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Abstract. We investigate steady state solutions to a class of systems of reaction-diffusion-
convection equations with small diffusion and small convection, and which depend on 
one space variable. Our main concern is to prove the existence of a solution with an 
interior layer of spike type for higher order systems without taking into consideration the 
influence of boundary conditions. To this end we combine two methods of the theory of 
singular perturbations: the method of integral manifolds and the method of boundary 
layer functions. 

Key words: Reaction-diffusion-convection equations, contrast structures of spike type, 
singular perturbations, asymptotic expansions, boundary layer functions, integral mani-
folds. 
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1 Introduction 

The mathematical modeling of numerous nonlinear phenomena in biology, chemistry and 
other fields leads to reaction-diffusion equations and reaction-diffusion-convection equa-
tions. A necessary first step in the study of the longtime behavior of such systems is the 
investigation of stationary solutions. There are important phenomena where the influence 
of diffusion and convection is small compared with the reaction process. In such cases the 
investigation of stationary solutions leads to the study of differential equations with small 
parameters at the highest derivatives, that is, we have to consider singularly perturbed 
problems. 

*e-mail: schneide@wias-berlin.de 
t e-mail: ABV@Rl 1523. phys.msu.su 
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Important contributions to the theory of singular perturbation were published at the 
beginning of the fifties [12, 13, 8, 14], a bibliography of asymptotic methods can be found 
in [15, 16, 2]. In the sequel we shall study the existence of stationary solutions with 
transition layers to the following class of reaction-diffusion-convection equations 

iLt + µ2uxx = j( u, µiLx,'v, evx, x) 
Vt + e2ilxx = 9( u, µux, v, evx, x) (1.1) 

where u E R, v E Rk x E R µand e are small parameters. Denoting differentiation with 
respect to x by ' and setting µu' = u1, ev' = v1 we get that any stationary solution of 
(1.1) satisfies 

_, 
µu1 - f ( u, u1, v, v1, x) 
µu' - u1 (1.2) 
eV1 9( u, u1, v, v1, x) 1 _, 
eV v1. 

A solution of system (1.2) can have so-called transition layers as e and µ tend to zero. 
Transition layers can be divided into two groups: boundary layers (the transition takes 
place near the boundary of the interval where we consider the solution) and interior layers 
(the transition takes place at interior points). Solutions with an interior layer are called 
contrast structures. We distinguish interior layers of step type and of spike type. In this 
paper we study the existence of contrast structures of spike type without taking into 
consideration· the influence of boundary conditions .. Our approach consists in combining 
two methods of the theory of singular perturbations: the method of integral manifolds 
[17, 9, 11] and the method of boundary layer functions [~5, 16, .3]. 
In section 2, for sufficiently small ewe reduce the given higher dimensional problem to a 
two-dim~nsional one by means of an integral manifold. In section 3 we derive sufficient 
conditions for the existence of a spike solution by using the method of boundary functions 
for interior transition layers. The obtained conditions are of Melnikov integral type such 
that the obtained results can be interpreted geometrically as transversality conditions for 
the stable and unstable manifolds. 

2 Assumptions. Reduction of the problem 

System ( 1.2) is a special case of the system 

µw' f(u,w,v,x) 
µu' w (2.1) 
ev' - g(u, w, v, x) 

where u, w E R, v E Rn. Our basic idea is to consider system (2.1) as a singularly per-
turbed system with respect to the parameter e and to reduce it to a two-dimensional 
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system (second order equation) by means of an integral manifold. Then we derive con-
ditions ensuring the existence of a spike solution for the reduced problem. To be able to 
do so we study system (2.1) under the following conditions. 

(H1). f: G-+ R, and g: G-+ Rn are sufficiently smooth and uniformly bounded where 
G := R x R x Rn x R. 

(H2). The equation 

g(u,w,v,x) = 0 

has an isolated solution v = h0 ( u, w, x) defined on Rx Rx R, and with the same smooth-
ness as g. 

(H3 ). The spectrum a of the matrix g11 (u,w,h0 (u,w,x),x) satisfies 

{ 
89 . 0 . } Rea Bv(u,w,h (u,w,x),x) -:f. O 

for all (u,w,x) ER x Rx R. 

By means of the scaling x = µ e, c = µ2 we get from (2.1) 

dw f(u,w,v,x) 
de 

-

du 
de 

w 

dx (2.2) 

de - µ 

dv g( u, w, v, x ). µde -

For small µ, system (2.2) is a singularly perturbed system. According to the theory of 
integral manifolds for singularly perturbed differential systems [11], for sufficiently small 
µ, hypotheses ( H1) - ( H3 ) imply the existence of an integral manifold Mµ to system (2.2) 
of the form 

Mµ := {(u,v,w,x) E Rn+3: v = h(u,w,x,µ)} (2.3) 

possessing the asymptotic representation with respect toµ 

v = h0 (u,w,x) + µh1(u,w,x) + µ2h2(u_,w,x) + · · · (2.4) 

Let us recall the algorithm for the computation of the functions hi in (2.4). By substituting 
(2.4) into the last equation of (2.2) we get 
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(
ah0 du ah0 dw ah0 dx) 2 (ah 1 du ah1 dw ah1 dx) 

µ au de + aw de + ax de + µ au de + aw de + ax de + . . . (2.5) 
= g(u,w,h0 + µh1 + · · · ,x). 

Taking into account the first three equations of (2.2) and using the expansion ( e is a 
placeholder for f and g) 

e(u,w,h0 + µh1 + ... ,x) = e(u,w,h0 ,x) + µ etto + µ2 (et1oh2 + µ2 et1t1oh1h1
) + · · · 

where here and in what follows the lower index zero indicates that v is replaced by 
h0 ( u, w, x ), then we get from (2.5) 

µ -w+-fo +µ2 -+-w+-·-fo+-fttoh1 +··· { 
ah0 ah0 

} { ah0 ah1 ah1 ah0 
} 

au aw ax au aw aw 

= 90 + µ. 9voh1 + µ2 
{ g.oh2 + ~g,,.oh1h1 } + · · · 

By equating the coefficients with the same power ofµ we get for the µ0-terms 

0 = 90 := g(u, w, h0 (u, w, x), x). 

This relation holds identically according to hypothesis (H2 ). Concerning the coefficients 
multiplied by µ we obtain 

. ah0 ah0 
. ag ( 0 . ) 1 1 

au w + aw fa = av u, w, h 'x h =: 9t1oh . (2.6) 

By hypothesis (H3 ), the function h1 can be determined uniquely from (2.6) 

' 1( ) -1 [ah
0 

ah
0 

] h u, w' x, µ = 9t10 au w + aw fo . (2.7) 

Analogously we obtain by equating the coefficients belonging to µ2 

From this it follows 

2 -1 { ah0 ah1 ah1 ah0 1 1 1 1} 
h = 9t10 ax + au w + aw fa + aw fttoh - 29t1t10h h (2.8) 
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where 

ah1 

au 

ah1 

aw 

- [ (g;;01 )u + (g;;o1 )vh~] (h~ W + h~J o) + 
+ g;;o1 [h~u W + h~ufo + h~(fou + fovh~)] , 

[ (g;;o1 )w + (g;;l )vh~] ( h~w + h~fo)) (2.9) 

+ g;;o1 [h~ww + h~ + h~wfo + h~ (fow + fovh~)] · 

In the same way we may determine higher order terms. After substituting (2. 7) - (2.9) 
into (2.4) we get an asymptotic expansion of the integral manifold Mµ with respect to 
the parameter µ: 

v = h(u, w, x, µ) - h0 + µg;;01 (h~w + h~fo) + 
+ µ 2 g::01 

{ h~ [ (g;;01 )u + (g::01 )vh~] ( h~ W + h~J o )w + 
+ g;;o1 [h~uw + h~ufo + h~(fou + favh~] W + 
+ [(g;;01 )w + (g::01 )vh~] (h~w + h~fo)fo + 
+ g;;01 [h~10w + h~ + h~10fo +(!ow+ fouh~)h~] fo + 
+ g;;01 h~fvo(h~w + h~fo) -

9~19;0 [h~w + h~Joj2} + · · · 

On the integral manifold Mµ system (2.2) reads as follows 

dw 
J(u, w, h(u, w, x, µ), x) 

de 
du 
de 

w 

dx 
de 

µ 

which is equivalent to the second order equation 

2d2u 
µ dx2 

du du 
f ( u, µ dx , h( u, µ dx , x, µ), x). 

(2.10) 

(2.11) 

(2.12) 

In the next section we investigate the existence of contrast structures of spike type to 
equation (2.12). 

5 



3 Existence of an interior layer of spike type 

As mentioned in the introduction, we denote a solution of system (1.2) exhibiting an 
interior layer as a contrast structure. In what follows we investigate the existence of a 
spike solution u(x, µ)of (2.12), that is, the existence of a contrast structure of the form 
as indicated in Fig. 1 (a definition is given below). 

u 

x.(µ) 
x 

Fig. 1 

In the case e = µ2 , and under the assumptions (H1)-(H3 ) the problem of existence of 
a contrast structure to the higher dimensional system (1.1) has been reduced in section 
2 to the same problem for the second order equation (2.12) which is equivalent to the 
system 

dw 
µ dx - f(u,w,h(u,w,x,µ),x) =: f(u,w,x,µ) 

du 
µ- - w. 

dx · 

(3.1) 

If we replace x byµ e in the left-hand side of (3.1), fix x and putµ= 0 in the right-hand 
side then we get the so-called associated system 

dw 
f(u,w,x,O) - -

de 
du (3.2) 

de 
- w. 
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Definition 3.1 Let J be sufficiently smooth. Let there be an interval I C R such that 
\:/ x E I the equation J ( u, 0, x, 0) = 0 has a root u == p( x) such that p is a smooth function, 
and }u(p(x),O,x,O) > 0, that is, (O,p(x)) is a saddle point of (3.2). If there are numbers 
Xo,i E I and Po,i with p(xo,i) =/. Po,i, i = 1, · · ·, k, then we call a solution u(x, µ) of (3.1) 
satisfying 

lim u(x,µ) = r { 
p(x) for x -1- xo,i 

µ~o Po,i for x = Xo,i 

a spike-type solution. 

Before we study equation (2.12) we consider the)simpler case that f does not depend on 
du/dx. This case arises when (1.1) has no convection terms and leads to an equation of 
the form 

2 d2u -
µ dx2 - f(u, x,µ). (3.3) 

Let f(u,x,O) := f(u,x). The associated system to (3.3) reads 

dw de - f(u, x) 
(3.4) 

w. 

The following hypothesis implies that (3.4) has a family of homoclinic orbits parametrized 
by x. 

(H). Let J be sufficiently smooth and obey the fallowing properties: 

(i) For all x ER the equation f(u,x) = 0 has two roots u = cp(x) and u = x(x) such 
that 

fu(cp(x), x) > 0, fu(x(x), x) < 0. 

(ii) There exists a function 1/; ( x) such that \:/ x E R 

/.

1/J(:i:) -
. f(u,x)du= 0. 

rp(:z:) 
(3.5) 

Without loss of generality we may assume cp(x) < x(x) < 'l/;(x). 

Hypothesis (H) implies that for fixed x, the graph off ( u, x) has the form as represented 
in Fig. 2. According to the definition of 1/;( x) the dashed regions in Fig. 2 have the same 
area. 
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J w 

u u 

'lj;(x) 
'lj;(x) 

cp(x) 

Fig. 2 Fig. 3 

From hypothesis (H) it follows that system (3.4) has a homoclinic orbit (see Fig. 3) the 
graph of which can be obtained by a simple quadrature for all x E R 

1 

w(u,x) = ± (2 ru ](a,x)da)
2

' 
}cp(x) 

cp(x) ~ u ~ 'lj;(x). (3.6) 

To verify this we note tha:t w(cp(x),x) = 0 holds, and that according to (3.5) we have 
w('lj;(x), x) = 0. From 

dw = ± ](u,x) 
1 

du ( - )-. 2 J;(:z:) f( a, x )du 2 

and from hypothesis (H) we get 

~:I = ±V]u(cp(x),x). 
u~cp(x) 

Taking (3.5) into account we obtain 

dwl --T ±oo, 
du u~,P(x) 

that is, at u = 'lj;( x) we have a vertical slope. 

In what follows we construct a spike solution u(x,µ) of (3.1), that is, a solution satisfying 

1. ( ) { cp ( x) for all x # xo 1mu x,µ = 
,.HO 'l/;(x0 ) for x = xo. 

Here, x0 is the leading term in the asymptotic representation of the point x. (µ), 

x.(µ) = Xo + µx1 + · · · 
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- where ·u( x, µ) takes its maximum. By applying the method of boundary layer functions 
the following equation has been derived in [1] to determine the first coefficient x 0 

1
1/l(x) Lu - 1 <I>(x) := fx(u,x) ( )ds du _ rp(x) ,P(x) W s, X 

= [1/l(x) fx( u, x) ru (2 r f ( r, x )dr)-t ds dv. 0, 
}rp(x) },p(x) }rp(x) 

(3.8) 

~t the same time the existence of a spike solution has been proved. Especially the following 
result is contained in [1]. 

Theorem 3.2 Assume the hypothesis (H) is valid. If there exists a simple zero x0 of the 
function <!> defined in (3.8), that is, 

<I>(xo) = 0 , <I>'(xo) f:. 0, (3.9) 

then system (3.3) has a spike solution for sufficiently small µ. 

Following an idea in [10] we give a geometric interpretation of these conditions. By as-
sumption (H) system (3.4) has a family of homoclinic orbits ;(x) to the saddle point 
(0, cp(x)). We denote by A(x) the area bounded by ;(x). Then we have 

Theorem 3.3 Assume hypothesis· (H) to be valid. If x0 is a simple zero of <!> then A 
takes an extremal value at x = xo. 

Proof. By (3.6) we have 
A(x) 11/l(x) -- = w(u,x)du. 

2 rp(x) 
Using w('l/J(x),x) = w(cp(x),x) = 0 it follows 

~A'(x) 

From (3.6) we get 

- 11/l(x) wx(u,x)du+w(.,P(x),x).,P'(x)-w(cp(x),x)cp'(x) 
rp(x) 

1
1/l(x) 

- wx(u,x)du. 
rp(x) 

wx(u, x) - / ) 1u fx(u, x)du - f(cp(x), x)cp'(x) 
W u, X rp(x) 

1 lu -( ) f :z: ( u, x) du. 
W u, X rp(x) 
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By means of changing the order of integration we obtain 

11,b(:z:) 

cp(:z:) 
w:z:(u,x)du = 11,b(:z:) /.u - 1 f:z:(a,x) dadu 

cp(:z:) cp(:z:) w( u, x) 

1cpcx) 1u - 1 
f:z:(a,x) ( )duda=-q>(x), 

1/J(:z:) 1/J(:z:) w u, x 
q.e.d. 

~ / 

In what follows we use Theorem 3.2 to prove the existence of a spike solution of (1.1) under 
the assumptions that e = µ2 and that no convection term arises. Then any stationary 
solution of (1.1) obeys the system 

f(u,v,x) 
g(u,v,x) 

(3.10) 

where u E R, v E Rn. Let us assume that f and g satisfy hypotheses (H1)-(H3 ). Then 
there is an integral manifold v = h(u, x, µ) on which system (3.10) reduces to the singu-
larly perturbed second order equation (3.3). Hence, we have the following result 

Theorem 3.4 Let us assume that system (1.1) has no convection term and that the 
corresporiding stationary system (3.10) is such that the hypotheses (H1 ) - (H3 ) are satisfied. 
Further we suppose that the corresponding reduced equation (3.3) fulfils hypothesis (H) and 
is such that the associated function q, has a simple zero x0 • Then system ( 1.1) has a spike 
solution for sufficiently small µ. 

As an example we consider the well-known Belousov-Zhabotinskii reaction ([7], 179 ff.) 
which describes the catalyzed oxidation of citric acid by bromate. We use the Oregonator 
model and take into account the effect of small diffusion. If we look for a stationary solu-
tion of the corresponding reaction-diffusion equation we arrive at the system of ordinary 
differential equations 

µ2u" - qu+.(u-2P"/J:=f(u,(,'lj;,x), 
s2

(" - -qu + (u + ((( -1) =: 91(u, (,'if;, x), 
s21f;" - 1/;-( =: g2(u,(,'lj;,x) 

(3.11) 

where ' means the differentiation with respect to the spatial variable x. u, (, 1f; are nor-
malized concentrations of HBr02 , Br-, and Ce4+, respectively, e andµ are small positive 
parameters characterizing the diffusivities. q, p are usually considered as positive con-
stants. In what follows we suppose 0 < q < < 1 and consider p as a smooth positive 
function of x satisfying for all x 

0 < 2p(x) < 1. (3.12) 

Under these conditions it is our aim to prove the existence of spike solutions to (3.11 ). 
System (3.11) can be rewritten in the form (2.1). Hypothesis (H1) is satisfied if we 
appropriately modify the right hand side of (3.11) outside some compact region. 
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For£= 0 we get from (3.11) the solution 

0 1 - u + J ( 1 - u )2 + 4qu 
( = 'lj; = h (u) ·= ----'-----. 2 (3.13) 

which is positive for q > 0. 

If we compute 91t: and 92,p along this solution we obtain from (3.il) 

u + 2( - 1 = V(l - u)2 + 4qu > 0, 
(3.14) 

- 1>0, 

that is, the hypotheses (H2) and (H3 ) are valid. Thus, for £ = µ2 in some compact region 
of the phase space there is an integral manifold of (3.11) of the form 

( h(u, µ) = h0 (u) f. µ h1(u) + · · · 
'l/; - h(u, µ) = h0 (u) + µ h1(u) + ... 

where h0 (u) is defined in (3.13). On this integral manifold system (3.11) can be repre-
sented in the form 

µ2u" = qu + (u - 2p)h0 (u) + µf1(u, x, µ). (3.15) 

Now we consider the limit case q = 0 in equation (3.15) which leads to the system 

dw 
µ dx - (1- u)(u - 2p(x)) + µf1(u,x,µ) 

du µ- w. dx 

The corresponding associated system reads 

dw de - (1 - u)(u - 2p(x)) := j(u, x) 

du 
de w. 

The equation j ( u, x) = 0 has the roots 

u = cp(x) = 2p(x) and u = x(x) = 1. 

(3.16) 

(3.17) 

Under the condition (3.12) the derivative of ](u, x) with respect to u at these roots 
satisfies 
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ju(u, x)I = 1 - 2p(x) > 0, 
u=ip(x) 

ju(u,x)I = 2p(x)- l < 0, 
u=x(x) 

that is, (0,2p(x)) is a saddle point, and (0, 1) is a center of system (3.17). 

Let ,,P(x) := 3/2 - p(x). By (3.12) we have ,,P(x) > 1 = x(x). The following relation can 
be verified 

r,P(x) (1 - u)(u - 2p(x))du = 0. 
}ip(x) 

Thus, hypothesis (H) is fulfilled for system (3.17). From (3.8) we get 

1.3/2-p(x) J.u (J. 8 )-1/2 q,(x) = -p'(x) (1 - u) (1 - r)(r - 2p(x))dr ds du. 
2p(x) 3/2-p(x) 2p(x) 

If q,(x) has a simple zero at x0 then by Theorem 3.4 system (3.16), and consequently 
(3.11) too, has a spike solution. Thus we have the result: 

Theorem 3.5 Let x0 be a simple zero of p'(x) and such that 

1.3/2-p(xo) J.u (1. 8 )-1/2 (1 - u) (1 - r)(r - 2p(x0 ))dr ds du-/= 0. 
2p(xo) 3/2-p(xo) 2p(xo) 

Then system (3.11) has a spike solution. 

Let us return now to the general case (3.1). Under. our smoothness assumptions we can 
rewrite system (3.1) in the form 

dw 
µ dx F0(u,w,x) + µ F1(u,w,x) + · · · 

du 
µ- - w dx 

where F0 (u,w,x) = f(u,w,h0 (u,w,x),x). 

In what follows we assume 

Fo(u,w,x) = F(u,w2 ,x). 

Then the associated system to (3.1) reads 

dw 
dr 
du 
dr 

F(u,w2 ,x) 

w 

12 
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and is equivalent to the differential equation 

1 d(7..U2) 2 
"2~ = F(u,7..U ,x). (3.21) 

In order to get the same qualitative behavior of system (3.20) as in case of system (3.4) 
we replace hypothesis (H) by the following assumption. 

(H). Let F( u, 7..U2, x) be sufficiently smooth and let there be an interval Io such that for 
x E Io system (3.20) has the properties: 

(i) There are differentiable functions cp : R ~ R and x : R ~ R such that (0, cp( x)) is a 
saddle point and (0, x(x )) is a center point of (3.20). Without loss of generality we may 
assume cp(x) < x(x). 

(ii) System (3.20) has a homoclinic orbit to the saddle point (0, cp( x) ). 

The following examples show that the set of systems (3.20) satisfying hypothesis (H) is 
not empty. 

Example 3.1. Let us assume that equation (3.21) has the form (7..U 2 = z) 
dz 
du = -u(u + x) + uz. (3.22) 

In this case we have cp( x) = -x, x( x) = 0, and the integration of equation (3.22) yields 
u2 J_u ,,2 

z(u) = -eT -x v(v + x)e-T dv. 

It holds z( -x) = 7..U2 ( -x) = 0. For -x < u <: 0 the integrand v( v + x) is negative and we 
have 

u2 J_u 112 
-eT -x v(v + x)e-T dv > 0. 

Thus, z(O) is positive and z(u) stays positive for 0 < u < 'lj;(x) where 'lj;(x) is defined by 

= 0. (3.23) 

At u = 'lj;(x) we have 

Z lu=,P(x) = 0, (3.24) 

dzl -d = -'lj;(x)('lj;(x) + x) < 0, 
U u=,P(x) 

d7..U I 
du u~,P(x) --)- OO. 

(3.25) 

In this way, we get the picture as in Fig. 3. 

Example 3.2. Suppose that F has the form F( u, 7..U2, x) = ~ [uxew2 
- u2] such that we 

get from (3.21) 

dz - = uxez - u2 • 
du 
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In this case we have cp(x) = 0 , x(x) = x. The solution of equation (3.26) with z(O) = 0 
reads 

1 - J; v2e_,/• f3dv 
z = ln 3 / • 1 - J; xve-" 3dv 

In order to determine a positive function 'if; ( x) such that z ('if; ( x)) vanishes we get the 
equation 

(3.27) 

This situation is analogous to Example 3.1: For. v > x the integrand is negative, and 
there is some ,,P(x) > x satisfying equation (3.27)! For 0 < u < 'if;(x) the argument of the 
logarithm is greater than 1. Thus, z is positive and w exists. For u > 'if;( x) the function z 
is negative and w does not exist. For u < 0 the function w also exists since z is positive. 

In the sequel we shall derive a condition sufficient for the existence of a spike solution for 
systems (3.18) satisfying (3.19). To this end we first construct an asymptotic expansion 
of a solution of (3.18). A crucial point in this construction is to find the first coefficient 
x0 in the asymptotic expansion (3.7) of x.(µ) where the spike takes its maximum, that 
IS, 

u'(x.(µ), µ) = 0. (3.28) 

By an asymptotic expansion of a spike-type solution (u(x,µ),w(x,µ)) of (3.18) we mean 
a representation of u( x, µ) and w( x, µ) in the form . 

. . 
za(x, µ) = Rz(x, µ) +-ITz(e, µ) (3.29) 

where z is a placeholder for u and w respectively, Rz(x, µ) is the regular part of the 
asymptotics, that is, 

00 

Rz(x,µ) := Lµi~z(x), (3.30) 
i=O 

and ITz(e,µ) is the boundary layer correction near x = x.(µ), 
00 

ITz(e, µ) == :E µiITiz(e) (3.31) 
i=O 

where e is the stretched variable e = ( x - x. (µ)) / µ. 

Let H be some function defined on Rk x Rx R. By means of the representation (3.29) 
we may rewrite H(za(x,µ),x,µ) in the form 

H(za(x, µ), x, µ) - H(Rz(x, µ), x, µ) + H(za(eµ + x.(µ), µ), eµ + x.(µ), µ) 
-H(Rz(eµ + x.(µ), µ), eµ + x.(µ), µ)=:RH+ ITH 
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(3.32) 



where 

RH:= H(Rz(x,µ),x,µ), 
(3.33) 

ITH:= H(za(eµ + x.(µ),µ),eµ + x.(µ),µ) - H(Rz(eµ + x.(µ),µ),eµ + x.(µ),µ). 

In order to compute the coefficients ~z( x) and Iliz( e) we substitute (3.29) - (3.31) into 
(3.18) and use the representation (3.32), (3.33) where His a placeholder for F0 , Fi, ... By 
equating expressions with the same power of µ (separately for x and e) and taking into 
account Definition 3.1 and Hypothesis (H) we obtain equations which let us determine 
the unknown coefficients of the asymptotic expansion. This way we get 

Ru0 (x) - cp(x), 
Ru (x) - - Fi(cp(:z:),o,:z:) 

1 - Fu(t,0(:z:),O,:z:)' 

Rwo = 0, 
Rw1 = cp'(x), ... (3.34) 

The functions IT0u and IT0w satisfy the differential system 

d 
de ITow - F( cp( xo) + IT0u, (IT0w )2

, x0 ) 

d 
deITou - ITow 

(3.35) 

and obey the boundary conditions 

Ilow(O) = 0 (3.36) 

where the last condition follows from (3.28). 

The coefficient x 0 is not defined by these equations. The equations for the next approxi-
mation read as follows 

d 
deIT1w - Fu(e)II1u + 2Fw2IlowII1w + G1(e) 

d 
deIT1u - II1w, 

where 

Fu(e) - Fu(cp(xo) + IIou(e), (IIow(e))2
, xo), 

Fw2 (e) - Fw2 ( cp(xo) + IIou(e), (IIow(e))2
, xo), 

G1(e) - [Fu(e)cp'(xo) + Fx(e)](x1 + e) + 
+ Fu(e)u1(xo) + F1(cp(xo) + IIou(e), IIow(e), xo). 

15 

(3.37) 

(3.38) 



The homogeneous system to (3.37) obviously has the nontrivial solution (II0u )', (II0w )'. 
This can be verified by differentiating (3.35) with respect to e. To get a solution of the 
inhomogeneous system (3.37) we need that the orthogonality condition must be satisfied. 
This condition yields the equation defining x 0 • This equation is more complicated than 
the corresponding formula (15) in [1] since the differential operator 

is not selfadjoint. 
Let us introduce the notation 

(3.39) 

and rewrite system (3.37) in the selfadjoint form 

~ ( e-1: pi(o')<lO' ~Il1u) = Fu(e)e- f.1 
Pl( .. Jd<rrrl u + G1 (e)e- f.1 

Pl ( .. )a... (3.40) 

Then the orthogonality condition (the determining equation for x 0 ) has the form 

(3.41) 

Let us rewrite equation (3.41 ). From (3.35), (3.36) it follows that I10u( e) is an even func-
tion and I10w(e) is an odd function of e. Thus (II0w)2 and F(cp(xo) +~0u, (I10w)2 , x0 ) =: 
F(e), Fu(e), Fw2(e), and Fx(e)·are even function of' e. According to (3.39) the function 
P1 ( e) is odd, hence JJ P1 ( u )du is even. Therefore, in equation (3.41) only the odd part 
G1 ( e) of the function G1 ( e) plays a role, 

(3.42) 

and equation (3.41) can be written in the form 

~(xo) = 0 

where~ is defined by 

¥ Fo and F1 in (3.18) do not depend on w then p1(e) vanishes and it can be shown that 
<I>( x) and <I>( x) coincide. 

Now we are able to formulate the following result. 

Theorem 3.6 Suppose the function J in (3.1) to be sufficiently smooth. Further we as-
sume that the function F0 in (3.18) satisfies hypothesis (H4 ) and is such that hypothesis 
(if) is fulfilled. Finally, we assume that the- function~ defined in (3.43) has a simple zero 
xa. Then system (3.1) has a spike solution for sufficiently smallµ. 
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Proof. The proof is similar to the corresponding one in [1]. So we recall only the main 
idea. Let x1: (µ) be the following asymptotic approximation of x,.. (µ) where the spike 
solution u( x, µ) takes its maximum 

x';'(µ) := Xo + µ X1 + ... + µN XN. 

Let 8 be a sufficiently small positive number such that there is a small positive µ* with 
the property that there are numbers ~ and x such that for 0 :::; µ :::; µ* 

Now we look for solutions of (3.18) satisfying the boundary conditions 

u(~, µ) = cp(~), u'(x1:(µ) - JµN, µ) = 0, 
u(x, µ) = cp(x), u'(x1:(µ) - JµN, µ) = O, · 
u(~,µ) = cp(~), u'(x1:(µ) + 8µN,µ) = 0, 
u(x,µ) = cp(x), u'(x1:(µ) + JµN,µ) = 0. 

To each of these boundary value problems there is a unique solution y_8 (x, µ), 'fL6(x, µ), 
YH(x,µ),uH(x,µ) for sufficiently smallµ. In general, we have y_6(x1:(µ) - JµN,µ) -:f. 
u8(x1:(µ) - 8µN,µ), that is, from y_6 and u_6 we do not get a spike solution. The same 
is valid for YH and UH· Let y~/1 and u~/1 be asymptotic expansions of order N + 1 to 
these solutions, that is, 

Let 

Y=i=6(x, µ) 
tt:i:6(~, µ) 

y~/1(x, µ) + O(µN+2), 
- u~/1(x,µ) + O(µN+2). 

fj_-6,µ .- u'!_/1(x';'(µ)-8µN,µ)-y'!_/1(x':(µ)- JµN,µ), 
fj_H,µ .- u~/l(x';'(µ) + JµN,µ) -y~ll(x';'(µ) + JµN,µ). 

It can be verified that /j_-6,µ and b.H,µ have different sign for given 8 and for sufficiently 
small µ. Therefore, there exists a unique x,.. (µ) located between x1: (µ) - 8 µN and x1: (µ) + 
8µN such that the solutions y(x, µ) and u(x, µ)of the boundary value problems 

u(~, µ) =· cp(.~), u'( x,..(µ ), µ) = 0, 
u(x, µ) = cp(x), u'( x,..(µ ), µ) = 0 

satisfy y(x,..(µ),µ) = u(x.(µ),µ). Consequently, there exists a spike solution u6 (x,µ) of 
(3.18) with the first order asymptotic approximation 

u,(:i:, µ) rp(:i:) + IIau (:i: -:.(µ)) + O(µj, 

w,(:i:,µ) - IIaw(:i:-:.(Ji)) +0(µ), 

q.e.d. 
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