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ABSTRACT. We prove that a two-dimensional domain is already Lipschitzian if only its boundary

admits locally a one-dimensional, bi-Lipschitzian parametrization.

1. INTRODUCTION

In the last decades it has been anticipated in applied analysis that many problems originating

from science, engineering, and technology lead to elliptic/parabolic problems on nonsmooth do-

mains. Aiming at a class of domains where a lot of ’classical’ instruments still work, Lipschitz

domains have proved to be an adequate setting. Having in mind elliptic, second order divergence

operators, this concerns optimal elliptic Sobolev regularity [8], [9], maximal parabolic regularity

on a huge scale of spaces [13], [10], [11], Hölder conituity for the solution of the elliptic/parabolic

problems (even in case of mixed boundary conditions) [12], [3], and also interpolation [6]. This

is in particular true if one considers two-dimensional problems - either as the ’original’ or as an

artefact of a corresponding three-dimensional one. Note that many of these (often nonlinear)

two-dimensional models are at present still indispensable because one is still unable to treat the

three-dimensional model in full mathematically or/and the computer ressources do not suffice

for doing so [1], [2], [5], [14], [15], [16], [18].

On the other hand, it is known that the class of Lipschitz domains contains rather strange repre-

sentatives as Grisvard’s flash [7, Ch.1.2] for which it is not at all obvious that it indeed belongs

to this class. Thus, it seems desirable to obtain criteria for the Lipschitz property of a domain

which are simpler to handle as the definition itself. We present such a criterion in the case of

two space dimensions, basing on a deep theorem of Tukia [19, Thm. B]. Roughly spoken, a two-

dimensional domain is already Lipschitzian, if only the boundary itself admits one-dimensional,

bi-Lipschitzian charts.

Unfortunately, there is no higher dimensional analogon, as is already pointed out in [19].

2. THE CRITERION

Let us briefly introduce some notations and definitions. Let Kd be the open unit cube in R
d

with center 0 ∈ R
d, K−

d
its lower half K−

d
:= Kd ∩ {x : xd < 0} and Pd the midplate

Pd := Kd ∩ {x : xd = 0} of Kd.

Definition 2.1. Let (X, ρ) and (Y, ̺) be two metric spaces. Then we call a mapping F :
X → Y Lipschitzian if there is constant γ such that ̺(F (x1), F (x2)) ≤ γρ(x1, x2) for all

x1, x2 ∈ X . If F−1 is injective and also Lipschitzian, we call F bi-Lipschitzian.

Definition 2.2. A bounded domain Ω ⊂ R
d is a Lipschitz domain (or Lipschitzian), if for any

point x ∈ ∂Ω there is an open neighbourhood Vx ∋ x and a bi-Lipschitzian mapping Φx from

Vx onto Kd, such that Φx(Vx ∩ Ω) = K−

d
, Φx(Vx ∩ ∂Ω) = Pd, Φx(x) = 0 ∈ R

d.

Let us quote, for the convenience of the reader, the pioneering central result from [19].

Proposition 2.3. Let L ⊂ R
2 be a bounded line segment and f a mapping from L into R

2,

which is bi-Lipschitzian. Then there is a bi-Lipschitzian extension F of f which maps R
2 onto

R
2.

We formulate now our criterion for the Lipschitz property of a two-dimensional, bounded domain.
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Theorem 2.4. A bounded domain Ω ⊂ R
2 is a Lipschitz domain if and only if for any x ∈ ∂Ω

there is an open neighbourhood Ux ∋ x and a bi-Lipschitzian mapping φx from Ux ∩ ∂Ω onto

the interval ] − 1

2
, 1

2
[.

Proof. During the proof we identify the interval ]−1

2
, 1

2
[ with the line segment P2 =]−1

2
, 1

2
[×{0}

in R
2. The condition is clearly necessary. In the sequel we show that it is also sufficient. Let

x be any element from ∂Ω, Ux and φx the neighbourhood and the bi-Lipschitzian mapping

from the supposition. Modulo a bi-Lipschitz mapping from ] − 1

2
, 1

2
[ onto itself, we may assume

that φx(x) = 0. The Tukia theorem, applied to the mapping f := φ−1
x , yields a bi-Lipschitz

extension Ψx := F−1 of φx which maps R
2 onto itself. Let ǫ ∈]0, 1] be a number such that

Ψ−1
x (ǫK2) ⊂ Ux. We define Vx := Ψ−1

x (ǫK2). Since Ux∩∂Ω is mapped by φx onto ]− 1

2
, 1

2
[,

Ψx maps Vx ∩ ∂Ω necessarily onto the interval ]− ǫ, ǫ[. This, together with the definition of Vx,

leads to the equality

(2.1) ǫK−

2 =
(

ǫK−

2 ∩ Ψx(Vx ∩ Ω)
)

∪
(

ǫK−

2 ∩ Ψx(Vx \ Ω)
)

.

Vx∩Ω and Vx \Ω are open, thus ǫK−

2 ∩Ψx(Vx∩Ω) and ǫK−

2 ∩Ψx(Vx \Ω) are both open in

ǫK−

2 . Since ǫK−

2 is connected, either ǫK−

2 ∩Ψx(Vx ∩Ω) or ǫK−

2 ∩Ψx(Vx \Ω) must, hence,

be empty, due to 2.1. Thus, we are in one of the following two cases

(2.2) ǫK−

2 ∩ Ψx(Vx \ Ω) = ∅, or, equivalently, Ψx(Vx ∩ Ω) = ǫK−

2

(2.3) ǫK−

2 ∩ Ψx(Vx ∩ Ω) = ∅, or, equivalently, Ψx(Vx ∩ Ω) = ǫK+

2 .

In the first case we define Φx := 1

ǫ
Ψx and are done. In the second we define Φx as the

composition of Ψx with the transformation R
2 ∋ (y1, y2) 7→

1

ǫ
(y1,−y2). �

Remark 2.5. The bi-Lipschitzian parametrization of the boundary also provides the boundary

measure on ∂Ω (which is identical with the restriction of the (d − 1)-dimensional Hausdorff

measure to ∂Ω) see [4, Section 3.3.4 C].
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