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A MINIMUM - DISTANCE ESTIMATOR FOR DIFFUSION PROCESSES 
WITH ERGODIC PROPERTIES 

HANS M. DIETZ AND YURIJ KUTOYANTS 

ABSTRACT. Suppose one observes one path of a stochastic process X = (,\1)t::".o 
which is known to solve an equation of the form 

dXf = 5(B, Xf)dt + dWt, t 2: 0, BE 8 C IPl.d (0.1) 

with a given coefficient functional 5 and given initial condition X 0 , where e is a 
non-void bounded open subset of !Pl. d. In order to estimate the true but unknown 
parameter B0 the paper p~oposes the minimum distance estimator (MDE) Br given 
by 

' 2 l r 
Br E arginf0E0 0 

(Xt - X(B)t) dt, T > 0, (0.2) 

where 

X(B)t := Xo + 1t 5(B, X11 ) du, t > 0 (0.3) 

and studies its asymptotic behaviour as T _,. oo. Under the main assumption 
that the observed process has an ergodic property and some further (less restrictive) 

. conditions it is shown that Br is strongly consistent and - in case d = 1 - asymptot-
ically normal. In particular, the results apply to models where 5(B, x) = 5(B - x). 
Several examples and a comparison with likelihood estimation are added. 

1. INTRODUCTION 

Suppose one observes one path of a stochastic process X = (Xi)tE[o,r] which is known to 
solve an equation of the form 

(1.1) 

with a given initial condition X 0 , where 8 is a given coefficient functional and 0 a non-void 
bounded open parameter subset of ~d. It is assumed that, for every B E 0, (1.1) has a 
unique strong solution and that for the observation it holds X = X 80 for some B0 • 

The purpose of the present paper is to study the performance of minimum distance estima-
tors (MDE) Br for B0 , given by 

Br E arginf0E0 1T (Xt - X(B) 1) 2dt, T > 0, (1.2) 

where 

X(B) 1 := Xo + fo1 S(B,X11 ) du, t ~ O (1.3) 
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as T _.., oo. Under the basic assumption that the underlying process X = X 80 has an 
ergodic property and some further (less restrictive) conditions it shall be shown that MDE 
according to ( 1.2) exist a.s. for sufficiently large T, are strongly consistent and are - in case 
d = 1- asymptotically normal. 

The minimum distance estimators of the above type were introduced by KUTOYANTS 
[3, 5, 4] in connection with stochastic differential equations similar to (1.1), with the main 
difference that in [5, 4] the observation "time" T was kept fixed, whereas consistency and 
asymptotic normality of the MDE were established under the assumption of asymptotically 
vanishing noise. 

It should be underlined that (1.2) provides another example of what is likewise called 
"minimum contrast estimator" (MCE) or "minimum dispersion estimator" in the litera-
ture. General properties of such estimators have been investigated, e.g., by PFANZAGL 
[11], MILLAR [9, 10], DACUNHA-CASTELLE and DUFLO [2] and BASAWA and KOUL 
[1]. The main contributions to the study of such estimators in connection with diffusion 
(type) processes are due to LANSKA [6) and KUTOYANTS et al. [3, 5, 4]. As far as the 
asymptotics for increasing 'time' of observation are concerned, it has to be mentioned that 
in [6] strong ~onsistency and asymptotic normality were proved for a large (abstract) class 
of minimum contrast estimators, containing the maximum likelihood estimator (MLE) -
but, however, not our estimator (1.2). Let us note that the MLE is universal in the sense 
that is provides a map from the set of all (suitable) coefficient functionals S into the set of 
"contrast processes", and an interesting question should be whether there are further uni-
versal MCE, with possibly interesting properties. In [3], KUTOYANTS proposed another 
universal MDE for diffusion processes with ergodic properties, which is based on distances 
between empirical distributions of the observed process and the theoretical stationary distri-
butions that correspond to different parameter values. However, in some applications these 
stationary distributions may be difficult to deal with explicitly. Thus, the main motivation 
for considering (1.2) may lie in the fact that it proposes another universal MDE which is 
quite natural and rather easily manageable. 

The techniques for establishing the forementioned properties of the MDE (1.2) consist in an 
analysis of the underlying distance process rather than in referring to general asymptotic 
results as given, e. g., by DACUNHA- CASTELLE & DUFLO [2] or MILLAR [9, 10]. The 
reason for this is, in part, that the (consistency) result presented here is somewhat stronger 
than these in the mentioned references, and in part, that the assumptions required e.g. in 
[9] are not fulfilled in the present case. 

The paper is organised as follows : In Section 2, the assumptions concerning the model are 
made precise. Section 3 is devoted to the existence and consistency result, while asymptotic 
normality is proved in Section 4. Section 5 is devoted to a particular class of models which 
shall be called "shifted coefficient models". Examples are given in Section 6, and Section 7 
provides a comparison with likelihood estimators. 

2. THE MODEL 

Let (D,F,JP) be a basic probability space, F = (Ft)t>o a filtration in F subject to the 
usual hypotheses, and vV = (Wt) 1>o a standard Wiener-process adapted to F. Further let 
0 -::/:- 0 C Rd be open and bounded and S : 0 x R ---+ R be a mapping with the property 
that for each () E 0 the function x 1--+ S( (), x) is Borel. Consider the stochastic differential 
equations (SDE) (1.1) 

dx: = S( B, Xt}dt + dvVi, t 2: o, 
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with a given initial condition X 0 • Throughout the present paper it shall be assumed that 
S satisfies the following Lipschitz and growth conditions. 

(3!) For every B E 0 there is a constant L8 for which 

for every x, y, E IR . 

I S ( B, x) - S ( B·, Y) I < La Ix - YI , 
IS(B,x)I < La(l + lxl), 

It is well-known that under these conditions for each B E 0 the SD E (1.1) has a unique 
strong solution (cf. [7]). 
It shall be assumed further that the observed process X solves (1.1) for a certain B0 E 0, 
i.e. x = X 80 ' and that it obeys the following ergodic property: 

(ERG (Bo)) There is a probability measure fl = µ0 0 on (IR, B (IR)) such that . 

(i) for each J E L 1(µ 80 ) it holds lP' - a.s. 

lim Tl ( f(Xi)dt = { J(x)µa 0 (dx) =: fta 0 (J), 
T-+oo Jo Im 

The measure fla 0 could be referred to as the stationary distribution of X. Note that in 
case of existence of such a measure it is necessarily unique. 

Remark 1. A constructive sufficient con di ti on for (ERG) to hold is the following one: Let 

(2.1) 

and define a nonnegative measure m 80 on (IR, B, (IR)) by 

ma0 (dx) = 2expBa0 (x)dx. 

If fm lxlme0 (dx) < oo and (3 !) is fulfilled then (ERG(B0 )) holds with 

(see, e. g. [8]). 

CONVENTIONS 

In order to simplify notations let us omit unnecessary indices, variables, and so on, wherever 
any misunderstanding is excluded from the context. In particular, let us write >. for the 
Lebesque measure on IR and f0T fd>. instead of f0T f(t)dt etc. Dependencies of random 
variables on w En shall be suppressed as far as possible. We shall briefly write S(B) both 
for the function x f-+ S(B,x) and for the stochastic process (S(B,x: 0 ))i:::;o, as the context 
shall always suggest the right interpretation. 
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3. EXISTENCE AND STRONG CONSISTENCY OF MDE 

Let D = (DT(B))~~~ be a given R-valued random field with the property that for each 
B E e the random process D(B) = (DT(B))T>O is fX - adapted, where fX = (F{)t>O and 
F1x : =" ( X., s :::; t). Let us agree to call D ~ distance if there is a family (ET )T >o ~f sets 
ET E Ff such that · -

JP'( ET)---+ 1 as T _, oo (3.1) 

and for sufficiently large T 

[arginfa DT(B) = 0] c n \ET . (3.2) 

A Rd -valued random process (BT )T;::o shall be called a MDE ( w.r.t. the distance D) if for 
every T ~ 0 there is a JP' -null set FT such that 

[GT :/; 0] \FT C [BT E GT] 
where 

eT(w) := arginfBEE> DT(B)(w), w En. (3.3) 

In the following attention shall be directed to the random field D defined by 

1 iT DT(B) := 3 (X - X(B)) 2 d>., T o 
(3.4) 

where 

X(B) := X 0 + l S(B,Xt)dt. (3.5) 

It is clear from the assumptions made in the preceding section that D is well-defined. The 
task of the present section is to show that D is a distance and that there exists a MDE 
w.r.t. D and, moreover, that any such MDE is strongly consistent. 

Under (3!) and (ERG(B0 )), introduce the following two assumptions 

(HC(Bo)) ("Holder continuity of S(-,x)") 
There are a constant a > 0 and a function g E L1 (µ 80 ) 

such that for every B, B' E 0 

Is ( B' x) - s ( B'' x) I :::; I B - B' I a g( x)' x E R . 

If (HC(Bo)) is fulfilled, then obviously it holds that 

S(B, ·) E L1(µe0 )· 

for every B E 0. Thus, one can define a function k80 : 0 ---+ R 
as follows: 

ke 0 (B) := µe0 (S(Bo) - S(O)), {) E 8. 

(3.6) 

(3.7) 

As this function shall turn out to be basic for the contrast associated with D, one has to 
impose further the following condition : 

(ID( B0 )) (Identifiability condition) For the function p80 : [O, oo] _, [O, oo] 
defined by 

pa0 (c) := inf{lke0 (B)j 2 : BE 8,jB- Bal> c} ( 3.8) 
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it holds 

c > 0 ==? Poo ( c) > 0 . 

(We use the convention inf 0 = oo . ) 

Remark 2. In case d = 1 ID( Bo) is implied by the following condition : 

(JD1 (B0 )) There is a neighbourhood U(Bo) C 0 of Bo such that 
.(i) the function B 1--+ k80 ( B) is strictly monotonous on U ( B0 ) 

(ii) there is a constant ·"' > 0 with 

The main result of this section is 

5 

(3.9) 

(3.10) 

Theorem 3.1. Assume (3!),(ERG(B0 ),(HC(B0 )), and (ID(B0 )). Then D is a distance, 
and 

(i) There exists a minimum distance estimator (Br h::::o w.r.t. D. 
(ii) Every such MDE is strongly consistent at Bo , i.e. 

(3.11) 

Before proving this theorem we shall provide a series of auxiliary results. As the reference 
parameter B0 remains fixed, it shall be suppressed in the notation. 

Lemma 3.1. Under (ERG) and (HC) the function B 1--+ k(B) is Holder continuous of order 
0:. 

Proof. Indeed, 

lk(B) - k(B')I = Jµ(S(B') - S(B))i :s; IB' - Bl"lp(g)J. 

0 

Remark 3. If (ID) holds, then Lemma 1 implies that 

arginf8E0 k2 (B) ={Bo}. (3.12) 

Lemma 3.2. Assume (3!), (ERG), and (HC). 

(i) For each T 2 0 and each w En, the function B 1--+ Dr(B)(w) is continuous. 

(ii) There is a JP' -null set N c n such that 

Vw En\ N 3M 2 0: VT 2 1 VB, 0 E 0 

IDT(B)(w)- Dy(O)(w)I :s; IB - B\" kl (3.13) 
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Remark 4. Another way of stating (3.13) is to say that for JP' -almost all w the set of 
continuous functions {Dr(·)(w),T ~ l} =: D(w) is uniformly equicontinuous. 

Proof of Lemma 2. First of all, note that the (unique strong) solution of (1.1) is uniquely 
defined for all w E n, as, in fact, the integral associated with (1.1) is a. Lebesque integral 
and, thus, (1.1) can be solved path-wise uniquely. 

(i) : Let 8, BE 0 be arbitrary. By definition of D and as X = X 80 solves 

( 1.1) for the parameter Ba it holds (for every (SU ppressed) w E n) 

Dr(8)- Dr(B) = ; 3 1r { (1.[S(Bo)- S(8)]d>.) 2 
- (l[S(8o) - S(B)]d>.) 2 + 

+2W 1·[S(B)- S(8)]d>.} d>. 

where, for brevity, ·S(8) := (S(8, X1 ))t~o, 8 E 0. Hence, 

1Dr(8)- Dr(B)j ~ Hj,(8,B) + HJ(8,B) 

where 

Hj,(8, B) 

HJ(8,B) 

It is apparent that 

Hj,(8,B) < ; 3 1r (l(jS(Ba)- S(B)I + jS(80 ) - S(B)j)d>.) x 

(3.14) 

x L 1s(B) - S(B)ld>.d>.. (3.15) 

An application of (2.6) to (2.15) gives 

Hj,( 8, B) ~ 18 - Bl" (I Bo - Bia+ IBo - Bia) Hi (3.16) 

with 

(3.17) 

(note that this term is free of() and B). One can proceed in a similar manner to obtain the 
following estimate for Hj ( (), B) : 

(3.18) 

with 

21T 1· Hj, = 3 JWI go Xd>.d>., 
T o o 

(3.19) 

(again this term is free of() and B). But (3.14), (3.16) and (3.18) together prove (i). 
(Dr(-)(w) is even Holder continuous of order a, with random time-dependend constant 
Hf(w) + Hj,(w).) 
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(ii) Fix a null set N c n such that for every w E !1 \ N it holds 

lim ~vVi(w) = O 
t-co t 

l lt lim - go X(w)dA 
t-co t 0 

µ(g) ' 
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where g is the function from the (HG) condition. Now, by L'Hospital's rule, for every 
wE!l\N 

lim H~(w) = lim ~(Tl fr go X(w)dA) 2 
= ~µ(g) 2 

T-co T-co 3 lo 3 
(3.20) 

and 

• 4 . 2 IWr(w)I 1 lT lim Hr(w) = lim - · T · T goX(w)dA = 0. 
T-co T-co 3 o 

(3.21) 

As the function T f-+ Hf(w) + Hj.(w) is continuous, (3.20) and (3.21) show that there 
is an lvl = M(w) such that 

0 :S H~(w) + Hj,(w) :S M(w) for T 2: 1, 

hence, from (3.14), (3.16) and (3.18), (3.13) follows .. 

Lemma 3.3. Under (3!), (ERG), and(HC) there is a Ir-null set N c n 
such that for every w E n \ N it holds 

Dr(B)(w)---+ k(B) 2 as T-+ oo, 

uniformly w.r.t. w E 0 . 

D 

(3.22) 

Proof. Take the null set N from Lemma 3.2, then, for any w E n \ N, the set of functions 
{k2(·)} U 1J(w) = {k2(·)} U {Dr(·)(w), T 2: 1}, is uniformly Holder continuous of order a. 
Further, for every () E 0 one can find a null set Ne such that for every w E n \ Ne 

1 
-Wr(w)---+ 0 as T '--" oo and T 

~ laT S(B,Xt(w))dt-----+ µ(S(B)) for BE {B,80 } as T-+ oo, 

hence,for w E !1 \Ne , by L'Hospital's rule 

lim Dr(B)(w) = lim ~(Tl ((S(B0 )- S(B))dA + Wr)
2 = k(B) 2 • 

T-co T-co 3 lo T 

Now let N := N UeEenlQld Ne and choose any w EN. One can find a constant lvC such that 
all functions h E {k2}U'D(w) satisfy the same Holder condition: Jh(B)-h(B)J :S IB-Bl<>1vfw. 
Given any c > 0, let {Bf, ... , B~J =: 0, c 0 n Qd be a finite 8-net for 0 , where 8 is 
chosen such that DaAC < c:/3, and choose T0 so large that sup0E8 • IDr(B) - k(B) 2 1 < t:/3 
for T 2: T0 • Hence, for T 2: T0 , and any() E 0 

IDr(B) - k(B) 2 1 < !Ilin{JDr(B) - Dr(B)J + JDr(B) - k(B) 2 1 + lk(B) 2 - k(B) 2 1} 
eE8, 

< 5a Mw + c:/I + 5a Mw < t:/ I . 
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This proves the assertion with the null set N. 
In the following lemma we use the notation 

A-z 
diam A 

{x - z: x EA} and 
sup{Jx - yJ : x, y E A} 

for any set A C Rd. The result is well-known : 

·o 

Lemma 3.4. Let Un) be a sequence of continuous functions fn : 0 ----> R that converges 
uniformly to a continuous Junction J : 0 __. JR . Suppose J is bounded from below and 
arginf8E8 /(B) ={Bo} C 0 . 
Then: 

(i) for sufficiently large n, 

0 =/:- arginf8Eefn(B) C 0 

(ii) diam (arginf8E8 /n(B) - Bo)----> 0 as n----> oo. 

We can now proceed with the Proof of Theorem 3.1. 

0 

(i) By Remark 3, the function k2 can take the role of the function fin Lemma 3.4. Lemma 
3.3 together with Lemma 3.4 implies for every w E n \ N that Gr(w) is non-void for 
sufficiently large T . We show that the mapping w f-l- l{eT(w);t0} is measurable for every 
T > 0. Indeed, it is clear from the proof of Lemma 3.2 (i) that for each T ~ 0 the 
assignment w f-lo Dr(·)(w) defines a mapping Dr : n -r Cb(G) where Cb(0) denotes the 
space of continuous bounded real-valued functions on 0. If Cb(0) is endowed with the 
topology of uniform convergence and with the corresponding Borel a-field C then it is easy 
to see that the mapping Dr is :Ff - C measurable. Hence, for proving that w f-l- l{eT(w);t0} 
is measurable it is sufficient to show that 

A*:= {f E Cb(0): arginf f = 0} EC. 

Note that for each non-void subset ](of 0 the mapping 

IK: Cb(0) -r R: J f-lo inf J(B) =: IK(f) 
BEK 

is continuous, thus, measurable. For every E > 0 let 

and define 

Now it is clear that 
A*= n {f E Cb(B): le(!)< Ie[1\nJ}i 

nEN 
but the sets under the intersection sign are in C, hence, so is A*, proving the desired 
measurability property. 
It is clear now that JP(Gr =J. 0) ----> 1 as T -r oo , i.e. D is a distance. 
The proof of the existence of a MDE reduces now to showing the existence of a measurable 
selector, which can be accomplished as in [11] (details can be omitted here). 
(ii) Suppose now (Gr)r:::o to be any MDE w.r.t. D. Then its strong consistency is an 
obvious consequence of Lemma 3.4 (ii). 0 

Note: Theorem 3.1 does not tell anything about the uniqueness of MDE. If 
card Gr(w) > 2 then the problem arises which point has to be chosen out of this set. 
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However, part (ii) of Theorem 3.1 states that for any choice of this point the resulting 
estimator is strongly consistent. 

Remark .5. Theorem 3.1 remains valid if 0 is assumed to be nonvoid and bounded only. 
(Indeed, all statements needed for consistency (e.g.3.4) remain valid even for non-open 0. 
Morever, proving that Gr is non-empty for sufficiently large T becomes even easier, as 

arginf8e0 f(B) :J arginf8Eintef(B) 
for every f E Cb(0).) 

4. ASYMPTOTIC NORMALITY OF THE MDE 

In the present section attention shall be directed to one-dimensional open parameter sets, 
i.e., it shall be assumed that 0 is of the form 0 = (a, /3) for some a, /3 E R with a < f3. 
Again it is assumed that Ba E 0 is the true parameter. 
The conditions required for the consistency result of Theorem 3.1 are 5 assumed throughout 
here. Furthermore, the continuity condition (HC(Ba)) shall be replaced by the following 
stronger condition. 

(DC( Ba)) ("Differentiability and Holder continuity"): 
There is a neighbourhood U( Ba) c 0 of Ba with the following properties. 

(i) \Ix ER, BI-? S(B,x) is twice continuously differentiable on U(Ba) 
(the derivatives w.r.t. B shall be denoted by S', s or by S(iJ' i::; 2, likewise); 

(ii) S(Ba, ·) E Li(µe0 ) 3 S(Ba, ·); 

(iii) there are functions wa, Wi, w2 E L 1(µ80 ) such that, for some"'> 0, 
the following "integrable" local Lipschitz and Holder conditions hold : 
for every x ER and BE U(Ba) 

IS(B,x)- S(Ba,x)I < IB- Balwa(x) 
IS(B,x)- S(Ba,x)I < IB - Balw1(x) 
IS(B,x)-S(Ba,x)I < IB-Bal"w2(x) 

(iv) µe0 (S(Ba))-/= 0 . 

Theorem 4.1. Assume (\:/!),(ERG),(DC), and (ID). Let (Br)r?_o 
be a M DE w.r.t. D. Then it holds 

VT( Br - Ba)=:::} N(O, ~ft(S)- 2 ) 
as T-+ oo . 

( 4.1) 
(4.2) 
(4.3) 

(4.4) 

Proof: The (ERG) and (DC) assumptions together with Theorem 3.1 imply that there is a 
JP' -null set N with the property that for each w E n \ N one has simultaneously, as T -+ oo, 

Br(w)-+Bo 

and 

~ 1T f(X1(w))dt-+ ft(!) 

for every f E {S(Ba,·),IS(Ba,·)l,IS(Bo,·)l,wa,W1,W2}. Let us fix such an w En\ N (and 
drop it in the following notation, as it remains fixed). 
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For sufficiently large T - say T 2: T0 - it holds BT E int U(Bo) (where U(B0 ) is the neigh-
bourhood of Ba from the (DC) condition). Thus, Br must be a local minimum point of the 
function Dr : B 1-+ Dr ( B) . As by (DC) it is twice continuously differentiable, one concludes 

(4.5) 

.On the other hand, by Taylor's formula, 

( 4.6) 

with some Br that satisfies JBr - Bal< JBr - Bal . (Br can depend on w; note however that 
there is no measurability problem in what follows, as by (4.6) the r.v. Dr(Br)l{Br;tBo}lN 
is measurable.) 
If one can show that for sufficiently large T - say T 2: T1 2: Ta - it holds 

then (4.5) and (4.6) imply 

VT( Br - Ba)= -VTDr(Ba)Dr(Br)- 1 • 

In order to justify ( 4. 7) we shall prove that 

•• v 2 . 2 
Dr(Br)--> 3µ(5') 

(which is positive by (DCiv)). 
Furthermore we shall show that 

as T __,. oo; and the assertion follows from ( 4.8) - ( 4.10) at once . 

Proof of (4.9) : 
Let us start with calculating the derivatives of Dr(·). It is clear from (2.4) that 

Dr(B) 

Dr( B) 

-;3 lr (x - l S(B)d>.) (l S(B)d>.) d>. 

;31r { (1" S(B)d>.) 2 

- (L(S(Ba)- S(B))d>. + w) (1. S(B)d>.)} d>.. 

( 4.7) 

( 4.8) 

( 4.9) 

( 4.10) 

( 4.11) 

(4.12) 

As Br__,. Ba, so Br__,. Ba ; hence, (4.9) can be proved by showing first that the functions 
(} 1-+ Dr ( B) are uniformly continuous at Bo for sufficiently large T and second, that 

.. 2 . ~ 
Dr( Bo)--> 3µ(5')~ as T __,. oo. 

For(} E U(Ba) one has, by (4.12) 

JDr(B) - Dr(Ba)I ~ ~i(T) + ~2(T) + ~3(T) 
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with 

~i(T) = ; 31T l(l S'(B)d>.) 2 - (1. S'(B0 )d>.)2/ d>. (4.13) 

~2(T) = ; 31T ll(S(B0 ) - S(B))d>-1 IL S(B)d>.I d>. (4.14) 

~3(T) = ; 31r IWI 11·(S(B) - S(Ba))d>.I d>.. (4.15) 

Now we use the inequalities (4.1) - (4.3) to see that 

~i(T) < ;31T (L IS(B) + S(Bo)ld>.) (L IS(B) - S(Bo)ld>.) d,\ 

< ; 3 1T (1.(2IS(Bo)I + w1(X)IB- Bol)d>.) (L w1(X)d,\) d>.IB- Bal, 

the right hand expression converging to 

(4.16) 

with the right hand limit 

2 - 2 
IB - Bal 3µ( wo)(µ(ISI) + IB - Bal f.lo( w2)) ( 4.17) 

and that 

(4.18) 

where the integral vanishes as. T -+ oo . (4.16) - (4.18) together show that, for some 
T1 ~ To,M > 0 , and IB- Bal< 1,B E U(Bo), 

IDr(B) - Dr(Bo)I:::;; IB - Bol 1"" M, 

which proves th~ desired uniform continuity of Dr(·) at B0 • (Note that this also implies 
Dr(Br) =J. 0 for sufficiently large T .) Now, the same reasoning as in the proof of (3.20) 
and (3.21) shows that 

.. 2 . ry 

Dr(Bo) ___, 3p(S)~ as T-+ oo. 

Proof of (4.10} : 
(Let us underline again that Dr,S', etc. refer to Dr(B0 ),S(B0 ,X), etc.) 

Let us note that, following ( 4.11), 
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where 

NT foT (1 + t)vVidt 

HT = -T;f21T(l + t)Wi (i: t 1t Sd>..- µ(S)) dt. ( 4.19) 

It turns out that 
ll' HT -+ 0 as T-+ oo . (4.20) 

Indeed, for every 8 > 0, r > 0, with W:f := supt~T IWtl , 

JF( IHTI 2 8) < JF ( Jrw; · ;21T(1 + t) Ii: t fot Sd>..- µ(S')I dt 2 8) 

< JF (Jr w; 2 r) + JF ( ; 2 foT ( 1 + t) \ 1 : t fo 1 s d>.. - µ( S) \ dt 2 ~) . 
As the right-hand probability vanishes asymptotically and as 

it follows that, for every r > 0, 

)~1! lF (IHTI 2 8) ~ ~exp (- ~2 ) , 

proving ( 4.20). In view of ( 4.20) it is enough to calculate the asymptotic variance of the 
Gaussian r.v. -T'112 µ(S)NT as T-+ oo . 

Note that NT can be rewritten as 

N = lT(l + t)W dt = lT w d (1 + t)2 = (1 + T)2 w - lT (1 + t)2 dW 
T o t 0 tt 2 2 T o 2 t 

by Ito's formula, i.e. 
N =lT ((l+T)2 - (l+t)2)dvV, 

T o 2 2 t 

and hence NT E.N(O, O'~) , where 

O'~ 1T cl +2 T)2 - (1~t)2)2 dt 

(l+T)4 y_ (l+T) 2[(1+T)3 -1] (l+T)5-1 
4 6 + 20 . 

It follows that 

hence ( 4.10). D 

Remark 6. By exactly the same arguments one can prove that in case that 8 is no longer 
one-dimensional but a non-empty bounded open subset of R,. d' under the further assump-
tions of Theorem 4.1, it holds as T --+ oo 

VTµ(S)µ(Sf (BT - Bo)~ N(O, ~p(S)µ(S?) 
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(where the T-sign means transpose) . This indicates that only the one-dimensional func-
tional p 80 (S(B0 , ·))rB0 of B0 can be estimated VT - consistently (although, by Theorem 3.1, 
the full estimate Br for B0 itself is strongly consistent). 

5. "THE SHIFTED COEFFICIENT MODEL" 

The purpose of the present section is to present a particular model of the type ( 1.1) which 
has the advanteage that verifying the assumptions of Theorems 3.1 and 4.1 becomes rather 
easy. The model is defined by the SDE 

dx: = c(x: - B)dt + dW1, t ~ 0, X 0 given (5.1) 

with B E 8 C R 1 (8 bounded, non-void), where c : R _, R is a measurable function. 
Clearly this model is of type (1.1) with S(B,x) = c(x - B),i.e. the parameter B determines 
a shift of the coefficient function which explaines the above terminology. 

Consider the following assumptions: 

(3!s) 3L>O:Vx,y lc(x)-c(y)I :S Llx-yl 
lc(x)I :S L(l + lxl) 

(ERGs) A 1-+ m(A) := l exp{21x c(y)dy}dx defines a 

finite measure on (R,B(R)). 

(Note that these conditions imply (3!), (ERG80 ) and (HC8o) to hold for any B0 E 8 .) 

Letting J-l := m(R)- 1m, the following identifiability condition is imposed .. 

(IDs) The function h , defined by · 

h(6.) := h (c(x)- c(x - 6.))p0 (dx), 6. ER, 

is strictly monotonous in a neighbourhood U of 0 and satisfies 

lk(6.)I ~ c > o 
for some constant c and every 6. rJ. U. 

Corollary 5.1. Under (3! 5 ),(ERG5 ), and (IDs): 

(i) There is a MDE (Br) w.r.t. p for the model (5.1). 

(ii) Every such MDE is strongly consistent for every B0 E 8. 

Proof. It is straightforward to see that the above assumptions imply those of Theorem 3.1. 
D 

In order to obtain the asymptotic distribution of the estimators one needs the following 
somewhat stronger condition. 

(DC s) : (i) The function c is twice continuously differentiable 
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(with derivatives c', c"). 
(ii) There are constants M > 0 and ,,, > 0 such that 

for every x, y ER 

\ c' ( x) - c' ( y) I < M\x-y\ 
and 

\ c" ( x) - c" ( y) \ < M\x-y\". 
(iii) It holds 

µo( c') =J 0. 
Again it is only one straightforward step to check that (DC 5 ) implies that ( DC8J is fulfilled 
for every B0 • Thus, one obtains 

Corollary 5.2. Under (3!5 ),(ERG5 ),(JD5 ),and(DG5 ),let (Br) be a MDE for the model 
(5.1). Then it holds for every B0 E 0 

VT( Br - Bo)~ N(O, ~µ0 (c')- 2 ) 
as T---+ oo. 

6. EXAMPLES 

6.1. "Shifted ORNSTEIN-UHLENBECK model". Consider the SDE 

dX1 = p(X1 - B), t 2:: 0, X 0 given 

D 

(6.1) 

where p is a fixed constant and B E 0 an unknown location parameter. It is well-known 
- and easy to see as well - that in case p < 0 the assumptions (3! 5 ), (ERG5 ) and (DC5 ) 

are fulfilled with µ0 = N(O, - .,1 ) (hence the stationary distribution of X 80 is JV( B0 , --:1-) ); 
~P "p 

moreover, (ID 5 ) is fulfilled as well as k(B) = B. We find from Corollaries 5.1 and 5.2 that 
there is a MDE (Br) for Bo and that every MDE is strongly consistent and satisfies 

as T---+ oo. 

Howewer, in the present example the random field D is just given by 

Dr(B) = ; 3 1r (xt - Xo -11 p(Xn - B)du) 2 dt, T > 0. 

(6.2) 

(6.3) 

Hence, if 0 is open then for sufficiently large T there is a unique MDE which is given by 

Br = P~3 1r t (P 1t Xndu + Xo - X 1 ) dt, T > 0. (6.4) 

It might be of some interest to compare the behaviour of this estimator with that of the 
maximum likelihood estimator (MLE) (OJ:) , determined by 

B~ E argmax { 1r p(X1 - B)dX1 - ~ 1r p2 (X1 - B) 2 dt} ( 6.5) 

(cf. [7] ), which - under the above assumptions on B - yields 

(}~ = ~ (1r X1dt - ~Xr) · (6.6) 
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One obtains (see also (7.4) ) for every Bo 

VT(B~ - Bo)==* N(o,p- 2 ). (6.7) 

6.2. "Counter - example". Now let us consider the model (6.1) again, but with respect 
top< 0 as unknown parameter, i.e. S(p,x) = p(x - B) with B kept fixed. This is not a 
shifted coefficient model, howewer, it is straightforward that (3!), (ERG po), and (DCp 0 ) 

are fulfilled with µPo = N(B, --21 ). 
· Po 

Note that the function kp 0 of (3. 7) takes the form 

kp 0 (p) =(po - p) 1 xµp0 (dx) =(po - p)B. (6.8) 

This implies that (.ID po) is fulfilled if B ¥- O; the model is not identifiable if B = 0 ! 

· By writing down DT(P) and assuming the parameter domain to be open one finds the 
MDE 

, f0T (Xt - Xo) J;(xu - B)d·udt 
PT= 2 ' f0T (I;(xu - B)du) dt 

(6.9) 

which is strongly consistent and satisfies 

VT(h - Po)==* N(O, ~B- 2 ). (6.10) 

In order to derive a MLE one has to maximize the right- hand expression in (6.5) w.r.t. p 
and obtains 

* for (Xt - B)dX1 

Pr= J: (Xt - B) 2dt 
- (6.11) 

there (cf. again ( 7.4) ) 

VT(h -po)==* N(O,(B2 - -21 t 1 ). 
Po 

(6.12) 

6.3. A non- linear example. Let us consider also an example where the coefficient func-
tion depends on the parameter (} in a non- linear way, namely the SDE 

2(B - X!) 
dX:= l+(B-Xf) 2 dtdvVi, t20, withX0 given (6.13) 

where the parameter B varies in some bounded interval 0 = ( o:, (3) . Clearly this example 
is of the form (5.1) with ·. 

-2x 
c( x) = -1 --~ , x E JR . + x~ 

We claim that it is easy to check the conditions introduced in Section 5 . 

Indeed, let us start from checking the (ERG s) con di ti on . As 

ix c(y)dy = -ln(l + x2 ) 

(6.14) 
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we see that 
1 

m( dx) = ( ~ dx , 1 + x-) 

hence 
7i 

m(R.) = 2 
and 

7i 1 
µ0 (dx) = - ( ~) 2 dx. 2 1 + x-

Furthermore, the function c is thrice continuously differentiable with derivatives 

x2 - 1 
c' ( x) = 2 (1 + x2)2 , 

x 3 - 3x 
c"(x) = -4 (1 + x2)3 ' 

"'( ) = 12 x4 - 6x2 + 1 
c x (l+x2)4, 

and each of these functions is absolutely bounded by the constant 2 . This proves the (3! 5 ) 

. and (DCs) conditions at once, 

as 41 x 2 - 1 µ0 (c') = - ( ~)4 dx = 1. 
7i ll\ 1 + x-

It remains to check the (IDs) con di ti on by considering the function 

4 f 6.-u 1 
6. I-* h(6.) := ; Jfil 1 + (6. - 1t)2 (1 + u2)2 du. 

One can write 

Integration by parts and the substitution u = 6. - v give 

2 j 2(6. - u) 1 
h2 (6.) = -- ( (6. )2 ) 2 --~du 

7f 1 + - u 1 + u-

= - 46. j 1 1 dv - h(6.)· 
7r (1 + v2)2 1 + (6. - v)2 ' 

i.e. 

46. . l 1 1 h(6.) = - -J(6.) with J(6.) = (6. )2 ( 2r du. rr fill+ -u I+u -
Observe that the function J is continuously differentiable, strictly positive on R. and has a 
strict maximum at 6. = 0 . This implies that his strictly monotonous in a vicinity U(O) of 
0 and bounded away from 0 on (0 - B0 ) \ U(O). Hence, (IDs) is fulfilled, too. 

Altogether, Corollaries 5.1 and 5.2 are proved to hold for every Bo E 0 , i.e. the MDE (Br) 
exists and is strongly consistent, and it holds 

as T--+ oo . 



A MINIMUM DISTANCE ESTIMATOR 17 

7. CONCLUDING REMARKS 

A few remarks are in order to relate the proposed MDE (Br) according to (1.2) to estiil_lators 
that can be obtained from a likelihood function, which is available under the (3!) condition, 
e.g. in the form (cf. [7]) 

A,,.(8) =exp { { S(O, X,) dX, - [ S(O, X,)' dt} . (7.1) 

LANSKA [6] has shown that for compact e c lll under conditions close to that of Theorem 
3.1 there is a strongly consistent MLE (Bf) , i.e. an estimator satisfying 

Bf E argmax Ar(B) 
BE8 

(7.2) 

Moreover, under additional assumptions in [6] it is shown that there exists a strongly con-
sistent estimator ( {;17_,*) that satisfies 

a 
fJB log Ar(B) =0 (7.3) 

and 

(7.4) 

( 8 is assumed open here.) ( 81'* can be referred to as a likelihood equation estimator (LEE)). 

The MDE (Br) proposed here has two obvious disadvanteages in comparison with the MLE 
(Bf) or the LEE ( (;17_,*) : First, the identifiability con di ti on (ID) can be violated in cases 
where MLE / LEE still work, as Example 6.2 shows. And second, a comparison of (7.4) 
and ( 4.4) shows that the asymptotic variance of (Br) exceeds that of (Bf*) at least at 20 per 
cent. 

Howewer, let us add three notes reflecting certain (possible) advanteages of the MDE (Br). 
First, it may be unconvenient from the practical point of view to deal with the stochastic 
integral in (7 .1) . If the function S( B, ·) is differentiable then the stochastic integral can 
be replaced by means of a Lebesque integral - if not, the MDE might be a convenient 
alternative. 

Second, the assumptions needed in order to prove (7.4) are considerably stronger than the 
assumptions imposed here. 

And third, one may hope that the MDE provides a procedure that is robust w.r.t. small 
deviations of the model (opposite to other estimators) . Unfortunately, there is no proof of 
this property, yet. 
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