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Abstract

Consider scattering of time-harmonic electromagnetic plane waves by a doubly peri-

odic surface in R
3. The medium above the surface is supposed to be homogeneous and

isotropic with a constant dielectric coefficient, while below is a perfectly conducting mate-

rial. This paper is concerned with the existence of quasiperiodic solutions for any frequency

of incidence. Based on an equivalent variational formulation established by the mortar

technique of Nitsche, we verify the existence of solutions for a broad class of incident

waves including plane waves, under the assumption that the grating profile is a Lipschitz

biperiodic surface. Our solvability result covers the resonance case where a Rayleigh fre-

quency is allowed. Non-uniqueness examples are also presented in the resonance case

and the TE or TM polarization case for classical gratings.

1 Introduction

Consider a time-harmonic electromagnetic plane wave incident from above to a biperiodic sur-
face Γ̃ in R3. Here a biperiodic (or doubly periodic) surface means a continuous surface which
is Λ1-periodic in x1, Λ2-periodic in x2 and bounded in x3. This biperiodic surface divides R3

into two regions. The dielectric coefficient in the upper region Ω̃ is supposed to be a fixed posi-
tive constant, while the medium below Γ̃ is a perfect conductor. Such structures are also called
crossed diffraction gratings in the engineering and physics literature. They have many important
applications in micro optics and semiconductor industry. This paper is concerned with a new
existence result for the scattering problem for fixed incident frequency ω ∈ R+.

There are many references on the scattering of electromagnetic waves by general inhomoge-
neous diffraction gratings in R3. First rigorous results on existence and uniqueness are ob-
tained by Chen & Friedman [8], Nédélec & Starling [23] using integral equation methods. In
[1], Abboud introduces a variational formulation in a truncated periodic cell involving a nonlocal
boundary (Dirichlet-to-Neumann) operator for a transparent boundary condition. This variational
problem is of saddle point type and the existence and uniqueness follow from the Fredholm al-
ternative. In the case of a constant magnetic permeability in R3, Abboud’s arguments have been
adapted to isotropic biperiodic inhomogeneous medium by Dobson [10], Bao [5], Bao and Dob-
son [4], Schmidt [27] and to anisotropic optical materials by Schmidt [26], with new variational
formulations that only involve the magnetic field. These variational formulations are proved to
be strongly elliptic over a certain quasiperiodic Sobolev space and appear to be well adapted
for the analytic and numerical treatment of quite general diffraction structures. It is proved that
for all but possibly a discrete set of frequencies accumulating at infinity there always exists a
unique quasiperiodic solution of locally finite energy. Moreover, uniqueness for any frequency
can be guaranteed if an absorbing (lossy) material is included into the grating (see [18, 26]) or
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a non-absorbing (lossless) inhomogeneous material satisfies a certain non-trap condition (see
[6] in the cases of TE and TM polarizations).

The existence and uniqueness results mentioned above apply to our scattering problem, since
they are already implicitly contained in Abboud [1] and Ammari [2]. Some researchers seem
to believe that the quasiperiodic solution in Hloc(curl , Ω̃) is unique for all frequencies, pro-
vided the perfectly grating profile is given by the graph of a C2-smooth periodic function and the
Rayleigh frequencies are excluded. However, in this paper we will present a counterexample
(see example 2.5 in Section 2) to show that uniqueness does not hold. This counterexample is
constructed in the TM polarization case, where the perfectly conducting boundary value prob-
lem of the curl- curl equation is reduced to the Neumann boundary value problem of the two-
dimensional scalar Helmholtz equation. This reduction enables us to construct non-uniqueness
examples to the Maxwell system, relying on the existence of non-trivial solutions for the re-
duced homogeneous Neumann problem established in [21]. Non-uniqueness examples in the
resonance or non-graph case are also presented in this paper.

Since a grating profile is a special case of a rough surface, these non-uniqueness examples
reported in Section 2 can be also viewed as counterexamples to the electromagnetic scattering
by perfectly conducting rough surfaces. Concerning the variational approach applied to electro-
magnetic rough surface scattering problems modeled by the full Maxwell system, we refer to the
recent publications by Li, Wu & Zheng [20] where existence and uniqueness is established for
an incident magnetic or electric dipole in a lossy medium, and to Haddar & Lechleiter [16] in the
more challenging case of a penetrable dielectric layer. As far as we know, the well-posedness
of electromagnetic scattering by perfectly conducting rough surfaces or biperiodic structures in
a homogeneous non-absorbing (lossless) medium is still an open problem.

Our aim of this paper is to prove the following existence result to the scattering problem: for any
fixed incident wavenumber k > 0 there always exists a quasiperiodic solution in Hloc(curl , Ω̃)
for a broad class of incident waves including plane waves, whenever the grating profile is a Lips-
chitz biperiodic surface. This result is rather general, because the grating profile is not necessar-
ily the graph of a smooth periodic function and a Rayleigh frequency is allowed. The non-graph
gratings have many practical applications in diffractive optics and in optimal design of compli-
cated grating structures. As an example, we mention the binary gratings which are composed
of only a finite number of horizontal and vertical segments (see e.g. [12]). Note further that
Rayleigh frequencies are always excluded in many references on electromagnetic scattering by
biperiodic structures. This is mainly due either to the definition of the quasiperiodic fundamen-
tal solution to the Helmholtz equation needed in integral equation methods ([8, 23] ) or to the
explicit formula for the Dirichlet-to-Neumann map of the transparent boundary condition (see
e.g. [2, 10, 4] or (2.8) below). Note that both, the quasiperiodic fundamental solution and the
Dirichlet-to-Neumann map, are well defined only if Rayleigh frequencies are excluded.

To prove the existence of quasiperiodic solutions in Hloc(curl , Ω̃) for any frequency, we need
a replacement of the Dirichlet-to-Neumann (D-to-N) map imposed on the artificial boundary
Γ̃b above the grating surface. Motivated by the variational formulations proposed in [19, 25]
using the mortar technique combined with Nitsche’s method (see Nitsche [24] and Sternberg
[28]), we employ a consistent coupling of the electric field E below Γ̃b and the scattered field
E+ above Γ̃b. This way the necessary transmission conditions are fulfilled on Γ̃b so that E
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belongs to Hloc(curl , Ω̃). Combined with the Rayleigh series expansion for E+, this coupling
enables us to establish an equivalent variational formulation for the pair (E,E+). We show the
Fredholmness of the operator generated by the corresponding sesquilinear form, and then prove
the existence of quasiperiodic solutions for any frequency by applying the Fredholm theory.

This paper provides a theoretical justification of the modified Nitsche’s method applied to elec-
tromagnetic scattering problems for periodic structures. It is expected that our argument can
be extended to more general inhomogeneous diffraction gratings as considered in [19, 25].
Since the D-to-N map is not involved in our variational formulation, the approximation of the
transparent boundary operator employed in [5] can be avoided. Finally, note that the presented
variational approach could be a basis for the numerical analysis of an FEM method (cf. [22]).

The remaining part is organized as follows. The boundary value problem (BVP) and the needed
Sobolev spaces are rigorously defined in Section 2. Our main result Theorem 2.1 on the ex-
istence of solutions and some non-uniqueness examples are also presented in this section.
In Section 3, we propose a variational formulation based on the method of Nitsche and prove
its equivalence to (BVP). The Fredholmness of the operator generated by the corresponding
sesquilinear form will be established in Section 4. Finally we prove our main Theorem 2.1 in
Section 5 by applying the Fredholm alternative.

2 Mathematical formulations and non-uniqueness examples

Consider the scattering of an electromagnetic plane wave by a perfectly conducting grating pro-
file in an isotropic homogeneous lossless medium. Recall that the symbol Γ̃ denotes the grating
profile which is (Λ1,Λ2)-periodic in (x1, x2) and that Ω̃ denotes the region above Γ̃. Suppose
that a time-harmonic incident electromagnetic plane wave Ein (time dependence e−iωt) given
by

Ein := q exp(ikx · θ̂) = q exp
(
i(x′ · α− βx3)

)
, i :=

√
−1 (2.1)

is incident to the grating from above. Here k := ω
√
εµ is the positive wavenumber in terms

of the angular frequency ω, the electric permittivity ε and the magnetic permeability µ, which
are assumed to be positive constants everywhere in Ω̃. The symbol θ̂ denotes the direction of
incidence

θ̂ := (sin θ1 cos θ2, sin θ1 sin θ2,− cos θ1)
>∈ S

2,

S
2 :=

{
x = (x1, x2, x3)

> ∈ R
3 : ||x|| = 1

}

with the incident angles θ1 ∈ [0, π/2), θ2 ∈ [0, 2π). Throughout the paper, the symbol (·)>
denotes the transpose of a row vector in C2 or C3. In (2.1), the vector q = (q1, q2, q3)

> ∈ S2

stands for the direction of polarization satisfying q⊥θ̂, and

x′ :=(x1, x2)
>∈R2, α=(α1, α2)

> :=k(sin θ1 cos θ2, sin θ1 sin θ2)
>∈R2, β :=k cos θ1.

Since the substrate below Γ̃ is a perfect conductor, the total electric field E, which can be
decomposed as the sum of the incident field Ein and the scattered field Esc, satisfies the
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following boundary condition in a weak sense (see e.g. [7])

ν×E = 0 on Γ̃, (2.2)

where ν = (ν1, ν2, ν3)
> ∈ S

2 is the unit normal on Γ̃ pointing into the exterior of Ω̃. The total
electric field E fulfills the reduced time-harmonic curl- curl equation

curl curlE − k2E = 0 in Ω̃. (2.3)

Since the grating profile is biperiodic, we require E to be α-quasiperiodic in the sense that

E(x1 + Λ1, x2, x3) = exp(iΛ1α1)E(x1, x2, x3), (x1, x2, x3)
> ∈ Ω̃, (2.4)

E(x1, x2 + Λ2, x3) = exp(iΛ2α2)E(x1, x2, x3), (x1, x2, x3)
> ∈ Ω̃.

We also impose a radiation condition in the x3-direction by assuming that the scattered field
Esc is composed of bounded outgoing plane waves:

Esc(x)=
∑

n∈Z2

En exp
(
i(αn ·x′+βnx3)

)
for x3>Γmax :=max

x∈Γ̃
{x3}, En⊥(αn, βn)

>, (2.5)

where αn :=(α
(1)
n , α

(2)
n )>∈R2, with α

(j)
n =αj + 2πnj/Λj, j = 1, 2 for n = (n1, n2)

>∈Z2,
and

βn = βn(k, α) :=

{ √
k2 − |αn|2 if |αn| ≤ k,

i
√

|αn|2 − k2 if |αn| > k.

For the constant coefficient vectorEn = (E
(1)
n , E

(2)
n , E

(3)
n )> ∈ C3, the relationEn⊥(αn, βn)

>

means that E
(1)
n α

(1)
n + E

(2)
n α

(2)
n + E

(3)
n βn = 0. The series in (2.5), which is also referred to

as the Rayleigh series expansion, is the radiation condition we are going to use in the following
sections. The constant vectorsEn are called the Rayleigh coefficients. Since βn are real-valued
only for the finitely many indices n from the set {n ∈ Z2 : |αn| ≤ k2}, we observe that only
a finite number of plane waves in (2.5) propagate into the far field, while the remaining part
consists of evanescent (or surface) waves decaying exponentially as x3 → +∞. Thus, the
above expansion converges uniformly with all derivatives in the half plane {x3 > a} for any
a > Γmax.

It is assumed throughout this paper that the grating profile Γ̃ is a Lipschitz biperiodic surface in
R3, which is not necessarily the graph of a biperiodic function. Since the unbounded domain Ω̃
is (Λ1,Λ2)-periodic in x′ and the incident and scattered fields are both quasiperiodic, we can
reduce the scattering problem to a single periodic cell Ω. To this end, we introduce the following
notation:

Γ :=
{
(x1, x2, x3)

> ∈ Γ̃ : 0 < xj < Λj, j = 1, 2
}
,

Ω :=
{
(x1, x2, x3)

> ∈ Ω̃ : 0 < xj < Λj, j = 1, 2
}
,

Γ̃b :=
{
(x1, x2, x3)

>: x3 = b
}
,

Γb :=
{
(x1, x2, x3)

>∈ Γ̃b : 0 < xj < Λj, j = 1, 2
}
,

Ωb :=
{
x ∈ Ω : x3 < b

}
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for some b with b > Γmax. We next introduce some scalar and vector valued α-quasiperiodic
Sobolev spaces. Let Hs(Γ̃b) be the complex valued L2-based Sobolev spaces of order s in Γ̃b.
Write

Hloc(curl , Ω̃) :=
{
G : χG, curl (χG) ∈ L2(Ω̃)3, ∀χ ∈ C∞

0 (R3)
}
,

Hs
loc(Γ̃b) :=

{
G : χG ∈ Hs(Γ̃b), ∀χ ∈ C∞

0 (Γ̃b)
}
,

Hs
t,loc(Γ̃b) :=

{
G ∈ Hs

loc(Γ̃b)
3 : e3 ·G = 0

}
, e3 := (0, 0, 1)>,

Hs
t,loc(Div , Γ̃b) :=

{
G : G ∈ Hs

t,loc(Γ̃b), DivG ∈ Hs
loc(Γ̃b)

}
,

Hs
t,loc(Curl , Γ̃b) :=

{
G : G ∈ Hs

t,loc(Γ̃b), CurlG ∈ Hs
loc(Γ̃b)

}
,

and

H(curl ,Ωb) :=
{
G|Ωb

: G ∈ Hloc(curl , Ω̃), G is α-quasiperiodic
}
,

Hs
t (Γb) :=

{
G|Γb

: G ∈ Hs
t,loc(Γ̃b)

3, G is α-quasiperiodic
}
,

Hs
t (Div ,Γb) :=

{
G|Γb

: G ∈ Hs
t,loc(Div , Γ̃b)

3, G is α-quasiperiodic
}
,

Hs
t (Curl ,Γb) :=

{
G|Γb

: G ∈ Hs
t,loc(Curl , Γ̃b)

3, G is α-quasiperiodic
}
,

where Div (·) and Curl (·) stand for the surface divergence and the surface scalar rotational
operators, respectively. Note that, for E(x′) ∈ Hs

t (Γb), s ∈ R, we have the Fourier series
expansion

E(x′) =
∑

n∈Z2

En exp(iαn · x′),

with

En := (Λ1Λ2)
−1

∫ Λ1

0

∫ Λ2

0

E(x′) exp(−iαn · x′)dx1dx2.

Then, the spaces Hs
t (Γb), H

s
t (Div ,Γb) andHs

t (Curl ,Γb) can be equipped with the following
equivalent Sobolev norms

||E||Hs
t (Γb) =

(
∑

n∈Z2

|En|2(1 + |αn|2)s
)1/2

,

||E||Hs
t (Div ,Γb) =

(
∑

n∈Z2

(1 + |αn|2)s(|En|2 + |En · αn|2)
)1/2

,

||E||Hs
t (Curl ,Γb) =

(
∑

n∈Z2

(1 + |αn|2)s(|En|2 + |En×αn|2)
)1/2

.
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Recall that the space dual to Hs
t (curl ,Γb) w.r.t. the L2-scalar product is

Hs
t (Div ,Γb)

′ = H−s−1
t (Curl ,Γb),

and that, for s = −1/2,

H
−1/2
t (Div ,Γb) =

{
e3×E|Γb

: E ∈ H(curl ,Ωb)
}
,

H
−1/2
t (Curl ,Γb) =

{
(e3×E|Γb

)×e3 : E ∈ H(curl ,Ωb)
}
.

Further, the trace mappings from H(curl ,Ωb) to the tangential spaces H
−1/2
t (Div ,Γb) and

H
−1/2
t (Curl ,Γb) are continuous and surjective (see [7, 22] and the references there). Finally,

define our variational space

X = Xb :=
{
E : Ωb → C

3 : E ∈ H(curl ,Ωb), ν×E|Γ = 0
}

endowed with the norm

||E||X := ||E||H(curl ,Ωb) =
(
||E||2L2(Ωb)3

+ ||curlE||2L2(Ωb)3

)1/2
.

The boundary value problem for our scattering problem can be stated as follows. Let the grating
profile Γ and the number b > Γmax be fixed.

(BVP): Given an incident electric fieldEin, determine the total fieldE = Ein+Esc ∈ X such
that E satisfies the curl- curl equation (2.3) over Ωb in a distributional sense and that
Esc admits a Rayleigh expansion (2.5) valid for any Γmax < x ≤ b.

Note that any Esc satisfying (2.5) in the strip Γmax < x ≤ b can be extended to the upper half
space by (2.5) (see Remark 3.4 in Section 3 ). Below is our main result to (BVP) for a broad
class of incident waves.

Theorem 2.1. Assume that the incident electric wave takes the form

Ein
gen :=

∑

n:βn>0

Qn exp
(
αn · x′ − βnx3

)
, (2.6)

where Qn ∈ C3 satisfies Qn⊥(αn,−βn)>. Then the problem (BVP) admits at least one so-
lution for any k ∈ R+. Moreover, the part of the solution reflected into the upper half space is
unique, i.e., the Rayleigh coefficients of the plane wave modes propagating into the upper half
space (namely, those with βn > 0) are unique.

Note that Ein of (2.1) is of the form (2.6), where Qn = q for n = (0, 0)> and Qn = (0, 0, 0)>

else. We do not exclude "resonances" in Theorem 2.1, that is, the set defined by

Υ :=
{
n ∈ Z

2 : βn(k, α) = 0
}

is allowed to be nonempty. An incident angular frequency ω with Υ 6= ∅ is called Rayleigh
frequency. Note that the set of Rayleigh frequencies depends on Λ1 and Λ2 but not on the
shape of Γ.
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Remark 2.2. It seems to be known that, for all wavenumbers except those from a sequence
kj ∈ R+, kj → +∞, the problem (BVP) admits a unique solution. To see this, one may
consider the variational formulation

∫

Ωb

[
curlE · curlϕ− k2E · ϕ

]
dx−

∫

Γb

R(e3×E) · (e3×ϕ)ds

=

∫

Γb

[
(curlEin)T −R(e3×Ein)

]
· (e3×ϕ)ds (2.7)

for all ϕ ∈ X , where (·)T := ν×(·)|Γb
×ν, and R : H

−1/2
t (Div ,Γb) → H

−1/2
t (Curl ,Γb)

is the Dirichlet-to-Neumann map defined by

(RẼ)(x′) = −
∑

n∈Z2

1

iβn

[
k2Ẽn − (αn · Ẽn)αn

]
exp(iαn · x′), (2.8)

for Ẽ(x′) =
∑

n∈Z2 Ẽn exp(iαn · x′) ∈ H
−1/2
t (Div ,Γb); see [1, 2]. Note that the operator R

maps e3×Esc to (curlEsc)T on Γb and that Rayleigh frequencies must be excluded in (2.8).
An alternative Dirichlet-to-Neumann operator for the magnetic field is given in [4, 5, 10].

It is seen from Lemma 6.1 in Section 6 that the variational formulation is uniquely solvable for
all frequencies k ∈ (0, k0] with k0 > 0 being sufficiently small. This combined with the analytic
Fredholm theory (see e.g. [9, Theorem 8.26] or [14, Theorem I.5.1]) leads to the existence and
uniqueness for all k ∈ R+\D, where D ⊇ Υ is a discrete set with the only accumulating point
at infinity. Since such a solvability result is contained in many references on diffraction gratings,
we skip the details and refer to [26, 11, 12] for the applications of the analytic Fredholm theory in
periodic structures. However, it follows from the examples below that the uniqueness to (BVP)
does not hold in general, even if Γ is a smooth graph and Rayleigh frequencies are excluded.

The proof of Theorem 2.1 will be carried out in Section 5 using an equivalent formulation which
covers the resonance case. Next we present some non-uniqueness examples to (BVP) by con-
structing non-trivial solutions to the homogeneous scattering problem (Ein = 0). Now suppose
that the periodicities Λ1 and Λ2 are fixed for the remainder of this paper.

Example 2.3. For any fixed Rayleigh frequency ω, there exists a biperiodic surface Γ̃ such that
the solutions to (BVP) are non-unique.

Indeed, the grating profile defined by Γ̃ := {x3 = 0} is such an example. Set

Esc(x) = e3
∑

n:βn=0

Cn exp(iαn · x
′

), Cn ∈ C.

ThenEsc is α-quasiperiodic and satisfies the curl- curl equation (2.3), the Rayleigh expansion
condition (2.5) as well as the boundary condition (2.2).

In the following examples, the branch of the square root is chosen such that its imaginary part
is non-negative, i.e.,

√
a = i

√−a if a < 0.
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Example 2.4. There exists a non-Rayleigh frequency ω and a non-graph grating profile Γ̃ such
that the solutions to (BVP) are non-unique.

Restrict the search for examples to gratings which remain invariant in x2 direction. We seek a
special solution of the form Esc(x) = (0, usc(x1, x3), 0)

>, where the scalar function usc fulfills

(4+ k2)usc=0 in Ω̃0 :=Ω̃ ∩ {x2=0}, usc = 0 on Γ̃ ∩ {x2 = 0},
usc=

∑
n1∈Z,n2=0Cn1

exp
(
i[α

(1)
n x1+(k2−|α(1)

n |2)1/2x3]
)
, (x1, x3)

>∈ Ω̃0, x3>Γmax,

with Cn1
∈ C. Recall that n = (n1, n2)

>∈ Z2 and α
(j)
n denotes the j-th component of αn ∈

R2, j = 1, 2. In fact, the previous Dirichlet boundary value problem is the TE polarization of
(BVP). Non-trivial solutions to the above problem do exist for the Λ1-periodic non-graph grating
profile constructed in [15] with Λ1 = 2π. Thus, the solutionEsc, which is independent of x2 and
transversal to the (x1, x3)-plane, is an α-quasiperiodic solution to the homogeneous scattering
problem (BVP) with α = (α1, 0).

Example 2.5. There exists a non-Rayleigh frequency ω and a grating Γ̃ represented as the
graph of a profile function such that the solutions to (BVP) are non-unique.

Again restrict to gratings invariant in x2 direction and consider gratings such that Γ̃∩{x2 = 0}
can be represented as a smooth function x3 = f(x1) of period Λ1 = 2π. We seek a special
magnetic field Hsc of the form

Hsc(x) =
1

ik
curlEsc(x) = (0, usc(x1, x3), 0).

Since Hsc should satisfy the curl- curl equation (2.3) in Ω̃ with the boundary condition ν×
curlHsc = 0 on Γ̃, we only need to find a non-trivial scalar function usc such that

(4+ k2)usc=0 in x3 > f(x1),
∂usc

∂n
= 0 on x3 = f(x1),

usc=
∑

n1∈Z,n2=0Cn1
exp
(
i[α

(1)
n x1+

√
k2−|α(1)

n |2 x3]
)
, Cn1

∈C, x3>maxx1
f(x1),

where n ∈ R2 denotes the normal to the one-dimensional curve x3 = f(x1) in the (x1, x3)-
plane. This case is just the TM polarization of (BVP). It follows from [21] that exponentially
decaying solutions (surface waves) to the above Neumann boundary value problem exist for a
broad class of grating profiles that are given by the graphs of smooth functions. Thus, we obtain
a TM polarized solution Hsc which is transversal to the (x1, x3)-plane, and have constructed a
non-trivial solution

Esc(x) = − 1

ik
curlHsc(x)

=
1

k

∑

n1∈Z,n2=0

Cn1

(√
k2−|α(1)

n |2, 0,−α(1)
n

)
> exp

(
i[α(1)

n x1+

√
k2−|α(1)

n |2x3]
)

to the homogenous problem of (BVP).
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Note that the last two examples in the non-resonance case are obtained only if the grating
surface Γ̃ remains constant in x2-direction. Similar non-trivial solutions can be constructed for
biperiodic structures only varying in x1-direction. However, we do not have a corresponding
example for the diffraction gratings that vary in two orthogonal directions. It remains an inter-
esting question that under what kind of geometry conditions imposed on Γ̃ the uniqueness to
(BVP) holds. Although there is no uniqueness in the general case, we can prove the existence of
solutions to (BVP) for any wavenumber k ∈ R

+. This will be done in the subsequent sections.

3 An equivalent variational formulation

The goal of this section is to propose a variational formulation equivalent to (BVP). We begin with
the fact that any column vectorEn∈C3 satisfying (αn, βn)

>⊥En for some n=(n1, n2)
>∈Z2

can be represented as a linear combination of two vectors En,1, En,2 ∈ C3:

En = Cn,0 En,0 + Cn,1 En,1, Cn,0, Cn,1 ∈ C,

where

En,0 :=

{
(−α(2)

n , α
(1)
n , 0)>/|αn| ∈ S2, if |αn| 6= 0,

(0, 1, 0)>, else,
(3.9)

En,1 :=

{
|αn|
hn

(αn, βn)
>×En,0=(−α(1)

n βn,−α(2)
n βn, |αn|2)>/hn, if |αn| 6=0,

(−1, 0, 0)>, else,
(3.10)

with hn := |αn|
√
|αn|2 + |βn|2. Obviously, it holds that (αn, βn)

> ⊥ En,l, |En,l| = 1 for
l = 0, 1, n ∈ Z2. One can observe further that En,1 ∈ S2 if βn ∈ R, and that En,1 = e3 if
βn = 0. The above decomposition of En allows us to rewrite the Rayleigh expansion (2.5) as

Esc(x) =
∑

n∈Z2, l=1,2

Cn,l Un,l(x), Un,l := En,l exp
(
i[αn · x′ + βnx3]

)
, Cn,l∈C (3.11)

for x3 > Γmax (see also [25, Section 2.5]). Define the layer Ω+
b above Γb of height one by (see

Figure 1)

Ω+
b :=

{
x ∈ R

3 : 0 < xj < Λj , j = 1, 2, b < x3 < b+ 1
}
,

and the Sobolev spaces Yl by

Yl :=
{
U ∈ H(curl ,Ω+

b ) : U(x) =
∑

n∈Z2

Cn,l Un,l(x), Cn,l ∈ C

}
, l = 0, 1.

Then we see that the function E+(x) := Esc|Ω+

b
belongs to the space Y := Y0 ⊕ Y1, and any

function in Y can be analytically extended to the whole half-space {x3 > Γmax}. Hence, the
following problem is equivalent to (BVP):

9



Figure 1: The geometry of the scattering problem.

(BVP’): Given an incident electric field Ein, find (E,E+) ∈ H := X×Y such thatE satisfies
the curl-curl equation (2.3) in a distributional sense and the transmission conditions

e3×(E − Ein −E+) = 0, e3×curl (E − Ein − E+) = 0 on Γb. (3.12)

Motivated by the arguments in [25, Section 3.2] and the variational formulation in [19], we pro-
pose a new variational formulation that is equivalent to (BVP’). For (E,E+), (V, V +) ∈ H,
define the sesquilinear form a(·, ·) : H×H → C by

a
(
(E,E+), (V, V +)

)

:=

∫

Ωb

{
curlE · curlV − k2E · V

}
dx−

∫

Γb

curlE+ · e3×V ds

+

∫

Γb

e3×(E−E+) · curlV +
ds

+η
∑

n∈Υ

∫

Γb

e3×(E−E+) · (e3×Un,0) ds

∫

Γb

e3×(V −V +) · (e3×Un,0)ds, (3.13)

where η > 0 is a constant factor for mortaring and is normally chosen as a multiple of the
reciprocal mesh size (see [19]). Our variational formulation is to find (E,E+) ∈ H such that

a
(
(E,E+), (V, V +)

)
= −a

(
(0, Ein), (V, V +)

)
for all (V, V +) ∈ H. (3.14)

Note that terms like
∫
Γb
curlE+ ·e3×V ds are bounded. Indeed, sinceE+ is the solution of the

curl-curl equation, we get curlE+ ∈ H(curl ,Ω+
b ) and (curlE+)|Γb

∈ H−1/2(Curl ,Γb).
Further, note

that the third term on the right-hand side of (3.13) has the opposite sign than the corresponding
term in [19]. Moreover, the integrals with factor η in (3.13) correspond to the following term
involved in the variational equation established in [19]:

η

∫

Γb

e3×(E −E+) · e3×(V − V +)ds. (3.15)
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The expression (3.15) is not meaningful for general (E,E+), (V, V +) ∈ H, since both ν×
(E−E+) and ν×(V − V +) belong to H

−1/2
t (Div ,Γb). Integrals like η

∫
Γb
ν×u · ν×vds in

the mortar approach make sense for finite element methods, where u and v are finite element
functions and η tends to zero with the meshsize. The idea employed in [25] is to replace the
integral (3.15) by the Galerkin approximation

∑

n,l:|n|2<N

βn 6=0or l=0

η

∫

Γb

e3×(E − E+) · e3×Un,lds

∫

Γb

e3×(V − V +) · e3×Un,lds (3.16)

+η
∑

n:βn=0

∫

Γb

e3×(E −E+) · Un,0ds

∫

Γb

e3×(V − V +) · Un,0ds, (3.17)

with a sufficiently large number N > 0. It is also mentioned in [25] that the summation in (3.16)
and (3.17) can even be restricted to all n ∈ Z2 with βn = 0. In the present paper, we only use
the terms of (3.16) with βn = 0, which are the last terms in (3.13).

To prove the equivalence of (3.14) and (BVP’), we need two lemmas.

Lemma 3.1. (i) We have curlUn,l = i(−1)l Un,1−l

√
|αn|2 + |βn|2

1−2l
k2l, l = 0, 1.

(ii) It holds that

e3×Un,l|Γb
=





(−αn/|αn|, 0)> exp(iαn · x′), if n ∈ Υ, l = 0,
(0, 0, 0)>, if n ∈ Υ, l = 1,
(−1)l [(e3×Un,1−l)×e3] (cos θn)2l−1, if n /∈ Υ,

where cos θn := βn/
√
|βn|2 + |αn|2.

(iii) The following set is an L2-orthogonal basis of the space H
−1/2
t (Γb):

{
e3×Un,l|Γb

: n /∈Υ, l=1, 2
}
∪
{
e3×Un,0|Γb

: n∈Υ
}
∪
{
Un,0|Γb

: n∈Υ
}
.

Proof. Lemma 3.1 (i) and (ii) can be proved directly using the definitions of Un,l in (3.11). To
prove the third assertion, we define the set

Πn =

{
{e3×En,0, e3×En,1}, if βn 6= 0,
{e3×En,0, En,0}, if βn = 0,

with En,l ∈ C3 given in (3.9) and (3.10). Then Lemma 3.1 (iii) simply follows from the definition

ofH
−1/2
t (Γb) and the fact that Πn is a basis of the set {a = (a1, a2, 0)

> : a1, a2 ∈ C} for any
n ∈ Z2.

In the following sections we make the convention that a summation over the index l is always
from zero to one.
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Lemma 3.2. For any two absolutely convergent Rayleigh series expansion U and V defined in
a neighborhood of Γb, there holds

∫

Γb

(curlU)T · e3×V ds =

∫

Γb

e3×U · (curl [V ]mo)T ds,

where [·]mo is a modification operator defined by




∑

n∈Z2,l

Cn,l Un,l




mo

:= −
∑

l,n:βn>0

Cn,l Un,l +
∑

l,n:βn /∈R

Cn,l Un,l.

Proof. See [25, Lemma 3.1].

We are now going to prove

Lemma 3.3. The variational formulation (3.14) and the problem (BVP’) are equivalent.

Proof. (i) Assume that (E,E+) ∈ H is a solution to (BVP’). Applying Green’s first vector
theorem to the region Ωb gives

0 =

∫

Ωb

{curl curlE − k2E} · V dx

=

∫

Ωb

{
curlE · curlV − k2E · V

}
dx−

∫

Γb

e3×V · curlE ds

for any V ∈ X . Note that the integral over Γ vanishes due to the perfectly conducting boundary
condition ν×V = 0 on Γ, and that the integrals over the vertical parts of ∂Ωb cancel because
of the α-quasiperiodicity of V and E in Ωb. This implies that

∫

Ωb

{curlE · curl V − k2E · V }dx =

∫

Γb

e3×V · curlE ds, ∀ V ∈ X. (3.18)

Making use of the identity (3.18) and the transmission conditions in (3.12), we derive from the
definition of the sesquilinear form a(·, ·) that

a
(
(E,E+ + Ein), (V, V +)

)

=

∫

Γb

curl (E−E+−Ein) · e3×V ds+

∫

Γb

e3×(E−E+−Ein) · curlV +
ds

+η
∑

n∈Υ

∫

Γb

e3×(E−E+−Ein) · (e3×Un,0) ds

∫

Γb

e3×(V −V +) · (e3×Un,0) ds

= 0 (3.19)

for any (V, V +) ∈ H, i.e., the pair (E,E+) is a solution to (3.14).
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(ii) Suppose that (E,E+) ∈ H is a solution to the variational formulation (3.14). Choose V ∈
X with a compact support in the interior of Ωb (i.e. Supp(V ) ⊂ Int Ωb) and choose V + ≡ 0
in Y . Then,

0 = a
(
(E,E+ + Ein), (V, 0)

)
=

∫

Ωb

{curlE · curl V − k2E · V }dx

=

∫

Ωb

(curl curlE − k2E) · V dx. (3.20)

This implies that curl curlE − k2E=0 in Ωb. It only remains to prove that E and E+ satisfy
the transmission conditions in (3.12).

Analogously to part (i), multiplying V ∈ X to the curl-curl equation curl curlE−k2E=0 in
Ωb and then using integration by parts yields the identity (3.18). Combining this identity with the
variational formulation (3.14) gives rise to the equality (3.19) for all (V, V +) ∈ H. By Lemma
3.1 (ii) and (iii), we consider the Fourier expansion

(E−E+−Ein)T =
∑

l,n/∈Υ

Cn,l(Un,l)T+
∑

n∈Υ

[
Cn,0 Un,0 + Cn,1 e3×Un,0

]
on Γb. (3.21)

It then suffices to prove that Cn,l = 0 for all n ∈ Z2, l = 0, 1. Indeed, (E−E+−Ein)T = 0
on Γb together with (3.19) for all V ∈ X would lead to (curl (E−E+−Ein))T = 0 on Γb.

First we take V ≡ 0 and V + = Un,1 for some n ∈ Υ in (3.19). Applying Lemma 3.1 (i) to Un,1

gives the identity curl V + = −ikUn,0, and then, using e3×Un,1 = 0 for n ∈ Υ (see Lemma
3.1 (ii)), we derive from (3.19) that

∫

Γb

e3×(E −E+ − Ein) · Un,0 ds = 0 if n ∈ Υ. (3.22)

Together with (3.21), this implies that Cn,1 = 0 for n ∈ Υ.

Next, inserting (3.22) into (3.19) with V ≡ 0 and using Lemma 3.2, we have

0 =

∫

Γb

e3×(E − E+ − Ein) · curlV +
ds

−η
∑

n∈Υ

∫

Γb

(E −E+ −Ein)T · Un,0 ds

∫

Γb

V +
T · Un,0 ds

=

∫

Γb

curl [(E − E+ − Ein|Γb
)]mo · e3×(V

+
) ds

−η
∑

n∈Υ

∫

Γb

(E −E+ −Ein)T · Un,0 ds

∫

Γb

V +
T · Un,0 ds (3.23)

for all V + ∈ Y , where the quantity

[
(E −E+ −Ein)|Γb

]
mo

:= −
∑

l,n:βn>0

Cn,l Un,l +
∑

l,n:βn /∈R

Cn,l Un,l on Γb
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is obtained by firstly extending the series expansion (3.21) to a neighborhood of Γb and then
applying the modification operator [·]mo defined in Lemma 3.2. From Lemma 3.1 (i) and (ii), it
follows that on Γb,
{
curl

[
(E − E+ − Ein|Γb

)
]
mo

}

T

=
∑

n,l:βn>0

i(−1)l+1kCn,l(Un,1−l)T +
∑

n,l:βn /∈R

i(−1)lk2lCn,l

√
|αn|2 + |βn|2

1−2l
(Un,1−l)T

=
∑

n,l:βn>0

−ikCn,l (cos θn)
1−2l e3×Un,l +

∑

n,l:βn /∈R

ik2lCn,l (βn)
1−2l e3×Un,l. (3.24)

Inserting (3.24) into (3.23) and choosing V + = Un,l for some n /∈ Υ, we derive Cn,l = 0.
Analogously, the choice of V + = Un,0 for some n ∈ Υ leads to Cn,0 = 0. The proof is thus
completed.

Remark 3.4. In the non-resonance case, i.e. Υ = ∅, the variational formulations (3.14) and
(2.7) are equivalent. In fact, if (E,E+) is a solution to the problem (3.14), then by Lemma 3.3,
the transmission conditions in (3.12) hold. Hence, we obtain

0 = a
(
(E,E+ + Ein), (V, V +)

)

=

∫

Ωb

curlE · curlV − k2E · V dx−
∫

Γb

curl (E+ + Ein) · e3×V ds

=

∫

Ωb

curlE · curlV − k2E · V dx−
∫

Γb

R(e3×E) · e3×V ds

+

∫

Γb

[
R(e3×Ein)− curlEin

]
· e3×V ds,

which is equivalent to the variational formulation (2.7) involving the Dirichlet-to-Neumann map
R. Note that in the last step of the previous identity we have used the identity

(curlE+)T = R(e3×E+) = R(e3×E)−R(e3×Ein) on Γb.

On the other hand, supposing that E ∈ H(curl ,Ωb) is a solution to (2.7), we extend the
scattered field Esc := E − Ein from Ωb to x3 > b by the Rayleigh expansion (2.5). Assume
that the coefficients An are given by

e3×Esc|Γ−

b
= e3×(E−Ein)|Γ−

b
=
∑

n∈Z2

Ane
iαn·x′ ∈ H

−1/2
t (Div ,Γb), An ∈ C

3. (3.25)

Here and in the following, the symbol (·)|Γ−

b
resp. (·)|Γ+

b
denotes the trace obtained from below

resp. above Γb. It follows from the variational formulation (2.7) that e3×curlEsc×e3|Γ−

b
=

R(e3×Esc|Γ−

b
). The extension of the series in (3.25) to the upper half space x3 > b in form of

the Rayleigh expansion (2.5) is

Esc(x) =
∑

n∈Z2

[
An×e3 + β−1

n (e3×An) · αne3
]
eiαn·x′+iβn(x3−b), x3 > b.
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Then,

e3×Esc|Γ−

b
= e3×Esc|Γ+

b
, e3×curlEsc×e3|Γ+

b
= R(e3×Esc|Γ+

b
).

SettingE+ = Esc in Ω+
b , we conclude that (E,E+) satisfies the transmission conditions (3.12)

and thus is a solution of (3.14).

4 Analysis of the variational formulation (3.14)

Since the sesquilinear form a(·, ·) defined in Section 3 is bounded on H, it obviously generates
a continuous linear operator A : H → H′ satisfying

a
(
(E,E+), (V, V +)

)
=
〈
A(E,E+), (V, V +)

〉
Ωb×Ω

+

b

. (4.26)

Here H′ denotes the dual of the space H with respect to the duality 〈·, ·〉Ωb×Ω
+

b
extending the

scalar product in L2(Ωb)
3×L2(Ω+

b )
3. The aim of this section is to prove

Theorem 4.1. The operator A defined by (4.26) is a Fredholm operator with index zero.

To prove Theorem 4.1, we need several auxiliary lemmas. We first prove a periodic analogue of
the Hodge-decomposition of X , following the argument in [22, Theorem 4.3]. See also [1, 2, 3,
17] for other Hodge-decompositions of the Sobolev spaces in periodic structures. Define

X1 :=
{
∇p : p ∈ H1(Ωb), p = 0 on Γ

}
,

X0 :=
{
E0 ∈ X :

∫

Ωb

∇p · E0 dx = 0 for all ∇p ∈ X1

}
.

Lemma 4.2. We have X = X0 ⊕X1 with the subspaces X0 and X1 orthogonal in L2(Ωb)
3

and H(curl,Ωb). Moreover, divE0 = 0 and (e3 ·E0)|Γb
= 0 for any E0 ∈ X0, and the space

X0 is compactly embedded into L2(Ωb)
3.

Proof. Define the bilinear form b(·, ·) : X1×X1 → C by

b(E, V ) :=

∫

Ωb

{curlE · curlV+E · V } dx, E, V ∈ X.

Then, for ∇p ∈ X1, it holds that

b(∇p,∇p) = ||∇p||2L2(Ωb)
= ||∇p||2X.

Thus, for every E ∈ X there exists a unique solution ∇p ∈ X1 such that

b(∇p,∇ξ) = b(E,∇ξ), ∀ ∇ξ ∈ X1. (4.27)
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Let E0 := E − ∇p. Using integration by parts and the quasiperiodicity of E0 and ξ in Ωb, it
follows from (4.27) that

0 =

∫

Ωb

E0 · ∇ξ dx = −
∫

Ωb

ξ divE0 dx+

∫

Γb

ξ e3 · E0ds, for any ∇ξ ∈ X1.

This implies that X = X1 + X0 and divE0 = 0, (e3 · E0)|Γb
= 0. On the other hand, if

∇q ∈ X0 ∩X1, then the definition of X0 implies that
∫
Ωb

∇p · ∇q dx = 0. Setting p = q, we

get ∇q = 0, i.e., X0 ∩ X1 = ∅ . Finally, the compact imbedding of X0 into L2(Ωb)
3 follows

from [22, Corollary 3.49] (see also [3, Lemma 3.2]).

By Lemma 4.2 and the definitions of Yl, we can decompose our space H into four subspaces.
For (E,E+), (V, V +) ∈ H, we may assume that

E = ∇p+ E0, E
+ = E+

0 + E+
1 , where ∇p ∈ X1, E0 ∈ X0, E

+
l ∈ Yl, l=1, 2,

V = ∇ξ + V0, V
+ = V +

0 + V +
1 , where ∇ξ ∈ X1, V0 ∈ X0, V

+
l ∈ Yl, l=1, 2.

For the convenience to analyze the form a, we define several sesquilinear forms aj with j =
1, 2, · · · , 6. Let

a1(∇p,∇ξ) := k2
∫

Ωb

∇p · ∇ξ dx, ∀ ∇p,∇ξ ∈ X1,

a2(E0, V0) :=

∫

Ωb

{
curlE0 · curlV0 − k2E0 · V0

}
dx, ∀ E0, V0 ∈ X0,

a3(E
+
0 , V

+
0 ) :=

∫

Γb

e3×E+
0 · curl V +

0 ds, ∀ E+
0 , V

+
0 ∈ Y0,

a4(E
+
1 , V

+
1 ) :=

∫

Γb

e3×E+
1 · curl V +

1 ds, ∀ E+
1 , V

+
1 ∈ Y1,

and let

a5

(
(E,E+), (V, V +)

)
:=

∫

Γb

e3×E · curl V +
ds,

a6

(
(E,E+), (V, V +)

)

:= η
∑

n∈Υ

{∫

Γb

e3×(E − E+) · (e3×Un,0) ds

∫

Γb

e3×(V − V +) · (e3×Un,0) ds

}

for any (E,E+), (V, V +) ∈ H. For brevity we write

a5

(
(E,E+), (V, V +)

)
= a5(E, V

+). (4.28)

Lemma 4.3. For any ∇ξ ∈ X1 and V +
0 ∈ Y0, we have a5(∇ξ, V +

0 ) = 0.
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Proof. From the definition of Y and Y0 we conclude that Y0 is the subspace of all vector func-
tions V + ∈ Y with e3 · V + = 0. Therefore it suffices to prove

∫

Γb

[e3×∇ξ] · curlV +
ds = k2

∫

Γb

e3 · V
+
ξ ds. (4.29)

Note that the right-hand side of (4.29) is a continuous functional of V + and ξ. Indeed, from

V + ∈ L2(Ω+
b ) and 0 = ∇ · V + ∈ L2(Ω+

b ), we conclude e3 · V + ∈ H−1/2(Γb), and
ξ ∈ H1/2(Γb) follows from ξ ∈ H1(Ωb). Knowing the continuity, it suffices to prove (4.29) for a
dense subset, e.g., for a truncated Rayleigh expansion V + and smooth ξ. We conclude
∫

Γb

[e3×∇ξ] · curlV +
ds = −

∫

Γ

[ν×∇ξ] · curlV +
ds +

∫

Ωb

[curl∇ξ] · curlV +
ds

−
∫

Ωb

[∇ξ] · curl curlV +
ds = k2

∫

Ωb

[∇ξ] · V +
ds,

where we have used that the tangential derivative ν×∇ξ of the function ξ with ξ|Γ = 0 vanishes.
Using ∇ · V + = 0, we continue

k2
∫

Ωb

[∇ξ] · V +
ds = k2

∫

Ωb

∇ ·
[
ξV

+
]
ds = k2

∫

Γb

ξ e3 · V +
ds + k2

∫

Γ

ξ ν · V +
ds

= k2
∫

Γb

ξ e3 · V
+
ds

and the proof is completed.

Using the Lemmas 3.1, 4.2 and 4.3, it follows from the definition of a that (see Table 1)

a
(
(E,E+), (V, V +)

)
= a

(
(∇p+ E0, E

+
0 + E+

1 ), (∇ξ + V0, V
+
0 + V +

1 )
)

=

∫

Ωb

{
curlE0 · curlV 0 − k2E0 · V 0 − k2∇p · ∇ξ

}
dx−

∫

Γb

curlE+
0 · e3×V 0 dx

−
∫

Γb

curlE+
1 · e3×V 0 dx−

∫

Γb

curlE+
1 · e3×∇ξ dx+

∫

Γb

e3×E0 · curlV
+

0 dx

+

∫

Γb

e3×E0 · curlV
+

1 dx+

∫

Γb

e3×∇p · curlV +

1 dx−
∫

Γb

e3×E+
0 · curlV +

0 dx

−
∫

Γb

e3×E+
1 · curlV +

1 dx + a6

(
(E,E+), (V, V +)

)

= −a1(∇p,∇ξ)+a2(E0, V0)−a3(E+
0 , V

+
0 )−a4(E+

1 , V
+
1 )+a5(E0, V

+
0 )

−a5(V0, E+
0 ) + a5(E0, V

+
1 )−a5(V0, E+

1 ) + a5(∇p, V +
1 )−a5(∇ξ, E+

1 )

+a6

(
(E,E+), (V, V +)

)
. (4.30)

Definition 4.4. A bounded sesquilinear form l(·, ·) given on some Hilbert space X is called
strongly elliptic if there exists a compact form l̃(·; ·) and a constant c > 0 such that

Re l(u, u) ≥ c ||u||2X − l̃(u, u), ∀ u ∈ X.
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H0 := X0+Y0 H1 := X1+Y1
X0(V0) Y0(V

+
0 ) X1(∇ξ) Y1(V

+
1 )

H0
X0(E0) a2(E0, V0) a5(E0, V

+
0 ) 0 a5(E0, V

+
1 )

Y0(E
+
0 ) − a5(V0, E

+
0 ) −a3(E+

0 , V
+
0 ) 0 0

H1
X1(∇p) 0 0 −a1(∇p,∇ξ) a5(∇p, V +

1 )

Y1(E
+
1 ) − a5(V0, E

+
1 ) 0 − a5(∇ξ, E+

1 ) −a4(E+
1 , V

+
1 )

Table 1: The diagram for the sesquilinear form a− a6 over H = X×Y .

Obviously, a1 is coercive on X1 and by Lemma 4.2 the sesquilinear form a2 is strongly elliptic
over X0. In addition, a6 is a compact form over H, since it corresponds to a finite rank operator
over H. To demonstrate the Fredholm property of the sesquilinear form a, we now need to study
the other forms a3, a4 and a5.

Lemma 4.5. There exist compact forms ã3 : Y0×Y0 → C and ã4 : Y1×Y1 → C such that

−Re a3(·, ·) ≥ C || · ||2
H(curl ,Ω+

b )
− ã3(·, ·), (4.31)

Re a4(·, ·) ≥ C || · ||2
H(curl ,Ω+

b )
− ã4(·, ·), (4.32)

for some constant C > 0, i.e., the sesquilinear forms −a3 and a4 are strongly elliptic over Y0
and Y1, respectively.

Proof. Recall that the functions Un,l defined in (3.11) are basis functions of the space Yl, l =
1, 2. It is easy to check that

∫

Ω+

b

Un,l · Un′,l′ dx = δn,n′δl,l′Λ1Λ2

∫ b+1

b

exp(iβnx3) exp(−iβnx3)dx3

=

{
δn,n′δl,l′Λ1Λ2 if βn ∈ R,
δn,n′δl,l′e

−2|βn|b(1− e−2|βn|)(2|βn|)−1Λ1Λ2 if βn /∈ R,

and that, by using Lemma 3.1,

∫

Ω+

b

curlUn,l · curlUn′,l′dx = δn,n′δl,l′k
4l
√

|αn|2 + |βn|2
2−4l
∫

Ω+

b

Un,1−l · Un,1−l dx. (4.33)

Therefore, we can represent the H(curl ,Ω+
b )-norm of Un,l,l = 0, 1 as

||Un,0||2H(curl ,Ω+

b )
=

{
(1+k2)Λ1Λ2 if βn ∈ R,
e−2|βn|b(1−e−2|βn|)(1+2|βn|2+k2)(2|βn|)−1Λ1Λ2 if βn /∈ R,

||Un,1||2H(curl ,Ω+

b )
=

{
(1+k2)Λ1Λ2 if βn ∈ R,

e−2|βn|b(1−e−2|βn|)(1 + k4

2|βn|2+k2
)(2|βn|)−1Λ1Λ2 if βn /∈ R.
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On the other hand, using simple calculations, we have, for n /∈ Υ,
∫

Γb

e3×Un,l · curlUn,l ds =

(−i)(cos θn)2l−1k2l
√
|αn|2+|βn|2

1−2l
∫

Γb

|e3×Un,1−l|2ds,

by Lemma 3.1 (i) and (ii). Furthermore,
∫

Γb

|e3×Un,1−l|2ds =
{

|eiβnb|2 Λ1Λ2 if l = 1,
|eiβnb|2 Λ1Λ2 | cos θn|2 if l = 0,

by the definitions of Un,l given in (3.11). Combining the previous two equalities yields

Re

{∫

Γb

e3×Un,1 · curlUn,1ds

}
=

{
0 if βn ∈ R,

|βn|k2

2|βn|2+k2
e−2|βn|bΛ1Λ2 if βn /∈ R,

Re

{∫

Γb

e3×Un,0 · curlUn,0ds

}
=

{
0 if βn ∈ R,
−|βn| e−2|βn|b Λ1Λ2 if βn /∈ R.

Since |βn| ∼
√

1 + |n|2 as |n| → +∞, there holds

−Re

{∫

Γb

e3×Un,0 · curlUn,0ds

}
≥ C ||Un,0||2H(curl ,Ωb)

, (4.34)

Re

{∫

Γb

e3×Un,1 · curlUn,1ds

}
≥ C ||Un,1||2H(curl ,Ωb)

, (4.35)

whenever βn /∈ R, with C > 0 being a constant independent of l and n. Therefore, given
E+

0 =
∑

n∈Z2 Cn,0Un,0 ∈ Y0, we deduce from (4.34) that

−Re (a3(E
+
0 , E

+
0 )) = −

∑

n∈Z2

|Cn,0|2 Re
[∫

Γb

e3×Un,0 · curlUn,0ds

]

≥ C
∑

βn /∈R

|Cn,0|2 ||Un,0||2H(curl ,Ω+

b )

= C||E+
0 ||2H(curl ,Ω+

b )
− C

∑

βn∈R

|Cn,0|2||Un,0||2H(curl ,Ω+

b )

=: C||E+
0 ||2H(curl ,Ω+

b )
− ã3(E

+
0 , E

+
0 ).

Since the set {n ∈ Z
2 : βn ∈ R} consists of a finite number of indices, the form ã3(·, ·) :

Y0×Y0 → R is compact. Thus the sesquilinear form −a3 is strongly elliptic over Y0. The proof
for a4 can be carried out analogously by employing (4.35).

Remark 4.6. By the definition of Un,l, one can check that, for the component-wise gradient
∇Un,l,

∫

Ω+

b

|∇Un,l|2dx = (|αn|2 + |βn|2)
∫

Ω+

b

|Un,l|2dx. (4.36)
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Thus, comparing (4.36) with (4.33) leads to

||Un,0||2H1(Ω+

b )3
= ||Un,0||2H(curl ,Ω+

b )
.

This implies that the H1-norm and H(curl )-norm of the elements from Y0 are identical, i.e.,

||E+
0 ||H1(Ω+

b )3 = ||E+
0 ||H(curl ,Ω+

b ), if E+
0 ∈ Y0.

However, this is not true for the space Y1.

We turn to investigating the properties of a5 defined in (4.28).

Lemma 4.7. The sesquilinear form a5 is compact over X0×Y1.

Proof. For V +
1 ∈ Y1 ⊂ Y , define the operator J(V +

1 ) := curl V +
1 . Obviously, we get

||J(V +
1 )||2

L2(Ω+

b )3
≤ ||V +

1 ||2
H(curl ,Ω+

b )
,

||curl J(V +
1 )||2

L2(Ω+

b )3
= ||k2V +

1 ||2
L2(Ω+

b )3
≤ k2||V +

1 ||2
H(curl ,Ω+

b )
.

Hence, by Lemma 3.1 (i), J is a bounded linear map from Y1 into Y0. In view of the equiva-
lence of the norms ||JV +

1 ||H(curl ,Ω+

b ) and ||JV +
1 ||H1(Ω+

b )3 (see Remark 4.6), we see that J

is also bounded from the subspace Y1 of H(curl ,Ω+
b ) into the subspace Y0 of H1(Ω+

b )
3,

with the trace J(V +
1 )|Γb

∈ H1/2(Γb)
3. Thus, there exists an extension W of (curlV +

1 )|Γb

from H1/2(Γb)
3 into H1(Ωb)

3 such that W = curlV +
1 on Γb and ν×W = 0 on Γ. Using

integration by parts,

a5(E0, V
+
1 ) =

∫

Γb

e3×E0 · J(V +)ds =

∫

Γb

e3×E0 ·Wds

=

∫

Ωb

{curlE0 ·W − E0 · curlW}dx.

From the compact imbedding of W ∈ H1(Ωb)
3 into L2(Ωb)

3 and that of E0 ∈ X0 into
L2(Ωb)

3, it follows that the sesquilinear form a5(E0, V
+
1 ) is compact over X0×Y +

1 .

Combining Lemmas 4.2, 4.3, 4.5 and 4.7, we are now in a position to prove the Fredholm
property of the variational formulation (3.14).

Proof of Theorem 4.1. It suffices to verify that the sesquilinear form a− a6 is Fredholm over H
with index zero. To do this, we define the spaces Hj = Xj ⊕ Yj for j = 0, 1, so that we can
rewrite H = X×Y = H1×H2. Define the sesquilinear forms

b0

(
(E0, E

+
0 ), (V0, V

+
0 )
)
:= a2(E0, V0)−a3(E+

0 , V
+
0 )+a5(E0, V

+
0 )−a5(V0, E+

0 ),

for (E0, E
+
0 ), (V0, V

+
0 ) ∈ H0 and

b1

(
(∇p, E+

1 ), (∇ξ, V +
1 )
)
:= −a1(∇p,∇ξ)−a4(E+

1 , V
+
1 )+a5(∇p, V +

1 )−a5(∇ξ, E+
1 ),
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for all (∇p, E+
1 ) and (∇ξ, V +

1 ) in H1. Now split the form in Table 1 in blocks corresponding to
the splitting H = H1×H2. Then the restriction to H1 is the form b0 with the strongly elliptic
quadratic form

Re b0

(
(E0, E

+
0 ), (E0, E

+
0 )
)
= a2(E0, E0)− a3(E

+
0 , E

+
0 ).

The restriction to H1 is the form b1, and −b1 has the strongly elliptic quadratic form

−Re b1

(
(∇p, E+

1 ), (∇p, E+
1 )
)
= a1(∇p,∇p) + a4(E

+
1 , E

+
1 ).

Consequently, the diagonal blocks of the 2×2 splitting correspond to Fredholm operators with
index zero. On the other hand, the full form in Table 1 differs from the diagonal block matrix only
by compact terms. Hence the form a generates a Fredholm operator with index zero. 2

5 Proof of Theorem 2.1

Since the problem (BVP’) and (3.14) are equivalent (see Lemma 3.3), to prove Theorem 2.1
we only need to prove the existence of solutions to (3.14) with Ein replaced by Ein

gen given
in (2.6). Consider the homogenous adjoint problem of the variational formulation (3.14): find
(V, V +) ∈ H such that

a
(
(W,W+), (V, V +)

)
= 0 (5.37)

for all (W,W+) ∈ H. By the Fredholm alternative, it suffices to verify that

a
(
(0, Ein

gen), (V, V
+)
)
= 0

for any solution (V, V +) to (5.37). The following lemma describes properties of the solution
(V, V +), which will be used later for proving Theorem 2.1.

Lemma 5.1. Assume that the pair (V, V +) ∈ H is a solution to the homogeneous adjoint
problem (5.37). Then

VT |Γb
, (curlV +)T |Γb

∈Span
{
{(Un,l)T |Γb

: βn /∈R, l=1, 2} ∪ {Un,0|Γb
: βn=0}

}
.(5.38)

Proof. Analogously to the proof of (3.20), one can prove that curl curlV − k2V = 0 holds in
Ωb, leading to the identity (3.18) with (V,E) replaced by (W,V ). By the definition of a(·, ·),
there holds

0 = a
(
(W,W+), (V, V +)

)

=

∫

Γb

{e3×W · curlV −curlW+ · e3×V } ds+
∫

Γb

e3×(W−W+) · curlV +
ds

+η
∑

n∈Υ

∫

Γb

e3×(W−W+) · e3×Un,0 ds

∫

Γb

e3×(V −V +) · e3×Un,0 ds (5.39)
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for all (W,W+) ∈ H. In the following we will prove (5.38) by choosing different test functions
(W,W+) ∈ H.

(i) Choose W ≡ 0,W+ = Un,0 for some n ∈ Υ in (5.39). Since (curlUn,0)T = 0 on Γb (see
Lemma 3.1), simple calculations leads to

∫

Γb

[
curlV + + ηΛ1Λ2 e3×(V − V +)

]
· e3×Un,0 ds = 0.

However, one can verify using Lemma 3.1 (i) and (ii) that
∫

Γb

{curlV + · e3×Un,0} ds = 0 for V + ∈ Y.

Hence,
∫

Γb

e3×(V − V +) · e3×Un,0 ds = 0, if n ∈ Υ. (5.40)

(ii) Choose W ≡ 0 and W+ = Un,1 for some n ∈ Υ in (5.39). Making use of e3×Un,1 = 0
for n ∈ Υ, we derive from (5.39) that

∫

Γb

{curlUn,1 · e3×V } ds = 0.

This together with Lemma 3.1 (i) gives the relation
∫

Γb

{e3×V · Un,0} ds = 0 if n ∈ Υ. (5.41)

(iii) Inserting (5.40) and (5.41) into (5.39) with W ≡ 0 and taking into account Lemma 3.2, we
obtain

∫
Γb
{curl [V ]mo + curlV +} · e3×W+ds = 0

for all W+ ∈ Y . By Lemma 3.1 (iii), the above identity implies that
{
(curl [V ]mo)T + (curlV +)T

}
|Γb

∈ Span{Un,0 : n ∈ Υ}. (5.42)

Since V + ∈ Y , we have curlV + ∈ H(curl ,Ω+
b ) and thus the trace (curlV +)T on Γb

belongs to H
−1/2
t (Curl ,Γb). Using Lemma 3.1 (iii), we may assume that on Γb

(curlV +)T =
∑

n:βn=0

{
Bn,0 Un,0 +Bn,1 e3×Un,0

}
+
∑

l,n:βn 6=0Bn,l e3×Un,l

with Bn,l ∈ C. Combining the previous two formulas, we deduce from the definition of the
modification operator [·]mo in Lemma 3.2 that Bn,1 = 0 for βn = 0, and that

(
curl [V ]mo

)

T
+

∑

l,n:βn 6=0

Bn,l e3×Un,l = 0 on Γb.
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Therefore,

(curlV +)T =
∑

n:βn=0

Bn,0Un,0 −
(
curl [V ]mo

)
T

on Γb. (5.43)

(iv) Inserting (5.40) and (5.41) into (5.37) with W+ = 0 and W = V , we find (see (3.13) with
E+ ≡ 0 and E = V )

0 = Im a
(
(V, 0), (V, V +)

)
= Im

∫

Γb

e3×V · (curlV +)T ds, (5.44)

where the function (curlV +)T |Γb
is given in (5.43). According to Lemma 3.1 (iii), we may

represent e3×V |Γb
as

e3×V =
∑

l,n:βn 6=0Cn,l e3×Un,l +
∑

n:βn=0 {Cn,0 e3×Un,0 + Cn,1Un,0} , Cn,l∈C,

on Γb. However, by (5.41) there holds Cn,1 = 0 for n ∈ Υ. Thus, applying Lemma 3.1 gives

e3×V =
∑

l,n:βn 6=0

Cn,l(−1)l(Un,1−l)T (cos θn)
2l−1 +

∑

n:βn=0

Cn,0 e3×Un,0 on Γb, (5.45)

and
(
curl [V ]mo

)
T

= −
∑

l,n:βn>0

Cn,l(curlUn,l)T +
∑

l,n:βn /∈R

Cn,l(curlUn,l)T

= −
∑

l,n:βn>0

i(−1)lkCn,l(Un,1−l)T +
∑

l,n:βn /∈R

i(−1)l
√

|αn|2 + |βn|2
1−2l

k2lCn,l(Un,1−l)T (5.46)

on Γb. Inserting the above identity (5.46) into (5.43) and using (5.45) , we derive from (5.44) that

0 = Im

{
−ik

∑

l,n:βn>0

|Cn,l|2||(Un,1−l)T ||2L2(Γb)
(cos θn)

2l−1

}

+Im



−

∑

l,n:βn /∈R

|Cn,l|2(ik)2l||(Un,1−l)T ||2L2(Γb)
|βn|1−2l[|αn|2 + |βn|2]1−2l





= −k
∑

l,n:βn>0

|Cn,l|2||(Un,1−l)T ||2L2(Γb)
(cos θn)

2l−1,

which, together with the definition of cos θn defined in Lemma 3.1, leads to

Cn,l = 0 for all βn > 0, l = 1, 2. (5.47)

Finally, combining (5.47) and (5.45) we have proved (5.38) for VT |Γb
, and combining (5.47),

(5.46) and (5.43) leads to the desired result for (curlV +)T |Γb
.
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We proceed with the proof of Theorem 2.1, i.e., to show the existence of a solution (E,E+) ∈
H to the variational problem (3.14) for the incident wave Ein

gen.

Assume that (V, V +) ∈ H satisfies a((W,W+), (V, V +)) = 0 for all (W,W+) ∈ H. Using
Lemmas 5.1 and 3.1, it is easy to check that

a
(
(0, Ein

gen), (V, V
+)
)
= −

∫

Γb

{
curlEin

gen · e3×V + e3×Ein
gen · curl V

+
}

ds

= 0. (5.48)

This means that each solution to the homogenous adjoint problem (5.37) is orthogonal to the
right-hand side of the variational problem (3.14) in the sense of (5.48). According to Theorem
4.1, the Fredholm alternative applied to the variational problem (3.14) yields the existence of the
solution (E,E+) ∈ H to problem (3.14) for the incident plane waves Ein

gen defined in (2.6).

The claim (5.38) implies that the solution V + takes the form

V +(x) =
∑

βn /∈R

Cn,l Un,l(x) +
∑

βn=0

Cn,l Un,l(x) ∈ Y, x ∈ Ω+
b ,

and particularly, the coefficients of the propagating modes for βn > 0 vanish. By analogous
arguments, this assertion even remains valid for the solution (V, V +) to the homogenous vari-
ational problem

a
(
(V, V +), (W,W+)

)
= 0, ∀(W,W+)∈H.

In other words, the coefficient Cn,l of the difference of two solutions of (BVP) are zero if βn > 0.
g The proof of Theorem 2.1 is thus completed.

6 Appendix

For the reader’s convenience, we prove that the variational formulation (2.7) is uniquely solvable
for small wavenumbers k > 0. Since Rayleigh frequencies can be excluded for small wave-
numbers, by Remark 3.4 we see that such a unique solvability also applies to our variational
formulation (3.14) provided k is sufficiently small.

Lemma 6.1. There exists a sufficiently small wavenumber k0 > 0 such that the variational
formulation (2.7) admits a unique solution E ∈ X for all k ∈ (0, k0].

Proof. To prove Lemma 6.1, we need to replace equation (2.7) on the k-dependent α-quasi-
periodic space H(curl ,Ωb) by an equivalent variational problem acting on the (Λ1,Λ2)-pe-
riodic Sobolev space. Introduce the spaces H1

p (Ωb), Hp(curl ,Ωb), H
s
t,p(Γb), H

s
t,p(Div ,Γb)

and Hs
t,p(Curl ,Γb) in the same way as H1(Ωb), H(curl ,Ωb), H

s
t (Γb), H

s
t (Div ,Γb) and

Hs
t (Curl ,Γb) in Section 2, but with α = (0, 0)>. Define the operator ∇α := ∇ + i(α, 0)>

and, analogously to X in Section 2, the space

D :=
{
F : Ωb → C

3, F ∈ Hp(curl ,Ωb), ν×F = 0 on Γ
}
.
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Let τn := (2πn1/Λ1, 2πn2/Λ2)
> = αn − α for n = (n1, n2)

> ∈ Z2. Given

F̃ (x′) =
∑

n∈Z2

F̃ne
iτn·x′ ∈ H

−1/2
t,p (Div ,Γb), (6.49)

it follows from the definition of the operator R (see (2.8)) that

R(Ẽ) = T (F̃ ) exp(iα · x′), for Ẽ(x′) = eiα·x
′

F̃ (x′) ∈ H
−1/2
t (Div ,Γb),

where the operator T : H
−1/2
t,p (Div ,Γb) → H

−1/2
t,p (Curl ,Γb) is the Dirichlet-to-Neumann

map over the space H
−1/2
t,p (Div ,Γb) defined by

(T F̃ )(x′) = −
∑

n∈Z2

1

iβn

[
k2F̃n − (αn · F̃n)αn

]
exp(iτn · x′), n = (n1, n2)

>∈Z
2. (6.50)

Note that T is well defined for small wavenumbers k ∈ (0, k0], since βn 6= 0 if k0 is sufficiently

small. The spaces H
−1/2
t,p (Γb), H

−1/2
t,p (Div ,Γb) and H

−1/2
t,p (Curl ,Γb) will be equipped with

the norms analogous to the quasi-periodic ones in Section 2, only with the coefficient En re-
placed by F̃n given in (6.49) and αn replaced by τn.

Set F in(x) := exp(−iα · x′)Ein(x) and

F (x) = exp(−iα · x′)E(x), ψ(x) = exp(−iα · x′)ϕ(x) ∈ Hp(curl ,Ωb),

for E,ϕ ∈ H(curl ,Ωb). We now consider the variational formulation

ap(F, ψ) :=

∫

Ωb

[
∇α×F · ∇α×ψ − k2F · ψ

]
dx−

∫

Γb

T (e3×F ) · (e3×ψ) ds

=

∫

Γb

[
(∇α×F in)T − T (e3×F in)

]
· (e3×ψ) ds (6.51)

for all ψ ∈ D, which is the counterpart of problem (2.7) in the periodic space Hp(curl ,Ωb).

The problem (6.51) can be rewritten as the operator equation B(F ) = f in the dual space D′

of D, where for ψ ∈ D the dualities 〈B(F ), ψ〉 and 〈f, ψ〉 between D′ and D are defined by
the the sesquilinear form ap(F, ψ) and the right hand of (6.51), respectively. By Lemma 4.2, we
have the Hodge-decomposition D = D0 ⊕D1, with

D1 :=
{
∇αq : q ∈ H1

p (Ωb), q = 0 on Γ
}
,

D0 :=
{
F0 ∈ D :

∫

Ωb

∇αq · F 0 dx = 0 for all ∇αq ∈ X1

}
.

This allows the decomposition

F = F0 +∇αq, ψ = G0 +∇αg, F0, G0 ∈ D0,∇αq,∇αg ∈ D1.

Now, the sesquilinear form ap in (6.51) can be rewritten as

ap(F, ψ) = ap(F0, G0) + ap(∇αq, G0) + ap(∇αq,∇αg) + ap(F0,∇αg),
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and the operator B takes the form

B =

(
B1 B3

B2 B4

)
,

B1 : D0 → D′
0, 〈B1(F0), G0〉 = ap(F0, G0), ∀ G0 ∈ D0,

B2 : D0 → D′
1, 〈B2(F0),∇αg〉 = ap(F0,∇αg), ∀ ∇αg ∈ D1,

B3 : D1 → D′
0, 〈B3(∇αq), G0〉 = ap(∇αq, G0), ∀ G0 ∈ D0,

B4 : D1 → D′
1, 〈B4(∇αq),∇αg〉 = ap(∇αq,∇αg), ∀ ∇αg ∈ D1.

We first prove that the form ap is coercive over D0 for a small wavenumber k. Using the explicit
representation of T , one can prove that, for F̃ given in (6.49),

Re

∫

Γb

T (F̃ ) · F̃ds = Λ1Λ2

∑

n:|αn|>k

1√
|αn|2 − k2

[
k2|F̃n|2 − |αn · F̃n|2

]
.

Hence,

−Re

∫

Γb

T (F̃ ) · F̃ds ≥ −Λ1Λ2

∑

n:|αn|>k

1√
|αn|2 − k2

k2|F̃n|2

≥ −C1Λ1Λ2

∑

n∈Z2

1√
|τn|2 + 1

k2|F̃n|2

= −C1Λ1Λ2k
2||F̃ ||2

H
−1/2
t,p (Γb)

≥ −C1Λ1Λ2k
2||F̃ ||2

H
−1/2
t,p (Div ,Γb)

.

Applying the previous estimate to the trace e3×F0 for F0 ∈ D0 and using the continuity of the
trace mapping from Hp(curl ,Ωb) to H

−1/2
t,p (Div ,Γb), we arrive at

−Re

{∫

Γb

T (e3×F0) · (e3×F 0)ds

}
≥ −k2C1Λ1Λ2||e3×F0||2H−1/2

t,p (Div ,Γb)

≥ −k2C2||F0||2H(curl ,Ωb)3
.

Therefore,

Re ap(F0, F0) ≥ ||∇α×F0||2L2(Ωb)3
− k2||F0||2L2(Ωb)3

− k2C2||F0||2H(curl ,Ωb)3
. (6.52)

Recalling that the function E0 := exp(iα · x′)F0 belongs to the space X0 ⊂ X which is
divergence free, we have the Friedrichs-type estimate (see [22, Corollary 4.8])

||E0||2L2(Ωb)3
≤ C3||∇×E0||2L2(Ωb)3

,

for some constant C3 > 0 independent of E0 ∈ X0, which is equivalent to

||F0||2L2(Ωb)3
≤ C3||∇α×F0||2L2(Ωb)3

. (6.53)
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Combining (6.52) and (6.53) leads to the coercivity of the form ap over D1 for small wavenum-
bers k < k0. This implies that the operatorB−1

1 exists with the bounded norm ||B−1
1 ||D0→D0′ ≤

C for some constant C > 0 independent of k ∈ (0, k0].

Next we claim that the form −ap is also coercive over D1. In fact, the function (Q(x′), 0)> :=
e3×∇αg|Γb

can be expanded into

Q(x′) =
∑

n∈Z2

(−α(2)
n , α(1)

n )>Qn exp(iτn · x′), Qn ∈ C. (6.54)

Thus, using the representation of T given in (6.50), we find

−Re ap(∇αq,∇αq) = k2||∇αq||2L2(Ωb)3
+

∑

n:|αn|>k

|βn|−1k2 ||αn||2|Qn|2

≥ C0 k
2 ||∇αq||2H(curl ,Ωb)3

.

As a consequence, we have ||B−1
4 ||D1→D1′ ≤ k−2C−1

0 , where the constant C0 does not
depend on k.

The operator B can be written as the matrix operator

B =

(
B1 0
B2 B4

)
+

(
0 B3

0 0

)
,

(
B1 0
B2 B4

)−1

=

(
B−1

1 0
−B−1

4 B2B
−1
1 B−1

4

)
=: M.

Thus the operator equation B(F ) = f is equivalent to

[(
I 0
0 I

)
+

(
0 B−1

1 B3

0 −B−1
4 B2B

−1
1 B3

)](
F0

∇αg

)
= Mf, (6.55)

where I denotes the identity operator. To prove the invertibility of B, it suffices to show

||B3||D1→D′

0
+ ||B2||D0→D′

1
≤ C4 k

2, (6.56)

with some C4 > 0 independent of k ∈ (0, k0]. Consider the sesquilinear form corresponding
to B2:

ap(F0,∇αg) = −
∫

Γb

T (e3 × F0) · (e3 ×∇αg) ds.

Expand the first two components of e3 × F0, e3 × ∇αg into the series in (6.49) and (6.54),
respectively. Then, by (6.50) we get

|ap(F0,∇αg)| = k2

∣∣∣∣∣
∑

n∈Z2

1

iβn
F̃n · (−α(2)

n , α(1)
n )>Qn

∣∣∣∣∣

≤ C5 k
2

(
∑

n∈Z2

(1 + |τn|2)1/2|Qn|2
)1/2(∑

n∈Z2

(1 + |τn|2)−1/2|F̃n|2
)1/2

≤ C6 k
2||e3 ×∇αg||H−1/2

t,p (Div ,Γb)
||e3 × F0||H−1/2

t,p (Div ,Γb)
.
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This combined with the continuity of the trace mapping from Hp(curl ,Ωb) to H
−1/2
t,p (Div ,Γb)

leads to the estimate in (6.56) for B2. For the proof concerning B3, we can proceeded analo-
gously.

We now conclude that the operator on the left hand side of (6.55) is a small perturbation of the
identity for all k < k0 if k0 is sufficiently small. Hence, problem (3.14) always admits a unique
solution E of the form E = exp(iα · x′)F with F = F0 +∇αq, F0 ∈ D0, ∇αq ∈ D1.
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