
WeierstraB-Institut 
fiir Angewandte Analysis und Stochastik 

im Forschungsverbund Berlin e.V. 

Remarks on the existence for the one-dimensional 
Fremond model of shape memory alloys 

Pierluigi Colli 1 , J iirgen Sprekels2 

submitted: 30th August 1995 

1 Dipartimento di Matematica 2 WeierstraB-Institut 
Universita di Torino fiir Angewandte Analysis 
Via Carlo Alberto 10 und Stochastik 
I-10123 Torino MohrenstraBe 39 
Italy D-10117 Berlin 

Germany 

Preprint No. 169 
Berlin 1995 



Edited by 
WeierstraB-Institut fiir Angewandte Analysis und Stochastik (WIAS) 
MohrenstraBe 39 
D - 10117 Berlin 
Germany 

Fax: + 49 30 2044975 
e-mail (X.400 ): c=de;a=d400-gw;p= WIAS-BERLIN ;s=preprint 
e-mail (Internet): preprint@wias-berlin.de 



Remarks on the existence for the one-dimensional Fremond model of shape 
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Abstract. 

In this paper we outline a rigorous proof of the existence of solutions to one-dimensional 
initial-boundary value problems for the general and complete version of the Fremond thermo-
mechanical model applying to shape memory alloys. 

1. Introduction 

This note is concerned with the following system of partial differential equations 

eo"3t - h"3xx = F +at (Lx1 - (o:(73) - "30:'("3))x2ux) + 0:("3)x2Uxt, 
Utt - ax (-VU:z:xx + WU:r; + o:( "3)x2) = G, 

k 81 [~~] + [ l~,;)2] + 8h(xi. x2) 3 [~], 

(1) 
(2) 

(3) 

holding _in Q = (0, 1) x (0, T), where T > 0 is some final time, x and t denote space and time 
variables, respectively, and at= a I at, ax =a I ax. Such a system comes out from the deriva-
tion of a macroscopic model proposed by Fremond [10,11] to describe the thermo-mechanical 
phase transitions in shape memory materials. The equation ( 1) reflects the universal ba-
lance law of energy, 73 standing for the absolute temperature, while (2) yields the equilibrium 
equation for the longitudinal displacement u. The relationship (3) governes the evolution of 
the phase proportions x1 , x2 (related to the volumetric fractions of austenite and martensit~s 
phases) and it complies with the second principle of thermodynamics. As the Fremond model 
assumes a non-differentiable free energy .(weighted sum of smooth free energies associated 
with the individual phases and of the mixture free energy .,JJJC), in (3) we find the maximal 
monotone graph aIJC, representing exactly the subdifferential of the indicator function IJC of 
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the plane triangle 
JC:== {(x1,x2) E IR2 

: lx2I::; x1::; 1} 

(convex set containing the admissible phase proportions), that is, h:(X1, X2) = 0 if (x1, X2) E 
JC,= +oo otherwise. A more detailed presentation of (1-3), extending to the multidimen-
sional case as well, is provided in [6, 7] to which we refer for the physical meaning of the 
positive constants c0 , h, L, v, w, k, l, and 19*. Let us just point out here that the data F, G 
are proportional to the distributed heat source and body force, respectively, and that the 
function a (giving account of the thermal expansion) is non~negative, non-increasing, and 
vanishing above a critical temperature (the so-called Curie point) 19 c > 19*. 

Initial and boundary value problems have been investigated for various simplified ver-
sions of the field equations, in one or three dimensions of space (see [2,13,9], addressed 
to the one-dimensional case, and [6,1,12,3,7,4,5] quoted in chronological order), obtaining 
existence and, in some framework, also uniqueness and continuous dependence. Simplifica-
tions regard the removal of (part of) the nonlinearities from the energy balance equation 
(1) (actually, in the right hand side of (1) there are three highly nonlinear terms, namely 
(19a'(19) - a(19))ux8tx2, 19a'(19)x28tux, 19a"(19)x2ux19t, including the time derivative of phase 
variable or strain or temperature) and the quasi-stationary form (in which the inertial term 
Utt is neglected) for the momentum balance equation (2). On the other hand, some effort 
has been done to treat the situation where v == 0, thus avoiding the regularizing fourth-order 
term in (2) (the use of a second gradient theory, to account for mechanical actions exerted 
on surfaces, is rather disputed by physicists). In addition, a possible line of future intriguing 
research could be the study of (1-3) with the coefficient k reduced to 0, so that no dissipation 
or phase relaxation enters into the dynamics of phase transition (compare with the standard 

.multiphase Stefan problem) . 
. However, concerning the general set of equations, in the paper [8] we have proved that, 

under weak and reasonable assumptions on the data, any sufficiently smooth solution has 
the property the absolute temperature component 19 attains non-negative values almost eve-
rywhere. This positivity result, independent of the particular form of the momentum balance 
equation, plays a crucial role in the argumentation of the present paper, to show the existence 
of solutions to (1-3) satisfying the following boundary and initial conditions 

h'!Jx(O, t) = ho('IJ(O, t) - fo(t)), - h'!Jx(l, t) == h1('13(1, t) - f1(t)), 
u(O, t) = u(l, t) = 0, Uxx(O, t) = Uxx(l, t) = 0, 
'13( x, 0) = '13°( x ), u( x, 0) = u0

( x ), Ut( x, 0) = w 0
( x ), 

X1(x, 0) = X~(x), X2(x, 0) = X~(x), 

(4) 
(5) 
(6) 
(7) 

fort E (0, T) and x E (0, 1), where h0 , h1 are positive heat exchange coefficients, the functions 
fo, f1 give the outside temperature distributions, and ,,JO, UO, WO, X~, X~ denote the initial 
data. 

In fact, our contribution is devoted to sketch the proof of the next statement. For 
the sake of brevity, in the notation of Sobolev spaces like L2(0, 1) or H1(0, 1) we omit the 
indication of the interval (0, 1 ). Besides, let ( · , ·) represent both the scalar product in L 2 

and the duality pairing between s-1 and HJ. 
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Theorem" 1. Assume that '19° E H1 , '19° ~ 0 in [O, 1], u0
, (u0 \:x' w 0 E HJ, x~, xg E 

L00
, (x~, x~) E K, a.e. in (0, 1), fo, f1 E W1

'
1(0, T), fo ~ 0 and f 1 ~ 0 in (0, T], F E 

L2 (0, T; L2) = L2(Q), F ~ 0 a.e. in Q, GE W1
•
1 (0, T; L2), a E C 2(IR), a'(e) = 0 if e::; O 

and e ~ 'f3c, and that the constant Ca = lla"llvxi(IR) is small enough {this last requirement is 
nothing but a compatibility condition among some data, as it will become clear in the sequel). 
Then the problem {1-7) has at least one solution ( .,J, u, x1 , x2 ) with 

.,J E H 1 (0, T; L2) n C0 ((0, T]; H1
) n L2 (0, T; H 2), .,J ~ 0 a.e. in Q, 

u E W 2100 (o, T; s-1
) n 0 1 (ro, T]; L2) n w 1

•
00 (o, T; H5) n c0 (ro, T]; H2) n L 00 (o, T; H 3), 

Xi, X2 E H1 (0, T; L2
) n L00 (Q), (x1, X2) EK, a.e. in Q, 

fulfilling {1) and {3) a.e. in Q, {2) in the sense of L2 (0, T; H-1 ), (4-5) a.e. in (0, T), and 
{6-7) a. e. in (0, 1 ). 

This theorem is inferred by using a sort of elliptic regularization, deriving uniform bounds 
for the approximating solutions, and finally passing to the limit with the help of compactness 
techniques. We notice that an independent proof is proposed in [14]. 

2. A priori estimates 

First thing, we prefer to deduce the formal a priori estimates allowing us, basically, to get 
the existence result. Letting the comments on approximation and limit procedure for the 
last sectiqn, we start by recalling that an alternative expression for (1) is 

(co - "3a11 (7J)x2ux) '13t-h'l3xx = F+L8tX1+(7Ja'('l3)-a(7J))ux8tX2+"3a'(.,J)X2Uxt a.e. in Q.(8) 
. . 

Moreover, a weak formulation of (2), which accounts for the boundary conditions in (5), reads 

(Utt, v) + v( Uxx, Vxx) + ( WUx +a( 7J)x2, vx) == ( G, v) v v E H5 n H 2' a.e. in (0, T), (9) 

and the inclusion (3) can be equivalently rewritten as the pointwise variational inequality 
2 
~ k(8tXi)(x, t)(Xi(x, t) - "fi) + l(7J(x, t) - 7J*)(x1(x, t) - 11) 

1=1 

+(a('13)ux)(x, t)(x2(x, t) - 12)::; 0 V (11,12) E }(,, (10) 

to be satisfied for a.e. (x, t) E Q. By using essentially (10), the special form of the convex K, 
the fact that a is constant on negative values, the sign hypotheses on F, f 0 , f1, and '13°, one 
obtains .,J ~ 0 a.e. in Q (see (8] for the details). 

The second step consists in an estimate already performed in [15] (for a different shape 
memory model) and involving just the energy and momentum balance equations. Indeed, we 
integrate (1) over (0, 1) x (0, t), taking advantage of ( 4) and (6), and choose v == Ut in (9), inte-
grating then from 0 tot E [O, T]. Summing the two identities, the terms containing a( '13)x2uxt 
cancel each other out. Also, owing to the properties of a and the boundedness of K, we have 
that f~f~ at (Lx1 - (a('13) - "3a'(7J))x2ux) ~ 2L + 2"3; Ca (llux(. 't)llL2 + ll8xu0 11L2). Hence, in 
view of the positivity of '13, by the elementary Young inequality one can easily find two con-
stants 01, 02, depending only on Co, 11'13°11£1, llFllv(Q), ho, hi, llfollu(o,T), llf1llu(o,T), L, '13c, 
w, v, II 8xu0 llH1 , and 11 GllL1(o,T;L2), such tha~ 

11'!9( ·, t)llv + llut( ·, t)lli2 + llux( ·, t)ll~1 ~ C1 + G2 c~ V t E [O, T]. (11) 
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Since H 1 is continuously embedded into L 00 (here the space dimension 1 is crucial), (11) 
ensures that lluxllu'°(Q) ~ C3 + C4 Ca for some constants C3, C4 related to C1, C2. Now, the 
assumption of smallness for Ca can be made precise: in order that the coefficient of {}t in 
(8) (such coefficient represents the specific heat which ought to) be positive eveywhere, it is 
demanded that Cs:= Co - {Jc Ca (C3 + C4 ea)> 0. 

The subsequent estimate gives further information about the regularity of {} and u as 
well as it deals with the phase variables Xi, X2 too. Multiply formally (8) by {}t, (2) by -Uxxt 
(or take v = -Uxxt in (9)), and (3) both by the vector of components 8tx1, 8tX2 and by the 
scaling constant (to be specified later) C > 0. Adding and integrating by parts in space and 
time, on account of ( 4-7) and of the previous bounds it is not difficult to verify that (see [5] 
for analogous calculations) 

r r 1 2 h 2 1 hi . 2 1 2 l/ 2 
Cs lo lo l1Jtl + 2 ll{}x( · ,.t)llvz + i~ 4l{}(i, t)j + 2 lluxt( ·, t)llvi + 4 lluxxx( ·, t)llvz 

+c J
1 
~ fo' fo11a,x;l2 ::; Cs+ G1 ll ( IFI + ;ti l8ox;I + luxol) l'11ol (12) 

+ ,t h; fo' 1(!;),(s)l l..9(i,s)lds + Gs l[ (l'11ol + l8tx21) luxxxl + l~ l 1111( · ,s)ll~' ds 

for a.e. t E (0, T), where Cs, C1, C8 depend on the data (T included) and Cs depends also 
on C. By applying the Young inequality in the right hand side of (12), we can control the 
integrals of l1Jtl 2 in a way that the sum of them be less than (Cs/2) J~f~ j{}tj 2

• Then we 
choose C sufficiently large so that the terms containing !8tXi j2 

, !8tx2 l2 are dominated by 
the corresponding ones in the left hand side. Finally, exploiting an extended version of the 
Gronwall lemma we come to the conclusion that 

2 

ll1JllH1(0,t;L2)nL 00 (0,t;H1)'+ llullw1. 00 (0,t;I-ll)nL 00 (o,t;H3) + j>;:i llXillH1(0,t;L2)nL=((o,1)x(o,t)) ~ Cg (13) 

for all t E (0, T], C9 being a constant with the most of dependences, according to the frame-
work of Theorem 1. 

3. Approximation 

Letting c > 0, we substitute (2) with the regularized equation 

att ( u + cUxxxx - cUxx)- Bx (-llUxxx + WUx +a( {})x2) = G (14) 

and we prescribe the initial datum w~ instead of w 0 (while u 0 remains unchanged), where 
w~ E HJ n H4 solves the variational equality ( w~' v) + c ( Bxx w~' Vxx) + c ( ax w~' Vx) = ( w0 ' v) 
for any v E HJ n H2

• Thanks to the property w 0 E HJ' it turns out that the quantity 
llw~ll~1 +ft llBxxw~ll~:z + c llBxxxw~ll~:z is bounded independently of c, and that w~ ~ w0 

strongly in L 00 as c ~ 0. 
Consider now the problem (1), (14), (3-7) in which w 0 is replaced by w~. For simplicity 

we denote this approximating problem by (Pt:)· First one shows a local existence and uni-
queness result for (Pt:). Namely, by applying the Contraction Mapping Principle we can find 
a value T E (0, T] (possibly depending on c) such that, for c sufficiently small, there exists 
one and only one solution of (Pe) in the time interval [O, T]. Our fixed point argument works 
as follows. Take a pair (8, X2) with e, X2 E L2 (0, T; L2 ) and IX2I :::; 1 almost everywhere 
(see the definition of JC). Put 8 (in place of{}) and X2(in place of x2 ) in (14). Hence the 
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initial-boundary value problem in (14), (5.....,6) admits a unique solution u E W 2
•
00 (0, T; H 3 ). 

Moreover, multiplying (14) by Ut, integrating by parts in (0, 1) x (0, t) (t:::; r), and observing 
that 

~ llBxxw~11:, + ~ llBxw~11:, - l l a(0)X2Uxt :::; C10 ( e112 + e-112 fo' Ve lluxt( ·, s )llL' ds) 
(C10 independent of e and r), one infers that (cf. (11)) 

llut( ·, t)ll~:z + e lluxt( ·, t)ll~1 + llux( ·, t)ll~1 :::; C1 + C2 c~ \:/ t E [O, r], (15) 
provided e and r 2 /e are small enough. Therefore, lluxll£<x>((o,l)x(o,-r)) ::; C3 + C 4 Ca. (the con-
stants are the same as in Section 2) and also lluxtl!Loo((o,l)x(o,-r)) is bounded, by a co:q.stant 
proportional to e-1 / 2 (but this is not so important). Next, use the already found Ux and Uxt in 
the system coupling (1) and (3). Here you can prove the well-posedness of the corresponding 
initial-boundary value problem arguing as in [9], determining thus the solution ( 19, x1 , x2 ) 

and, in particular, a new pair (19,x2 ). At this point, by means of suitable contracting estima-
tes (similar to those developed in [9]), setting other restrictions on e and r if necessary, we 
arrange for the mapping (8, X2 ) ~ (19, x2) to be a contraction. 

Then we can proceed exactly as in the previous section, starting from the positivity 
of 19 (we stress again that the result of [8) does not rely on the form of the momentum 
balance equation) and ending with an estimate like (13), where V£ llutllu".>(O,t;H3) has to be 
added in the left hand side and where the respective constant C9 is independent of T and e. 
Thus the solution (19e,ue,X1e,X2e) of the problem (Pe) actually exists in the whole interval 
[O, T]. From comparisons in (8), ( 4) and in (14) we recover bounds also for ll19ell£2(o,T;H2) and 
llue + eBxx (Bxxiie - ue)llw2,oo(o,T;H-t). Consequently, we are able to pass to the limit as e ~ 0 
by weak and weak-star compactness and to show that any limit ( 19, u, x1 , x2 ) of subsequences 
of (19&, ue, Xie, x2e} must yield one of the ~olutions defined by Theorem 1. In fact (see [5] 
for similar arguments), compact injections along with direct verifications allow us to deduce 
strong convergences for (subsequences of) 19e, Bxue, X1e, X2e helping to take the limit in the 
nonlinearities. Moreover, since Btt ( Ue + eBxxxxUe - eBxxue) weakly-star converges to some T/ 
in L00 (0, T; H-1 ) and (eBxxxxUt: - eBxxUe)--->- 0 in W 1•00 (0, T; H-1 )' it turns out that T/ =Utt 
and (9) holds. 

Remark 2. In regard of experimental situations, it would be more interesting to treat the 
problem (1-7) with non-zero Dirichlet boundary conditions for u, assuming for instance a 
prescribed displacement u(l, t) = g(t) on one end. In this case it suffices to let g E W 3•1(0, T) 
and use the new unknown u(x, t) = u(x, t) - xg(t), (x, t) E Q, instead of u, with obvious 
modifications in (1-3). What seems more difficult to handle is a Neumann boundary condition 
for the conormal derivative, e.g. (-11Uxxx + wux + a(19)x2) (1, t) = 9n(t) (where 9n would 
represent an external traction), as it was instead done in [9) and [5), for instance. Thus, the 
study of (1-7) with other boundary conditions for u remains an open question as well as the 
extension of the above existence result to the three-dimensional case. 
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