+

κ
(j+1)
j θ

(j+1)
j

ε2j

{
(aj − dj) t− 2 ln

[
e−djt − gj

1− gj

]}
with

aj = κ
(j+1)
j − izσ>j βj

dj =
√
a2j + |βj |2 (iz + z2) ε2j

gj =
aj + dj
aj − dj

.

Resuming, by taking t = Tj we get for (4.4),

ϕdispj+1(z ; v) = e−iz lnL
disp
j (0)p̂

(
z ;Tj , lnL

disp
j (0), v

)
= exp

(
Ã(z;Tj) +B(z;Tj)v

)
exp

(
−1

2

(
iz + z2

) ∫ Tj

0
|γj |2 ds

)
(4.7)

with

B(z;Tj) =
aj + dj
ε2j

1− edjTj
1− gjedjTj

, and

Ã(z; t) :=
κ
(j+1)
j θ

(j+1)
j

ε2j

{
(aj − dj)Tj − 2 ln

[
e−djTj − gj

1− gj

]}
.

Carr & Madan inversion formula

Following Carr and Madan [8], the Tj -caplet price is now obtained by the inversion formula,

Cj(K) = δjBj+1(0)(Ldispj (0)−Kdisp
j )++

δjBj+1(0)Ldispj (0)

2π

∫ ∞
−∞

1− ϕdispj+1(z − i; θj)

z(z − i)
e
−iz ln

K
disp
j

L
disp
j

(0)dz, (4.8)

1In a personal communication, Roger Lord confirmed a typo in the published version and so referred to the preprint version.
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where ϕdispj+1 is given by (4.7) and we recall that vj(0) = θj . The integrand in (4.8) decays with order z−2

if |z| → ∞, which is rather slow from a numerical point of view. It is therefore advantageous to modify the

inversion formula in the following way. Let ϕB,dispj+1 be the characteristic function (4.4) due to the Black model,

Ldispj (Tj) = Ldispj (0)e−
1
2(σB)

2
Tj+σ

B
√
Tjς , ς ∈ N(0, 1)

in the measure Pj+1, with a certain suitably chosen volatility σBj . We then have (cf. Black’s 76 formula)

Ej+1

(
Ldispj (Tj)−Kdisp

)+
= B(Ldispj (0), Tj , σ

B,Kdisp),

where

B(L, T, σ,K) := LN (d+)−KN (d−) , with

d± :=
ln L

K ±
1
2σ

2T

σ
√
T

, and

ϕB,dispj+1 (z ; v) = ϕB,dispj+1 (z) = Ej+1e
iz
(
− 1

2(σB)
2
Tj+σ

B
√
Tjς
)

= e−
1
2(σB)

2
Tj(z2+iz).

Now applying Carr and Madan’s formula to the Black model yields

CBj (K) := δjBj+1(0)B(Ldispj (0), Tj , σ
B,Kdisp

j ) = δjBj+1(0)(Ldispj (0)−Kdisp
j )+ (4.9)

+
δjBj+1(0)Ldispj (0)

2π

∫ ∞
−∞

1− ϕB,dispj+1 (z − i)

z(z − i)
e
−iz ln

K
disp
j

L
disp
j

(0)dz,

and by subtracting ( 4.9 ) from (4.8) we get

Cj(K) = CBj (K)+ (4.10)

δjBj+1(0)Ldispj (0)

2π

∫ ∞
−∞

ϕB,dispj+1 (z − i; v)− ϕdispj+1(z − i; θj)

z(z − i)
e
−iz ln

K
disp
j

L
disp
j

(0)dz.

The latter inversion formula is usually much more efficient since typically the integrand decays much faster than
in (4.8).

4.2 Putting the caplet approximation to the test

We now test the accuracy of the Fourier based caplet pricing method (4.10) via the approximative characteristic
function (4.7). In this respect we compare, for each particular j, the simulation price of the “true” model (3.5)
with the simulation price due to the model obtained by replacing each volatility dynamics vk, k 6= j, with the
process vj , yielding a Wu-Zhang type approximation depending on j in fact. In turn, the Fourier based Tj -caplet
price approximation is known to be a very accurate approximation to the j-linked Wu-Zhang model, as already
documented in [23].

The initial Libor rates are stripped from a given spot interest rate curve (see Table 4.1). In the test model we
drop the Gaussian part, i.e. γj ≡ 0, and also assume that no displacement is in force, i.e. α ≡ 0. We choose
δj = Tj+1 − Tj ≡ 1.0 and we put (3.1) and (3.5) according to Section 4.3, where

βj = 0.15ej , such that rij = e>i ej = e−0.073|Ti−Tj |, (4.11)
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and the other parameters are given in Table 4.1. The orthonormal vectors ej are obtained by a Cholesky de-
composition of the correlation matrix (rij). The parameters for the stochastic volatility processes are taken to
be representative for a typical calibration. In particular they are chosen in such a way that the Feller condition
2κθ > σ2 is violated. The mean reversion levels are uniformly set to θj ≡ 1. We compare caplet prices due
to the “true” model and the approximative one, by Monte Carlo simulation based on 30, 000 simulated paths
(Table 4.2).

j ρj κj εj Bj(0) Lj(0)

1 -0.70 4.00000000 3.00000000 0.971717 0.0332468
2 -0.70 3.95918367 2.97959184 0.94045 0.0257067
3 -0.70 3.91836735 2.95918367 0.91688 0.0195338
4 -0.70 3.87755102 2.93877551 0.899313 0.0235296
5 -0.70 3.83673469 2.91836735 0.878639 0.0278511
6 -0.70 3.79591837 2.89795918 0.854831 0.0258653
7 -0.70 3.75510204 2.87755102 0.833278 0.02359
8 -0.70 3.71428571 2.85714286 0.814074 0.0237439
9 -0.70 3.67346939 2.83673469 0.795193 0.0240497

10 -0.70 3.63265306 2.81632653 0.776518 0.023694
11 -0.70 3.59183673 2.79591837 0.758545 0.0234799
12 -0.70 3.55102041 2.77551020 0.741143 0.0236513
13 -0.70 3.51020408 2.75510204 0.724019 0.0238636
14 -0.70 3.46938776 2.73469388 0.707144 0.0240064
15 -0.70 3.42857143 2.71428571 0.690566 0.0241881
16 -0.70 3.38775510 2.69387755 0.674257 0.0244311
17 -0.70 3.34693878 2.67346939 0.658177 0.0246647
18 -0.70 3.30612245 2.65306122 0.642334 0.024855
19 -0.70 3.26530612 2.63265306 0.626756 0.0249485

Table 4.1: Parameters of the Libor model, present values and initial Libor rates, terminal bond B20(0) =
0.6115.

The numerical results show that (4.3) approximates very accurately the true model dynamics (3.1) and (3.5).
Indeed, the absolute price deviations are of magnitudes within basis points, with a well behaved relative error
for ITM (in-the-money) and ATM (at-the-money) contracts. The relative errors become somewhat larger for OTM
contracts, but OTM (out-of-the-money) caplet prices are typically very low (close to worthlessness) so that
relative errors stemming from approximation (4.1), (4.3) are intrinsically unstable (for any “good” approximation
in fact).

4.3 Further structuring and calibration

As part of the model, we choose a fixed LMM part γj of the Libor structure. This part may be obtained from an
LMM calibration, eventually weighted with some factor for instance or, if enough flexibility is left for our purposes,
we may set γj ≡ 0. The loadings βj are also assumed to be chosen in advance. We further take m = 1 in

(3.1), and for ρj , −1 ≤ ρj ≤ 1, we take σj =: εjρjej , where βj =: |βj |ej , and so σj =:
√

1− ρ2jεj . Note

that in principle we have no restrictions on ρj conferred to the Wu-Zhang case (see Section 3.1). Then (3.7)
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Tj Strike Price (SE) Approx. price (SE) Abs. error Rel. error

0.000 0.0245 (9.28e-05) 0.0244 (9.00e-05) 1.71e-04 0.0069
0.005 0.0201 (8.96e-05) 0.0200 (8.68e-05) 1.66e-04 0.0082
0.010 0.0158 (8.62e-05) 0.0156 (8.34e-05) 1.64e-04 0.0104

5.0 0.015 0.0115 (8.12e-05) 0.0113 (7.85e-05) 1.75e-04 0.0151
0.020 0.0076 (7.25e-05) 0.0075 (7.00e-05) 1.97e-04 0.0255
0.025 0.0045 (5.96e-05) 0.0043 (5.72e-05) 2.03e-04 0.0445
0.030 0.0023 (4.45e-05) 0.0022 (4.20e-05) 1.74e-04 0.0729

0.000 0.0179 (9.91e-05) 0.0177 (9.45e-05) 2.50e-04 0.0139
0.005 0.0141 (9.61e-05) 0.0139 (9.15e-05) 2.45e-04 0.0173
0.010 0.0105 (9.16e-05) 0.0102 (8.72e-05) 2.56e-04 0.0243

11.0 0.015 0.0073 (8.36e-05) 0.0070 (7.94e-05) 2.74e-04 0.0375
0.020 0.0047 (7.24e-05) 0.0045 (6.82e-05) 2.73e-04 0.0571
0.025 0.0029 (5.97e-05) 0.0027 (5.56e-05) 2.45e-04 0.0823
0.030 0.0018 (4.85e-05) 0.0016 (4.44e-05) 1.99e-04 0.109

0.000 0.0168 (1.06e-04) 0.0165 (1.00e-04) 2.81e-04 0.0166
0.005 0.0134 (1.04e-04) 0.0131 (9.86e-05) 2.79e-04 0.0208
0.010 0.0101 (1.00e-04) 0.0098 (9.48e-05) 2.95e-04 0.0290

15.0 0.015 0.0074 (9.29e-05) 0.0070 (8.76e-05) 3.14e-04 0.0423
0.020 0.0052 (8.31e-05) 0.0049 (7.78e-05) 3.14e-04 0.0602
0.025 0.0035 (7.22e-05) 0.0033 (6.69e-05) 2.92e-04 0.0813
0.030 0.0024 (6.14e-05) 0.0021 (5.62e-05) 2.53e-04 0.1043

0.000 0.0158 (1.03e-04) 0.0155 (9.81e-05) 2.74e-04 0.0172
0.005 0.0127 (1.03e-04) 0.0124 (9.74e-05) 2.77e-04 0.0217
0.010 0.0098 (1.00e-04) 0.0095 (9.46e-05) 2.98e-04 0.0302

19.0 0.015 0.0074 (9.43e-05) 0.0071 (8.88e-05) 3.19e-04 0.0430
0.020 0.0055 (8.62e-05) 0.0051 (8.08e-05) 3.25e-04 0.0509
0.025 0.0040 (7.72e-05) 0.0037 (7.17e-05) 3.12e-04 0.0773
0.030 0.0029 (6.81e-05) 0.0026 (6.26e-05) 2.84e-04 0.0963

Table 4.2: Simulation results for caplets.

becomes
CorLj ,vj′ = ρj′e

>
j ej′ = ρj′rjj′

with rjj′ := e>j ej′ , and in particular we have CorLj ,vj = ρj . For the mutual correlations between the volatility
processes we so have

Corvj ,vj′ = ρjρj′rjj′ +
√

1− ρ2j
√

1− ρ2j′ . (4.12)

In any case the scalars κj , θj , ρj , εj , and the loadings have to be time independent, in order to invoke standard
square-root volatility processes. In principle piecewise constant t 7→ βj(t) will allow for Fourier based caplet
pricing later on, but for simplicity we assume henceforth that the βj are also time independent.

Remark 2 In practice it turns out that the ρj are negative overall in order to produce a skew. Let us assume
for simplicity that we could fit the data with a uniform (negative or positive) ρ. Then (4.12) implies Corvj ,vj′ =
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1 − ρ2(1 − rjj′) ≥ 1 − ρ2, assuming that mutual Libor correlations rjj′ are nonnegative. This means that
mutual correlations between volatility processes are typically high (≥ 0.5 for ρ = 0.7), and even close to 1
when j′ is close to j.

4.4 Calibration to caplet volatility-strike-maturity

We will now illustrate a typical calibration test of the stochastic volatility Libor model in its terminal measure to
market cap-strike data. The test is carried out for EurIBOR market data from September 20, 2010, based on a
twenty year semi-annual tenor structure. For simplicity, the displacements and the Gaussian part where taken
to be zero, i.e. αj ≡ 0, γi ≡ 0, and as further input parameters we took θi ≡ 1, and ei from a Cholesky
decomposition according to e>i ej = rij = e−0.118|Ti−Tj |. For each maturity Tj , the parameters

|βj | , κj , εj , ρj ,

where next calibrated to the caplet price-strike panel corresponding to Tj , obtained from the market data. This
calibration involves a minimum search of a standard averaged relative error functional based on the FFT pricing
formula (4.8) due to the characteristic function (4.7). Each trial κj (which is restricted to κj > 0) induces

a κ
(j+1)
j and θ

(j+1)
j via (4.2) (recall that θi ≡ 1) which, together with ρj , are subsequently plugged into

(4.7). The implied volatility patterns due to the calibration as well as the calibrated parameters are depicted in
Figure 4.1. Concluding we may say that we obtained a satisfactory model fit with robustly behaving parameters
when moving from one maturity to the other. Optically the fits for small strikes, hence deep ITM caplets may look
a little bit off overall. However, this is only appearance because our algorithm calibrates to caplet prices, while
implied volatilities are badly conditioned for deep ITM strikes.

5 Swap rate dynamics and approximate swaption pricing

5.1 Swap contracts and dynamics under swap measures

An interest rate swap is a contract to exchange a series of floating interest payments in return for a series
of fixed rate payments. Consider a series of payment dates between Tp+1 and Tq, q > p. At each time
Tj+1, j = p, . . . , q − 1, the fixed leg of a (standard) swap pays δjK, whereas in return the floating leg pays
δjLj(Tj) with Lj(Tj) being the spot Libor rate. Consequently, the time t−value of the interest rate swap (with
t ≤ Tp) is

q−1∑
j=p

δjBj+1(t)(Lj(t)−K).

The swap rate Sp,q(t) is defined to be the value of K for which the present value of the contract is zero. We
thus have

Sp,q(t) =

∑q−1
j=p δjBj+1(t)Lj(t)∑q−1

j=p δjBj+1(t)
=

Bp(t)−Bq(t)∑q−1
j=p δjBj+1(t)

. (5.1)

So Sp,q is a martingale under the probability measure Pp,q , induced by the annuity numéraire

Bp,q(t) :=

q−1∑
j=p

δjBj+1(t).
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Figure 4.1: Implied caplet volatilities due to market data vs. calibrated model
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From (3.5) it follows that
dSp,q(t) = Sp,q(t)Λ

>
p,q(t)dWp,q(t), (5.2)

whereW(p,q) := (W p,q, Ŵ p,q) is standard Brownian motion under Pp,q, and where

Λp,q =

q−1∑
j=p

δj (Lj + αj)

1 + δjLj

q−1∑
l=j

wp,ql +
Bq

Bp −Bq

[ √vjβj
γj

]
, wp,ql :=

δlBl+1

Bp,q
. (5.3)

The derivation hereof is given in Appendix 6. We further have (see Appendix 6),

dWp,q = dW(n) − dt
q−1∑
l=p

wp,ql

n−1∑
k=l+1

δk (Lk + αk)

1 + δkLk

[ √
vkβk

γk

]
. (5.4)

By (5.2) we thus get

d lnSp,q = −1

2

1

S2
p,q

d〈Sp,q〉+
dSp,q
Sp,q

(5.5)

= −1

2
|Λp,q|2 dt+ Λ>p,qdWp,q,

where by (5.3) we may write

Λp,q =

q−1∑
j=p

[ √
vjβj

γj

]
Lj + αj
Sp,q

ξp,qj (5.6)

with

ξp,qj :=
δj

1 + δjLj

q−1∑
l=j

wp,ql
Bp −Bq
Bp,q

+
Bq
Bp,q

 .

(Cf. [22], (1.35), and (1.38) so we have that ξp,qj (0) ≈ wp,ql (0) with equality when the yield curve is flat; hence
the ξp,qj are approximate weights also.)

5.2 Approximate affine swap rate dynamics

In order to approximate the swap rate process with a pure square-root volatility process we introduce the process

dvp,q = κp,q(θp,q − vp,q)dt+
√
vp,q

(
σ>p,qdW

(n) + σ>p,qdW
(n)
)
, vp,q(0) = θp,q (5.7)

with

θp,q :=

q−1∑
l=p

wp,ql (0)θl

κp,q :=

q−1∑
l=p

wp,ql (0)κl

σp,q :=

q−1∑
l=p

wp,ql (0)σl

σp,q :=

q−1∑
l=p

wp,ql (0)σl. (5.8)
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By replacing in (5.6) all volatility processes vj with the, in a sense, averaged process vp,q, and freezing Libors
we arrive at the approximation

Λp,q ≈
q−1∑
j=p

q−1∑
j=p

[ √
vp,qβj

γj

] [
Lj + αj
Sp,q

ξp,qj

]
(0)

=

[ √
vp,qβp,q

γp,q

]
, where

βp,q :=

q−1∑
j=p

βj

[
Lj + αj
Sp,q

ξp,qj

]
(0) and

γp,q :=

q−1∑
j=p

γj

[
Lj + αj
Sp,q

ξp,qj

]
(0)

(note that
∑q−1

j=p ξ
p,q
j (Lj + αj) /Sp,q ≈ 1), hence yielding affine approximative swap rate dynamics

d lnSp,q = −1

2
vp,q |βpq|2 dt−

1

2
|γp,q|2 dt+

√
vp,qβ>p,qdW

p,q + γ>p,qdŴ
p,q. (5.9)

For the (approximate) dynamics of vp,q under the annuity Brownian motions we replace in (5.4) the processes
vj by their average vp,q, and freeze the Libors as usual. From (5.7) we then obtain (as in Section 4, it follows

again that W
(n)

= W
p,q

),

dvp,q ≈ κp,q(θp,q − vp,q)dt+
√
vp,qσ>p,qdW

(n)

+
√
vp,qσ>p,q

dW p,q +
√
vp,qdt

q−1∑
l=p

n−1∑
k=l+1

[
wp,ql

δk (Lk + αk)

1 + δkLk

]
(0)βk

 .

By setting

κ̃p,q := κp,q −
q−1∑
l=p

[
wp,ql

n−1∑
k=l+1

δk (Lk + αk)

1 + δkLk

]
(0)σ>p,qβk

θ̃p,q =
κp,qθp,q

κ̃p,q
,

we thus have (in approximation)

dvp,q = κ̃p,q(θ̃p,q − vp,q)dt+
√
vp,qσ>p,qdW

p,q +
√
vp,qσ>p,qdW

p,q
. (5.10)

5.3 Fourier based swaption pricing

A (payer) swaption over the period [Tp, Tq] is the option to enter at Tp into a swap over the period [Tp, Tq] with
strike K. It follows straightforwardly that the value at time t = 0 is given by

Swpnp,q(K) = Bp,q(0)Ep,q
[
(Sp,q(Tp)−K)+

]
. (5.11)
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Thus, after determining the characteristic function for ln [Sp,q(Tp)/Sp,q(0)] we may price the option by the
Carr-Madan Fourier inversion method, just like we did for caplets in Section 4.1. Recalling the analysis from
Section 4.1 it follows immediately that this characteristic function is given by

ϕp,q(z ; v) := Ep,q

[
e
iz ln

Sp,q(Tp)

Sp,q(0)

∣∣∣∣ vp,q(0) = v

]
(5.12)

exp (Ap,q(z;Tp) +Bp,q(z;Tp)v) exp

(
−1

2

(
iz + z2

) ∫ Tp

0
|γp,q|2 ds

)
,

where

Bp,q(z;Tp) =
ap,q + dp,q

ε2p,q

1− edp,qTp
1− gp,qedp,qTp

and

Ap,q(z;T ) =
κ̃p,q θ̃p,q

|σp,q|2 + |σp,q|2

{
(ap,q − dp,q)Tp − 2 ln

[
e−dp,qTp − gp,q

1− gp,q

]}
with

ap,q = κ̃p,q − izσ>p,qβp.q

dp,q =

√
a2p,q + |βp,q|2 (iz + z2)

(
|σp,q|2 + |σp,q|2

)
gp,q =

ap,q + dp,q
ap,q − dp,q

.

Based on (5.12) the (approximate) price of a swaption with maturity Tp and swaption leg [Tp, Tq] is given by

Swpnp,q(K) = Bp,q(0)Ep,q
[
(Sp,q(Tp)−K)+

]
≈ SwpnBp,q(K)+ (5.13)

Bp,q(0)Sp,q(0)

2π

∫ ∞
−∞

ϕBp,q(z − i;Tp, θp,q)− ϕp,q(z − i;Tp, θp,q)

z(z − i)
e
−iz ln K

Sp,q(0)dz

In (5.13), ϕBp,q is the characteristic function of a corresponding Black model,

Sp,q(Tp) = Sp,q(0)e−
1
2(σBp,q)

2
Tp+σBp,q

√
Tpς , ς ∈ N(0, 1),

where σBp,q is a suitably chosen volatility, and

SwpnBp,q(K) = Bp,q(0)Ep,q (Sp,q(Tp)−K)+ = Bp,q(0)B(Sp,q(0), Tp, σ
B
p,q,K),

is given by Black’s formula (cf. (4.10)).
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5.4 Putting the swaption approximation to the test

In the same spirit as we have tested the caplet price approximation in Section 4.2 we now test the above
Fourier based swaption pricing method. For each pair (p, q), 1 ≤ p < q ≤ n (q 6= p + 1), we replace all
volatility processes vj , p ≤ j < q, with vp,q given by (5.7), (5.8) to obtain in fact a Wu-Zhang related swaption
approximation model linked to this pair (p, q). We then compare the simulated (p, q)-swaption price due to the
“true” model (3.5) and the model with common stochastic volatility process (5.7). In turn, the latter price can be
accurately approximated by (5.13) as shown in [24]. We base the numerical experiments on the same data set
as in Section 4.2.

In detail, this means that for putting up the “true” and the approximate Libor model, the initial Libors are stripped
from a given spot rate curve and their values are given in Table 4.1, the Gaussian γ-part is deactivated by putting
γj ≡ 0 and no displacement is in force by choosing αj ≡ 0. Moreover, the parametrization of the correlation
structure from Section 4.3 is given by

rij = exp
(
− 0.0553|Ti − Tj |

)
= e>i ej , βj = 0.15ej ,

with the orthonormal vectors ej resulting from a Cholesky decomposition of (rij) and δj = Tj+1 − Tj ≡ 1.0
and θj ≡ 1 remain valid. All other simulation parameters, in particular the ρj ’s, κj ’s and εj ’s can be found in
Table 4.1 and we retain the diffusion coefficients

σj = ρjεjej , σj =
√

1− ρ2jεj .

To gear towards the approximate Libor model, we perform the calculation of the weighted volatility parameters
κp,q , θp,q , σp,q and σ̄p,q according to (5.8), where the frozen weights wp,ql (0) are given in (5.3), so that the
averaged approximate volatility process vp,q from (5.7) can be simulated. This averaged stochastic volatility
is then reinserted into the Libor dynamics (3.3), i.e. vp,q virtually replaces each expiry-wise volatility vj , j =
p, . . . , q − 1. The simulations are carried out using 30, 000 Monte Carlo paths.

We calculate “true” and approximate swaption prices for the payer swaption depicted in (5.11) for various strike
levels and swap legs [Tp, Tq]. The results of our numerical experiments are depicted in Table 5.1.

The simulation results show that for swaption pricing, the approximate Libor model under one weighted stochas-
tic volatility vp,q gives a surprisingly good fit to the true model dynamics (3.3), (3.1). Depending on the swap
legs, absolute price deviations are in the range of basis points (for swaption maturing in two and four years) and
in the range of ten basis points (for maturity ten years). Recalling that the approximation is somewhat strong as
each expiry-wise volatility process vj , j = p, . . . , q− 1 is replaced by one weighted volatility process vp,q , the
numerical results reveal however that we get reasonably well behaved approximations to the “true” model.

6 Appendix

The derivation of the swap rate volatility (5.3) is essentially given in [22]. But in order to match to the present
notation and to make reading more convenient, we now give a short recap. Let, exclusively in this section,
σj denote the volatility of the bond Bj , let µj be the drift of Bj , and λ be the market price of risk process

with respect to the driving Brownian motionW =(W, Ŵ ,W ). That is, in the objective measure the zero bond
dynamics are of the form

dBj
Bj

= µjdt+ σ>j dW with µj = σ>j λ,
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[Tp, Tq] Strike Price (SE) Approx. price (SE) Abs. error Rel. error

0.000 0.1640 (2.1e-04) 0.1637 (2.1e-04) 0.00032 0.002
0.005 0.1302 (2.0e-04) 0.1299 (2.0e-04) 0.00032 0.002
0.010 0.0964 (1.9e-04) 0.0961 (1.9e-04) 0.00031 0.003

[2, 10] 0.015 0.0628 (1.8e-04) 0.0625 (1.8e-04) 0.00033 0.005
0.020 0.0317 (1.5e-04) 0.0313 (1.5e-04) 0.00037 0.011
0.025 0.0094 (9.0e-05) 0.0092 (9.0e-04) 0.00024 0.026
0.030 0.0011 (3.0e-05) 0.0010 (2.9e-05) 0.00003 0.030

0.000 0.1228 (2.3e-04) 0.1223 (2.3e-04) 0.00057 0.004
0.005 0.0981 (2.2e-04) 0.0975 (2.2e-04) 0.00055 0.005
0.010 0.0734 (2.1e-04) 0.0728 (2.1e-04) 0.00055 0.007

[4, 10] 0.015 0.0493 (2.0e-04) 0.0488 (1.9e-04) 0.00057 0.011
0.020 0.0281 (1.6e-04) 0.0275 (1.6e-04) 0.00060 0.021
0.025 0.0127 (1.2e-04) 0.0122 (1.1e-04) 0.00049 0.038
0.030 0.0042 (7.1e-05) 0.0040 (6.9e-05) 0.00026 0.060

0.000 0.2877 (4.8e-04) 0.2866 (4.8e-04) 0.00110 0.003
0.005 0.2288 (4.6e-04) 0.2277 (4.6e-04) 0.00107 0.004
0.010 0.1699 (4.5e-04) 0.1689 (4.4e-04) 0.00104 0.006

[4, 20] 0.015 0.1122 (4.2e-04) 0.1112 (4.2e-04) 0.00102 0.009
0.020 0.0609 (3.5e-04) 0.0600 (3.5e-04) 0.00091 0.015
0.025 0.0246 (2.4e-04) 0.0241 (2.4e-04) 0.00051 0.020
0.030 0.0068 (1.2e-04) 0.0067 (1.2e-04) 0.00011 0.016

0.000 0.1653 (4.5e-04) 0.1638 (4.4e-04) 0.00149 0.009
0.005 0.1311 (4.4e-04) 0.1297 (4.3e-04) 0.00146 0.011
0.010 0.0976 (4.2e-04) 0.0961 (4.1e-04) 0.00146 0.015

[10, 20] 0.015 0.0670 (3.9e-04) 0.0655 (3.8e-04) 0.00147 0.021
0.020 0.0423 (3.3e-04) 0.0410 (3.3e-04) 0.00137 0.032
0.025 0.0247 (2.7e-04) 0.0236 (2.6e-04) 0.00137 0.045
0.030 0.0134 (2.0e-04) 0.0126 (1.9e-04) 0.00081 0.060

Table 5.1: Simulation results for payer swaptions.

and where σj,k = 0 for m+ m̂ < k ≤ m+ m̂+m. Following [22, p.17], we may write

dBp,q =

q−1∑
j=p

δjdBj+1 = · · ·dt+

q−1∑
j=p

δjBj+1σ
>
j+1dW

= · · ·dt+Bp,q

q−1∑
j=p

wp,qj σ>j+1dW.
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We thus have by Itô’s formula for p ≤ r ≤ q,

d(Br/Bp,q)

Br/Bp,q
= · · ·dt+

σ>r − q−1∑
j=p

wp,qj σ>j+1

 dW

=

σ>r − q−1∑
j=p

wp,qj σ>j+1

 dWp,q

as Br/Bp,q is a Pp,q-martingale. We thus obtain

dSp,q = d
Bp −Bq
Bp,q

= Bp
Bp,q

σ>p − q−1∑
j=p

wp,qj σ>j+1

− Bq
Bp,q

σTq − q−1∑
j=p

wp,qj σ>j+1

 dWp,q

=

 Bp
Bp,q

q−1∑
j=p

wp,qj

(
σ>p − σ>j+1

)
− Bq
Bp,q

q−1∑
j=p

wp,qj

(
σ>q − σ>j+1

) dWp,q

= Sp,q

 Bp
Bp −Bq

q−1∑
j=p

wp,qj

(
σ>p − σ>j+1

)
− Bq
Bp −Bq

q−1∑
j=p

wp,qj

(
σ>q − σ>j+1

) dWp,q

= Sp,q

q−1∑
j=p

wp,qj

(
σ>p − σ>j+1

)
+

Bq
Bp −Bq

q−1∑
j=p

wp,qj

(
σ>p − σ>q

) dWp,q

=: Sp,qΛ
>
p,qdWp,q.

Similar to (1.13) in [22] we get

Λp,q =

q−1∑
j=p

wp,qj (σp − σj+1) +
Bq

Bp −Bq
wp,qj (σp − σq)

=

q−1∑
j=p

wp,qj

j∑
r=p

(σr − σr+1) +
Bq

Bp −Bq

q−1∑
r=p

(σr − σr+1)

=

q−1∑
r=p

(σr − σr+1)

q−1∑
j=r

wp,qj +
Bq

Bp −Bq


=

q−1∑
r=p

[ √
vrβr

γr

]
δr (Lr + αr)

1 + δrLr

q−1∑
j=r

wp,qj +
Bq

Bp −Bq

 .

Further, by (1.27) from [22], it holds that

dW(n) = dW + (λ− σn)dt, and dWp,q = λdt−
q−1∑
l=p

wp,ql σl+1dt+ dW.
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Therefore, we finally have

dWp,q = dW(n) + σndt−
q−1∑
l=p

wp,ql σl+1dt

= dW(n) + dt

q−1∑
l=p

wp,ql (σn − σl+1)

= dW(n) + dt

q−1∑
l=p

wp,ql

n−1∑
k=l+1

(σk+1 − σk)

= dW(n) − dt
q−1∑
l=p

wp,ql

n−1∑
k=l+1

δk (Lk + αk)

1 + δkLk

[ √
vkβk

γk

]
.
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