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ABSTRACT. We provide an explicit gradient formula for linear chance constraints under a (possibly singu-
lar) multivariate Gaussian distribution. This formula allows one to reduce the calculus of gradients to the
calculus of values of the same type of chance constraints (in smaller dimension and with different distribu-
tion parameters). This is an important aspect for the numerical solution of stochastic optimization problems
because existing efficient codes for e.g., calculating singular Gaussian distributions or regular Gaussian
probabilities of polyhedra can be employed to calculate gradients at the same time. Moreover, the precision
of gradients can be controlled by that of function values which is a great advantage over using finite differ-
ence approximations. Finally, higher order derivatives are easily derived explicitly. The use of the obtained
formula is illustrated for an example of a transportation network with stochastic demands.

1. INTRODUCTION

A chance constraint (or probabilistic constraint) is an inequality of the type

(1) P (g(z, ξ) ≤ 0) ≥ p,

where g is a mapping defining a (random) inequality system and ξ is an s- dimensional random vector
defined on some probability space (Ω,A,P). The chance constraint expresses the requirement that a
decision vector z is feasible if and only if the random inequality system g(z, ξ) ≤ 0 is satisfied at least
with probability p ∈ [0, 1]. The use of chance constraints is highly relevant for engineering problems
involving uncertain data. Among its numerous applications one may find topics like water management,
telecommunications, electricity network expansion, mineral blending, chemical engineering etc. For a
comprehensive overview on the theory, numerics and applications of chance constrained programming,
we refer to, e.g., [15], [16], [17].

From a formal viewpoint, a chance constraint is a conventional constraint α(z) ≥ p with α(z) :=
P (g(z, ξ) ≤ 0) on the decision vector (because the dependence on ξ vanishes by taking the proba-
bility). However, the major difficulty imposed by chance constraints arises from the fact that typically no
analytical expression is available for α. All one can hope for, in general, are efficient tools for numerically
approximating α. On the other hand, calculating just functional values of α is not enough for employing
optimization algorithms in reasonable dimension, one also has to have access to gradients of α. The
need to calculate gradients of probability functions has been recognized a long time ago and has given
rise to many papers on representing such gradients (e.g., [11], [20], [10], [14], [5]). The resulting formulae
can be used to approximate∇α via Monte Carlo methods similar to α itself.

On the other hand, for special cases much more efficient methods than Monte Carlo may exist for nu-
merical approximation. For instance, if in (1) the random vector is separated, i.e., g(z, ξ) = ξ − h(z),
then

(2) P (g(z, ξ) ≤ 0) = P (ξ ≤ h(z)) = Fξ(h(z)),

where Fξ denotes the (multivariate) distribution function of ξ. We note that for many prominent multivari-
ate distributions (like Gaussian, t-, Gamma, Dirichlet, Exponential, log-normal, truncated normal) there
exist methods for calculating the corresponding distribution function that clearly outperform a crude Monte
Carlo approach (see, e.g., [7], [19], [18], [8], [13]). When it comes to calculating gradients of such dis-
tribution functions in the context of applying some optimization algorithm, then, of course, it would be
desirable to carry out this calculus in a similarly efficient way as it was done for the values themselves. In
some special cases it is possible indeed to analytically reduce the calculus of gradients to the calculus of
function values of the same distribution. This is true, for instance, for the Dirichlet (see [8], p. 195) and for
the Gaussian distribution. We cite here the corresponding result for the Gaussian distribution which will
be the starting point for the investigations in this paper. We shall adopt the usual notation ξ ∼ N (µ,Σ)
to characterize an s-dimensional random vector having a normal distribution with expected value µ and
covariance matrix Σ.
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Theorem 1.1 ([15], p. 204). Let ξ ∼ N (µ,Σ) with some positive definite covariance matrix Σ = (σij)
of order (s, s). Then, the distribution function Fξ is continuously differentiable at any z ∈ Rs and

∂Fξ
∂zj

(z) = fξj (zj) · Fξ̃(zj) (z1, . . . , zj−1, zj+1 . . . , zs) (j = 1, . . . ,m) .

Here, fξj denotes the one-dimensional Gaussian density of the component ξj , ξ̃(zj) is an (s-1)-dimen-

sional Gaussian random vector distributed according to ξ̃(zj) ∼ N (µ̂, Σ̂), µ̂ results from the vector
µ+ σ−1

jj (zj − µj)σj by deleting component j and Σ̂ results from the matrix Σ− σ−1
jj σjσ

T
j by deleting

row j and column j, where σj refers to column j of Σ. Moreover, Σ̂ is positive definite.

An important consequence of this theorem is that the same powerful tool used to calculate values of
multivariate Gaussian distribution functions (e.g. the MVN code by Genz, [7]) can be used at the same
time to calculate the gradient of such distribution function. All one has to do is to adjust the distribution
parameters according to the rule specified in the theorem. The purpose of this paper is to generalize this
idea to a setting where the Gaussian random vector is not separated as in (2) but subject to a possibly
nonregular linear transformation which has important applications in engineering.

2. LINEAR CHANCE CONSTRAINTS WITH GAUSSIAN DISTRIBUTION

We are interested in linear chance constraints of the type

(3) P (Aξ ≤ z) ≥ p,

where z ∈ Rm is a decision vector, A denotes a matrix of order (m, s) and ξ is a s- dimensional
Gaussian random vector distributed according to ξ ∼ N (µ,Σ). We shall assume that ξ has a regular
Gaussian distribution, i.e., Σ is positive definite. Applications of linear chance constraints of type (3) are
abundant in engineering and finance (e.g., water reservoir management [1] or cash matching problem [3]).
For applying algorithms to solve optimization problems involving a constraint like (3) we are interested in
calculating values and gradients of the function

(4) β(z) := P (Aξ ≤ z) .

When passing to the linearly transformed random vector η := Aξ, it is well known that η ∼ N
(
Aµ,

AΣAT
)
, i.e., η has a Gaussian distribution too and one knows exactly how to derive the parameters of

this distribution from those of ξ. This allows then to rewrite β in the form

β(z) = P (η ≤ z) = Fη (z) .

In other words, β is the distribution function of some Gaussian distribution with well known parameters.
At this point, care has to be taken with respect to the transformation matrix A. In the most favorable
situation the rank ofA equalsm, i.e., the rows ofA are linearly independent. Then, the covariance matrix
AΣAT of η is positive definite (of order (m,m)) because so was Σ by assumption. In other words, Fη
is again a regular multivariate Gaussian distribution function and so one is completely led back to the
situation discussed in the introduction: One may calculate Fη using appropriate codes and one may also
compute ∇Fη via Theorem 1.1 upon respecting the transformed parameters Aµ and AΣAT . Hence,
there is no substantial impact of the linear transformation Aξ in this case. A situation like this arises, for
instance, in reservoir problems, where the cumulative amount of time dependent random inflows enters
the description of the chance constraint. Accumulation of components can be described by a regular
lower triangular matrix A.

In many other applications however (e.g., network optimization with random demands or avoidance of
polyhedral random obstacles in robotics), A has typically more rows than columns (m > s) so that
definitely rank A < m. In this case, the covariance matrix AΣAT becomes necessarily singular and,
hence, Fη is a singular multivariate Gaussian distribution function. In particular Theorem 1.1 does not
apply (and cannot apply because Fη is not differentiable in general). Nevertheless, values of Fη can
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still be calculated efficiently in moderate dimension. One possibility is to employ an algorithm specially
designed for singular Gaussian distribution functions (see Genz and Kwong [6]). A second possibility is
to use Deák’s method for calculating Gaussian probabilities of convex sets which applies of course to
the polyhedron Aξ ≤ z (see [2]). Now the important question arises, whether in the vein of Theorem
1.1 it is again possible to analytically reduce the calculus of gradients of Fη to that of values of Fη and
thus to benefit from the aforementioned algorithmic approaches in order to obtain sufficiently precise
approximations for the gradients with reasonable effort. The answer given in this paper is affirmative, and,
in the main result proved in the following section, we shall present a generalization of Theorem 1.1 to
the singular case (of course under an additional assumption guaranteeing differentiability). Apart from
the just mentioned important algorithmic aspect, our gradient formula has further impact on numerics in
that it allows to control the precision of the gradient by that of function values (and thus promises much
better results than by using finite difference approximations which are prone to noise) and to explicitly
calculate higher order derivatives. These issues are discussed in detail in section 4. The relation with
existing gradient formulae as they were mentioned in the beginning of the introduction is also addressed
in this same section. Finally, section 5 presents an application to network capacity optimization illustrating
the numerical use of the gradient formula.

3. MAIN RESULT

We start by introducing the family of active index sets associated with the polyhedron Ax ≤ z given A
and z as introduced in (3) (with aTi denoting the rows of A):
(5)
I(A, z) := {I ⊆ {1, . . . ,m}|∃x ∈ Rs : aTi x = zi (i ∈ I), aTi x < zi (i ∈ {1, . . . ,m}\I)}.

Definition 3.1. The linear inequality system Ax ≤ z is called nondegenerate if

rank {ai}i∈I = #I ∀I ∈ I(A, z).

In the language of optimization theory, nondegeneracy means that the inequality systemAx ≤ z satisfies
the Linear Independence Constraint Qualification. Observe that, if the linear inequality system Ax ≤ z
is nondegenerate and has a solution at all then the set of solutions has nonempty interior, whence ∅ ∈
I(A, z) (see Corollary 6.1).

The following theorem is a translation of a result by Naiman and Wynn ([12], Th. 2) to our notation and
our setting (see also Th. 3.2. in [9]):

Theorem 3.1. Let z be such that the system Ax ≤ z is nondegenerate. Furthermore, let ξ be an s-
dimensional random vector distributed according to ξ ∼ N (µ,Σ) with some positive definite Σ. Then,
the distribution function associated with η := Aξ satisfies

(6) Fη (z) =
∑

I∈I(A,z)

(−1)#I F−ηI (−zI),

where ηI and zI are subvectors of η and z, respectively, according to the index set I . In (6), the corre-
sponding term for I := ∅ is defined to take value 1. Moreover, for I 6= ∅, the random vectors −ηI have
a regular Gaussian distribution according to

(7) −ηI ∼ N
(
−AIµ,AIΣ(AI)T

)
,

where AI is the submatrix of A defined by selecting rows according to the index set I .

Theorem 3.1 allows one to reduce the calculus of a possibly singular Gaussian distribution function Fη to
the calculus of (possibly many) regular Gaussian distribution functions F−ηI (I ∈ I(A, z)). An important
consequence of the theorem is that it provides us with a tool for calculating the gradient of a singular
Gaussian distribution function (under the nondegeneracy assumption made) because the terms on the
right hand side of (6) do have gradients as regular Gaussian distribution functions (recall Th. 1.1). More
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precisely, we have the following Theorem, where the meaning of superscript index sets is as in Theorem
3.1:

Theorem 3.2. Under the assumptions of Theorem 3.1, Fη is continuously differentiable and it holds that

(8)
∂Fη
∂zj

(z) = −fj (zj)
∑

I∈I(A,z):j∈I

(−1)#I Fη̃(I,j)(−zI\{j}) (j = 1, . . . ,m) .

Here, fj denotes the one-dimensional Gaussian density of the component ηj ∼ N (aTj µ, a
T
j Σaj)

and the η̃ (I, j) are Gaussian random vectors of dimension #I − 1 with distribution η̃ (I, j) ∼
N (µ (I, j) ,Σ (I, j)), where

µ (I, j) := −AI\{j}
(
µ+

zj − aTj µ
aTj Σaj

Σaj

)
(9)

Σ (I, j) := AI\{j}
(

Σ− 1

aTj Σaj
Σaja

T
j Σ

)(
AI\{j}

)T
.(10)

Moreover, the Σ (I, j) are positive definite.

Proof. Fix an arbitrary differentiation index j ∈ {1, . . . ,m}. According to Prop. 3.1 in [9], the nondegen-
eracy assumption on the inequality system Ax ≤ z implies that I(A, z′) = I(A, z) for all z′ close to z.
As a consequence, the index sets I ∈ I(A, z) in (6) do not change under small perturbations of z and,
hence, we are allowed to differentiate Fη (z) in (6) term by term with respect to zj . Doing so first for index
sets I with j /∈ I , we obviously get

∂F−ηI

∂zj
(−zI) = 0.

Therefore, differentiation of (6) yields

(11)
∂Fη
∂zj

(z) =
∑

I∈I(A,z):j∈I

(−1)#I ∂F−ηI

∂zj
(−zI).

Now, for the remaining terms one has j ∈ I and, since by Theorem 3.1 the−ηI have a regular Gaussian
distribution according to (7), we may apply Theorem 1.1 to see that

(12)
∂F−ηI

∂zj
(−zI) = −f−ηj

(−zj)Fη̃(I,j)(−zI\{j}) = −fηj
(zj)Fη̃(I,j)(−zI\{j}),

where η̃ (I, j) ∼ N (µ (I, j) ,Σ (I, j)) for certain mean vectors and covariance matrices to be deter-
mined according to the rules of Theorem 1.1. Combination of (11) and (12) yields (8), hence it remains
to verify (9) and (10). Observe first that the diagonal element of the matrix AIΣ(AI)T corresponding to
index j ∈ I equals aTj Σaj . Note that aTj Σaj 6= 0 because Σ is positive definite and aj 6= 0 (see Corol-
lary 6.1). Moreover, the column of the matrix AIΣ(AI)T corresponding to index j ∈ I equals AIΣaj .
Therefore, applying Theorem 1.1 to the parameters of (7), µ (I, j) results from the vector

−AIµ+
1

aTj Σaj

(
−zj + aTj µ

)
AIΣaj

by deleting the component corresponding to index j. This, of course, yields (9). Similarly, Σ (I, j) results
from the matrix

AIΣ(AI)T − 1

aTj Σaj
AIΣaja

T
j Σ(AI)T = AI

(
Σ− 1

aTj Σaj
Σaja

T
j Σ

)
(AI)T

by deleting the row and column corresponding to index j. This yields (10). That the Σ (I, j) are positive
definite, follows from the corresponding last statement of Theorem 1.1. �
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In principle, Theorem 3.2 already comes close to our intentions: it represents the gradient∇Fη in terms of
values of regular Gaussian distribution functions Fη̃(I,j) which can be efficiently calculated. However, the
practical use of the derived formula is limited because the number of terms in the alternating sum (8) may
become extremely large. Nonetheless, Theorem 3.2 is crucial for proving our main result which provides
a practicable representation of gradients. The following lemma compiles some elementary statements
needed further on.

Lemma 3.1. For the following expressions occuring in (9) and (10),

S(j) := Σ− 1

aTj Σaj
Σaja

T
j Σ, w(j) := µ+

zj − aTj µ
aTj Σaj

Σaj (j = 1, . . . ,m),

one has that:

1 S(j) is symmetric and positive semidefinite.
2 ker S(j) = R {aj}.
3 There exists a factorization S(j) = L(j)L(j)T , where L(j) is of order (s, s− 1) and rank L(j) =
s− 1.

4 aTj L
(j) = 0.

5 aTj w
(j) = zj .

Proof. Symmetry of S(j) is evident. With the Cholesky decomposition Σ = PP T of the positive definite
and symmetric matrix Σ, the Cauchy-Schwarz inequality yields that

vTS(j)v = vTΣv −
(
aTj Σaj

)−1 (
vTΣaj

)2
= ‖Pv‖2 − ‖Paj‖−2 〈Pv, Paj〉2

≥ ‖Pv‖2 − ‖Paj‖−2 ‖Pv‖2 ‖Paj‖2 = 0

for all v ∈ Rs. Hence, S(j) is positive semidefinite. Evidently, aj ∈ ker S(j), whence R {aj} ⊆ ker S(j).
Conversely, v ∈ ker S(j) implies

Σ

(
v −

aTj Σv

aTj Σaj
aj

)
= 0.

Since Σ is regular, one derives that v =
(
aTj Σaj

)−1 (
aTj Σv

)
aj , whence v ∈ R {aj}. Therefore,

ker S(j) = R {aj} and, consequently, rank S(j) = s − 1. Since S(j) is also symmetric and posi-
tive semidefinite, there exist an orthogonal matrix V (j) (of eigenvectors) and a diagonal matrix Λ(j) :=

diag
[
λ

(j)
1 , . . . , λ

(j)
s−1, 0

]
(of eigenvalues) with λ(j)

1 > 0, . . . , λ
(j)
s−1 > 0 and S(j) = V (j)Λ(j)V (j)T =

L(j)L(j)T , where L(j) := V (j)Λ(j)1/2
. Clearly, rank L(j) = s− 1. Finally,

∥∥aTj L(j)
∥∥2

= aTj S
(j)aj = 0

(see (ii)), whence assertion (iv ) holds true. Assertion (v ) is obvious from the definition of w(j). �

Now, we are in a position to prove our main result:

Theorem 3.3. Let z ∈ Rm be such that the system Ax ≤ z is nondegenerate, where A is of order
(m, s). Furthermore, let ξ ∼ N (µ,Σ) with µ ∈ Rs and positive definite Σ of order (s, s). Then, for
j = 1, . . . ,m, one has the formula

∂

∂zj
P (Aξ ≤ z) =

{
0 if {j} /∈ I(A, z)
fj(zj)P

(
A(j)L(j)ξ(j) ≤ z(j) − A(j)w(j)

)
if {j} ∈ I(A, z)

,

where ξ(j) ∼ N (0, Is−1), A(j) results from A by deleting row j, z(j) results from z by deleting com-
ponent j, I(A, z), L(j) and w(j) are defined in (5) and Lemma 3.1, respectively, and fj is the one-
dimensional Gaussian density with mean value aTj µ and variance aTj Σaj . Moreover, the inequality sys-
tem

(13) A(j)L(j)y ≤ z(j) − A(j)w(j)
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occuring in the second case of the formula is nondegenerate.

Proof. Consider first the case {j} /∈ I(A, z). Assume that there exists some x such that Ax ≤ z and
aTj x = zj . Putting

I := {i ∈ {1, . . . ,m}|aTi x = zi},
we see that I ∈ I(A, z) and {j} ⊆ I , whence the contradiction {j} ∈ I(A, z) from Lemma 6.1
which is proved in the appendix. Hence, aTj x < zj for all x with Ax ≤ z. In other words, the inequality
aTj x ≤ zj is redundant for the system Ax ≤ z and this situation is stable under small perturbations of
zj . Hence the solution set of Ax ≤ z is locally constant with respect to variations of zj and we obtain the
(trivial) first part of our derivative formula.

From now on, we assume that {j} ∈ I(A, z) is arbitrarily fixed. To unburden the notation, we assume
without loss of generality that j = m. Now, Proposition 6.1 (with j = m) proved in the appendix yields
the identity

(14) I(m) = {I\{m}|I ∈ I(A, z), m ∈ I} ,

where I(m) is introduced in (27) as the family of active indices of the inequality system (13) (for j = m).
Now, let Î ∈ I(m) be arbitrarily given. Then, (14) yields the existence of some index set I ∈ I(A, z)

such that m ∈ I and Î = I\{m}. From (10) in Theorem 3.2 and (iii) in Lemma 3.1, we infer that the
matrix

AÎL(m)L(m)T
(
AÎ
)T

is positive definite. Consequently, rankAÎL(m) = #Î , which proves that the inequality system (13) is
nondegenerate (for j = m) in the sense of Definition 3.1.

Now, let some Gaussian random vector ξ(m) ∼ N (0, Is−1) be given. The just shown nondegeneracy of
the inequality system (13) for j = m, allows us to put η̂ := A(m)L(m)ξ(m) and to apply Theorem 3.1:

P
(
A(m)L(m)ξ(m) ≤ z(m) − A(m)w(m)

)
= Fη̂

(
z(m) − A(m)w(m)

)
(15)

=
∑
Î∈I(m)

(−1)#Î F−η̂Î

(
−
(
z(m) − A(m)w(m)

)Î)
.(16)

Here, we have taken into account the above mentioned fact that I(m) is the family of active indices of (13)
(for j = m). By definition in the statement of this theorem, z(m)and A(m)w(m) result from the vectors z
and Aw(m) by deleting the respective component m. Moreover, the upper index set Î indicates that only
components with indices from Î have to be retained in the given vector (see statement of Theorem 3.1).
Furthermore, (14) implies that m /∈ Î for Î ∈ I(m). Therefore, we may conclude that(

z(m) − A(m)w(m)
)Î

=
(
z(m)

)Î − (A(m)
)Î
w(m) = zÎ − AÎw(m) ∀Î ∈ I(m).

Similarly,

η̂Î =
(
A(m)L(m)ξ(m)

)Î
= AÎL(m)ξ(m) ∀Î ∈ I(m).

This allows us, upon taking into account (14) again, to continue (16) as

P
(
A(m)L(m)ξ(m) ≤ z(m) − A(m)w(m)

)
=

∑
I∈I(A,z),m∈I

(−1)#(I\{m}) F−η̂I\{m}
(
AI\{m}w(m) − zI\{m}

)
=

∑
I∈I(A,z):m∈I

(−1)#(I\{m}) P
(
−AI\{m}L(m)ξ(m) ≤ AI\{m}w(m) − zI\{m}

)
.(17)
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From ξ(m) ∼ N (0, Is−1), (10) and the definition of S(m) and L(m) in Lemma 3.1, we infer that for any
index set I ∈ I(A, z) with m ∈ I :

−AI\{m}L(m)ξ(m) ∼ N
(

0, AI\{m}L(m)L(m)TAI\{m}
T
)

= N (0,Σ (I,m)).

Consequently, by (9) and the definition of w(m) in Lemma 3.1,

−AI\{m}L(m)ξ(m) − AI\{m}w(m) ∼ N (−AI\{m}w(m),Σ (I,m)) = N (µ (I,m) ,Σ (I,m)),

and, hence, the random vectors η̃ (I,m) from Theorem 3.2 (for j = m) have the same distribution as
the random vectors −AI\{m}L(m)ξ(m) − AI\{m}w(m). Then, (17) may be continued as

P
(
A(m)L(m)ξ(m) ≤ z(m) − A(m)w(m)

)
=

∑
I∈I(A,z):m∈I

(−1)#(I\{m}) P
(
η̃ (I,m) ≤ −zI\{m}

)
= −

∑
I∈I(A,z):m∈I

(−1)#I Fη̃(I,m)

(
−zI\{m}

)
.

Now, Theorem 3.2 (for j = m and with η := Aξ) yields that

fm(zm)P
(
A(m)L(m)ξ(m) ≤ z(m) − A(m)w(m)

)
=
∂Fη
∂zm

(z) =
∂

∂zm
P (Aξ ≤ z) .

This, however, is the asserted formula for j = m. �

4. DISCUSSION OF THE RESULT

4.1. Reduction of gradients to function values. The importance of Theorem 3.3 relies on the fact
that it reduces the computation of gradients to Gaussian probabilities of polyhedra to the computation of
objects of the same type, namely Gaussian probabilities of polyhedra (in different dimension, with different
parameters). Hence, one may employ, for instance, Deák’s method [2] in order to calculate both objects
(function values and gradients) by means of the same efficient code. But there also exists an alternative
numerical approach to dealing with the chance constraint (3) offered by the same theorem: according
to Section 2, the value of P (Aξ ≤ z) can be interpreted as the value Fη(z) of the possibly singular
Gaussian distribution function of the random vector η := Aξ. As already mentioned before, singular
Gaussian distribution functions can be calculated by means of an algorithm described in [6]. Now, when
it comes to gradients ∇Fη(z), one would be interested of course in a similar representation in terms
of objects of the same nature, namely singular Gaussian distribution functions (in different dimension,
with different parameters). Such conclusion can be indeed drawn from Theorem 3.3 as shown in the next
section.

4.2. A gradient formula for singular Gaussian distribution functions. The following Theorem is a
direct generalization of the classical Theorem 1.1 by substantially weakening the assumption of positive
definiteness for the covariance matrix made there, in other words it generalizes the gradient formula for
regular Gaussian distribution functions to singular ones.

Theorem 4.1. Let ξ ∼ N (µ,Σ) with some (possibly singular) covariance matrix Σ = (σij) of order
(s, s). Denote by Σ = AAT any factorization of the positive semidefinite matrix Σ (see, e.g., (iii) in
Lemma 3.1). Then, the distribution function Fξ is continuously differentiable at any z ∈ Rs for which the
inequality system Ax ≤ z − µ is nondegenerate and it holds that

∂Fξ
∂zj

(z) =

{
0 if {j} /∈ I(A, z − µ)
fξj (zj) · Fξ̃(zj) (z1, . . . , zj−1, zj+1 . . . , zs) (j = 1, . . . ,m) if {j} ∈ I(A, z − µ)

.

Here, fξj denotes the one-dimensional Gaussian density of the component ξj , ξ̃(zj) is an (s-1)-dimen-

sional (possibly singular) Gaussian random vector distributed according to ξ̃(zj) ∼ N (µ̂, Σ̂), µ̂ results
from the vector µ+σ−1

jj (zj − µj)σj by deleting component j and Σ̂ results from the matrix Σ−σ−1
jj σjσ

T
j
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by deleting row j and column j, where σj refers to column j of Σ. Moreover, I(A, z − µ) refers to the
family of active indices for the inequality system Ax ≤ z − µ (see (5)).

Proof. Let η be a t-dimensional (with t being the number of columns of the matrix A) Gaussian ran-
dom vector distributed according to η ∼ N (0, It). Then, the transformed random vector Aη + µ ∼
N (µ,AItA

T ) = N (µ,Σ) has the same distribution as ξ. Therefore,

∂Fξ
∂zj

(z) =
∂

∂zj
P(ξ ≤ z) =

∂

∂zj
P(Aη ≤ z − µ).

Theorem 3.3 (applied to η rather than ξ and to right-hand side z − µ rather than just z) then yields that

(18)
∂Fξ
∂zj

(z) =

{
0 if {j} /∈ I(A, z − µ)
fj(zj − µj)P

(
A(j)L(j)η(j) ≤ z(j) − µ(j) − A(j)w(j)

)
if {j} ∈ I(A, z − µ)

,

where η(j) ∼ N (0, It−1), A(j) results from A by deleting row j, z(j) and µ(j) result from z and µ,
respectively, by deleting component j, L(j) and w(j) are defined in (5) and Lemma 3.1, respectively,
(but applied to the distribution parameters of η rather than ξ) and fj is the one-dimensional Gaussian
density with mean value 0 and variance aTj Itaj = ‖aj‖2. Since the first case of this formula is already
compatible with the corresponding case in the asserted formula, we may continue with the second case
where {j} ∈ I(A, z − µ). First observe that, by assumption, component j of ξ is distributed according
to ξj ∼ N (µj, σjj). Hence, ξj − µj ∼ N (0, σjj) = N (0, ‖aj‖2) by Σ = AAT . It follows that the
density fj coincides with the density fξj−µj

and we obtain that

fξj (zj) = fξj−µj
(zj − µj) = fj(zj − µj).

Next, introduce the random vector

(19) ξ̃(zj) := A(j)L(j)η(j) + µ(j) + A(j)w(j).

Then, the second case of (18) may be written as

(20)
∂Fξ
∂zj

(z) = fξj (zj)Fξ̃(zj)(z
(j)) = fξj (zj)Fξ̃(zj)(z1, . . . , zj−1, zj+1 . . . , zs),

where Fξ̃(zj) refers to the distribution function of ξ̃(zj). Since η(j) ∼ N (0, It−1), we derive from (19)
that

ξ̃(zj) ∼ N (µ(j) + A(j)w(j), A(j)L(j)L(j)TA(j)T ).

In view of (20), the Theorem will be proved, once we have checked that the above parameters of ξ̃(zj)
coincide with those asserted in the statement of the theorem, i.e., we have to show that

µ̂ = µ(j) + A(j)w(j)(21)

Σ̂ = A(j)L(j)L(j)TA(j)T(22)

As far as (22) is concerned, recall that L(j)L(j)T = S(j) by definition of L(j) in Lemma 3.1 (iii), where
S(j) calculates according to its definition in Lemma 3.1 but with the covariance matrix of η (which is It).
Accordingly,

S(j) = It − ‖aj‖−2 aja
T
j .

Recalling that σjj = ‖aj‖2, we arrive at

A(j)L(j)L(j)TA(j)T = A(j)A(j)T − σ−1
jj A

(j)aja
T
j A

(j)T .

SinceA(j) results fromA by deleting row j, it follows that the matrix A(j)L(j)L(j)TA(j)T results from the
matrix

AAT − σ−1
jj Aaja

T
j A

T = Σ− σ−1
jj σjσ

T
j
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by deleting row j and column j. This proves (22). Addressing now (21), we calculate first w(j) from
its definition in Lemma 3.1 but with the mean vector and covariance matrix of η (which are 0 and It,
respectively) and with the argument zj − µj rather than zj (see remark before (18)). Accordingly,

w(j) = ‖aj‖−2 (zj − µj)aj.

It follows from the definition of µ(j) and A(j) that µ(j) + A(j)w(j) results from the vector

µ+ Aw(j) = µ+ σ−1
jj (zj − µj)σj

by deleting component j. This proves (21). �

4.3. Control of precision for gradients. Usually, the absolute error in calculating probabilities P(Aξ ≤
z) can be controlled in the application of numerical methods. Let us assume that the discrepancy between
theoretical and computed values is bounded by some ε > 0. Then, according to Theorem 3.3, the
absolute error in the computation of partial derivatives can be estimated by∣∣∣∣ ∂∂zjP (Aξ ≤ z)−

(
∂

∂zj
P (Aξ ≤ z)

)comp∣∣∣∣
= fj(zj)

∣∣∣P(Â(j)ξ(j) ≤ ẑ(j)
)
−
(
P
(
Â(j)ξ(j) ≤ ẑ(j)

))comp∣∣∣ ≤ fj(zj)ε,(23)

where Â(j) = A(j)L(j) and ẑ(j) = z(j) − A(j)w(j). Hence, the absolute error in the computation of
partial derivatives can be controlled by that of function values. This information, however, is of limited
use because already the nominal values of partial derivatives are typically small. Moreover, for numerical
optimization (e.g., cutting plane method), the direction of a gradient is more important than its norm.
Therefore, one should be more interested in controlling the precision of normed gradients. Using the
maximum norm and applying first the triangle inequality and then (23), one gets that∥∥∥∥ ∇P (Aξ ≤ z)

‖∇P (Aξ ≤ z)‖∞
− (∇P (Aξ ≤ z))comp

‖(∇P (Aξ ≤ z))comp‖∞

∥∥∥∥
∞
≤ 2
‖∇P (Aξ ≤ z)− (∇P (Aξ ≤ z))comp‖∞

‖(∇P (Aξ ≤ z))comp‖∞

= 2
max
j

∣∣∣ ∂∂zj
P (Aξ ≤ z)−

(
∂
∂zj

P (Aξ ≤ z)
)comp∣∣∣

‖(∇P (Aξ ≤ z))comp‖∞
≤ 2ε

max
j
fj(zj)

‖(∇P (Aξ ≤ z))comp‖∞
.

Since all quantities on the right-hand side are available at any given z, it is possible in this way to estimate
the precision of the normed computed gradient from the chosen precision of the absolute error for function
values without knowing explicitly the theoretical gradient∇P (Aξ ≤ z) at z.

4.4. Higher order derivatives. Another important feature of Theorem 3.3 is its inductive nature: if the
original inequality system Ax ≤ z happens to be nondegenerate, then so does the reduced inequality
system Ây ≤ ẑ occuring in the derivative formula of Theorem 3.3. This means that the reduced inequality
system fulfills the assumptions of the same Theorem again, so its consecutive application allows one
to calculate derivatives of any order. In other words, at such arguments z (satisfying nondegeneracy),
the given probability function is of class C∞. In particular, as a consequence of Theorem 4.1, singular
Gaussian distribution functions are of class C∞ at any points z satisfying the nondegeneracy condition
of that theorem. Though an explicit formula for second order derivatives could be given on the basis of
Theorem 3.3, it seems to be more elegant to recursively apply the result in a numerical context. We do
not have any experience so far, to judge whether or not the effort to calculate second order derivatives
would pay in the context of solving a chance constrained optimization problem of the given type.
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4.5. A numerical solution approach for optimization problems with chance constraint (3). Let us
consider the following optimization problem:

(24) min{cT z|P (Aξ ≤ z) ≥ p},
where z ∈ Rm is a decision vector, c ∈ Rm is a cost vector, A denotes a matrix of order (m, s),
p ∈ [0, 1] is a probability level and ξ is an s- dimensional Gaussian random vector distributed according
to ξ ∼ N (µ,Σ) with Σ positive definite. The first important observation concerning the solution of (24)
is that the feasible set defined by the chance constraint happens to be convex. Indeed this is an imme-
diate consequence of the theory of log-concave measures by Prékopa [15]: the Gaussian distribution is
log-concave and so is any linear transformation of it. This implies the mapping z 7→ log P (Aξ ≤ z) to
be concave which in turn shows that the feasible set defined by the equivalent logarithmized chance con-
straint is convex. As a consequence, (24) may be solved by classical methods of convex optimization, for
instance by a cutting plane method. This latter approach requires the following components: determination
of a Slater point, evaluation of values and gradients (for defining cuts) of the function z 7→ P (Aξ ≤ z),
solution of a linear program defined by the polyhedral outer approximation of the feasible set. Existence
of a Slater point is guaranteed if p < 1 (which is typically the case) and such point can be easily deter-
mined by driving the components of z uniformly to infinity and thus pushing the probability of P (Aξ ≤ z)
towards one. As already noted before, values of the given probability function can be approximated by
existing efficient codes (e.g., [2],[7]), and thanks to Theorem 3.3 (or Theorem 4.1, respectively), the same
codes can be employed for computing gradients. There is one additional effort needed at each iteration,
however, in order to decide on the case distinction {j} ∈ I(A, z) in the gradient formulae. This problem
can be recasted as a linear program at feasible points z. More precisely, one has the following:

Proposition 4.1. Let p > 0 and z such that the system Ax ≤ z is nondegenerate and that it satisfies
the chance constraint P (Aξ ≤ z) ≥ p. Then the linear program

(P) min{uj | Ax+ u = z, u ≥ 0}
in variables x, u is solvable for all j = 1, . . . ,m and it holds that {j} ∈ I(A, z) if and only if the optimal
value of (P) equals zero.

Proof. Since p > 0 and z satisfies the chance constraint, the system Ax ≤ z has a solution. Therefore,
the feasible set of (P) is nonempty. On the other hand, the objective of (P) is bounded below by zero
on this feasible set. Consequently, (P) is solvable. Let (x̄, ū) be an optimal solution of (P). If the optimal
value of (P) happens to be zero, i.e., ūj = 0, then Ax̄ ≤ z and aTj x = zj . Define

I := {i ∈ {1, . . . ,m} | aTi x̄ = zi}
Then, {j} ⊂ I and from the definition of I(A, z) one gets that I ∈ I(A, z). Now, Lemma 6.1 guaran-
tees that {j} ∈ I(A, z). Conversely, if {j} ∈ I(A, z), then, by definition, there exists a point x such
that aTj x = zj and aTi x < zi for i 6= j. With u := z −Ax, we see that (x, u) is feasible for (P) and that
the objective in that point equals zero. It follows that the optimal value of (P) equals zero. �

4.6. The case of rectangle probabilities. Many chance constrained optimization problems are of two-
sided type, where the chance constraint is given by

δ(x) := P(a(x) ≤ ξ ≤ b(x)) ≥ p

with certain mappings a and b acting on the decision vector x (see, e.g., the hydro reservoir problem
considered in [1]). With

γ(z1, z2) := P(ξ ≤ z1,−ξ ≤ z2)

one may represent the gradient of δ as

∇δ(x) = ∇z1γ(b(x), a(x)) ◦Db(x) +∇z2γ(b(x), a(x)) ◦Da(x).

As a and b are usually given by analytical formulae, the interesting part here is represented by the gradient
of γ. Clearly, γ is a special case of the function β in (4) with A = (I,−I)T . Hence, one could apply
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Theorem 3.3 in order to derive a gradient formula for Gaussian probabilities of rectangles boiling down to
Gaussian probabilities of rectangles again (in one dimension less and with new distribution parameters).
Due to the simple structure of rectangles there is no need, however, to rely on Theorem 3.3, because the
mentioned formula can be derived in a direct and elementary manner then (see [1, Theorem 1]).

4.7. Truncated Gaussian distribution. The Gaussian distribution may not be the right characterization
of random vectors taking only positive values by their physical nature. One possible alternative then is to
model the random vector by means of a truncated Gaussian distribution. More precisely, let [a, b] ⊂ Rs

be a nondegenerate generalized rectangle, i.e., a < b componentwise and components equal to±∞ are
allowed. Then, the random vector ξ is said to have a truncated Gaussian distribution ξ ∼ T N (µ,Σ, a, b)
if its density is given by

fξ(z) :=

{
fη(z)/P(η ∈ [a, b]) if z ∈ [a, b]

0 else
,

where η ∼ N (µ,Σ) with positive definite Σ and with density fη. Then,

P(Aξ ≤ z) = P(Aξ ≤ z, ξ ∈ [a, b]) = P(Aη ≤ z, η ∈ [a, b])/P(η ∈ [a, b])

= [P(η ∈ [a, b])]−1 · P

 A
I
−I

 η ≤

 z
b
−a


Now, the arisen inequality system is basically of the form (4) because η has a regular Gaussian distribu-
tion. The fact that part of the right-hand side of this inequality system is fixed (in contrast to (4)) does not
matter if partial derivatives with respect to z shall be computed because then all remaining components
of z are fixed anyway. Consequently, Theorem 3.3 can also be employed to derive gradients of chance
constraints (3) in case of truncated Gaussian random vectors by leading this issue back to the case of a
standard Gaussian distribution.

4.8. Relation with existing general derivative formulae. At this point, one may ask how the gradient
formulae of Theorems 3.3 and 4.1 relate to the general derivative formulae mentioned in the introduction.
Specializing, for instance, Theorem 1 in [14] or Theorem 2.4 in [10] to the setting which is of interest here,
we have the following result:

Theorem 4.2. Let η be a random vector with continuous density g. Assume that, for a given z, the linear
system Ax ≤ z is nondegenerate (see Def. 3.1) and has a compact solution set. Then,

∂

∂zj
P (Aη ≤ z) =

1

‖aj‖

∫
Ax≤z,aT

j x=zj

g(x)doj(x),

where doj(x) refers to the surface measure on the hyperplane defined by aTj x = zj .

Evidently, this formula is not explicit yet because it requires the computation of a surface integral depend-
ing on the distribution of η. If η is Gaussian as in our case, it is likely that this computation can be carried
out in a way that it leads to a result as in Theorem 3.3. Note, however, that the formula is justified only
under the assumption that the polyhedron Ax ≤ z is compact which is not the case in many applica-
tions. This assumption is already violated if A = I , i.e., when P (Aη ≤ z) is the distribution function of
η. Indeed the Theorem is false, in general, when dropping the compactness assumption because distri-
bution functions need not be differentiable even if the underlying density g is continuous (as required in
the Theorem) or even if g is continuous and bounded along with all its marginal densities. The reason
that we are able to prove the gradient formula in Theorem 3.3 without compactness is that we exploit
the Gaussian character of the distribution: the compactness issue is already part of the classical regular
derivative formula in Theorem 1.1 which is the basis of our result. Note that the main tool for deriving our
gradient formula is the alternating representation of singular Gaussian distribution functions in terms of
regular ones in Theorem 3.1, which does not rely on any compactness assumption.
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5. AN EXAMPLE FROM NETWORK CAPACITY OPTIMIZATION UNDER RANDOM DEMANDS

In order to illustrate a possible application of the gradient formula obtained in Theorem 3.3, we consider a
problem of network capacity optimization under random demand as introduced in [15], p.452. Assume we
are given an electricity network with a set of node and arcs and that at each node there exists a random
demand of electricity following a joint Gaussian distribution (according to Section 4.7, nonnegativity can
be easily taken care of by truncation). The demand of electricity may be covered by production facilities
at the nodes as well as by transmission of electricity along the arcs. As in [15], we will assume that the
power flow satisfies Kirchhoff’s first law only, i.e., it is handled as a linear transportation flow. We will also
assume that the network topology is given (of course, in general, this is just a subproblem of a general
network design problem). In a planning phase, one may be concerned with installing production and
transmission capacities at minimum cost such that future random demand patterns can be covered at a
specified probability by directing a suitable flow through the network satisfying the capacity constraints.
The question, whether for a specific realization of the demand vector and for given vectors of production
and transmission capacities there exists such a feasible flow can be answered by the Gale-Hoffman
inequalities stating that for each subset of nodes the total net demand (sum of demands minus production
capacities in the nodes of this subset) should be not greater than the total transmission capacity of arcs
joining nodes of the considered subset with nodes of its complement. In formal terms, if ξi and xi denote
the demand and production capacity at node i and yj refers to the transmission capacity of arc j then,
the following linear inequality system is equivalent with the existence of a feasible node:

(25)
∑
i∈S

(ξi − xi) ≤
∑

j∈A(S,S̄)

yj ∀S,

where S runs through all subsets of nodes andA(S, S̄) is the set of arcs joining nodes from S with nodes
from S̄. We will write the system of linear inequalities in the more compact form ofAξ ≤ Ax+By, where
ξ, x, y refer to the vectors composed of ξi, xi, yj and the matrices A and B depend on the concrete
network topology. The optimization problem can now be formulated as

min
{
cTx+ dTy|P (Aξ ≤ Ax+By) ≥ p

}
.

Here, c, d are cost vectors for installing production and transmission capacities, respectively, and the
chance constraint expresses the fact that in a later operational phase the power demand can be met
at probability at least p. Of course, additional explicit constraints (e.g., simple bounds) on the decision
variables x, y can be also included. Rewriting the optimization problem in the equivalent form

(26) min
{
cTx+ dTy|P (Aξ ≤ z) ≥ p, z = Ax+By

}
,

we see that the chance constraint is of type (3). According to (25), the number of inequalities equals
2s if s equals the number of nodes in the network (because the set S in (25) runs through all subsets of
{1, . . . , s}). Hence, formally, the matrixA occuring in (26) is of order (2s, s), so that the transformed ran-
dom vector Aξ has a highly singular Gaussian distribution. Fortunately, it turns out that many inequalities
in the huge system Aξ ≤ z are redundant (which can be checked by linear programming, for instance).
Sometimes, exploiting additional information on possible bounds for the demand, one may be lucky to
further reduce the inequality system until the number of finally remaining inequalities is actually smaller
than the number of nodes. Then, one is usually back to the regular Gaussian case for which the classical
gradient formula from Theorem 1.1 can be employed. Such instance is described in [15] (Section 14.4).
However, there is no guarantee to arrive at such comfortable situation, in particular not, if information on
efficient bounds for demands is missing. Then, even after deleting redundant inequalities, their number
may still substantially exceed the number of nodes (i.e., the dimension of the random vector). As a conse-
quence, Theorem 1.1 is no longer applicable but one may exploit Theorems 3.3 and 4.1 then and embed
it in the numerical solution scheme sketched in Section 4.5.

For the purpose of illustration we consider the network depicted in Figure 1 a) consisting of 13 nodes and
13 arcs. The demands at the nodes are assumed to be Gaussian with expected values proportional to
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aL bL cL

FIGURE 1. Illustration of the solution for a probabilistic network capacity problem. For
details see text.

the areas of the gray shaded discs. The covariance matrix was set up as follows: the relative standard
deviation (w.r.t. mean values) at each node was chosen to be 20% and between different nodes a com-
mon correlation coefficient of 0.3 was assumed. Constant cost coefficients cj were considered for the
installation of production capacities whereas cost coefficients dj for the installation of transmission ca-
pacities were assumed to be proportional to the arc lengths. A probability level of p = 0.99 was required
for the chance constraint. Given the number of s = 13 nodes, one ends up at a number of 2s = 8192
Gale-Hoffman inequalities according to (25). After a redundancy check, these could be reduced to 439
inequalities, still substantially exceeding the dimension s of the random vector. According to our previous
remarks, the chance constraint in (26) can be either understood as defined by the probability of a rec-
tangle with 439 faces with respect to a 13 dimensional regular Gaussian random vector or as defined by
the value of the distribution function of a 439-dimensional (highly singular) Gaussian random vector. The
solution of of the problem is shown in Figure 1 a). Optimal transmission capacities yj are represented by
proportional thicknesses of the joining line segments. Optimal production capacities are represented as
black discs at the nodes with proportional areas such that the black disc remains in the background if the
corresponding capacity exceeds the expected demand (all but one node) and comes into the foreground
otherwise (one node). In order to check a posteriori the validity of the obtained solution, we simulated 100
different demand patterns according to the Gaussian distribution specified above. One of these scenarios
is illustrated as an example in Figure 1 b), where expected values are gray shaded as in Figure 1 a) and
the simulated demand vector is represented by black discs with the same background-foreground rule as
before. According to the calculated optimal solution, we should expect that 99 out of 100 scenarios are
feasible in the sense of the chance constraint (of course this would only hold true on the average when
repeating a simulation of 100 scenarios; in our concrete case, all 100 scenarios turned out to be feasible).
Note that feasibility here means that the demands at all nodes for the given scenario can be satisfied by a
flow through the network which respects the capacity limits obtained for transmission and production. For
the concrete scenario of Figure 1 b) a possible (directed) flow is illustrated in Figure 1 c). The concrete
directed transmission is represented by gray arrows of corresponding thickness (all of which fit into the
thickness of the capacity line). The needed operational production is represented by gray discs (all of
which fit into the black capacity discs).
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6. APPENDIX

The following technical proposition is needed in the proof of Theorem 3.3. First, for each j ∈ {1, . . . ,m},
we associate with the inequality system (13) the family of active indices I(j) in the same spirit as I(A, z)
was associated with the originally given inequality system Ax ≤ z via (5). Taking into account the
quantities defined in the statement of Theorem 3.3, this yields:

I(j) = {I ⊆ {1, . . . ,m}\{j}|∃y ∈ Rs−1 : aTi L
(j)y = zi − aTi w(j) (i ∈ I)

aTi L
(j)y < zi − aTi w(j) (i ∈ {1, . . . ,m}\(I ∪ {j})}.(27)

Proposition 6.1. Let z be such that the system Ax ≤ z is nondegenerate and assume in addition that
{j} ∈ I(A, z). Then, for arbitrarily fixed index j ∈ {1, . . . ,m}, the following identity holds true:

{I\{j}|I ∈ I(A, z), j ∈ I} = I(j).

Proof. Let j be arbitrarily fixed. To prove the inclusion ’⊆’, let I ∈ I(A, z) with j ∈ I be arbitrary. We
have to show that I\{j} ∈ I(j). By definition of I(A, z), there exists some x̄ such that

(28) aTi x̄ = zi (i ∈ I), aTi x̄ < zi (i ∈ {1, . . . ,m}\I).

Referring to Theorem 3.2 and to Lemma 3.1, Σ (I, j) = AI\{j}S(j)
(
AI\{j}

)T
is seen to be positive

definite, hence, it follows from S(j) = L(j)L(j)T that AI\{j}L(j) is a matrix of order (#I − 1, s− 1)
whose rows are linearly independent. Recall that #I ≤ s as a consequence of the assumed nondegen-
eracy of the system Ax ≤ z. Therefore, there exists a matrix B of order (s−#I, s− 1) such that the
completion (

AI\{j}L(j)

B

)
is of order (s− 1, s− 1) and invertible. Moreover, since rank L(j) = s − 1 by assertion (iii) of Lemma

3.1, L(j)TL(j) is of order (s− 1, s− 1) and invertible too. Therefore, the matrix CL(j) with

C :=

(
AI\{j}

B
(
L(j)TL(j)

)−1

L(j)T

)
is invertible. Now, with w(j) from Lemma 3.1, define

(29) ȳ :=
(
CL(j)

)−1
C
(
x̄− w(j)

)
.

Fix an arbitrary k ∈ {1, . . . ,m} and put

u :=
((
CL(j)

)−1
)T

L(j)Tak.

Then, L(j)TCTu = L(j)Tak and it follows from assertion (iv ) of Lemma 3.1 that

CTu− ak = λaj

for some λ ∈ R. Therefore, (29) entails that

aTkL
(j)ȳ = uTC

(
x̄− w(j)

)
= (ak + λaj)

T (x̄− w(j)
)
.

Now, since j ∈ I , the first relation of (28) shows that aTj x̄ = zj . Exploiting also assertion (v ) of Lemma
3.1, we may continue as

aTkL
(j)ȳ = aTk

(
x̄− w(j)

)
.

Since k ∈ {1, . . . ,m} was arbitrary, (28) yields that

aTkL
(j)ȳ = zk − aTkw(j) (k ∈ I), aTkL

(j)ȳ < zk − aTkw(j) (k ∈ {1, . . . ,m}\I).

Now, the asserted relation I\{j} ∈ I(j) follows from (27) upon recalling that j ∈ I .
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Conversely, let Î ∈ I(j) be arbitrarily given. By definition, Î ⊆ {1, . . . ,m}\{j} and there exists some
y ∈ Rs−1 such that

aTi L
(j)y = zi − aTi w(j) (i ∈ Î), aTi L

(j)y < zi − aTi w(j) (i ∈ {1, . . . ,m}\(Î ∪ {j}).
Putting x̄ := L(j)y + w(j), this yields that

(30) aTi x̄ = zi

(
i ∈ Î

)
, aTi x̄ < zi

(
i ∈ {1, . . . ,m}\(Î ∪ {j})

)
.

Furthermore, from assertions (iv ) and (v ) of Lemma 3.1, it follows that

(31) aTj x̄ = aTj
(
L(j)y + w(j)

)
= zj.

By definition (5) of I(A, z), (30) and (31) provide that I := Î ∪ {j} ∈ I(A, z). Since j /∈ Î , it follows
that Î = I \{j}. Consequently, Î belongs to the set

{I\{j}|I ∈ I(A, z), j ∈ I}
as was to be shown. �

Lemma 6.1. Let z ∈ Rm be such that the systemAx ≤ z is nondegenerate. Then for every I ∈ I(A, z)
and every J ⊆ I one has that J ∈ I(A, z).

Proof. Let I ∈ I(A, z) and J ⊆ I be arbitrary. By definition, there is some x ∈ Rs such that

aTi x = zi (i ∈ I), aTi x < zi (i ∈ {1, . . . ,m}\I).

By the nondegeneracy assumption, rank {ai}i∈I = #I . Therefore, there exists a solution h̄ to the linear
equations

aTi h = 0 (i ∈ J), aTi h = −1 (i ∈ I\J).

Then, for x̄ := x+ th̄ with t > 0 small enough, one has that

aTi x̄ = zi (i ∈ J), aTi x̄ < zi (i ∈ {1, . . . ,m}\J).

This entails J ∈ I(A, z). �

Corollary 6.1. Under the assumptions of Lemma 6.1, if Ax ≤ z has a solution at all, then ∅ ∈ I(A, z)
and ak 6= 0 for all k with k ∈ I for some I ∈ I(A, z).

Proof. Let x̄ be a solution of Ax ≤ z and put

I := {i ∈ {1, . . . ,m}|aTi x̄ = zi}.
Then, I ∈ I(A, z), whence ∅ ∈ I(A, z) by Lemma 6.1. Now, let k ∈ I for some I ∈ I(A, z).
Then, the same argument shows that {k} ∈ I(A, z), whence rank {ak} = 1 by the nondegeneracy
assumption. In other words, ak 6= 0. �
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