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Abstract

Three methods are reviewed for computing optimal weights and abscissas which can
be used in the Quadrature Method of Moments (QMOM): the Product-Difference Algorithm
(PDA), the Long Quotient-Modified Difference Algorithm (LQMDA, variants are also called
Wheeler algorithm or Chebyshev algorithm), and the Golub–Welsch Algorithm (GWA). The
PDA is traditionally used in applications. It is discussed that the PDA fails in certain situa-
tions whereas the LQMDA and the GWA are successful. Numerical studies reveal that the
LQMDA is also more efficient than the PDA.
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1 Introduction – the motivation for using the quadrature method
of moments

Many processes in nature and industry involve particles. There are several
ways for the numerical simulation of such processes. An individual modeling
of the particles results generally in very complicated algorithms whose appli-
cability is often restricted to a moderate number of particles. However, the
behavior of individual particles is often not of interest in applications, but
instead the average behavior of the particles. An approach with this objective
consists in modeling the particles by a function called particle size distribution
(PSD). This approach leads to so-called population balance systems, that are
often used as model, e.g., in chemical engineering [20] or in cloud physics [21].

However, the numerical simulation of population balance systems is still chal-
lenging since the PSD f depends not only on time and space but also on
properties of the particles, the so-called internal coordinates. Let us consider
a model for a particulate process that takes into account the flow field (Navier–
Stokes equations), balance laws for scalar quantities like energy or concentra-
tions (system of scalar convection-diffusion equations), and an equation for
the PSD, e.g. like in [8]. Then, the flow field, energy, and concentrations de-
pend on time and on the three-dimensional spatial coordinate, whereas the
PSD depends additionally on the internal coordinate. After having discretized
these equations in time, one has to solve in each discrete time equations for
the flow field, energy, and concentrations that depend only on the spatial
coordinate, while the equation for the PSD depends additionally on the inter-
nal coordinate. Hence, this equation is defined in a domain which is at least
four-dimensional. In applications, currently the case of one internal coordinate
(uni-variate PSD) is considered most often. This case will be studied in this
note. A typical equation for f has the form, e.g., see [17]

∂f(t,x, e)

∂t
+∇x · (u(t,x)f(t,x, e))

= s(t,x, e)− ∂(G(t,x, e)f(t,x, e))

∂e
in (0, T )× Ω× Ωe. (1)

In (1), T is a final time, Ω ⊂ R3 is a domain, Ωe = (a, b), with a < b, of-
ten with a ≥ 0, is the domain of the internal coordinate, u(t,x) is a velocity
field, s(t,x, e) is a source term, and G(t,x, e) is the growth rate of the parti-
cles. In applications, (1) is defined in each discrete time in a four-dimensional
domain. Hence, the solution of (1) might be time-consuming, although mean-
while some methods for solving (1) with direct discretizations can be found in
the literature [13,11,8]. Moreover, available software generally does not sup-
port equations in more than three dimensions.
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For reasons like these, it was proposed in [9] to replace (1) by a system for
the first moments of f , where the k-th moment is defined by

∫ b
a e

kf(t,x, e) de.
This approach is called method of moments (MOM). Multiplying (1) by ek

and integrating over Ωe leads to

∂mk(t,x)

∂t
+∇x · (u(t,x)mk(t,x))

=
∫ b

a
eks(t,x, e) de+

∫ b

a
g(t,x, e)f(t,x, e) de in (0, T )× Ω, (2)

k = 0, 1, , 2, . . .. The derivation of (2) applied integration by parts for the
growth term where lime→a+0 f(t,x, e) = lime→b−0 f(t,x, e) = 0 was assumed.
The modified growth function is given by g(t,x, e) = kek−1G(t,x, e). In this
way, a system for the moments is obtained. On the one hand, the first mo-
ments are often of importance in practice since they correspond to physical
quantities, like to the number of particles (0-th moment) or to their volume
(3-rd moment). But on the other hand, the reconstruction of f from its first
moments is generally an ill-posed problem and only few numerical schemes
are available for this purpose [1,10,3]. Since the unknown PSD still appears in
the second term on the right hand side of (2), system (2) is not yet closed. A
direct closure can be obtained only for some special growth functions, see [9].

The rise of moment-based methods started with the proposal of the quadrature
method of moments (QMOM) in [16]. The idea of QMOM consists in replacing
the second term on the right hand side of (2) by a quadrature formula

∫ b

a
g(t,x, e)f(t,x, e) de ≈

n∑
i=1

g(t,x, ei)wi(t,x), (3)

where ei denote the quadrature points (abscissas) and wi are the weights. In
order to keep the quadrature error as small as possible, the abscissas and the
weights should be chosen such that the optimal order (2n−1) of the numerical
quadrature is obtained.

This note will start by shortly reviewing the derivation of optimal-order quadra-
ture rules. It turns out that in essence an eigenvalue problem with a symmetric
tridiagonal matrix has to be solved whose coefficients have to be computed effi-
ciently. In [16], the product-difference algorithm (PDA) from [7] was proposed
for the computation of the coefficients. To our best knowledge, this algorithm
has been used most often since then in combination with the QMOM. In this
note, two alternatives to the PDA will be studied: the long quotient-modified
difference algorithm (LQMDA) from [22] and the Golub–Welsch algorithm
(GWA) from [6]. Variants of implementing the LQMDA are also called Wheeler
algorithm [25] and Chebyshev algorithm [23]. The advantages and drawbacks
of the algorithms will be discussed. Numerical examples will be presented
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which compare primarily the efficiency of the considered algorithms. Also the
robustness of the algorithms with respect to the number of moments is ad-
dressed and observations recently reported in [23] will be supported. The note
concludes with a summary.

2 Optimal-order quadrature rules

2.1 General approach

For simplicity of notation, the dependency of the functions on the spatial
variable x and on the time t will be suppressed henceforth. The goal consists
in defining the weights wi and the abscissas ei of the quadrature rule

∫ b

a
g(e)f(e) de ≈

n∑
i=1

g(ei)wi (4)

in such a way that if g(e) is a polynomial of degree less or equal than (2n−1),
then the quadrature is exact. In (4), the function g(e) is known. It will be
assumed that

• f is measurable and non-negative in (a, b),
• the moments mk, k = 0, 1, . . ., of f exist and are finite,
• for all polynomials p(e) ≥ 0 in [a, b] with

∫ b
a p(e)f(e) de = 0 it follows that

p(e) ≡ 0.

Then, f is called weight function. If the PSD is represented by a continuous
function with non-negative values, these conditions are met.

The derivation of optimal-order quadrature rules will reveal that the complete
knowledge of f is not necessary. It will be sufficient to know the first 2n
moments of f . In practice, the moments computed in the previous discrete
time can be used for this purpose.

Starting point of deriving optimal-order quadrature rules for (4) is the defini-
tion of an inner product which is induced by the weight function

〈p, q〉 :=
∫ b

a
p(e)q(e)f(e) de. (5)

In the next step, one considers orthogonal polynomials {pk}nk=0 with respect
to the inner product 〈·, ·〉 with degree(pk) = k. The polynomials {pk}nk=0 are
normalized such that the coefficient in front of the term with the highest power
is 1. It can be shown that a necessary condition for (4) being of order (2n−1)
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is that the abscissas are the roots of the n-th order orthogonal polynomial
pn(e).

For this reason, an efficient way for computing the roots of pn(e) is necessary.
To this end, the recursion property of orthogonal polynomials is used:

p−1(e) = 0, p0(e) = 1,

pk+1(e) = (e− βk)pk(e)− α2
kpk−1(e) k = 0, 1, . . . (6)

with the coefficients

βk =
〈epk, pk〉
〈pk, pk〉

, k ≥ 0, α2
k =


1 k = 0,

〈pk, pk〉
〈pk−1, pk−1〉

k = 1, . . .
.

Note that, given p0, . . . , pn−1, the coefficients βn−1 and α2
n−1 can be computed

by knowing the first 2n moments of f . Now, pn can be computed by (6).

A simple rewriting of the three-term recursion (6) up to k = n − 1 leads to
the representation of (6) by a linear system of equations

(
Ãn − eI

)


p0(e)
...

pn−1(e)

 =



0
...

0

−pn(e)


with Ãn =



β0 1 0 . . . . . . 0

α2
1 β1 1 0 . . .

...

0
. . .

. . .
. . . . . .

...
...

. . .
. . .

. . . 0

0 . . . . . . α2
n−2 βn−2 1

0 . . . . . . 0 α2
n−1 βn−1



.

(7)
From (7) it can be seen that for the roots ei of pn(e) the right hand side is
homogeneous. That means, ei is a root of pn(e) if and only if ei is an eigenvalue
of Ãn.

The eigenvalue problem can be even converted to an eigenvalue problem for
a symmetric matrix, which is preferable from the numerical point of view.
Defining the diagonal matrix D = (di)

n−1
i=0 with d0 = 1, di = (α1 · . . . · αi)

−1,

5



i = 1, . . . , n− 1, then (7) can be transformed for e = ei into

(An−eI)


p̂0(e)
...

p̂n−1(e)

 = 0 with An = DÃnD
−1 =



β0 α1 0 . . . . . . 0

α1 β1 α2 0 . . .
...

0
. . .

. . .
. . . . . .

...
...

. . .
. . .

. . . 0

0 . . . . . . αn−2 βn−2 αn−1

0 . . . . . . 0 αn−1 βn−1


(8)

and, using the definition of dk,

p̂k(ei) = dkpk(ei) =
〈p0, p0〉1/2

〈pk, pk〉1/2
pk(ei), k = 0, . . . , n− 1. (9)

Let {pk}n−1k=0 be an orthogonal set of polynomials which are normalized such
that 〈pk, pk〉 = 1, k = 0, . . . , n − 1. Then it follows from the Christoffel–
Darboux formula that the weights are given by

wi =

(
n−1∑
k=0

p2k(ei)

)−1
, i = 1, . . . , n. (10)

Normalizing {pk}n−1k=0 and using (9) gives

pk(ei) =
pk(ei)

〈pk, pk〉1/2
=

p̂k(ei)

〈p0, p0〉1/2
. (11)

Let q = (qi0, . . . , qi,n−1)
T be an eigenvector to the eigenvalue ei which is,

e.g., computed by a numerical method. Since p̂0(ei) = 1, it follows that the
eigenvector (p̂0(ei), . . . , p̂n−1(ei))

T is q−1i0 times q. Using (10) and (11), one
obtains

wi =

(
n−1∑
k=0

p̂2k(ei)

〈p0, p0〉

)−1
= 〈p0, p0〉q2i0

(
n−1∑
k=0

q2ik

)−1
= m0q

2
i0

(
n−1∑
k=0

q2ik

)−1
,

i = 1, . . . , n.

In summary, the complete information concerning the abscissas and the weights
of (4) are obtained from the solution of the eigenvalue problem (8).

It remains to find an efficient and stable algorithm for computing the entries
of An. By the definition of the inner product 〈·, ·〉 it follows that the entries
depend on the first 2n moments of f . In the application of the QMOM, these
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moments are generally different in each spatial point and they generally change
in each time step. Thus, the algorithm for computing the coefficients of An

has to be applied over and over again.

For the remainder of this note, it will be assumed that so-called valid or
realizable sets of moments {mi}2ni=0 or {mi}2n+1

i=0 with m0 6= 0 are given. A set
of moments is called valid or realizable if there exists a function f such that
{mi} are the moments of f . Results concerning the existence and uniqueness of
a solution of this so-called truncated Hausdorff moment problem can be found
in [2]. It is well known that invalid sets of moments can be obtained, e.g.,
in numerical simulations of transport-dominated equations for the moments
[12]. From the first property of the weight function it follows that m0 ≥ 0.
However, the case m0 = 0 contradicts the last property for p(e) ≡ 1. Hence,
it can be assumed even that m0 > 0.

2.2 The Product-Difference Algorithm

The PDA was introduced in [7]. In the first step of this algorithm, a matrix
B = (bij) ∈ R2n×(2n+1) is initialized. The elements of the first and second
column are set as follows

bi1 = δi1, bi2 = (−1)i−1mi−1, i = 1, . . . , 2n,

where δij is the Kronecker delta. The other components are obtained by ap-
plying the following product-difference recursion formula

bij =


b1,j−1bi+1,j−2 − b1,j−2bi+1,j−1,

j = 3, . . . , 2n+ 1,

i = 1, . . . , 2n+ 2− j,
0, else.

(12)

The resulting matrix has the form

B =



1 m0 b13 . . . . . . b1,2n+1

0 −m1 b23 . . . b2,2n 0
...

...
... . .

.
. .
. ...

... m2n−2 b2n−1,3 0
...

0 −m2n−1 0 0 . . . 0


.
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In the next step, coefficients ci are determined by

ci =


m0, i = 1,
b1,i+1

b1ib1,i−1
, i = 2, . . . , 2n.

With these coefficients, one can compute the entries of An in the following
way

βi−1 =

c2, i = 1,

c2i + c2i−1, i = 2, . . . , n,
αi =

√
c2i+1c2i, i = 1, . . . , n− 1.

The derivation of the PDA is based on the study of the integral (Stieltjes
transform)

I(z) =
∫ ∞
0

f(e)

z + e
de,

where f(z) is a weight function such that I(z) is finite, see [7]. From the
properties of a weight function given above, it follows that z does not belong
to the domain of integration, because otherwise the function in the integral is
singular for e = −z > 0 and the integral itself is not well defined.

In the first step, the term (z + e)−1 is expanded into a formal series with
respect to z−1, which is in the next step replaced by a continued fraction.
The coefficients which appear in the PDA are determined by comparing the
continued fraction and the formal series. Then, it can be shown that from the
continued fraction the coefficients of the eigenvalue problem (8) can be derived
[7,24]. In this way, one obtains for all z a quadrature formula for I(z) with
weights and abscissas independent of z

I(z) ≈
n∑

i=1

wi

z + ei
.

It can be concluded, using connections between Stieltjes transforms and op-
timal quadrature rules, that one can use the same weights and abscissas if
instead (z + ei)

−1 any other function g(e) in the integral is given, provided
g(e) is analytic on the positive real axis.

It should be noted that the PDA might fail if the condition a ≥ 0 is not
fulfilled. A simple example is the consideration of Gauss–Legendre quadrature,
i.e. f(e) = 1, in (−1, 1) with four moments m0 = 2, m1 = 0, m2 = 2/3,
m3 = 0. The well-known data of the quadrature formula are ei = ±1/

√
3,
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wi = 1, i = 1, 2. With the PDA one obtains

B =



1 2 b13 b14 b15

0 0 b23 b24 0

0 2
3
b33 0 0

0 0 0 0 0



b13 = b12b21 − b11b22 = 0,

b23 = b12b31 − b11b32 = −2
3
,

b14 = b13b22 − b12b23 = 4
3
,

...

Now, it follows that

c1 = 2, c2 =
b13
b12b11

= 0, c3 =
b14
b13b12

.

Here, the algorithm breaks down because of a division by zero. The same
effect can be observed if one considers Gauss–Hermite quadrature, i.e. f(e) =
exp(−e2) in (−∞,∞), with four moments.

The main reason for the failing of the PDA in these examples is the vanishing
of a moment. If the internal coordinate is assumed to be non-negative, all
moments are positive. However, due to discretization errors in solving the
equations for the moments or because of round-off errors, computed moments
might vanish or at least might become very small. In this case, a potential
instability of the PDA cannot be excluded. The observation that the QMOM
with the PDA might lead to an ill-conditioned problem is not new, e.g., see
the discussion of this topic in [4,23]. Further sources of instability of the PDA
are highlighted in Section 3.

2.3 Long Quotient-Modified Difference Algorithm

The LQMDA was proposed in [22]. This algorithm can be applied for the
problem of finding optimal abscissas and weights if the so-called modified
moments

µl =
∫ b

a
Pl(x)f(x) dx, l = 0, 1, . . . ,

are given. In this formula, Pl are polynomials of degree l satisfying a three
term recurrence relation with known coefficients

xPl(x) = alPl+1(x) + blPl(x) + clPl−1, l = 0, 1, . . . .

The standard moments are recovered for al = 1, bl = cl = 0.

For the sake of brevity, only the algorithm for the standard moments will be
presented here. The LQMDA is initialized by

s−1,j = 0, s0,j =
mj

m0

, j = 0, . . . , 2n− 1.

9



Note that s0j > 0 if j is even, since mj > 0 for j even. Then, the following
recursion can be computed

σi = si,i+1 − si−1,i, i = 0, . . . , n− 1,

ρi = −σisi,i+1 + si,i+2 − si−1,i+1, i = 0, . . . , n− 2,

si+1,j = ρ−1i (−σisi,j + si,j+1 − si−1,j) , i = 0, . . . , n− 2,

j = i+ 2, . . . , 2n− 2− i.

With these values, the coefficients of the matrix An are given by

βi = σi, i = 0, . . . , n− 1, αi+1 =
√
ρi, i = 0, . . . , n− 2.

It was noted in [22] that for the standard moments the LQMDA is essentially
equivalent to an algorithm given already in [24]. An alternative implementa-
tion of the LQMDA is presented in [25], see also [19]. This implementation
differs from the algorithm given above by considering intermediate quanti-
ties σij instead of sij, where the relation between these quantities is given by
sij = σij/σii. This so-called Wheeler algorithm was already used within the
QMOM, e.g., in [5,26]. A slight modification of implementing the Wheeler
algorithm is called Chebyshev algorithm, proposed in [23], where the relation
of intermediate quantities Aij to sij is the same as in the Wheeler algorithm
sij = Aij/Aii.

The LQMDA is based on a reformulation of the eigenvalue problem (8), see
[22]. First, the recurrence of the orthogonal polynomials (6) is rewritten in the
form

epk(e) = αkpk+1(e) + βkpk(e) + αk−1pk−1(e) k = 0, 1, . . . ,

where also a different normalization is used. Now, the entries of An can be
expressed with the new set of orthogonal polynomials. With these expressions
and some algebraic manipulations, a new eigenvalue problem is derived from
(8). With a comparison of the trace of the matrix of the new eigenvalue prob-
lem with the trace of An, and the traces of the squares of both matrices, a
recursion formula for the coefficients of An is derived.

The coefficients ρi in the LQMDA appear in the definition of a certain set of
orthogonal polynomials which is connected to other sets of orthogonal poly-
nomials, see [22]. A close inspection of the derivation reveals that, with ap-
propriate normalizations of the former set of orthogonal polynomials, always
ρi > 0 holds. Hence, the LQMDA is well defined and there are no restrictions
on the interval (a, b) and the values of the moments as for the PDA. For in-
stance, straightforward calculations reveal that the abscissas and weights of
the Gauss–Legendre quadrature in (−1, 1) and the Gauss–Hermite quadrature
in (−∞,∞) can be computed with the LQMDA. In this respect, the LQMDA
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is expected to be more stable than the PDA with respect to errors coming
from numerical approximations and round-off errors.

2.4 The Golub–Welsch Algorithm

The last algorithm which will be considered was proposed in [6]. This algorithm
needs (2n+ 1) moments for computing the weights and abscissas of (4).

The required moments are arranged in a matrix of the form

M =



m0 m1 m2 . . . mn

m1 m2 . .
.

m2 . .
. ...

... . .
.

mn . . . m2n


∈ R(2n+1)×(2n+1). (13)

This symmetric matrix is called Hankel matrix. SinceM is the Gramian matrix
of the inner product (5), it is even a positive definite matrix. A symmetric and
positive definite matrix allows a Cholesky decomposition M = RTR, where R
is an upper triangular matrix with the entries

rii =

(
Mii −

i−1∑
k=1

r2ki

) 1
2

, i = 1, . . . , n+ 1,

rij =
Mij −

i−1∑
k=1

rkirkj

rii
, i < j, j = 1, . . . , n+ 1, (14)

and Mij = mi+j−2 for i, j = 1, . . . , n + 1. Given the Cholesky decomposition,
one can compute the entries of the matrix An in (8) via

βj−1 =
rj,j+1

rjj
− rj−1,j
rj−1,j−1

, j = 1, . . . , n,

αj =
rj+1,j+1

rjj
, j = 1, . . . , n− 1, (15)

with r00 = 1 and r01 = 0.
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Since R is an upper triangular matrix, its inverse has the form

R−1 =



s11 s12 . . . s1,n+1

0 s22 . . . s2,n+1

...
. . .

...

0 . . . 0 sn+1,n+1


.

For the derivation of the GWA in [6], it was used that the polynomials

pj−1(x) =
j∑

i=1

sijx
i−1, j = 1, . . . , n+ 1,

form an orthonormal system and hence satisfy the three term recurrence re-
lation

xpj−1(x) = αj−1pj−2(x) + βj−1pj−1(x) + αjpj(x), j = 1, . . . , n, (16)

with p−1(x) = 0 and p0(x) = 1. Comparing the coefficients of the two highest
powers xj and xj−1 on both sides of this identity results in

sjj = αjsj+1,j+1, sj−1,j = βjsjj + αjsj,j+1, j = 1, . . . , n.

It follows that

αj =
sjj

sj+1,j+1

, βj =
sj−1,j
sjj

− sj,j+1

sj+1,j+1

, j = 1, . . . , n.

One obtains (15) by expressing the entries of R−1 with the entries of R. These
expressions can be calculated explicitly.

Note that there are close connections between Hankel matrices and continued
fractions. The coefficients of a continued fraction can be determined via certain
determinants of Hankel matrices, see [7,24].

The additional moment which is needed in the GWA can be obtained in
the QMOM in the following way. At the initial time, m2n can be computed
from the initial data. Then, the weights and abscissas for the initial time are
computed. In all other discrete times, the weights wi and the abscissas ei,
i = 1, . . . , n, from the previous discrete time are available. Since m2n is de-
fined as an integral on (a, b), it can be approximated by a quadrature rule as
follows

m2n :=
n∑

i=1

e2ni wi. (17)

With this approach, we could observe in numerical studies that the matrix M
might be not positive definite. Concretely, the used MATLAB routine chol
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for the Cholesky decomposition returned a warning. However, the formulas
(14) could still be used and the algorithm could be performed. At any rate,
one should be aware of this potential instability of the GWA.

Another source of instability might be induced by the fact that in practice the
moments are not computed from (5) but using some discretization of (2). Due
to discretization errors, (5) and even the positive definiteness of the Hankel
matrix M might be violated. This situation leads to a so-called non-realizable
set of moments since it is known [2] that for a set of moments to be realizable
the positive semi-definiteness of the Hankel matrix is a necessary condition.

3 Numerical studies

Two numerical studies on the efficiency of applying the PDA, LQMDA, and
GWA for computing the weights and abscissas for the QMOM are presented.
In the first study, seven problems are considered which were already used in
the literature. The second study assesses also the robustness of the methods
with respect to an increasing number of moments. In addition, the robustness
in the situation that m0(t)→ 0 as t→∞ is investigated.

With respect to the LQMDA, we implemented the variant presented in Sec-
tion 2.3 and also the two variants called Wheeler and Chebyshev algorithm.
All implementations proved to be equally robust and the computing times
among these variants differed only marginally. For the sake of brevity, only re-
sults for the algorithm described in detail in Section 2.3 will be presented here.
All conclusions for this algorithm can be transferred literally to the Wheeler
and Chebyshev algorithm.

In the first numerical study, seven problems are studied for a fixed number of
moments and a fixed time interval. For the sake of brevity, the used problems
will be described only shortly. All problems are defined for the case of ideal
mixing, i.e. the functions in (1) do not depend on x. Problems I – III consider
the growth of particles

∂f(t, e)

∂t
= − ∂

∂e
(φi(e)f(t, e)) , (t, e) ∈ (0, T ]× (0,∞),

f(0, e) = ae2 exp(−be), e ∈ (0,∞),
(18)

with

φ1(e) = β, φ2(e) = βe, φ3(e) =
β

e
. (19)

In particular, Problem III (diffusion-controlled growth) is discussed in detail
in [16]. We used for (18), (19) the same parameters as in [16]: a = 0.108,
b = 0.6, β = 0.78.
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In Problems IV – VII, terms for the coalescence and breakage of particles
appear in the equation for the particle size distribution

∂f(t, e)

∂t
=

1

2

∫ e

0
f(t, e− e′)f(t, e′) de′ −

∫ ∞
0

f(t, e)f(t, e′) de′

+ 2σ
∫ ∞
e

f(t, e′) de′ − σef(t, e), (t, e) ∈ (0, T ]× (0,∞). (20)

The following initial conditions were used

f(0, e) =

exp(−e), Problems IV – VI

4e exp(−2e), Problem VII
, e ∈ (0,∞).

Problems of this type were studied [18,14,15]. In (20), σ is the fragmentation
rate. This rate is given by σ = Φ2(∞)/2, where Φ(∞) is a constant which
represents the total number of particles in an asymptotic state of the system.
The following situations were considered in our numerical studies

Problem IV: Φ(∞) = 0.1, number of particles decreases,

Problem V: Φ(∞) = 5, number of particles increases,

Problem VI,VII: Φ(∞) = 1, number of particles stays constant.

The solution of all problems can be computed analytically such that the ac-
curacy of numerical results can be assessed. For all problems, one obtains
basically the same results for the weights and abscissas with all considered
methods.

In all examples, the first six moments were used, i.e. n = 3. For the tempo-
ral discretization, the classical explicit Runge–Kutta scheme of fourth order
was applied. All examples were computed in the time interval [0, 10] with a
time step of length 0.01. The simulations were carried out with MATLAB,
version 7.12.0 on a HP BL2x220c computer with Xeon 2933 MHz processors.
The running times were measured with the MATLAB commands tic and toc.
For each problem and for each method, 10000 runs were performed and the
execution times were averaged.

The results of the first computational study are presented in Table 1. It can
be clearly seen that the QMOM with LQMDA is somewhat more efficient
than the QMOM with PDA and that the slowest method is the QMOM with
GWA. This behavior can be explained to some extend by the number of float-
ing point operations which each method requires. Counting these operations,
one finds that the LQMDA needs the smallest number among the considered
methods. However, memory access is nowadays often more time-consuming
than performing floating point operations. Nevertheless, since each floating
point operation requires memory accesses, the number of floating point oper-
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ations gives still a certain idea on the efficiency of a method. The relatively
large computing times of the GWA seem to come from computing m2n with
(17) and from the larger number of square root evaluations compared with
the PDA and the LQMDA.

Table 1
Average computing times in seconds for performing the QMOM with different meth-
ods for computing the coefficients of An, n = 3, T = 10.

PDA LQMDA GWA

Problem I 0.511 0.497 0.551

Problem II 0.510 0.498 0.551

Problem III 0.510 0.497 0.550

Problem IV 0.431 0.419 0.475

Problem V 0.434 0.420 0.474

Problem VI 0.434 0.420 0.474

Problem VII 0.433 0.419 0.474

The second numerical study considers the robustness of the methods. To this
end, Problem IV is used. A main feature of this problem is that m0(t) decreases
monotonically with m0(t) → 0 as t → ∞. Since all considered methods fail
in the case m0 = 0, this behavior is a potential source of instability. Hence,
Problem IV was simulated for different lengths of the time interval. Another
potential source of instability is an increase of the number of moments, see
[23]. In [23], several examples are mentioned where it is essential to use a large
number of moments for obtaining accurate results. Information on the success
of the simulations and on the computing times are provided in Table 2. The
length of the time step was chosen to be 0.01 in all simulations. In Table 2,
the computing times are the averages of 1000 runs.

With respect to efficiency, the LQMDA was generally the best method. The
slowest method was always the GWA. With respect to robustness, it can be
seen that the PDA fails if the number of moments increases. In addition the ad-
missible number of moments for the PDA decreases with an increasing length
of the time interval. Detailed studies on the robustness of the PDA and the
Chebyshev algorithm for problems coming from aerosol dynamics were pub-
lished recently in [23]. The results presented in Table 2 supplement those
studies very well. In [23], also the reason for the weak robustness of the PDA
is pointed out, namely that products of moments are used, see (12), which eas-
ily lead to an overflow if a large number of moments are used. Altogether, the
observations with respect to the robustness of the PDA and of the LQMDA
(Chebyshev algorithm) from [23] and of the studies presented here coincide.
For the considered example, the GWA has shown to be equally robust as the
LQMDA.
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Table 2
Average computing times in seconds for performing the QMOM with different meth-
ods for computing the coefficients of An for different values of n and different lengths
of the time interval, Problem IV.

T = 0.1 T = 1 T = 100

n PDA LQMDA GWA PDA LQMDA GWA PDA LQMDA GWA

1 2.28e-3 2.18e-3 2.74e-3 2.23e-2 2.26e-2 2.92e-2 1.98 1.92 2.45

2 3.47e-3 3.36e-3 3.83e-3 3.67e-2 3.49e-2 3.92e-2 3.11 3.04 3.49

3 4.62e-3 4.53e-3 5.14e-3 4.72e-2 4.58e-2 5.15e-2 4.23 4.14 4.67

4 5.92e-3 5.78e-3 6.46e-3 6.03e-2 5.90e-2 6.60e-2 5.43 5.32 5.94

5 7.33e-3 7.15e-3 7.92e-3 7.58e-2 7.40e-2 8.21e-2 6.77 6.63 7.34

6 8.94e-3 8.76e-3 9.69e-3 9.24e-2 8.97e-2 9.93e-2 8.28 8.14 8.96

7 10.82e-3 10.64e-3 11.71e-3 11.15e-2 10.79e-2 11.96e-2 NaN 9.87 10.82

8 12.97e-3 12.73e-3 13.96e-3 NaN 13.01e-2 14.19e-2 NaN 11.86 12.93

9 NaN 15.22e-3 16.56e-3 NaN 15.40e-2 16.75e-2 NaN 14.16 15.34

10 NaN 18.09e-3 19.61e-3 NaN 17.83e-2 19.34e-2 NaN 16.72 18.07

12 NaN 24.87e-3 26.77e-3 NaN 24.65e-2 26.45e-2 NaN 23.16 24.84

14 NaN 33.83e-3 36.00e-3 NaN 33.06e-2 35.46e-2 NaN 31.24 33.33

16 NaN 44.48e-3 47.25e-3 NaN 43.15e-2 45.87e-2 NaN 41.44 43.91

4 Summary

This note reviewed three numerical methods which can be applied for com-
puting optimal weights and abscissas for the quadrature rule (4). These com-
putations are of crucial importance for the QMOM.

It was shown that the traditionally used PDA is somewhat less efficient than
the LQMDA. In addition, the PDA is less robust in some situation that might
be important in applications. This observation is in agreement with recently
published results [23]. The GWA is less efficient than the two other methods
but in the considered example it was equally robust as the LQMDA.

In summary, based on the observations presented in this note and the results
from [23], we strongly recommend the use of the LQMDA, or one of its variants
called Wheeler algorithm or Chebyshev algorithm, for computing the optimal
weights and abscissas within the QMOM.

The case of multivariate PSDs has still to be studied.
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