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Abstract

We consider periodically heterogeneous fluid-saturated poroelastic media de-
scribed by the Biot model with inertia effects. The weak and semistrong formula-
tions for displacement, seepage and pressure fields involve three equations expressing
the momentum and mass balance and the Darcy law. Using the two-scale homog-
enization method we obtain the limit two-scale problem and prove the existence
and uniqueness of its weak solutions. The Laplace transformation in time is used
to decouple the macroscopic and microscopic scales. It is shown that the seepage
velocity is eliminated form the macroscopic equations involving strain and pressure
fields only. The plane harmonic wave propagation is studied using an example of lay-
ered medium. Illustrations show some influence of the orthotropy on the dispersion
phenomena.

1 Introduction

Wave propagation in fluid-saturated porous (elastic) materials (FSPM) has been ad-
dressed in many publications since the pioneering works of Frenkel (1944) and Biot (1956).
Especially the occurrence of the fast and slow compressional waves became the issue
frequently discussed in the contexts of various particular models and their engineering
applications, namely in geomechanics, seismology, or in biomechanics.

The FSPM models which we have in mind are relevant to the scale where individual
fluid-filled pores are not distinguishable so that at any point of the bulk material both
the solid and fluid phases are present according to the volume fractions. In particular
we consider the following system of PDEs proposed by Biot in [BiW57], cf. [AlW05]also
other references which use this model,

−∇ · (IDε(u)) +∇(αp) + ρü + ρf ẇ = f ,

ρf ü + ρwẇ + K−1w +∇p = 0

α : ε(u̇) + divw +
1

µ
ṗ = 0 ,

(1.1)

consisting of the momentum equation (1.1)1, the Darcy law (1.1)2, relating the total fluid
pressure to the seepage velocity w , and the fluid volume conservation (1.1)3. Although we
explain the structure of this model in detail in Section 2, for comprehension we introduce
the notation: by dot we indicate the time derivative, u is the displacement field describing
the solid skeleton kinematics, ε(u) is the small strain tensor, ID is the skeleton elasticity
tensor, p is the static fluid pressure, w describes the relative fluid velocity w.r.t. the solid
skeleton, see (2.2), ρf is the fluid density, density ρw = φ−1

0 ρf involving the fluid volume
fraction φ0 is relevant to the seepage acceleration, K is the permeability, α is the Biot
effective stress coefficient (tensor), µ is the Biot modulus reflecting compressibility of the
fluid and of the skeleton. All the material parameters listed above are defined for a given
porous solid structure – the skeleton – which is defined at the “microscopic scale”.

Our aim in this paper is to derive the homogenized model of such FSPM which are
heterogeneous at the “mesoscopic scale”. We shall consider all the material parameters
involved in (1.1) vary periodically with the spatial position and pursue the asymptotic be-
havior of the model while the frequency of these periodic oscillations grows up to infinity
with ε→ 0, where ε is the scale parameter expressing the ratio between the characteristic
lengths of the “mesoscopic” and the “macroscopic” scales. Since in the “mathematical”
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context of the homogenization methods the heterogeneities are defined w.r.t. the micro-
scopic scale, in what follows by the microscopic scale we mean the “physical mesoscopic
scale” which was referred to above.

Obviously, the wave propagation in FSPM has been addressed by many authors; apart
of Biot’s pioneering works [BiW57], the acceleration fronts were discussed in [Cou04],
cf. [HeU05]. Slow and fast compression waves were studied e.g. in [Bar95], see also
[Sch01, ABG09], the waves on rough interfaces in the context homogenization of the
Biot medium was presented in [GiO03]. Acoustics in deformable porous media were
investigated from the first principles of the fluid-structure interaction in [AuB94] in the
context of double porosity, see also [ABG09].

The homogenized model (HM) obtained using the two-scale convergence method is sim-
ilar in the structure with the original “ε-model” (OM) in the sense that all the material
parameters have their effective counterparts relevant for homogenized medium. The major
difference is in the fading memory dynamics of HM arising from the homogenized perme-
ability by virtue of the inertia effects in the Darcy law, cf. [All92b, Hor97]; here the effect
of the fluid pressure gradient, ∇p is extended by the fluid acceleration, ρf v̇ f = ρwẇ +ρf ü ,
thus, giving rise to the first-order dynamics and to the time-convolutions. In this paper we
do not report this phenomenon in detail. We present the HM in its Laplace-transformed,
or Fourier-transformed form which is pertinent for an analysis of incident harmonic waves;
it can be shown easily that with respects to harmonic waves propagations the structure
of OM and HM is the same; the only difference is in the use of the effective parameters
in the latter case.

The key role in deriving the a priori estimates of solutions (u ,w , p) to (1.1), equipped
with suitable boundary and initial conditions, is performed by the mechanic energy

E(u ,w , p) =
1

2

∫

Ω

ε(u) : IDε(u) +

∫

Ω

1

2µ
|p|2 +

1

2

∫

Ω

(u̇ ,w) ·
(

ρ ρf

ρf ρw

)(
u̇
w

)
,

which obeys the 1st law of thermodynamics: Ė(u ,w , p) = W (u̇) − D(w), where W is
the external power and D(w) is the dissipation associated with the viscose flow in the
porous structure, see (2.13). We shall assume such material parameters that E is positive
definite.

The paper is organized, as follows. In Section 2 we describe briefly the physical
background of model (1.1); we specify the boundary conditions, discuss possible initial
conditions and, on introducing convenient functional spaces, we arrive at the weak for-
mulation of the initial-boundary value problem for the FSPM with varying coefficients.
For its solutions, in Section 3, the a priori estimates uniform w.r.t. scale parameter ε are
derived, so that the two-scale convergence results can be used to obtain the limit model,
as reported in Section 4. In Section 5 the homogenized model is established for the limit
problem transformed by the Laplace transformation in time. This operation allows us to
split multiplicatively the two-scale limit functions in the macroscopic part and the part
representing the characteristic response of the microstructure, so that the homogenized
material coefficients can be introduced. In this paper we do not describe application of
the inverse Laplace transformation to obtain the homogenized problem defined in time –
this will be issued in a forthcoming publication. Instead we illustrate the model properties
in the context of the plane harmonic waves propagation. For illustration, in Section 6.2
we present analytical formulae for computing the homogenized material coefficients in
the layered medium constituted by commuting two different materials. In our setting the
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materials have similar properties, although we intend to extend to modeling for a strongly
heterogeneous media with fractures, or with high contrasts in permeability, cf. [BGS05].
For this the dual porosity ansatz [GrR07, RoC10] can be used.

2 Model construction

2.1 Mechanical modeling

General material considered, two phases, volume fractions, phenomenological approach

Volume fractions and mass The model is based on the concept of the volume frac-
tions of the two phases constituting the saturated medium: denoting by φ0 the reference
porosity, i.e. the reference fluid volume content, the average mass of the mixture is

ρ = ρs(1− φ0) + ρfφ0 , (2.1)

where ρs and ρf are the solid and fluid densities, respectively.

State variables and kinematics The state of the porous medium is described in terms
of the solid skeleton displacements u(t, x), the fluid velocity v f (t, x) and the fluid (static)
pressure p(t, x). However, it is often customary to replace v f by the seepage velocity

w = φ0(v f − u̇) , (2.2)

which describes the effective fluid relative velocity (w.r.t. the solid). The skeleton de-
formation is described by the small strain tensor, i.e. the symmetric gradient of the
displacements:

ε(u) =
1

2
(∇u + (∇u)T ) ≡ ∇Su , ε(u) = (εij) , i, j = 1, 2, 3 . (2.3)

2.1.1 Constitutive laws

The Biot model involves three essential constitutive laws: 1) the relationship between
the drained solid skeleton “macroscopic” deformation ε(t, x), the fluid pressure in pores
p(t, x) and the total stress σ(t, x), 2) the relationship between the variation of the fluid
content, ζ(t, x), (dimensionless scalar variable), skeleton (macroscopic) deformation, and
the fluid pressure, 3) the Darcy law relating the seepage velocity, w(t, x), with “dynamic
fluid pressure”, i.e. the static part p(t, x) and the fluid inertia part (see below).

Anisotropic poroelastic constitutive equations In an elastic fluid-saturated porous
media, the total stress tensor σ(t, x) is linearly related to the skeleton strains ε(t, x) of
the porous solid and to the pore pressure p(t, x).

σ = IDε(u)−αp (2.4)

where ID = (Dijkl), i, j, k, l = 1, ..., 3 is the fourth-order tensor which is the drained
anisotropic elasticity tensor of the porous matrix, and α = (αij) is the symmetric second-
order tensor called the Biot effective stress coefficient tensor ; it can be reduced to a scalar
variable in the isotropic medium case.
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Fluid pressure in the compressible medium. The second constitutive equation is
the relation between the fluid content, strain and pore pressure:

p = µ(ζ −α : ε(u)), hence ζ̇ = α : ε(u̇) +
1

µ
ṗ , (2.5)

where the scalar constant µ is called the Biot’s modulus. If both the fluid and solid parts
are incompressible (in the latter case the notion of incompressibility is related to structural
properties of the skeleton, not only to the “pure solid” material), then µ→ +∞, so that
p becomes the Lagrange multiplier of the overall incompressibility constraint.

Darcy’s law. The generalized Darcy’s law is reads as (see (2.2)):

w = −K (∇p+ ρf v̇ f )

= −K
(
∇p+ ρf (ü + φ−1

0 ẇ)
)
,

(2.6)

where the symmetric second-order tensor K=(Kij), i, j = 1, ..., 3 stands for the anisotropic
permeability tensor which is disproportional to the fluid dynamic viscosity. We remark
that the Darcy law can be derived by homogenizing the Stokes flow in a given microstruc-
ture, see e.g. [Hor97, All89], so that it has not the phenomenological character. We
neglect the pore tortuosity effects related to the fluid inertia, cf. [Cou04]; to consider
this effect, the poroelastic coefficients can be adjusted and all the results can easily be
adapted, see e.g. [NNS10].

2.1.2 Balance equations

The two-phase saturated medium must obey the mass conservation and the balance of
momentum. Since we do not describe any thermal processes and its influence on the
material parameters, the energy balance need not be considered explicitly in the model.
Nevertheless, the total mechanic energy and the dissipation are natural quantities allowing
us to obtain the a priori estimates.

The volume conservation expresses the change in the fluid content (in the solid skele-
ton) due to the seepage,

ζ̇ = −divw . (2.7)

The momentum balance is related to the skeleton, where fluid presents the added mass.
Neglecting the tortuosity (microscopic) effects, the total rate of momentum is derived
from the reference motion of the skeleton, giving ρü and the relative motion of the fluid
part, giving ρf ẇ . Thus, using the total stress, we have

−∇ · σ = f − (ρü + ρf ẇ) , (2.8)

where f (t, x) are the volume forces, as related to the mean density, ρ.
The final set of equations describing the dynamics of the Biot medium is obtained

substituting (2.4) and (2.5)2 into (2.8) and (2.7), respectively, and collecting them with
the Darcy law, (2.6)

−∇ · (IDε(u)) +∇ · (αp) + ρü + ρf ẇ = f ,

ρf ü + φ−1
0 ρf ẇ + K−1w +∇p = 0

α : ε(u̇) + divw +
1

µ
ṗ = 0 .

(2.9)
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2.1.3 Mechanical energy and dissipation

The mechanical energy consists of the potential energy U related to the material elastic
deformations and of the kinetic energy K. We introduce the generalized state as the
quadruplet q(t, x) = (u ,w , p, u̇)(t, x), then the total mechanical energy distributed in
domain Ω is

E(q) = U(u , p) +K(u̇ ,w) ,

where U(u , p) =
1

2

∫

Ω

ε(u) : IDε(u) +

∫

Ω

1

2µ
|p|2 ,

K(u̇ ,w) =
1

2

∫

Ω

(u̇ ,w) · IM
(
u̇
w

)
,

(2.10)

where

IM =

(
ρ ρf

ρf φ−1
0 ρf

)
. (2.11)

For readers convenience we demonstrate that K defined above is the kinetic energy of
solid and fluid parts. Indeed, the density of the kinetic energy κ is

κ =
1

2

(
(1− φ0)ρs|u̇ |2 + φ0ρ

f |v f |2
)

=
1

2

(
(1− φ0)ρs|u̇ |2 + φ0ρ

f |φ−1
0 w + u̇ |2

)

=
1

2

(
(1− φ0)ρs + φ0ρ

f
)
|u̇ |2 +

1

2

(
φ−1

0 ρf |w |2 + ρf2wu̇
)

=
1

2
(u̇ ,w) · IM ·

(
u̇
w

)
.

(2.12)

The dissipation is related to the fluid viscosity η which is embedded in the Darcy law
by virtue of the permeability: |K−1| ≈ η. Therefore the total dissipation power associated
with the seepage in Ω is

D(w) =

∫

Ω

w · (K )−1 ·w . (2.13)

Now we can express the 1st law of thermodynamics: the rate of the mechanical energy is
given by the power of external forces lowered by the dissipation power:

d

d t
E(q(t)) = 〈f (t), u̇(t)〉Ω −D(w(t)) . (2.14)

This equality has the central role in Section 3.2, where we derive the a priori estimates of
q in a norm equivalent to E(q).

2.2 Mathematical formulation

The porous fluid-saturated medium occupies an open bounded domain Ω ⊂ R3 with the
Lipschitz boundary ∂Ω. We discus possible boundary conditions, then we shall comment
on the choice of the initial conditions and finally introduce functional spaces for the weak
formulation of the problem
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2.2.1 Boundary conditions

In general, we may consider the following split of boundary ∂Ω (“up to the zero measure
manifolds”):

∂Ω = ∂σΩ ∪ ∂uΩ , ∂σΩ ∩ ∂uΩ = ∅ ,
∂Ω = ∂wΩ ∪ ∂pΩ , ∂wΩ ∩ ∂pΩ = ∅ . (2.15)

The following mixed boundary conditions can be prescribed:

u = uBC on ∂uΩ ,

n · σ = gBC on ∂σΩ ,

p = pBC on ∂pΩ ,

n ·w = wBCn on ∂wΩ ,

(2.16)

where n = (ni) is the unit normal outward to Ω and by superscript �BC we denote
prescribed quantities on subsets of ∂Ω.

Among all possible combinations of defining functions �BC in (2.16), there are two
cases of interest (we do not consider a Robin-Newton condition):

• Undrained body – discussed in literature, whenever wBCn = 0 on ∂Ω, whereas
∂pΩ = ∅. This presents the homogeneous Neumann condition for an elliptic problem
for p (related to the reduced system defined in terms of u and p).

• Drained body – whenever ∂pΩ 6= ∅, so that wBCn and pBC can be prescribed on
disjoint parts of ∂Ω. As a special case homogeneous Dirichlet condition is considered,
pBC = 0 on entire ∂Ω.

2.2.2 Initial conditions and steady states

In order to set a convenient (natural) initial conditions of the dynamic problem we can
use either of the following alternatives:

1. Unloaded (stress free) state. This assumption featured by vanishing pressure
gradient (∇p = 0) is guaranteed clearly when

u(0, ·) = 0 , p(0, ·) = 0 in Ω . (2.17)

According to this “null” state at t = 0 consistent boundary conditions must be con-
sidered including vanishing external volume forces f (0, ·) = 0 or boundary tractions
g(0, ·) = 0 on ∂σΩ, if considered.

2. Steady state. All u ,w , p are constant in time for t ≤ 0. In this case the steady
state will depend on the particular boundary conditions prescribed.

We shall now explain how the steady state solution to (2.9) is computed for the drained
and undrained body.
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Steady states. Clearly (2.9) reduces for t ≤ 0 to

−∇ · IDε(u sts) +∇ · (αpsts) = f sts in Ω ,

∇ ·K∇psts = 0 in Ω ,
(2.18)

where the boundary conditions (2.16) are to be satisfied by (u sts, psts). Let us first assume
the drained body ; (2.18)2 possesses a unique psts, so that a unique u sts is computed by
solving another elliptic problem arising from (2.18)1.

Second, let us consider an undrained body. In this case the homogeneous Neumann
problem, i.e. (2.18)2 with ∂pΩ = ∅ and wBCn = 0 on ∂Ω, is satisfied by any constant
pressure p0. Then (2.18)1 can be resolved for any p0 and any “suitable” combination of
boundary conditions (2.16)1,2 imposed on ∂σΩ ∪ ∂uΩ (obviously, the equilibrium of all
external loads must be ensured as the solvability condition when ∂Ωu = ∅).

From the physical point of view, however, we should take into account fluid content
which remains constant in an undrained experiment. Let us integrate (2.9)3 in Ω and in
time interval ]t0, t[, this yields

∫

Ω

α : (ε(u(t, ·))− ε(u(t0, ·)) ) +

∫ t

t0

∫

∂Ω

w · n dΓ +

∫

Ω

1

µ
(p(t, ·)− p(t0, ·)) = 0 . (2.19)

Further assuming the “zero” state at t0 and steady state at t characterized by a constant
pressure psts

0 , due to impermeability of entire ∂Ω we arrive at the following condition:

∫

Ω

α : ε(u sts) + psts
0

∫

Ω

1

µ
= 0 . (2.20)

This constraint supplements (2.18)1 which, thus, possesses a unique pressure psts
0 according

to the load applied during the undrained experiment. Integral condition (2.20) presents
the relationship between the “macroscopic” skeleton strains and the capability of the
microstructure to accumulate fluid; the system (2.18)1 and (2.20) leads to a symmetric
weak formulation.

2.3 Weak formulation and preliminary assumptions

Problem (2.9) defined point-wise in time-space domain [0, T ]×Ω can be reformulated in a
weak sense using Sobolev spaces on Ω. For this we shall need the following bilinear forms

aΩ(u , v) =

∫

Ω

[IDε(u)] : ε(v) bΩ(p, v) =

∫

Ω

p α : ε(v)

cΩ(w , v) =

∫

Ω

[K−1w ] · v dΩ(p, q) =

∫

Ω

1

µ
pq ,

%̄Ω(u , v) =

∫

Ω

[ρs(1− φ0) + φ0ρ
f ]u · v %fΩ(u , v) =

∫

Ω

ρfφ0u · v

%wΩ(u , v) =

∫

Ω

ρfφ−1
0 u · v 〈p, q〉Ω =

∫

Ω

pq .

(2.21)

We assume that all material coefficients involved in these expressions are defined in
L∞(Ω) and they are bounded form below and above; in particular we require existence of
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real positive constants cρ, Cρ, 0 < cφ, Cφ < 1, cD, CD, cK , CK , cµ, Cµ and cα, Cα such that
ρf , ρs, φ0, µ,Dijkl, αij, Kij ∈ L∞(Ω) and

cρ < ρf (x) < Cρ , cρ < ρs(x) < Cρ ,

0 < cφ < φ0(x) < Cφ < 1 , cµ < µ(x) < Cµ ,

cD|ε|2 ≤ ε : ID(x)ε , ε : ID(x)ε′ ≥ CD|ε||ε′| ,
cα|ξ|2 ≤ α(x) : ξ ⊗ ξ , α(x) : ξ ⊗ η ≤ Cα|ξ||η| ,

cK |ξ|2 ≤ K (x) : ξ ⊗ ξ , K (x) : ξ ⊗ η ≤ CK |ξ||η| ,

(2.22)

holds a.e. in Ω, where ξ,η ∈ R3 and ε, ε′ ∈ R3×3
sym.

Lemma 1 Matrix IM defined in (2.11) is positive definite a.e. in Ω, and there exist
C, c > 0 such that for all v,w ∈ L2(Ω) we have

C
(
‖v‖2

L2(Ω) + ‖v‖2
L2(Ω)

)
≥ K(v,w)

=
1

2
(%̄Ω(v, v) + %wΩ(w,w)) + %fΩ(w, v) ≥ c

(
‖v‖2

L2(Ω) + ‖v‖2
L2(Ω)

)
.

(2.23)

Proof: For 0 < φ0 < 1 the determinant det(IM) = ρfρsφ−1
0 (1 − φ0) > 0. Then (2.23) is

the consequence of (2.10). �

Boundedness and ellipticity of the quadratic forms Due to properties of the
material parameters ID , see (2.22), and the boundary conditions (2.16), we can apply
Korn’s and Poincaré’s inequalities to obtain

cP ca‖u‖2
H1(Ω) ≤ ca‖∇u‖2

L2(Ω) ≤ aΩ(u ,u) ≤ Ca‖∇u‖2
L2(Ω) ≤ Ca‖u‖2

H1(Ω) (2.24)

Similarly, due to boundedness and positivity of µ,K , see (2.22),

cµ‖p‖2
L2(Ω) ≤ dΩ(p, p) ≤ Cµ‖p‖2

L2(Ω) ,

cc‖w‖2
L2(Ω) ≤ D(w) ≡ cΩ(w ,w) ≤ Cc‖w‖2

L2(Ω) ,
(2.25)

where cc = 1/CK , Cc = 1/cK , see (2.13). As the consequence, there exist C, c > 0 such
that for any u ,w ∈ L2(Ω) and p ∈ L2(Ω),

c
(
‖u‖2

H1(Ω) + ‖p‖2
L2(Ω)

)
≤ U(u , p)

=
1

2
(aΩ(u ,u) + dΩ(p, p)) ≤ C

(
‖u‖2

H1(Ω) + ‖p‖2
L2(Ω)

)
.

(2.26)

Hence, recalling Lemma 1, the energy E defined in (2.10) is positive definite quadratic
form in q = (u ,w , p, u̇).

Various weak formulations Although the precise definition of weak solutions to prob-
lem (2.9) will be given in Section 3.1, we introduce here variants of “weak formulations”
with respect to space, but still point-wise with respect to time. For the sake of simplicity
(but without loss of generality), from now on we shall consider the “undrained” boundary
conditions, i.e. w · n = 0 on entire ∂Ω. Upon multiplying all equations in (2.9) with test
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functions ũ , w̃ and p̃ and integrating in Ω, we obtain the following several possible weak
formulations. To formulate them we introduce the space

H0(div,Ω) := { v ∈ L2(Ω) | divw ∈ L2(Ω), w · n = 0 on ∂Ω },

which will be equipped with the norm ‖w‖
H0(div,Ω)

= ‖w‖L2(Ω) + ‖divw‖L2(Ω).

1. Find a triplet (u ,w , p) : [0, T ] → H1
0(Ω) × L2(Ω) × L2(Ω), which satisfy, for a.a.

t ∈ [0, T ],

%̄Ω(ü(t), ṽ) + %fΩ(ẇ(t), ṽ) + aΩ(u(t), ṽ)− bΩ(p(t), ṽ) = 〈f (t), ṽ〉Ω ,

%fΩ(ü(t), w̃) + %wΩ(ẇ(t), w̃) + cΩ(w(t), w̃)− 〈p(t), divw̃〉Ω = 0 ,

bΩ(p̃, u̇(t))− 〈w(t),∇p̃〉Ω + dΩ(ṗ(t), p̃) = 0 ,

(2.27)

for all (ṽ , w̃ , p̃) ∈ H1
0(Ω)×H0(div,Ω)×H1(Ω). Let us remark, that the functional

spaces for solutions and those for test functions are different, so the formulation is
“non-symmetric” in a sense.

2. If more regularity of solutions is required, namely p ∈ H1(Ω), we may integrate by
parts 〈divw̃ , p(t, ·)〉Ω = −〈w̃ ,∇p(t, ·)〉Ω and define the following problem:
Find (u ,w , p) : [0, T ]→ H1

0(Ω)×H0(div,Ω)×H1(Ω), such that for a.a. t ∈ [0, T ]

%̄Ω(ü(t), ṽ) + %fΩ(ẇ(t), ṽ) + aΩ(u(t), ṽ)− bΩ(p(t), ṽ) = 〈f (t), ṽ〉Ω ,

%fΩ(ü(t), w̃) + %wΩ(ẇ(t), w̃) + cΩ(w(t), w̃) + 〈∇p(t), w̃〉Ω = 0 ,

bΩ(p̃, u̇(t)) + 〈divw(t), p̃〉Ω + dΩ(ṗ(t), p̃) = 0 ,

(2.28)

for all (ṽ , w̃ , p̃) ∈ H1
0(Ω)× L2(Ω)× L2(Ω).

3. There is also an intermediate and more symmetric form, where we ask for w(t), w̃ ∈
H0(div,Ω) and p(t), p̃ ∈ L2(Ω). For this, the second equation of (2.27) and the third
equation from (2.28) are used. Such “symmetric” formulations are especially useful
in numerical calculations, namely for application of mixed finite elements [BrF91].

3 Existence and a priori estimates

3.1 Well-posedness of the problem

We first give two different notions of solutions which are necessary to deal with the very
particular coupling between the hyperbolic elastic wave equation for u and the dissipative
Darcy’s law. The weak solutions are just given in the energy space. For the semistrong
solutions we impose more regularity for the seepage velocity w and the pressure p.

To explain why the notions announced just above will be introduced, let us first
consider a nonstandard (simplified) subsystem of (2.9) for (w , p) which is given in the
form

ẇ + w +∇p = 0 , ṗ+ divw = 0 in Ω ,

w · n = 0 on ∂Ω .
(3.1)
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For the sake of simplicity we made all material constants equal to 1. Obviously, for smooth
solutions we have the energy-dissipation relation

d

d t

∫

Ω

(
1

2
|w |2 +

1

2
|p|2
)

= −
∫

Ω

|w |2 .

Moreover, (3.1) contains the damped wave equation p̈+ ṗ−∆p = 0 for the pressure and
the ODE ẇ sol + w sol = 0, where w sol is the solenoidal part of w .

Our notions of weak and semistrong solutions are guided by the following abstract
approach to (3.1), which we write as ż = Lz where z = (w , p) ∈ H0 := L2(Ω)×L2(Ω) and
L : dom(L) = H1 → H0, z 7→ (w −∇p,−divw) with H1 = H0(div,Ω)×H1(Ω). Using the
dense and continuous embedding H1 ↪→ H0 we have H0

∼= H∗0 ↪→ H−1 := H∗1.
A function z ∈ C0(]t1, t2[; H0) is called weak solution of (3.1) if

∫ t2

t1

(
〈z(t), L∗z̃(t)〉H0 + 〈z(t), ˙̃z(t)〉H0

)
dt = 0 (3.2)

for all z̃ ∈ C1
c (]t1, t2[; H0) ∩ C0

c (]t1, t2[; H1). A weak solution z of (3.1) is called strong
solution, if additionally z ∈ C1(]t1, t2[; H0) ∩ C0(]t1, t2[; H1). Then, (3.2) implies

∫ t2

t1

〈Lz(t)− ż(t), z̃(t)〉H0dt = 0

for all z̃ ∈ C0
c (]t1, t2[; H0), i.e. ż = Lz is satisfied for all t ∈ ]t1, t2[.

We now return to the full coupled system for (u ,w , p) with general material data. We
introduce the spaces

H0 = H1
0(Ω)× L2(Ω)× L2(Ω) , H1 = H1

0(Ω)×H0(div,Ω)×H1(Ω)
Q0 = H0 × L2(Ω) , Q1 = H1 × L2(Ω)

and the bilinear forms

MΩ

((
v

w

)
,

(
ṽ
w̃

))
= %̄Ω(v , ṽ) + %fΩ(v , w̃) + %fΩ(w , ṽ) + %wΩ(w , w̃) ,

AΩ






u
w
p


,




ũ
w̃
p̃




 = aΩ(u , ũ)− bΩ(p, ũ) + bΩ(p̃,u) + cΩ(w , w̃) + dΩ(p, p̃) .

Both forms are well-defined on H0. While MΩ (·, ·) is symmetric, AΩ (·, ·) has a non-trivial
antisymmetric part involving bΩ(·, ·).

Considering time-dependent test functions in (2.27) , integrating in time over [0, T ]
and then integrating by parts with respect to t leads to our notion of weak solutions:

Definition 1 Weak solution. A function (u,w, p) ∈ C0([0, T ], H0) is called weak so-
lution of (2.27) with initial data (u(0),w(0), p(0), u̇(0)) = q0 ≡ (u0,w0, p0,u1) ∈ Q0, if
u ∈ C1([0, T ],L2(Ω)) and if we have

0 =

∫ T

0

[
AΩ






u
w
p


,




ũ
w̃

− ˙̃p




−MΩ

((
u̇
w

)
,

(
˙̃u
˙̃w

))

− 〈p, divw̃〉Ω − 〈w,∇p̃〉Ω − 〈f, ũ〉Ω
]
dt

+ MΩ

((
u1

w0

)
,

(
ũ(0)
w̃(0)

))
+ bΩ

(
p̃(0),u0

)
+ dΩ

(
p0, p̃(0)

)
.

(3.3)
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for all (ũ, w̃, p̃) ∈ C1([0, T ], H1) with (ũ(T ), w̃(T ), p̃(T )) = 0
A solution is called semistrong solution of (2.28), if it is a weak solution and if addi-

tionally (u,w, p) ∈ L∞([0, T ], H1) satisfies

0 =

∫ T

0

[
AΩ






u
w
p


,




ũ
w̃

− ˙̃p




−MΩ

((
u̇
w

)
,

(
˙̃u
˙̃w

))

+ 〈∇p, w̃〉Ω + 〈divw, p̃〉Ω − 〈f, ũ〉Ω
]
dt

+ MΩ

((
u1

w0

)
,

(
ũ(0)
w̃(0)

))
+ bΩ

(
p̃(0),u0

)
+ dΩ

(
p0, p̃(0)

)
.

(3.4)

for all (ũ, w̃, p̃) ∈ C1([0, T ], H0) with (ũ(T ), w̃(T ), p̃(T )) = 0.

We use the name “semistrong”, since only the part (w , p) has increased spatial regu-
larity, whereas u remains in H1

0(Ω). The semistrong form is the most convenient one for
passing to the two-scale limit.

Next we will show existence and uniqueness of weak solutions via the Galerkin ap-
proximation and a priori estimates. We will obtain semistrong solutions by showing that
additional temporal regularity implies higher regularity of (w , p). This is contained in
the following result.

Proposition 1 Assume that (u,w, p) ∈ C0([0, T ],H0) is a weak solution with the ad-
ditional time regularity (u̇, ẇ, ṗ) ∈ L∞([0, T ],H0) and ü ∈ L∞([0, T ],L2(Ω)). Then,
(u,w, p, u̇) ∈ L∞([0, T ]; Q1) and (u,w, p) is a semistrong solution.

Proof: Because of the higher temporal regularity, we can integrate by parts with respect
to time in (3.3) removing ˙̃u , ˙̃w and ˙̃p. Hence, we conclude that (2.27) is satisfied for a.a.
t ∈ [0, T ]. Since the test functions w̃ , p̃ in (2.27)2 and (2.27)3 are arbitrary, (2.9)2 and
(2.9)3 hold in the distributional sense, namely

∇p = −ρf ü − φ−1
0 ρfẇ −K−1w ∈ L2(Ω) ,

divw =
1

µ
ṗ−α : ε(u̇) ∈ L2(Ω) .

(3.5)

Hence, we obtain p ∈ L∞([0, T ];H1(Ω)) and divw ∈ L∞([0, T ];L2(Ω)) giving (u ,w , p, u̇) ∈
L∞([0, T ]; Q1), as desired for semistrong solutions. Since we can now integrate by pars
the “middle terms” in (3.3), we conclude that (2.28) holds. �

For the following existence theory it is important to introduce the relationship between
the energy E, as introduced in (2.10), and the weak solutions.

Proposition 2 All weak solution satisfy the energy balance:

E(q(t)) +

∫ t

0

cΩ(w(s),w(s)) ds = E(q(0)) +

∫ t

0

〈f(s), u̇(s)〉Ω ds ∀t ∈ [0, T ] . (3.6)

Proof: Assume first that the solution to (3.3) is regular enough in time, e.g. (u ,w , p) ∈
C2([0, T ],H0). Then, (2.27) holds for all t. Moreover, as in the proof of Proposition 1 we
have (u ,w , p) ∈ C0([0, T ]; H1) and may choose the test functions (ũ , w̃ , p̃) = (u̇ ,w , p).
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Integrating by parts in 〈∇p,w〉Ω leads to cancelation of the off-diagonal terms upon
summation the three equations in (2.27). Further integrating in time over [t1, t2] ⊂ [0, T ]
we obtain
∫ t2

t1

(aΩ(u , u̇) +dΩ(ṗ, p) +cΩ(w ,w))dt+

∫ t2

t1

MΩ

((
ü

ẇ

)
,

(
u̇

w

))
dt=

∫ t2

t1

〈f (t), u̇(t)〉Ω dt .

It can be rewritten using the definitions of potential and kinetic energy (cf. (2.10)) yielding

∫ t2

t1

(
d

d t
U(u , p) + cΩ(w ,w))dt+

∫ t2

t1

d

d t
K(u̇ ,w)dt =

∫ t2

t1

〈f (t), u̇(t)〉Ω dt .

Hence, using E(q) = U(u , p) +K(u̇ ,w) we arrive at

E(q(t2))− E(q(t1)) +

∫ t2

t1

cΩ(w ,w) dt =

∫ t2

t1

〈f (t), u̇(t)〉Ω dt ,

so that the assertion follows for t1 = 0.

Next we consider the case of general weak solutions without additional temporal
smoothness. For this we first note that the regularity of weak solutions q(t) is sufficient
to evaluate all terms in the energy balance (3.6). We approximate the general solution
q by temporal convolution setting q δ(t) =

∫
R q(s)ψδ(t−s)ds, where ψδ(r) = ψ(r/δ)/δ

with ψ ≥ 0, ψ ∈ C2(R), spptψ = [−1, 1], and
∫

R ψ(r)dr = 1. We similarly define f δ

and find easily that q δ is a weak solution with for the right-hand side f δ having the
additional smoothness q δ ∈ C2([δ, T−δ],Q0). Thus the energy balance holds for q δ on
[t1, t2] ⊂ [δ, T−δ].

The continuity of q implies q δ(t) → q(t) in Q0 for δ → 0 for all t ∈ ]0, T [. Since
the energy and all other terms in (3.6) are continuous on Q0, the energy balance for q
holds for all [t1, t2] ⊂ ]0, T [. We can now pass to the limit t1 → 0 and continuity gives the
desired result. �

Proposition 3 For each (u0,w0, p0) ∈ H0 and u1 ∈ L2(Ω) there exists a unique weak so-
lution (u,w, p) ∈ C0([0, T ]; H0) with u ∈ C1([0, T ],L2(Ω)) satisfying the initial conditions,
i.e. (u(0),w(0), p(0)) = (u0,w0, p0) and u̇(0) = u1.

Proof: We chose an increasing sequence (HN)N∈N of finite dimensional subspaces
HN ⊂ H1 such that

⋃
N∈N HN is dense in H0. Let PN : H0 → HN be the orthogonal

projectors, PN = diag(PNu , P
N
w , P

N
p ). Then there is a unique weak solution (uN ,wN , pN) :

[0, T ] → HN of (3.3), where H0 and H1 are replaced by HN , for the initial conditions
(uN(0),wN(0), pN(0)) = PN(u0,w 0, p0) and u̇N(0) = PNu1. All arguments of the above
Proposition 2 work and we obtain the energy balance (3.6). Proceeding as in “Estimation
– 1st step” below (cf. (3.15) to (3.17)) and using the boundedness and ellipticity as in
(2.24) to (2.26) we obtain uniform bounds for qN = (uN ,wN , pN , u̇N) in L∞([0, T ]; Q0).
After choosing a suitable subsequence, we obtain a weak* limit q ∈ L∞([0, T ]; Q0), which
is a weak solution. To see this, note that qN satisfies (3.3) if the test functions are re-
stricted to HN

1 and the initial conditions are adjusted. Keeping the test functions fixed in
HM

1 and letting N →∞ the result follows, since the projected initial conditions converge
strongly to the correct initial data. Since our system generates a strongly continuous
contraction semigroup (cf. [Paz83, ReR93]) with respect to the energy norm defined by
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E, the classical semigroup theory yields q ∈ C0([0, T ]; Q0) and the existence of a weak
solution is established.

According to Proposition 2 all weak solutions satisfy the energy estimate E(q(t)) ≤
E(q(0)) +

∫ t
0
〈f (t), u̇(t)〉Ω dt. Hence, if for a given initial solutions we have two solutions,

then the difference q = q1 − q2 is a weak solution with right-hand side f ≡ 0. Using
q(0) = 0 we obtain E(q(t)) = 0 for all t and conclude q1(t) = q2(t) for all t ∈ [0, T ],
which is the desired uniqueness. �

Our next result shows that under additional assumptions on the right hand side f and
the initial data we also have the semistrong solutions.

Proposition 4 Given the assumptions of Prop. 3, assume further f ∈ W 1,1([0, T ]; L2(Ω))
and that the initial data q0 = (u0,w0, p0,u1) ∈ Q0 satisfy

(u0,w0, p0) ∈ H1 , u1 ∈ H1
0(Ω) , div(IDε(u0) + p0α) ∈ L2(Ω) . (3.7)

Then the unique weak solution satisfies q ∈ C1([0, T ]; Q0) ∩ C0([0, T ]; Q1), and, hence, q
is a semistrong solution.

Proof: The idea is to differentiate formally the solution q w.r.t. time which will become
a weak solution of (2.9) with right hand side ḟ ∈ L1([0, T ]; L2(Ω)) and suitable initial
conditions. We insert the initial conditions q0 = (u0,w 0, p0,u1) into (2.9), which makes
possible to compute q1 = (u1,w 1, p1,u2) ∈ Q0 where (w 1, p1,u2) = (ẇ(0), ṗ(0), ü(0)).
From (2.9)1 and (2.9)2 we obtain u2 and w 1 upon solving

ρ̄u2 + ρfw 1 = f − div(IDε(u0) + p0α) ∈ L2(Ω) ,

ρfu2 + ρww 1 = −K−1w 0 −∇p0 ∈ L2(Ω) .
(3.8)

Thus, we find u2,w 1 ∈ L2(Ω). Similarly, the third equation in (2.9) gives

p1 = −µ
(
α : ε(u1) + divw 0

)
∈ L2(Ω) . (3.9)

Now we employ Proposition 3 to construct the weak solution q̂ ∈ C0([0, T ]; Q0) for the
right hand side ḟ ∈ L1([0, T ]; L2(Ω)) with initial conditions q̂(0) = q1. It is then easy
to show that q(t) = q0 +

∫ t
0
q̂(τ)dτ is a weak solution of the original problem with right

hand side f and initial condition q(0) = q0. Hence, we conclude q ∈ C1([0, T ]; Q0), as
desired. Applying Proposition 1 shows that q is also a semistrong solution. �

3.2 A priori estimates uniform in ε

We employ the energy-equivalent norm applicable to q = (u ,w , p, v) ∈ Q0 given by

|||q |||2Q0
:= ‖u‖2

H1(Ω) + ‖v‖2
L2(Ω) + ‖w‖2

L2(Ω) + ‖p‖2
L2(Ω) . (3.10)

The total energy introduced in (2.10) can be rewritten using the quadratic forms from
(2.27) via

Eε(q) = U ε(u , p) +Kε(v ,w)

=
1

2

(
aεΩ(u ,u) + dεΩ(p, p) + %̄εΩ(v , v) + 2%f,εΩ (w , v) + %w,εΩ (w ,w)

)
,

(3.11)
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where from now on we add the small parameter ε > 0 to indicate that the material
parameters ρf , ρs, φ0, µ, ID ,α and K may depend on ε as well as on the material point
x ∈ Ω. Our main assumption is that

the estimates (2.22) hold uniformly with respect to ε ∈ ]0, 1] . (3.12)

In the application we have in mind and treat in Section 4, the material parameters
oscillate with the spatial coordinates on a length scale ε, namely IDε(x) = IDper(

x
ε
) where

IDper(·) is 1-periodic in each coordinate direction (or Y -periodic, see Section 4). However,
this periodicity is not needed for the present purpose, we only rely on (3.12).

Using (3.11) and properties of the bilinear forms, see (2.24), (2.25) and (2.23), we find
a constant CE > 1 such that

1

CE
|||q |||2Q0

≤ Eε(q) ≤ CE|||q |||2Q0
(3.13)

for all q ∈ Q0 and ε ∈ ]0, 1].

Energy identity As the result of Proposition 2 we have the relation for all t ∈ [0, T ]:

d

d t
Eε(q(t)) + cεΩ(w(t),w(t)) = 〈f (t), u̇(t)〉Ω . (3.14)

Estimation – 1st step Integration in (3.14) over [0, t] and dropping the non-negative
dissipation term cεΩ(w ,w) ≥ 0, we get the estimate:

Eε(q(t)) ≤ Eε(q(0)) +

∫ t

0

〈f , u̇〉Ω ≤ Eε(q(0)) + ‖u̇‖L∞(0,T ;L2(Ω))‖f ‖L1(0,T ;L2(Ω))

≤ Eε(q(0)) +
λ

2
‖u̇‖2

L∞(0,T ;L2(Ω)) +
1

2λ
‖f ‖2

L1(0,T ;L2(Ω)) ,

(3.15)

where λ > 0 is arbitrary. Using (3.13) and choosing λ = 1/CE we find

Eε(q(t)) ≤ Eε(q(0)) +
1

2
‖Eε(q)‖C0(0,T ) +

CE
2
‖f ‖2

L1(0,T ;L2(Ω)) , (3.16)

for all t ∈ [0, T ]. Hence, taking the supremum over [0, T ] at the left hand side and using
(3.13) once again, we obtain the following uniform a priori estimates for all weak solutions
of the ε-dependent version of (3.3), namely

|||q |||C0(0,T ;Q0) ≤ 2CE|||q(0)|||Q0 + CE‖f ‖L1(0,T ;L2(Ω)) . (3.17)

We emphasize that the constant CE is independent of ε, thus the estimate is uniform with
respect to ε.

Estimate of the first derivative – 2nd step Following the arguments of the proof of
Proposition 4 and using the assumption on the initial conditions and f ∈ W 1,1(0, T ; L2(Ω)),
we can use that q̃ := q̇ is also a weak solution of (3.3). Hence it satisfies (3.17) as well,
namely

|||q̇ |||C0(0,T ;Q0) ≤ 2CE|||q̇(0)|||Q0 + CE‖ḟ ‖L1(0,T ;L2(Ω)) . (3.18)
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Let us note that q̇(0, ·) represents the rate of change of the initial state, including the
skeleton acceleration ü(0), see below. The purpose of estimate (3.18) is to obtain uniform
estimates for semistrong solutions, i.e. for |||q(t)|||Q1 . Thus, we need to obtain also ε-
independent bounds for p(t) ∈ H1(Ω) and divw(t) ∈ L2(Ω). For this we use the relations
(3.5) together with (3.12) and (3.18) and find an ε-independent constant C2 such that for
all ε ∈ ]0, 1] and all semistrong solutions q of (3.3) we have

‖∇p‖C0(0,T ;L2(Ω)) + ‖divw‖C0(0,T ;L2(Ω)) ≤ C2

(
|||q(0)|||Q0 + |||q̇(0)|||Q0 + ‖f ‖W 1,1(0,T ;L2(Ω))

)
.

(3.19)

Estimation of the initial velocity q̇(0) – 3rd step In (3.19) we need ε-independent
bounds on all the right hand side terms. In particular, we need to show that there exist
a family of initial velocities q̇ ε(0) = (u̇ε(0), ẇ ε(0), ṗε(0), üε(0)) ∈ Q0. For this we need
to impose suitable assumptions on the initial state q ε(0) and specify how it is related to
the imposed loads f (0) and ḟ (0). This is associated with the compatibility conditions in
hyperbolic systems or to “gentle-start conditions” in some nonlinear evolutionary systems.
Such compatibility can be investigated using equations (3.8) and (3.9) which determine
q̇(0) uniquely, if q(0) and f (0) are given. Thus, uniform a priori bounds on q̇(0) can be
obtained is several circumstances:

1. Let f (0) = 0 and q(0) = 0, then immediately one obtains q̇(0) = 0 as well.

2. Let f (0) 6= 0, while q(0) = 0; it corresponds to “no loading in past”, i.e. q(t) = 0,
f (t) = 0 for t < 0, and a step increase of the load at t = 0. From (3.8) and (3.9) we
get immediately

IM

(
u2

w 1

)
=

(
f (0)

0

)
and p1 = 0 , (3.20)

where IM is given in (2.11). Thus, due to Lemma 1, q̇(0) ∈ Q0 is given uniquely
and we obtain an ε-uniform estimate on |||q̇(0)|||Q0 due to (3.12).

3. Let the continuum be in a steady state for t < 0, q sts(0) = (u sts,w sts, psts, 0) where
(u sts, psts) is computed by (2.18) and w sts = −K−1∇psts. By standard elliptic theory
we obtain ε-independent a priori estimates for q sts = q(0), on calculating E and
using (3.13). Then for a given u̇(0) ∈ H1

0(Ω) we can solve for q̇(0) via (3.8) and
(3.9), where the right hand side are uniformly bounded in ε, therefore we obtain
the desired estimate for q̇(0). Let us note that also in this case any step change of
loads f at t = 0 is admitted, as far as f sts − f (0) remains bounded in L2(Ω).

Summary of the a priori estimation We conclude this section by the crucial a
priori estimate that is independent of ε under the assumption that (3.12) holds. As the
consequence of (3.17), (3.18) and (3.19), we find C such that

‖q‖C1([0,T ];Q0) + ‖q‖C0([0,T ];Q1) ≤ C
(
|||q(0)|||Q0 + |||q̇(0)|||Q0 + ‖f ‖W 1,1([0,T ];L2(Ω))

)
(3.21)

for all ε ∈ ]0, 1] and all semistrong solutions.
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4 Two-scale convergence

In this section we obtain the main result of the paper, namely the two-scale limit problem
of the homogenized medium, and prove the existence and uniqueness of weak solutions in
Theorem 6.

4.1 Microstructure and periodicity assumptions

From now on we assume that all material parameters ρf , ρs, φ0, µ,α,K and ID are pe-
riodic functions. The following definition of IDε holds in analogy for the other material
parameters:

IDε(x) = IDper(
x

ε
) , (4.1)

where IDper : R3 → R3×3×3×3 is 1-periodic function in each component, i.e. IDper(y+k) =
IDper(y) for all y ∈ R3 and k ∈ Z3.

We define the unit reference cell Y = [0, 1[3 where the material parameters are defined;
in fact, we assume IDper ∈ L∞(Y ). Thus all the material parameters (i.e. not only
IDper(y)) are just L∞ functions defined for y ∈ Y with no other restriction with respect
to the periodicity which is ensured just by construction (4.1).

For a fixed ε ∈]0, 1], each point x ∈ Ω will be associated with a copy of Y : we define
a microscopic cell Y ε(x) = ε(Y + k) where k =

[
1
ε
x
]

is corner point of this cell. Further
we introduce y = 1

ε
(x− εk), the “microscopic coordinate”, i.e. the relative position with

respect to the corner point. Here [z] = ([z1] , [z2] , [z3]) denotes the vector-valued Gauß
bracket, i.e. [z1] is the largest integer smaller than or equal to z1. Often ε

[
1
ε
x
]

is called
the lattice coordinate and the periodic material is defined as a “periodic lattice generated
by εY ”.

Using the coordinate split x = ε
[

1
ε
x
]

+ εy we can write any function of x as a two-
scale function of (x, y), which will be used in the asymptotic analysis when ε → 0.
Following the approach [CDG08], for a function ϕ : Ω→ R we define its periodic unfolding
Tε(ϕ) : Ω× Y → R via

Tε(ϕ)(x, y) =

{
ϕ(ε

[
1
ε
x
]

+ εy) if ε
[

1
ε
x
]

+ εY ⊂ Ω ,
0 otherwise .

(4.2)

For x ∈ Λε = {x ∈ Ω|ε
[

1
ε
x
]
+εY 6⊂ Ω} we have Tε(ϕ)(x, y) = 0, but note that |Λε| = O(ε)

for Lipschitz domains as considered here. The following useful properties hold, [CDG08]

Tε(φψ) = Tε(φ)Tε(ψ) for all measurable φ, ψ , (4.3a)∫

Ω

ψdx =

∫

Ω×Y
Tε(φ)dxdy +O(ε) for all ψ ∈ L1(Ω) , (4.3b)

where O(ε)→ 0 with ε→ 0, due to |Λε| → 0; this is the “unfolding criterion for integrals”,
see [CDG08].

Through the next paper we use Y# to indicate the torus R3/Z3. In this way, all
functional spaces of Y -periodic functions can be introduced quite naturally; for instance
in (4.5), ψ(x, ·) ∈ C∞(Y#) is a Y -periodic function which lies in C∞(R3). In particular,
by H1(Y#) we refer to the space of Y -periodic functions, i.e. comprising all functions
g ∈ L2(Y ) whose Y -periodic extension lies in H1

loc(R3). The norm is given by ‖g‖H1(Y#) =

(
∫
Y

(|g|2 + |∇g|2))1/2. Further we shall employ H1
av(Y#) = {φ ∈ H1(Y#)|

∫
Y
φ = 0}.
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4.2 Basic facts on two-scale convergence

For a sequence {ϕε}ε>0 in L2(Ω) we say that ϕε two-scale convergence to Φ ∈ L2(Ω×Y ),

and write ϕε
2
⇀ Φ, if

Tε(ϕε) ⇀ Φ in L2(Ω× Y ) . (4.4)

For bounded sequences, which we will only have in mind, this definition is equivalent to
the classical one proposed in [Ngu89, All92c]

ϕε
2
⇀ Φ ⇐⇒ ∀ψ ∈ C∞(Ω;C∞(Y#)) :∫

Ω

φε(x)ψ(x,
1

ε
x)dx→

∫

Ω×Y
Φ(x, y)ψ(x, y)dxdy .

(4.5)

Since ‖Tε(ϕ)‖L2(Ω×Y ) ≤ ‖ϕ‖L2(Ω) by construction, every bounded sequence {ϕε}ε>0 in

L2(Ω) has a subsequence converging in the two-scale sense. In [Vis04, MiT07] this notion
is called weak two-scale convergence, while strong two-scale convergence is defined via
strong convergence in (4.4). The latter notion is important for fully nonlinear systems,
but here we can adhere to the classical notions as our system is linear.

The next result concerns multiplication with periodic coefficients. Ifmε(x) = mper(
1
ε
x),

then
φε

2
⇀ Φ =⇒ mεφε

2
⇀ mperΦ , (4.6)

where (mperΦ)(x, y) = mper(y)Φ(x, y). This follows easily using (4.3a).
For a function φ ∈ L2(Ω) we denote by XY φ ∈ L2(Ω× Y ) the constant extension over

Y : (XY φ)(x, y) = φ(x). We then have

φε → φ in L2(Ω) =⇒ φε
2
⇀ XY φ . (4.7a)

φε
2
⇀ Φ and φε ⇀ φ0 =⇒ φ0 =∼

∫

Y

Φ(·, y)dy. (4.7b)

The symbol ∼
∫
Y

denotes the average operator |Y |−1
∫
Y

(although in our case |Y | = 1).
Statement (4.7a) means that strong convergence in L2(Ω) implies that the two-scale limit
has no microscopic fluctuations, while (4.7b) shows that the weak limit φ0 is just the
average over the fluctuations. To obtain (4.7b) simply use functions ψ(x) in (4.5).

The fundamental results on the two-scale convergence is the following. If {φε}ε>0 is
bounded in H1(Y ), then there exists a subsequence {εk}k∈N with εk → 0 and functions
ϕ ∈ H1(Ω) and Φ1 ∈ L2(Ω, H1

av(Y#)) such that

φεk → ϕ in L2(Ω) , φεk ⇀ ϕ in H1(Ω) , ∇φεk
2
⇀ XY (∇xϕ) +∇yΦ

1 . (4.8)

The following result is less known, see [Vis04, Thm. 7.2] for a similar result with
Ω = IRd. We first define the space (recalling the default Y -periodicity property induced
by Y#):

H0(div,Ω, Y#) =
{
W ∈ L2(Ω×Y#)

∣∣divx ∼
∫

Y

W ∈ L2(Ω), divyW = 0 in Ω×Y#

}
. (4.9)

Proposition 5 Assume that {wε}ε>0 is bounded in H0(div,Ω) such that

wε ⇀ w0 in L2(Ω) , divwε ⇀ d0 in L2(Ω) ,

wε 2
⇀ W , divwε 2

⇀ D .
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Then, we have W ∈ H0(div,Ω, Y#) and

w0 =∼
∫

Y

W(x, y)dy and d0 = divxw
0 =∼
∫

Y

D(x, y)dy . (4.10)

In [Vis04, Thm. 7.2] there is a slightly stronger characterization, namely D = divxw 0 +
divyψ with ψ ∈ L2(Ω; H1

#(Y )).

Proof: The relations in (4.10) follow from (4.7b). The y-divergence of W is obtained
by testing with suitable functions. Using Tε

(
∂
∂x
v
)

= 1
ε
∂
∂y
Tε(v) and (4.3b) we obtain, for

all Ψ1 ∈ L2(Ω;H1
#(Y )), the identities

0 = lim
ε→0

∫

Ω

divw ε(x)εΨ1(x,
1

ε
x)dx = − lim

ε→0

∫

Ω

w ε
(
ε∇xΨ

1 +∇yΨ
1
)
dx

= − lim
ε→0

∫

Ω×Y
Tε(w ε) · ∇yΨ

1 = −
∫

Ω×Y
W · ∇yΨ

1 =

∫

Ω×Y
Ψ1divyW .

This proves 0 = divyW . Since H0(div,Ω) is a closed subspace of L2(Ω) (cf. [Tem84]) we
have w 0 = −

∫
Y
W ∈ L2(Ω), and the assertion is established. �

4.3 Passing to the limit with ε→ 0

We now consider our system (3.3) with ε-periodic coefficients according to (4.1). We
denote the corresponding solutions by q ε : [0, T ] → Q0. Moreover, as in the end of
Section 3.2, see “the 3rd step of the estimation”, we use initial conditions q ε(0) such that

‖q ε(0)‖Q0
+ ‖q̇ ε(0)‖Q0

≤ C .

We emphasize that here and in the sequel all constants C do not depend on ε, unless
they are labeled with ε. Hence, our a priori estimates (3.21) show that for a given
f ∈ W 1,1(0, T ; L2(Ω)) the semistrong solutions (uε,w ε, pε) satisfy

‖q ε‖C0(0,T ;Q1) + ‖q ε‖C1(0,T ;Q0) ≤ C . (4.11)

Hence, we obtain boundedness in L∞(0, T ;L2(Ω)) or L∞(0, T ; L2(Ω)) of the quantities uε,
u̇ε, üε, ∇uε, ∇u̇ε, w ε, ẇ ε, divw ε, pε, ṗε, and ∇pε. Applying the unfolding operator Tε to
the relevant sequences we obtain boundedness in L∞(0, T ;L2(Ω× Y )) which allows us to
extract weakly* convergent subsequences. For this we introduce the following two-scale
counterparts to H0, H1, Q0, and Q1:

H0(Ω, Y#) := H1
0(Ω)× L2(Ω×H1

av(Y#))× L2(Ω× Y#)× L2(Ω) ,

H1(Ω, Y#) := H1
0(Ω)× L2(Ω×H1

av(Y#))×H0(div,Ω, Y#)× L2(Ω)× L2(Ω; H1
av(Y#)) ,

Q0(Ω, Y#) := H0(Ω, Y#)× L2(Ω) , Q1(Ω, Y#) := H1(Ω, Y#)× L2(Ω) .

We also introduce the convergence notions

(i) q ε = (uε,w ε, pε, v ε)
2,Q0⇀ Q := (u ,U 1,W , p, v) and

(ii) q ε = (uε,w ε, pε, v ε)
2,Q1⇀ (u ,U 1,W , p, P 1, v)

(4.12)
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defined via the following conditions

(4.12) (i) ⇔
{

uε ⇀ u in H1
0(Ω) , pε ⇀ p in L2(Ω) , v ε ⇀ v in L2(Ω) ,

∇uε 2
⇀ ∇xu +∇yU

1 , w ε 2
⇀ W ;

(4.12) (ii) ⇔
{

(uε,w ε, pε, v ε)
2,Q0⇀ (u ,U 1,W , p, v) ,

divw ε ⇀ divx ∼
∫
Y
W in L2(Ω) , ∇pε 2

⇀ ∇xp+∇yP
1 .

(4.13)

Using the bound (4.11) there exists a subsequence (not denoted explicitly) such that

(uε, Tε(∇uε), Tε(w ε), pε, u̇ε)
∗
⇀ (u ,∇xu+∇yU

1,W, p, u̇) in W 1,∞([0, T ]; Q0(Ω×Y#)),

(Tε(w ε), Tε(∇pε)) ∗
⇀ (W ,∇xp+∇yP

1) in L∞([0, T ]; H0(div,Ω×Y#))×L2(Ω×Y#)) .

(4.14)

Here weak∗ convergence y ε
∗
⇀ y in W 1,∞([0, T ];Y ) means that y ε

∗
⇀ y in L∞([0, T ];Y )

and ẏ ε
∗
⇀ ẏ in L∞([0, T ];Y ). Using y ε(t) = 1

T

∫ t
0
sẏ ε(s)ds + 1

T

∫ T
t

(s − T )ẏ ε(s)ds +
1
T

∫ T
0

ẏ ε(s)ds, we obtain the pointwise convergence for all t ∈ [0, T ], namely

q ε(t) = (uε(t),w ε(t), pε(t), v ε(t))
2,Q0⇀ Q(t) = (u(t),U 1(t),W (t), p(t), v(t)) . (4.15)

The next step of the asymptotic analysis is to identify the limit Q as the solution of
a corresponding two-scale problem. For passing to the limit with ε → 0 in formulation
(3.4), we introduce two-scale bilinear forms corresponding to those in (2.21):

a
∇xy

Ω×Y ((u ,U ), (v ,V )) =

∫

Ω

∼
∫

Y

[εx(v) + εy(V )] : ID [εx(u) + εy(U )] ,

b
∇xy

Ω×Y (p,(v ,V )) =

∫

Ω

∼
∫

Y

pα : [εx(v)+εy(V )] , cΩ×Y
(
W ,W̃

)
=

∫

Ω

∼
∫

Y

W ·K−1W̃ ,

dΩ×Y (p, p̃) =

∫

Ω

∼
∫

Y

1

µ
pp̃ , %fΩ×Y (W , v) =

∫

Ω

∼
∫

Y

ρfW · v ,

%̄Ω×Y (u , v) =

∫

Ω

∼
∫

Y

ρu · v , %wΩ×Y

(
W ,W̃

)
=

∫

Ω

∼
∫

Y

ρfφ−1
0 W · W̃ ,

where according to (4.1) all the coefficients ID , K , α, µ, ρf , and ρ depend on y ∈ Y#.
Using these unfolded bilinear forms we define the vector-valued bilinear forms AΩ×Y and
MΩ×Y , as follows

AΩ×Y







u
U
W
p


,




ũ

Ũ

W̃
p̃





 = a

∇xy

Ω×Y

(
(u ,U ),

(
ũ , Ũ

))
− b∇xy

Ω×Y

(
p,
(
ũ , Ũ

))

+ b
∇xy

Ω×Y (p̃, (u ,U )) + cΩ×Y
(
W ,W̃

)
+ dΩ×Y (p, p̃) ,

MΩ×Y

((
v
W

)
,

(
ṽ

W̃

))
= %̄Ω×Y (v , ṽ) +%fΩ×Y (W , ṽ) +%fΩ×Y

(
W̃ , v

)
+%wΩ×Y

(
W ,W̃

)
.

In analogy to (3.4) we now define a notion of solutions for the two-scale system.
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Definition 2 Weak and semistrong two-scale solutions. A function (u,U1,W, p) :
[0, T ]→H0(Ω, Y#) is called a weak two-scale solution, if

(u,U1,W, p, u̇) ∈ C0([0, T ]; Q0(Ω, Y#)) , and (4.16a)

∫ T

0

[
AΩ×Y







u
U1

W
p


,




ũ

Ũ

W̃

− ˙̃p





−MΩ×Y

((
u̇
W

)
,

(
˙̃u
˙̃W

))

−
〈
p, divx ∼

∫

Y

W̃

〉

Ω

−
〈
W, ∇xp̃+∇yP̃

〉
Ω×Y
− 〈f, ũ〉Ω

]
dt (4.16b)

= −MΩ×Y

((
u̇(0)
W(0)

)
,

(
ũ(0)

W̃(0)

))
− b∇xy

Ω×Y
(
p̃(0),

(
u(0),U1(0)

))
− dΩ×Y (p(0), p̃(0))

for all (ũ, Ũ,W̃, p̃, P̃ ) ∈ C1([0, T ],H1(Ω, Y#)) with (ũ, Ũ,W̃, p̃, P̃ )(T ) = 0. The initial
conditions (u(0),U1(0),W(0), p(0)) will be treated as given data.

A function (u,U1,W, p, P 1) : [0, T ] → H1(Ω, Y#) is called a semistrong two-scale
solution, if (u,U1,W, p) is a weak two-scale solution,

Q = (u,U1,W, p, P 1, u̇) ∈ L∞([0, T ]; Q1(Ω, Y#)) , (4.17a)

∫ T

0

[
AΩ×Y







u
U1

W
p


,




ũ

Ũ

W̃

− ˙̃p





−MΩ×Y

((
u̇
W

)
,

(
˙̃u
˙̃W

))

+
〈
∇xp+∇yP

1, W̃
〉

Ω×Y
+

〈
divx ∼

∫

Y

W, p̃

〉

Ω

− 〈f, ũ〉Ω
]
dt (4.17b)

= −MΩ×Y

((
u̇(0)
W(0)

)
,

(
ũ(0)

W̃(0)

))
− b∇xy

Ω×Y
(
p̃(0),

(
u(0),U1(0)

))
− dΩ×Y (p(0), p̃(0))

for all (ũ, Ũ,W̃, p̃) ∈ C1([0, T ],H0(Ω, Y#)) with (ũ, Ũ,W̃, p̃)(T ) = 0. (Note that divyW =
0 is imposed through W ∈ H0(div,Ω, Y#) because of Q(t) ∈Q1(Ω, Y#) for a.a. t ∈ [0, T ].)

In Proposition 6 below we will show that (4.17b) has for each (u(0),U (0),W (0), p(0)) ∈
Q(Ω, Y ) at most one solution, which satisfies an energy balance in analogy with (3.14).
Before proving this we provide the main result on the two-scale convergence that resembles
similar results for simpler wave equations in [Mie08].

Theorem 1 Two-scale convergence. Assume that the material parameters of (3.4) are
periodic as in (4.1) and that (uε,wε, pε) ∈ C0([0, T ]; H1) are semistrong solutions (3.4)
for a fixed f ∈ W 1,1([0, T ],L2(Ω)) and initial conditions satisfying

sup
ε∈]0,1]

(
‖qε(0)‖Q0

+ ‖q̇ε(0)‖Q0

)
<∞ . (4.18)

Moreover, assume

qε(0) = (uε(0),wε(0), pε(0), u̇ε(0))
2,Q0⇀ (u(0),U1(0),W(0), p(0), u̇(0)) , (4.19)
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then there exists P 1 ∈ L∞([0, T ];L2(Ω;H1
av(Y#))) such that we have the convergence

(uε(t),wε(t), pε(t), u̇ε(t))
2,Q0⇀ (u(t),U1(t),W(t), p(t), u̇(t)) for all t ∈ [0, T ] ,

divwε ∗⇀ div ∼
∫

Y

W in L∞([0, T ];L2(Ω)) ,

Tε(∇pε) ∗
⇀ ∇xp+∇yP

1 in L∞([0, T ],L2(Ω×Y#)) ,

(4.20)

where (u,U1,W, p, P 1) is the unique semistrong two-scale solution of (4.17b) for the
initial conditions (u(0),W(0), p(0)).

Proof: The a priori estimates (4.14) guarantee the existence of a converging subsequence
in the sense of (4.14). Thus, the obtained limits satisfy (4.17a) and (4.16a), and the
convergences (4.20) hold.

To obtain (4.17b) we pass to the limit for ε → 0 in (3.4) by choosing suitable
test functions (ũε, w̃ ε, p̃ε) constructed according to the desired (limit) test functions
(ũ , Ũ ,W̃ , p̃, P̃ ) in (4.17b). Since it is sufficient to test (4.17b) on a dense set, we may
chose smooth enough (ũ , Ũ ,W̃ , p̃) and set

ũε(t, x) = ũ(t, x) + εŨ 1(t, x,
1

ε
x) , w̃ ε(t, x) = W̃ (t, x,

1

ε
x) , p̃ε(t, x) = p̃(t, x) .

(4.21)

Inserting these test functions into (3.4) and using the convergences established in (4.14)
and (4.15) allows us to pass to the limit. In fact, employing the definition (4.5) for two-
scale convergence, the multiplication property (4.6) and (4.15) we obtain for all t ∈ [0, T ]
the limits

aεΩ(uε, ṽ ε)→ a
∇xy

Ω×Y

((
u ,U 1

)
,
(
ṽ , Ṽ 1

))
, bεΩ(pε, ṽ ε)→ b

∇xy

Ω×Y

(
p,
(
ṽ , Ṽ 1

))
,

bεΩ(q̃ε,uε)→ b
∇xy

Ω×Y
(
q,
(
u ,U 1

))
, cεΩ(w ε, w̃ ε)→ cΩ×Y

(
W ,W̃

)
,

dεΩ(pε, q̃ε)→ dΩ×Y (p, q̃) , %f,εΩ (u̇ε, ṽ ε)→ %fΩ×Y (u̇ , ṽ) ,

%̄εΩ(u̇ε, ṽ ε)→ %̄Ω×Y (u̇ , ṽ) , %w,εΩ (w ε, w̃ ε)→ %wΩ×Y

(
W ,W̃

)
.

Moreover (4.20) provides the limits

∫ T

0

〈∇pε, w̃ ε〉Ω dt→
∫ T

0

〈
∇xp+∇yP

1, W̃
〉

Ω×Y
dt ,

∫ T

0

〈divxw
ε, p̃ε〉Ω dt→

∫ T

0

〈divxW , p̃〉Ω×Y dt .

Thus, we conclude that the limit Q = (u ,U 1,W , p, P 1, u̇) satisfies (4.17).
So far, we only showed convergence along a subsequence. However, in Prop. 6 we show

that there is at most one semistrong two-scale solution for given (u(0),W (0), p(0), u̇(0)).
Hence, we know that any convergent subsequence has to converge to the same limit. This
implies that the whole family converges, and the theorem is established.

�
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4.4 Existence and Uniqueness for the two-scale limit model

In (4.17b) we have introduced the two-scale model, which now can be rewritten in a
more detailed form comprising 5 equations for unknowns (u ,U 1,W , p, P 1). To discuss
the structure of the equation we assume temporarily that the solutions are sufficiently
smooth in time, so that we can write down the equations for each t ∈ [0, T ].

%̄Ω×Y (ü , ũ) + %fΩ×Y

(
Ẇ , ũ

)
+ a

∇xy

Ω×Y
((

u ,U 1
)
, (ũ , 0)

)
− b∇xy

Ω×Y (p, (ũ , 0)) = 〈f , ũ〉Ω ,

a
∇xy

Ω×Y

((
u ,U 1

)
,
(

0, Ũ
))
− b∇xy

Ω×Y

(
p,
(

0, Ũ
))

= 0 ,

%fΩ×Y

(
ü ,W̃

)
+ %wΩ×Y

(
Ẇ ,W̃

)
+ cΩ×Y

(
W ,W̃

)
+
〈
∇xp+∇yP

1, W̃
〉

Ω×Y
= 0 ,

b
∇xy

Ω×Y

(
p̃,
(
u̇ , U̇ 1

))
− 〈W , ∇xp̃〉Ω×Y + dΩ×Y (ṗ, p̃) = 0 .

(4.22)

Note that the four equations correspond to the four independent test-functions (ũ , Ũ ,W̃ , p̃),
i.e. just one non-vanishing per each equation. Further we recall the constraint divyW = 0
which is imposed by W (t, ·) ∈ H0(div,Ω, Y#). These equations are used in Section 5.

Recall that the simplified subproblem (3.1) involved only (w , p), which presents a
simplified form of the full system (3.4). To obtain the analogous structural insight as
for the latter, we consider a subproblem of (4.22) that is the two-scale version of (3.1),
namely

Ẇ + W +∇xp+∇yP
1 = 0 ,

ṗ+ divx(∼
∫

Y

W ) = 0 ,

divyW = 0 .

(4.23)

Hence, P 1 is the microscopic pressure associated with the microscopic constraint divyW =
0, while p is the macroscopic pressure associated with divx(−

∫
Y
W ) by (4.23)2.

The second equation, (4.22)2 shows that U 1(t) can be calculated using instantaneous
“macroscopic” data, namely U 1(t) = L(u(t), p(t)), so there is no dynamics of microscopic
fluctuation represented by U 1, since there is no U̇ . Consequently, the time rate U̇ 1 is
simply given via the same mapping, U̇ 1 = L(u̇ , ṗ).

In order to derive an existence theory for (4.17b), or its equivalent (4.22), we use the
fact that there is a natural energy balance. For Q = (u ,U 1,W , p, u̇) we define the
energy

E(Q) =
1

2
a
∇xy

Ω×Y
((

u ,U 1
)
,
(
u ,U 1

))
+

1

2
dΩ×Y (p, p)

+
1

2

(
%̄Ω×Y (u̇ , u̇) + 2%fΩ×Y (W , u̇) + %wΩ×Y (W ,W )

)
.

Then, every weak two-scale solution (u ,U 1,W , p) of (4.22) satisfies the energy balance

d

d t
E(u ,U 1,W , p, u̇) + cΩ×Y (W ,W ) = 〈f , u̇〉Ω . (4.24)

The proof is analogous to that of Prop. 2: we first show it for solutions (u ,U 1,W , p, u̇) ∈
C2([0, T ]; Q0(Ω, Y#)), which are even semistrong two-scale solutions. Then, the general
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result follows by approximation via temporal smoothing. Since E is a positive definite
quadratic form in (u ,U 1,W , p, u̇), we obtain immediately uniqueness of solutions, ex-
cept for the two-scale pressure P 1. However, P 1(t) ∈ L2(Ω;H1

av(Y#)) can be determined
uniquely from (4.22)3, once the solution (u ,U 1,W , p) is determined.

We follow the Galerkin approach; the construction of weak, or semistrong solution
now follows as in Section 3.1 by choosing suitable finite-dimensional subspace HN(Ω, Y )
of H(Ω, Y ). All finite dimensional approximations will still satisfy the energy balance
(4.24) and, therefore, we can obtain uniform a priori bounds. Taking the limit N →∞,
where ∪N∈NHN(Ω, Y ) is dense in H(Ω, Y ), we obtain the desired solutions. All this is
summarized in the following result.

Proposition 6 For each initial state (u(0),W(0), p(0), u̇(0)) ∈ Q0(Ω, Y#) and each
f ∈ L1([0, T ]; L2(Ω)) problem (4.17b) has a unique weak two-scale solution (u,U1,W, p).
This solution satisfies the energy balance (4.24) and, for all t ∈ [0, T ], we have U1(t) =
L(u(t), p(t)), where the bounded linear operator L : H1

0(Ω) × L2(Ω) → L2(Ω; H1
#(Y )) is

defined via (4.22)2.
If additionally, f ∈ W 1,1([0, T ]; L2(Ω)), (u(0),U1(0),W(0), p(0)) ∈H1(Ω, Y#),

u̇(0) ∈ H1
0(Ω) , and div

(
ID
(
εx(u(0))+εy(U1(0))

)
+ p(0)α

)
∈ L2(Ω) ,

then the weak two-scale solution extended by the uniquely determined pressure corrector
P 1 is a semistrong two-scale solution.

5 Scale decoupling for the Laplace-transformed model

In (4.22) the equations involve both the macroscopic and the two-scale functions. Due
to linearity of the problem, it is possible to express the two-scale functions as the time
convolutions of the macroscopic fields ε(u) and p with the corrector basis functions which
satisfy auxiliary microscopic problems and constitute the homogenized coefficients in-
volved in the macroscopic problem. To derive the homogenized equations efficiently, we
apply the Laplace transformation, as in [GrR07, RoC10].

5.1 Microscopic problems

They are obtained from (4.22) upon substituting there special combinations of the two-
scale test functions (Ũ ,W̃ ) whereby (ũ , p̃) ≡ 0. Thus, we introduce autonomous mi-
croscopic problems for the corrector basis functions. We shall use the following bilinear
forms

aY

(
U , Ũ

)
=∼
∫

Y

εy(Ũ ) : ID(y)εy(U ) , bY (P, U ) =∼
∫

Y

Pα(y) : εy(U ) ,

cY

(
W , W̃

)
=∼
∫

Y

W̃ ·K−1(y)W , %wY

(
W , W̃

)
=∼
∫

Y

ρf (y)φ−1
0 (y)W · W̃ .

(5.1)
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5.1.1 Time-independent corrector basis functions

In (4.22) we choose (ũ ,W̃ , p̃) ≡ 0, which leads to

a
∇xy

Ω×Y

((
u ,U 1

)
,
(

0, Ũ
))
− b∇xy

Ω×Y

(
P,
(

0, Ũ
))

= 0 ,∀Ũ 1 ∈ L2(Ω; H1(Y#)) ,

hence, a.e. in Ω

aY

(
U 1 + Πrsεrs(u), Ṽ

)
− bY

(
p, Ṽ

)
= 0 ∀Ṽ ∈ H1(Y#) .

(5.2)

By virtue of the linearity we can introduce the corrector basis functions χrs,χ∗ ∈ H1(Y#),
r, s = 1, 2, 3 to express the displacement fluctuations

U 1(x, y) = χrs(y)εxrs(u) + χ∗(y)p(x) , (5.3)

On substituting (5.3) into (5.2), the following local problems:

1. Find χrs ∈ H1
av(Y#) such that

aY

(
χrs + Πrs, Ṽ

)
= 0 ∀Ṽ ∈ H1(Y#) , (5.4)

where Πrs = (Πrs
i ) = (ysδir).

2. Find χ∗ ∈ H1
av(Y#) such that

aY

(
χ∗, Ṽ

)
= bY

(
1, Ṽ

)
∀Ṽ ∈ H1(Y#) . (5.5)

5.1.2 Time-variant corrector basis functions

Taking the test functions (ũ , Ũ , p̃) ≡ 0, equation (4.22)2 presents the local problem,
where W is “driven” by the macroscopic acceleration, ü and the macroscopic pressure
gradient, ∇xp

0 (due to (4.23)1). Since (4.22)2 is the evolutionary equation for W , the two
scales are coupled in time and their decoupling is more complicated than in the “static
case”. In order to separate the scales, we apply the Laplace transform L : f(t) 7→

∗
f(λ),

where λ is the Laplace-transformed time variable. Alternatively we shall use the notation
L{f} ≡

∗
f . Assuming the “zero” initial conditions, for a.a. x ∈ Ω we have

%fY

(
1, W̃

)
· λ2

∗u + %wY

(
λ ∗W , W̃

)
+ cY

(
∗W , W̃

)
+∇xp · ∼

∫

Y

W̃ = 0 , (5.6)

for all W̃ ∈ H0(div, Y#) = {v ∈ L2(Y#)| divyv = 0 in Y }.
Now the split of ∗W can be defined in terms of two corrector functions ς and π:

∗W = λ3

∗
ςk
∗
uk + λ ∗π

l∂xl ∗
p ,

hence W (t, x, y) =

∫ t

0

d

d t
ςk(t− s, y)

d2

d s2
uk(s, x) ds+

∫ t

0

d

d t
πk(t− s, y)∂xkp(s, x) ds .

(5.7)

Eq. (5.6) is satisfied whenever the following auxiliary problems hold:
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1. find
∗
ς(λ, ·) ∈ H0(div, Y#)/R such that (for k = 1, 2, 3)

λ%wY

(
∗
ςk, W̃

)
+ cY

(
∗
ςk, W̃

)
= −1

λ
%fY

(
1, W̃k

)
∀W̃ ∈ H0(div, Y#) , (5.8)

2. find ∗π(λ, ·) ∈ H0(div, Y#)/R such that (for k = 1, 2, 3)

λ%wY

(
∗π
k, W̃

)
+ cY

(
∗π
k, W̃

)
= −1

λ
∼
∫

Y

W̃k ∀W̃ ∈ H0(div, Y#) , (5.9)

Remark 1. If the fluid is microscopically homogeneous, i.e. ρf = ρf (x) is constant w.r.t.
y ∈ Y , then just one auxiliary problem has to be solved (see the definition of %fY (·, ·)); in
such situation, instead of (5.7), we define

∗W = λ ∗π
k
(
λ2ρf

∗
uk + ∂xk ∗

p
)
,

hence W (t, x, y) =

∫ t

0

d

d t
πk(t− s, y)

(
ρf

d2

d s2
uk(s, x) + ∂xkp(s, x)

)
ds .

(5.10)

4
From now on we shall assume that the fluid density, ρf , is independent of the mi-

croscopic coordinate, i.e. ρf = ρf (x). Therefore only (5.9) is the auxiliary microscopic
problem.

In order to get rid of the functional space constraints π(t, ·),W̃ ∈ H0(div, Y#), we
can reformulate (5.9) as the saddle point problem, on introducing the Lagrange multiplier

∗
η(λ, ·) ∈ L2(Y#)

λ%wY

(
∗π
k, W̃

)
+ cY

(
∗π
k, W̃

)
+
〈
∗
ηk, divyW̃

〉
Y

= −1

λ
∼
∫

Y

W̃k ∀W̃ ∈ H#(div, Y ) ,

〈
q̃, divy ∗π

k
〉
Y

= 0 ∀q̃ ∈ L2(Y#) ,

(5.11)

Assuming more regularity, namely L{η}(λ, ·) ∈ H1
#(Y ), we can integrate by parts in

(5.11)1 to obtain

(
λφ−1

0 ρfI + K−1
)
∗π
k −∇y ∗

ηk = −λ−11 k a.e. in Y , (5.12)

hence we can express

∗π
k = F (λ)∇y( ∗

ηk − 1

λ
yk) , (5.13)

where F (λ) is the (“frequency-dependent”) permeability:

F (λ) = [λφ−1
0 ρfI + K−1]−1 . (5.14)

On substituting (5.13) in (5.11)2 we get

divy

[
F (λ)∇y( ∗

ηk − 1

λ
yk)

]
= 0 a.e. in Y , (5.15)
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which yields the following weak formulation of the microscopic Laplace-transformed prob-
lem: find

∗
ηk ∈ H1

av(Y#) such that

∼
∫

Y

[
F (λ)∇y( ∗

ηk − 1

λ
yk)

]
· ∇y q̃ = 0 ∀q̃ ∈ H1(Y#) . (5.16)

Then we can evaluate the characteristic seepage (5.13); by virtue of the term λ ∗π
k involved

in (5.10) we define

K(λ) = (Kij(λ)) = −
(
λ ∼
∫

Y ∗
πji

)
(5.17)

which is symmetric, i.e. Kij = Kji. This can be proved using symmetry of F and using
(5.16) with q̃ :=

∗
ηl , as follows:

Klk ≡ −λ2

∫

Y

[
F∇y( ∗

ηk − 1

λ
yk)

]
· 1

λ
∇yyl = λ2

∫

Y

[
F∇y( ∗

ηk − 1

λ
yk)

]
· ∇y( ∗

ηl − 1

λ
yl)

= −λ2

∫

Y

[
F∇y( ∗

ηl − 1

λ
yl)

]
· 1

λ
∇yyk ≡ Kkl .

(5.18)

Moreover, K is positive definite for any real λ > 0, as follows by the second equality.

5.2 Macroscopic problem and effective parameters

In this section we derive the Laplace-transformed form of the limit “homogenized” problem
which is decoupled of the local (microscopic) problems. For this we begin with (4.22)
where we substitute Ũ ≡ 0, W̃ ≡ 0 and apply the Laplace transformation; thus we get:

λ2%̄Ω×Y
(
∗u , v

)
+ λ%fΩ×Y

(
∗W , v

)

+a
∇xy

Ω×Y
((
∗u , ∗U

1
)
, (v , 0)

)
− b∇xy

Ω×Y

(
∗
p, (v , 0)

)
=
〈
∗
f , v

〉
Ω
,

λb
∇xy

Ω×Y
(
q,
(
∗u , ∗U

1
))

+
〈
q, div ∗W

〉
Ω×Y + λdΩ×Y

(
∗
p, q
)

= 0 ,

(5.19)

for all v ∈ H1
0(Ω) and q ∈ L2(Ω). On substituting there ∗U

1 and ∗W by the corresponding
expressions(5.3) and (5.10),(5.17) involving the corrector basis functions, we can rewrite
each individual l.h.s. term in (5.19)1, as follows

λ2%̄Ω×Y
(
∗u , v

)
= λ2

∫

Ω

∼
∫

Y

ρ · ∗uv

λ%fΩ×Y
(
∗W , v

)
=

∫

Ω

ρfv · ∼
∫

Y
∗W =

∫

Ω

λρfv ·
(
λ2ρf ∗u +∇

∗
p
)
·W(λ) ,

a
∇xy

Ω×Y
((
∗u , ∗U

1
)
, (v , 0)

)
=

∫

Ω

aY
(
∗U

1 + Πklεxkl( ∗u), Πij
)
εxij(v)

=

∫

Ω

(
aY
(
χkl + Πkl, Πij

)
εxkl( ∗u) + aY

(
χ∗, Πij

)
∗
p
)
εxij(v) ,

b
∇xy

Ω×Y

(
∗
p, (v , 0)

)
=

∫

Ω
∗
pεxij(v) ∼

∫

Y

αij .

(5.20)
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In analogy, we rewrite all terms involved in (5.19)2

λb
∇xy

Ω×Y
(
q,
(
∗u , ∗U

1
))

= λ

∫

Ω

q
(
bY
(
1, χij + Πij

)
εxij( ∗u) + bY (1, χ∗)

∗
p
)
,

〈
q, div ∗W

〉
Ω×Y =

∫

Ω

qdivx

(
W(λ)

(
λ2ρf ∗u +∇x∗

p
))

,

λdΩ×Y
(
∗
p, q
)

= λ

∫

Ω

q
∗
p ∼
∫

Y

1

µ
.

(5.21)

Now, collecting the terms associating the same combinations between (ε( ∗u),
∗
p) on one

hand and (ε(v), q) on the other hand, we may introduce homogenized coefficients ID =
(Dijkl), A = (Aij), B = (Bij) and Q, which are independent of λ:

Dijkl = aY
(
χkl + Πkl, Πij

)
= aY

(
χkl + Πkl, χij + Πij

)
,

Aij =∼
∫

Y

αij − aY
(
χ∗, Πij

)
,

Bij = bY
(
1, χij + Πij

)
,

Q =∼
∫

Y

1

µ
+ bY (1, χ∗) .

(5.22)

In (5.22)1 the symmetric expression follows easily from (5.4), thus we obtain positive
definiteness of ID. Using (5.5) one verifies Q > 0. Further we define the homogenized
mass tensor

M(λ) =∼
∫

Y

ρI − λ(ρf )2K(λ) . (5.23)

By virtue of the symmetry of the original system (3.4) (up to the terms coupling
the pressure and the seepage) one expects a similar feature in the homogenized model.
Indeed, it results from the following relationship:

Aij = Bij , whereby Aij = Aji . (5.24)

This can be obtained using (5.4)-(5.5). We substitute w := χ∗ in (5.4), hence

aY (χrs, χ∗) = −aY (Πrs, χ∗) .

Above the l.h.s. can be rewritten using (5.5) with substituted w := χrs, which leads to
(5.24):

Ars− ∼
∫

Y

αrs = −aY (Πrs, χ∗) = aY (χrs, χ∗) = bY (1, χrs)

= bY (1, χrs) + bY (1, Πrs)− ∼
∫

Y

αrs

= Brs− ∼
∫

Y

αrs .

(5.25)

We can now state the macroscopic Laplace-transformed problem for the homogenized
medium which arise from (5.19) where we use expressions (5.20),(5.21) and substitute the
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coefficients (5.22) and (5.23): Given external loads f = W 1,1(0, T ; L2(Ω)), for any λ ∈ C
with <λ > 0 find pair ( ∗u(λ, ·),

∗
p(λ, ·)) ∈ H1

0(Ω)×H1(Ω) such that

λ2

∫

Ω

v ·M(λ) ∗u +

∫

Ω

ε(v) : IDε( ∗u)−
∫

Ω

ε(v) : A
∗
p−

∫

Ω

λv ·
(
ρfK(λ)

)
∇
∗
p =

∫

Ω
∗
f · v ,

λ

∫

Ω

qA : ε( ∗u)− λ2

∫

Ω

q∇ ·
(
ρfK(λ) ∗u

)
−
∫

Ω

q∇ ·
(
K(λ)∇

∗
p
)

+ λ

∫

Ω

qQ
∗
p = 0 ,

(5.26)

for all v ∈ H1
0(Ω) and q ∈ L2(Ω).

5.2.1 Operator forms

System (5.26) can be rewritten in the operator form which emphasizes the block structure
of the homogenized equations and underlines their mechanical interpretation. First we
present the differential form:

λ2M(λ) ∗u −∇ · IDε( ∗u)−∇ ·
(
A
∗
p
)
− λ

(
ρfK(λ)

)
∇
∗
p =

∗
f , a.e. in Ω ,

λA : ε( ∗u)− λ2∇ ·
(
ρfK(λ) ∗u

)
−∇ ·

(
K(λ)∇

∗
p
)

+ λQ
∗
p = 0 , a.e. in Ω .

(5.27)

We can present the macroscopic wave equation in an operator form. For this, let
us define qL(λ) = ( ∗u , ∗

p) and consider (5.27)2 divided by λ; hence, in the corresponding

inverse Laplace-transformed problem, the volume conservation is integrated in time, which
yields

[
λ2ML(λ) + λDL(λ) + G + K

]
qL = f L , (5.28)

where operator matrices ML(λ), DL(λ), G and K are introduced, as follows

ML(λ) =

( M(λ) 0
0 0

)
, K =

(
−∇S ·

(ID∇S◦
)

0
0 Q

)
,

DL(λ) =

(
0 −ρfK(λ)∇◦

−∇ ·
(
ρfK(λ)◦

)
−λ−2∇ · (K(λ)∇◦)

)
, G =

(
0 ∇ · (A◦)

A : ∇S◦ 0

)
,

qL(λ) =

(
∗u

∗
p

)
,

∗
f =

(
∗
f

0

)
.

(5.29)

5.2.2 Existence and uniqueness results

Due to Proposition 6 we know that the limit two-scale problem imposed in Ω× Y×]0, T ]
possesses a unique solution. Indeed, recalling the arguments of Proposition 3, also for the
two-scale limit problem the Galerkin approximations lead to constructing a contraction
semigroup. Let us recall that in this section we described the scale-decoupling procedure
which using the Laplace transformation and the micro-macro multiplicative split of all
two-scale functions introducing the corrector basis functions as solutions to the micro-
scopic problems. This step allows for solving the two-scale problem in part. Therefore,
the existence and uniqueness for problem (5.28) follows from Proposition 6 since we can
use the general result from the semigroup theory: due to the Hill–Yosida Theorem, cf.
[EnN00], we know that the existence of the contraction semigroup guarantees the existence
of the resolvent operator of the Laplace-transformed two-scale problem.
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6 Propagation of plane harmonic waves

We shall consider harmonic plane incident wave propagating in direction n

u(t, x) = ū exp{iωt+ κ · x} ,
p(t, x) = p̄ exp{iωt+ κ · x} , (6.1)

where ω is the imposed (real) frequency, κ = κn and κ is the complex wave number,
κ = κR+iκI . Clearly, 2π/κI gives the length of propagating waves, whereas κR gives the
damping (attenuation). Note that, according to the ansatz (6.1), the wave with κI > 0
are running in the opposite direction w.r.t. n . Therefore, the wave is attenuated in the
direction of its propagation appears, if κR > 0; in general, κRκI > 0 means the “positive
damping”.

For the dispersion analysis pursued below we consider model (5.28),(5.29), where all
the λ-dependent expressions are interpreted as the Fourier transforms, substituting there
λ := iω. In what follows we denote the Fourier transformation of v(t) by v̂(iω). For

a given harmonic loading f̂ the transformed solution (û , p̂) must satisfy the following
equations imposed in Ω:

−ω2M(iω)û −∇ · ID∇Sû +∇S ·Ap̂− iωρfK(iω)∇p̂ = f̂

A : e(û)− iωρf∇ ·K(iω)û +Qp̂+
i

ω
∇ ·K(iω)∇p̂ = 0 ,

(6.2)

where M(iω) =
(
ρ̄Y I − iω(ρf )2K(iω)

)
is the mass tensor and K(iω) is called the dynamic

permeability, since it is associated with the seepage velocity depending also on the inertia

term, see (5.10)2. Note that L−1{Kkl}(t) = −−
∫
Y

d
d t
πkl (t), thus Kkl = −iω−

∫
Y
π̂kl , where π̂kl

can be computed using (5.13) with λ = iω. It can be shown easily that for a homogeneous
material

∗
ηk ≡ 0 as the consequence of (5.14) and (5.16), thereby we have

K(iω) = F (iω) =
(
K−1 + iωρfφ−1

0 I
)−1

. (6.3)

The amplitudes of the propagating plane wave are obtained from (6.2), where we

substitute (û , p̂) = (ū , p̄) exp{κn · x}, f̂ = 0, assuming that all homogenized coefficients
are independent of x. This yields

(
−ω2

(
ρ̄Y I − iω(ρf )2K(iω)

)
− κ2ID(n ⊗ n) (κA− iωκρfK(iω))n

(κA · n − iωκρfK(iω)n)T Q+ i
ω
κ2K(iω) : (n ⊗ n)

)(
ū
p̄

)
=

(
0
0

)

(6.4)

In the Appendix we analyze the wave modes associated with (6.4) and verify the well
known existence [ABG09] of 2 compressional modes and n − 1 shear modes, where n is
spatial dimension, see Proposition 7. To obtain a general dispersion relationship, from
(6.4), assuming the lower diagonal entry does not vanish (in the Appendix, this hypothesis
is proved to be sufficient for computing all modes), we can eliminate the pressure

p̄ = −κ
n · (A− iωρfK(iω))ū

Q+ i
ω
κ2K(iω) : (n ⊗ n)

. (6.5)
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The reduced system now may be written in the following form (we employ M(iω) =(
ρ̄Y I − iω(ρf )2K(iω)

)
)

[
M(iω) + γ2ID(n ⊗ n) + γ2

(A− iωρfK(iω))n
)
⊗
(A− iωρfK(iω))n

)

Q+ γ2iωK(iω) : (n ⊗ n)

]
ū = 0 ,

(6.6)

where γ = κ/ω was introduced (note 1/=(γ) = ω/κI is the phase velocity). Below we
shall use identity (6.6) to analyze the wave dispersion.

Remark 2. For homogeneous medium (i.e. there is no heterogeneous microstructure)
one obtains (6.6) where the homogenized coefficients ID,A,Q are replaced directly by
ID ,α, 1/µ, respectively, and K(iω) by F (iω), as explained in (6.3).

4

6.1 Dispersion analysis

In order to analyze dispersion in the homogenized medium, i.e. the relationship between
ω and κ, we rewrite (6.6) in the matrix form, on introducing the following 2nd order
tensors:

T(iω) = Q
(
ρ̄Y I − iωK(iω)(ρf )2

)
,

S(iω) = QID(n ⊗ n) + iωK(iω) : (n ⊗ n)
[
ρ̄Y I − iωK(iω)(ρf )2

]

+
(A− iωρfK(iω)

)
n ⊗

(A− iωρfK(iω)
)
n ,

R(iω) = ID(n ⊗ n) iωK(iω) : (n ⊗ n) .

(6.7)

Using the notation just introduced, (6.6) attains the form
[
R(iω)γ4 + S(iω)γ2 + T(iω)

]
· ū = 0 , (6.8)

from where we can obtain the characteristic equation for γ2.
A possible way of computing γ for a given ω is to introduce the substitution v̄ :=

−γ2Rū and to solve the following eigenvalue problem, where Λ = 1/γ2:

−
(
S −I
R 0

)(
ū
v̄

)
= Λ

(
T 0
0 I

)(
ū
v̄

)
, (6.9)

which yields κ = ±ω(
√

Λ)−1, where the sign determines the wave orientation. Thus, we
obtain four complex eigenvalues κ and the associated eigenvectors, namely the ū , which
determine the wave polarization. However, by virtue of the mode analysis, as discussed
in the Appendix, one of the eigenvalues corresponds to vanishing lower diagonal entry in
(6.4) – in this case (6.5) is not defined, thus, the eigenvalue is false.

For better understanding the asymptotics of the dispersion γ = γ(ω) for ω → 0 and
ω → ∞, it is important to analyze the terms Mij =

(
ρ̄Y − (ρf )2gij

)
which is the mass,

see (5.29); for homogeneous isotropic material one may analyze the equivalent mass term
M11 =

(
ρ̄− iω(ρf )2F11(iω)

)
. Easy calculations reveal the following:

mass <(M11)→ damping contribution
ω → 0 ρ̄ −iω(ρf )2K11

ω →∞ (1− φ0)ρs 0

Thus, for the high frequency regime only the solid phase mass induces the inertia
effects, while in the low frequency regime both the fluid and the solid participate.
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Pure material 1 Pure material 2

Figure 1: Phase velocities ω/κI for the pure materials. Computed using (6.21) and (6.22).

Pure material 1 Pure material 2

Figure 2: Attenuation κR for the pure materials. Computed using (6.21) and (6.22).
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6.2 Homogenized laminated structure

To describe how the specific type of heterogeneities contributes to the model anisotropy,
we shall consider the plane stress problem in infinite medium where plane wave of a given
frequency ω propagate in direction n . We shall derive the particular effective parameters
and illustrate numerically the phenomena of the wave dispersion and attenuation.

Let us consider material heterogeneities as generated by parameter a(y), y ∈ Y =
]0, 1[2,

a(y) = ā(1 + ψa(y1)) y1 ∈ [0, 1] , −1 < ψa a.e. in [0, 1] , (6.10)

where ā is a given real constant and ψa ∈ L∞(0, 1).
In order to compute components Dijkl, Aij (i, j, k, l = 1, 2) and Q, one needs to solve

(5.4) and (5.5) for correctors χkli (y1) and χ∗i (y1). These equations can be reduced a priori,
since the corrector functions cannot depend on y2. Thus, due to the material coefficients
being independent of y2 and due to the ellipticity of the corrector problems, one has to
solve

− ∂

∂y1

(
Di111(y1)

∂χrs1
∂y1

+Di121(y1)
∂χrs2
∂y1

+Di1rs(y1)

)
= 0 , i, r, s = 1, 2 ,

− ∂

∂y1

(
Di111(y1)

∂χ∗1
∂y1

+Di121(y1)
∂χ∗2
∂y1

− αi1
)

= 0 , i = 1, 2 ,

(6.11)

where Dijkl and αij are given in the form of (6.10). Straightforward calculations lead to
the desired gradients of the corrector functions (the Einstein summation convention for
repeated indices is applied)

∂χrsk
∂y1

= −(Di1k1)−1 (Di1rs − crsi ) ,
∂χ∗k
∂y1

= (Di1k1)−1 (αi1 + c∗i ) , (6.12)

for i, k = 1, 2, where, due to the periodic boundary conditions,

crsi =

(∫ 1

0

(Di1j1)−1dy1

)−1 ∫ 1

0

(
(Dj1k1)−1Dk1rs

)
dy1 ,

c∗i = −
(∫ 1

0

(Di1j1)−1dy1

)−1 ∫ 1

0

(
(Dj1k1)−1αk1

)
dy1 .

(6.13)

Now the effective parameters can be evaluated:

Dijkl =

∫ 1

0

Dijrl(y1)

(
δrk + δl1

∂χklr
∂y1

)
dy1

Aij =

∫ 1

0

(
αij −Dijr1(y1)

∂χ∗r
∂y1

)
dy1 ,

Q =

∫ 1

0

(
αk1

∂χ∗k
∂y1

+
1

µ(y1)

)
dy1 .

(6.14)

Further we compute K(ω), as introduced in (5.17) through (5.16) and (5.13). We
consider a diagonal permeability tensor Kij(y1), i.e. Kij = 0 for i 6= j, so that (5.15)
reduces to

− ∂

∂y1

(
F11(y1, λ)

(
∂
∗
η1

∂y1

− 1

λ

))
= 0 ,

∗
η2 ≡ 0 , (6.15)
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where the second identity results from the independence of F22 on y2; tensor Fij has only
the diagonal entries

Fii(y1, λ) = ((Kii(y1)−1 + λρfφ−1
0 )−1 , i = 1, 2 no summation over i . (6.16)

Due to the periodic boundary conditions, one obtains

∂
∗
η1

∂y1

=
1

λ
+

cK(λ)

F11(y1, λ)
,

where cK(λ) = −
(
λ

∫ 1

0

(F11(y1, λ))−1 dy1

)−1

.

(6.17)

Hence, using (5.13), the non-vanishing seepage corrector gradients are

∗
π1

1 = F11(y1, λ)

(
∂
∗
η1

∂y1

− 1

λ

)
= cK(λ) ,

∗
π2

2 = −F22(y1, λ)

λ
, (6.18)

while
∗
π2

1 =
∗
π1

2 ≡ 0. It is worth noting that
∗
π2

2 depends on y1, whereas
∗
π1

1 is a constant, i.e.

independent of y1 (in entire cell Y ). This reveals existence of nonuniform seepage flows
in the y2 direction.

Now using (5.17) we can express the homogenized permeability for λ := iω

K11(iω) = −iω cK(iω) =

(∫ 1

0

1

F11(y1, iω)
dy1

)−1

,

K22(iω) =

∫ 1

0

F22(y1, iω) dy1 ,

(6.19)

obviously, Kij = 0 for i 6= j.
Having computed the effective parameters Kij(iω), Dijkl, Aij and Q, we can establish

the dispersion equation (6.8) and solve the associated eigenvalue problem (6.9). Then,
for complex eigenpairs (κ, ū) we can compute the eigenpressures and eigenseepage. First,
using (6.5) with (5.17), we compute p̄, then we employ (5.10)1, replacing there λ by iω,
and (5.17), to obtain the averaged seepage velocity

w̄ :=∼
∫

Y

W = −K(iω)
(
κn p̄− ω2ρf ū

)
. (6.20)

6.3 Pressure and shear waves for transversal plane waves

For the laminated structure we can simplify the general dispersion relationship (6.8),
assuming transversal wave propagation, i.e. n = (1, 0), see (6.10). Dispersion curves
ω 7→ κ can then be computed by solving scalar quadratic equations in complex variables,
as will now be explained. Due to diagonality of A and K, which is obvious from (6.30) and
(6.19) because of the isotropy of both the materials, (6.8) becomes an equation with the
diagonal matrix. Therefore, ū‖ = (1, 0) and ū⊥ = (0, 1) are two eigenvectors, whereby
each of them yields two eigenvalues.

Let us first consider polarization ū⊥ (we recall ū⊥ · n = 0), so that we analyze the
shear waves (S-waves). From (6.5) we get p̄ = 0. i.e. the S-waves do not induce any
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KB [GPa] G [GPa] α [1] φ0 [1] µ [GPa] K [m2/(Pa.s)]
mat. 1 0.6 0.8 0.4231 0.1 0.9660 0.01
mat. 2 6 8 0.8462 0.2 9.6595 0.001

Table 1: Material parameters, KB is the bulk modulus of the drained skeleton, G is the
solid shear modulus, K and α are the diagonal entries of K and α, respectively.

Figure 3: Composite h1/h2 = 1, phase velocity c = ω/κI . Left: β = 0◦ (computed using
(6.21) and (6.22)), right: β = 90◦ (computed by solving (6.8)).

pressure oscillations. De to the above mentioned diagonality, from (6.8) we obtain to the
following single equation which yields two γ2

S for any ω > 0 (we denote gij = iωKij(iω),
thus M22 = ρ̄Y − (ρf )2g22),

(
γ2
S1
D2211 +M22

) (
γ2
S2
g11 +Q

)
= 0 . (6.21)

Note that only γ2
S1

is associated with a shear wave, as for γ2
S2

the assumption used to
eliminate p̄ in (6.5) is not satisfied. Therefore, there is only one S-wave.

In analogy, we can compute dispersion curves for the pressure waves (P-waves) by
solving the equation obtained from (6.8) for polarization ū‖ ‖ n , which now becomes

γ4
Pg11D1111 + γ2

P

(
QD1111 + g11

(
ρ̄Y − (ρf )2g11

)
+ (α11 − ρfg11)2

)
+Q(ρ̄Y − (ρf )2g11) = 0 .

(6.22)

Thus we obtain two waves γ2
P1,2

, the “slow” one the “fast” one, which induce pressure
oscillations.

The dispersion properties of the homogenized medium will be illustrated on a lam-
inated structure consisting of two inter-commuting layers h1, h2, h1 + h2 = H, filled
by two different isotropic materials. A harmonic plane wave is given by frequency ω
and by the angle of incidence β ∈ [0, π/2] which determines the propagation direction
n = (cos β, sin β); let us note β = 0 is the orientation of the lamination.

The two isotropic materials are specified in Table 1. The two-dimensional problem
was considered for the plane stress conditions. In Figs. 1 and 2, using the “log-log” axes
labeling, we display the phase velocities and attenuation for both the pure materials.
Apparently, for frequencies higher than 10Hz there is no dispersion. Solving (6.9) for
ω ∈ [10−3, 103]Hz, 4 curves ω 7→ κ are obtained – two P-waves, one S-wave and one
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Figure 4: Composite h1/h2 = 1, attenuation κR. Left: β = 0◦ (computed using (6.21)
and (6.22)), right: β = 90◦ (computed by solving (6.8)).

“false” curve which, however, merge with one of the remaining three. It can be seen that
for very small ω the dispersion for one P-wave attains the form v ≈ √ω.

In Figs. 3 and 4 we depict the dispersion behavior for the layered composite material
with thicknesses h1 = h2 = 0.5H. To see the homogenized material orthotropy, we
considered the directions β = 0◦ and β = 90◦. (Obviously, for β = 0◦ calculations by
either solving (6.8), or obtained from (6.21) and (6.22) give the same result.)

Appendix

Wave dispersion analysis in the upscaled Biot medium

We analyze existence of plane waves with polarizations given as non-trivial solutions to
(6.4), where n is the direction of propagation. For the sake of brevity, we introduce the
following notation:

T(γ2) := M(iω) + γ2ID : n ⊗ n ,

b := (A− ρf iωK) · n ,

a(γ2) := Q+ γ2iωK : n ⊗ n .

(6.23)

Now (6.4) reads, as follows

(
T(γ2) γ

ω
b

γωbT a(γ2)

)
·
(

ū
p̄

)
=

(
0
0

)
. (6.24)

Proposition 7 For any ω > 0 there are just two pressure waves (associated with model
(6.4)) and n−1 shear waves with “b-orthogonal” (complex) polarizations in Cn, n = 2, 3.

Proof: (1) Let us assume a(γ2) 6= 0, then the pressure amplitude can be expressed
p̄ = γωbT ū/a(γ2) and substituted into the first equation in (6.24) which, thus, yields

(
a(γ2)T(γ2) + γ2bbT

)
ū = 0 . (6.25)
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Nontrivial solutions ū exist in the following cases.

(1.i) If ū ·b = 0, then condition det(T(γ2)) = 0 holds for a complex γ2, so that there are
2 waves (in 3D, but only one wave in 2D) with polarization ū ∈ Ker(T(γ2)) constraint
by ū ⊥ b. They are called shear waves, being characterized by p̄ = 0, which means that
no volume changes are induced.
(1.ii) If ū · b 6= 0, then (6.25) presents a biquadratic equation for γ2. Two waves with
p̄ 6= 0 are obtained, therefore, being called the pressure waves.

(2) Now we consider a(γ2) = 0 and explore existence of nontrivial solutions to (6.24).

(2.i) Let det(T(γ2)) 6= 0, then using the Schur complement, (6.24) reduces to
γ2bT [T(γ2)]−1bp̄ = 0. Since T(γ2) is regular, p̄ = 0 (for |γ| > 0), hence also ū = 0,
so that there is no propagating wave.
(2.ii) Let det(T(γ2)) = 0. First, assume b ⊥ KerT(γ2), then there exists a non-vanishing
ū ∈ KerT(γ2), such that ū · b = 0 and (6.24) holds with p̄ = 0. In this case we re-
cover the case of shear waves, as discussed above. Second, assume b 6⊥ KerT(γ2). To
satisfy (6.24), we need ū 6∈ KerT(γ2) such that b is in the range of T(γ2). Supposing
existence of p ∈ C such that we have p̄b = T(γ2)ū , simultaneously we would require
0 = ūTb = (1/p̄)ūTT(γ2)ū , which holds only provided ū ∈ KerT(γ2). Thus, we reached
a contradiction and conclude that all solutions are trivial. �

Homogenized coefficients for laminated structure

Here we offer the homogenization formulas for computing Dijkl,Aij and Q written a
matrix notation which can be easily interpreted for the Matlab implementation.

In our example Y ≡]0, 1[ is just the interval. Then the following matrix representation
for ID = (Dijkl), A = (αij) and K = (Kij) is employed:

D(y) = E(y)D̄ , a(y) = α(y)ā , ā = [ᾱ11, ᾱ22, ᾱ12] ,

k(y) = K(y)k̄ , k̄ = [K̄11, K̄22, K̄12] ,
(6.26)

where D̄ ∈ R3×3, a ∈ R3, k ∈ R3 and E(y), α(y), K(y) are defined according to (6.10).
We assume isotropic elasticity with a constant Poisson ratio, i.e. independent of y ∈ Y ,
so that matrix D̄ is constituted by components Dijkl/E, E being the Young modulus, so
that on introducing the strain vector e : v → R3, the stress is s = De, where

e(v) = [ε11(v), ε22(v), 2ε12(v)]T , s = [σ11, σ22, σ12]T . (6.27)

To shorten formulae we use the standard abbreviation of double indices ij (the Voigt
notation) denoted by k̂, k = 1, 2, 3, where the relationship is: 1̂ = 11, 2̂ = 22 and 3̂ = 12.
Further we employ the colon “:” in a Matlab sense to indicate a (sorted) sublist of {1, 2, 3},
e.g. (:) = (1 : 3) = {1, 2, 3}. Therefore, D(3,1:3) = [D3̂1̂, D3̂2̂, D3̂3̂] = [D1211, D1222, D1212].
Further we introduce i = {1, 3}, so that D(i,:) = (Dîk̂), i = 1, 2, k = 1, 2, 3 is 2-by-3
matrix.

Using this matrix notation we may express the constants defined in (6.13)

c(i,:) = (∼
∫

Y

E−1(y))−1D̄(i,i)D̄
−1
(i,i)D̄(i,:) = (∼

∫

Y

E−1(y))−1D̄(i,:) ,

c∗(i) = −(∼
∫

Y

E−1(y))−1D̄(i,i)D̄
−1
(i,i)ā(i) ∼

∫

Y

α(y)E−1(y) = −−
∫
Y
α(y)E−1(y)

−
∫
Y
E−1(y)

ā(i) ,

(6.28)
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consequently (6.12) can be written as

∂y1χ(i,:) = −D̄−1
(i,i)

(
D̄(i,:) − E−1(y)c(i,:)

)
,

∂y1χ
∗
(i) = D̄−1

(i,i)

(
ā(i)α(y) + c∗(i)

)
E−1(y) .

(6.29)

Now the matrix forms of the homogenized tensors can be computed; let us denote Deff
(k,l) =

Dk̂l̂ and Aeff
(k) = Ak̂, then (6.14) reads as

Deff
(:,:) = D̄(:,:) ∼

∫

Y

E(y)− D̄(:,i)D̄
−1
(i,i)D̄(i,:)

(
∼
∫

Y

E(y)− (∼
∫

Y

E−1(y))−1

)
,

Aeff
(:) = ā(:) ∼

∫

Y

α(y) + D̄(:,i)D̄
−1
(i,i)ā(i)

(
∼
∫

Y

α(y)− −
∫
Y
α(y)E−1(y)

−
∫
Y
E−1(y)

)
,

Q =∼
∫

Y

1

µ(y)
+ āT(i)D̄

−1
(i,i)ā(i)

(
∼
∫

Y

α(y)2

E(y)
−
(
−
∫
Y
α(y)E−1(y)

)2

−
∫
Y
E−1(y)

)
.

(6.30)
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