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Abstract

We consider a singularly perturbed parabolic periodic boundary value problem for a
reaction-advection-diffusion equation. We construct the interior layer type formal asymp-
totics and propose a modified procedure to get asymptotic lower and upper solutions. By
using sufficiently precise lower and upper solutions, we prove the existence of a periodic
solution with an interior layer and estimate the accuracy of its asymptotics. Moreover, we
are able to establish the asymptotic stability of this solution with interior layer.

1 Statement of the problem. Construction of formal asymp-
totics

We consider the singularly perturbed periodic boundary value problem

Nε(u) := ε

(
∂2u

∂x2
− ∂u

∂t

)
− A(u, x, t)

∂u

∂x
−B(u, x, t) = 0

for (x, t) ∈ D := {(x, t) ∈ R2 : −1 < x < 1, t ∈ R},
u(−1, t, ε) = u(−)(t), u(1, t, ε) = u(+)(t) for t ∈ R,
u(x, t, ε) = u(x, t+ T, ε) for t ∈ R, −1 ≤ x ≤ 1

(1.1)

for ε ∈ Iε0 := {0 < ε ≤ ε0}, 0 < ε0 � 1. The functions A, B, u(−) and u(+) are sufficiently
smooth and T -periodic in t.

Our goal is to establish the existence of a T -periodic solution of problem (1.1) with an interior
layer with respect to x, and to determine the stability of this solution. For this purpose we con-
struct sufficiently precise asymptotic lower and upper solutions and apply the results from [2]
where we developed an approach to investigate the asymptotic stability of periodic solutions
to singularly perturbed reaction-advection-diffusion equations by using the theorem of Krein-
Rutman. The construction of lower and upper solutions is based on the construction of a formal
asymptotic approximation of the solution to (1.1) and develops further the approach used in the
papers [3, 4, 7] .

1.1 Assumptions

We consider problem (1.1) under the following assumptions

(A0). A, B, u(−) and u(+) are sufficiently smooth and T -periodic in t.

1



If we put ε = 0 in equation (1.1) we get the so-called degenerate equation

A(u, x, t)
∂u

∂x
+B(u, x, t) = 0, (1.2)

where t has to be considered as a parameter. Equation (1.2) is a first order ordinary differential
equation and will be studied with one of the following initial conditions from problem (1.1)

u(−1, t) = u(−)(t) for t ∈ R, (1.3)

u(1, t) = u(+)(t) for t ∈ R. (1.4)

Concerning these initial value problems we assume

(A1). The problems (1.2),(1.3) and (1.2),(1.4) have the solutions u = ϕ(−)(x, t) and u =
ϕ(+)(x, t), respectively, which are defined for (x, t) ∈ D, are T -periodic in t and satisfy

ϕ(−)(x, t) < ϕ(+)(x, t) for (x, t) ∈ D,

A(ϕ(+)(x, t), x, t) < 0, A(ϕ(−)(x, t), x, t) > 0 for (x, t) ∈ D.

To formulate the next assumptions we introduce the function I(x, t) by

I(x, t) :=

∫ ϕ(+)(x,t)

ϕ(−)(x,t)

A(u, x, t) du

and suppose

(A2). The equation
I(x, t) = 0 (1.5)

has a smooth solution x = x0(t) which is T -periodic and obeys the conditions

−1 < x0(t) < 1 for t ∈ R,∫ s

ϕ(−)(x0(t),t)

A(u, x0(t), t) du > 0 for any s ∈
(
ϕ(−)(x0(t), t), ϕ

(+)(x0(t), t)
)

and for t ∈ R.

(A3). The root x0(t) of equation (1.5) satisfies the condition

∂I

∂x
(x0(t), t) < 0 for t ∈ R,

that is, x0(t) is a simple root for all t ∈ R.

Remark 1.1 Our goal is for sufficiently small ε to establish a solution to problem (1.1) with
an interior layer near x0(t) that stays near ϕ(−)(x, t) for x < x0(t) and near ϕ(+)(x, t) for
x > x0(t).

Our main result is the following theorem.
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Theorem 1.1 Let the assumptions (A0)–(A3) be satisfied. Then, for sufficiently small ε, there
exists a solution u(x, t, ε) of problem (1.1) such that for any small but fixed δ we have the limit
relation

lim
ε→0

u(x, t, ε) =


ϕ(−)(x, t) for x ∈ [0, x0(t)− δ], t ∈ R,

ϕ(+)(x, t) for x ∈ [x0(t) + δ, 1], t ∈ R.

We get a more precise description of the solution with an interior layer in Section 3.

1.2 Construction of a formal asymptotic solution

In this section we describe the construction of a formal asymptotic solution of the periodic bound-
ary value problem (1.1) with an interior layer near x0(t), where x0(t) is defined in assumption
(A2). Later on we will prove the existence of a solution to (1.1) near this formal asymptotic
approximation.
To characterize the location x∗(t, ε) of the interior layer of the formal asymptotic solution in the
(x, t)-plane we make the ansatz

x∗(t, ε) = x0(t) + ε x1(t) + ....., (1.6)

where xk(t), k = 1, 2, ..., are T -periodic functions to be determined. By this way we decom-
pose the periodic boundary value problem (1.1) with an interior layer near x∗(t, ε) into two
boundary value problems with boundary layers near x = x∗(t, ε).
For the following we introduce the notation

ξ :=
x− x∗(t, ε)

ε
,

D(−)
:= {(x, t) ∈ R2 : −1 ≤ x ≤ x∗(t, ε), t ∈ R},

D(+)
:= {(x, t) ∈ R2 : x∗(t, ε) ≤ x ≤ 1, t ∈ R}.

First we consider for small ε in D(−)
the boundary value problem

ε

(
∂2u

∂x2
− ∂u

∂t

)
− A(u, x, t)

∂u

∂x
−B(u, x, t) = 0 for (x, t) ∈ D(−),

u(−1, t, ε) = u(−)(t), u(x∗(t, ε), t, ε) = ϕ(x∗(t, ε), t) for t ∈ R,

u(x, t, ε) = u(x, t+ T, ε) for (x, t) ∈ D(−)
,

(1.7)

where ϕ is defined by

ϕ(x, t) :=
1

2

(
ϕ(−)(x, t) + ϕ(+)(x, t)

)
,

the functions ϕ(−) and ϕ(+) are introduced in assumption (A1).
We look for a formal asymptotic solution U (−)(x, t, ε) of this problem in the form

U (−)(x, t, ε) = U
(−)

(x, t, ε) +Q(−)(ξ, t, ε) =
∞∑
i=0

εi
(
U

(−)

i (x, t) +Q
(−)
i (ξ, t)

)
, (1.8)
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where U
(−)

and Q(−) denote the regular and the boundary layer parts, respectively, of the

formal asymptotic solution U (−) in the region D(−)
.

Analogously, we consider in D(+)
the boundary value problem

ε

(
∂2u

∂x2
− ∂u

∂t

)
− A(u, x, t)

∂u

∂x
−B(u, x, t) = 0 for (x, t) ∈ D(+)

,

u(x∗(t, ε), t, ε) = ϕ(x∗(t, ε), t), u(1, t, ε) = u(+)(t) for t ∈ R,

u(x, t, ε) = u(x, t+ T, ε) for (x, t) ∈ D(+)

(1.9)

and a formal asymptotic solution U (+)(x, t, ε)

U (+)(x, t, ε) = U
(+)

(x, t, ε) +Q(+)(ξ, t, ε) =
∞∑
i=0

εi
(
U

(+)

i (x, t) +Q
(+)
i (ξ, t)

)
, (1.10)

where U
(+)

and Q(+) denote the regular and the boundary layer parts, respectively.

It follows from (1.7) and (1.9) that U (−) and U (+) are matched continuously at x = x∗(t, ε).
In order to find the terms xi(t) of the expansion (1.6) we use the C1–matching condition of the
i-th order in ε of the expression

ε
∂U (−)

∂x
(x∗(t, ε), t, ε) = ε

∂U (+)

∂x
(x∗(t, ε), t, ε) for t ∈ R. (1.11)

To determine the terms in the expansions (1.8) and (1.10) we use the standard procedure pro-
posed by Vasil’eva (see e.g. [6]): we represent the nonlinear functionsA(u, x, t) andB(u, x, t)
in a form which is similar to (1.8) and (1.10). For example, A(u, x, t) has to be represented in

D(±)
in the form

A(u, x, t) =
[
A
(
U

(±)
(x, t, ε) +Q(±)(ξ, t, ε), x, t

)
− A

(
U

(±)
(x, t, ε), x, t

)]
|x=x∗(t,ε)+εξ

+A(U
(±)

(x, t, ε), x, t).

We use a similar representation for B(u, x, t). We also represent the differential operator

Lε = ε
∂2

∂x2
− ε ∂

∂t

when it acts on the boundary layer functions by using the stretched variable ξ in the form:

Lε =
1

ε

∂2

∂ξ2
+ x′∗(t, ε)

∂

∂ξ
− ε ∂

∂t
.

Substituting the representations for A, B and Lε into equation (1.1), and equating separately
the parts depending on x and on ξ we get the relations, which serve to determine the terms of
the asymptotic expansions (1.8) and (1.10).
For the regular parts we have

ε

(
∂2U

(±)

∂x2
− ∂U

(±)

∂t

)
− A(U

(±)
, x, t)

∂U
(±)

∂x
−B(U

(±)
, x, t) = 0

for (x, t) ∈ D(±), u(±1, t, ε) = u(±)(t), for t ∈ R.

(1.12)
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It is clear that for k = 0 we get from (1.12) the degenerate problems (1.2), (1.3) and (1.2), (1.4)
and therefore by hypothesis (A1) we have

U
(±)

0 (x, t) = ϕ(±)(x, t) for (x, t) ∈ D(±).

We can use (1.12) to derive first order linear differential equations to determine U
(±)

k (x, t) for
k = 1, 2, ... by means of the corresponding initial value problems:

A(ϕ(±)(x, t), x, t)
∂U

(±)

k

∂x
+
(
Au(ϕ

(±)(x, t), x, t)
∂U

(±)

0

∂x
+Bu(ϕ

(±)(x, t), x, t)
)
U

(±)

k =

f
(±)
k (x, t) for (x, t) ∈ D(±), U

(±)

k (±1, t) = 0 for t ∈ R.
(1.13)

The functions f (±)
k (x, t) are determined by the functions U

(±)

j (x, t) with j < k, in particular
we have

f
(±)
1 (x, t) =

∂2U
(±)

0

∂x2
(x, t)− ∂U

(±)

0

∂t
(x, t).

The initial value problems (1.13) are linear and their solutions can be given explicitly.

For the boundary layer parts we have

1

ε

∂2Q(±)

∂ξ2
+
∂x∗(t, ε)

∂t

∂Q(±)

∂ξ
− ε∂Q

(±)

∂t

=
1

ε

[
A
(
U

(±)
(x∗(t, ε) + εξ, t, ε) +Q(±), x∗(t, ε) + εξ, t

) ∂

∂ξ

(
U

(±)
(x∗(t, ε) + εξ, t, ε)

+Q(±)
)
− A

(
U

(±)
(x∗(t, ε) + εξ, t, ε), x∗(t, ε) + εξ, t

) ∂
∂ξ

(U
(±)

(x∗(t, ε) + εξ, t, ε)
]

+
[
B
(
U

(±)
(x∗(t, ε) + εξ, t, ε) +Q(±), x∗(t, ε) + εξ, t

)
(1.14)

−B
(
U

(±)
(x∗(t, ε) + εξ, t, ε), x∗(t, ε) + εξ, t

)]
,

Q(±)(0, t, ε) + U
(±)

(x∗(t, ε), t, ε) = ϕ(x∗(t, ε), t).

For Q(±)
k (ξ, t) we use the additional condition at ±∞:

Q
(±)
k (±∞, t) = 0.

From (1.14) we get the problems to determine the functionsQ(±)
k (ξ, t) in the asymptotic expan-

sions (1.8) and (1.10). For the zero-th order boundary layer functions Q(−)
0 and Q(+)

0 we obtain
the boundary value problems

∂2Q
(−)
0

∂ξ2
= A

(
ϕ(−)(x0(t), t) +Q

(−)
0 , x0(t), t

) ∂Q(−)
0

∂ξ
for ξ < 0, t ∈ R, (1.15)
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Q
(−)
0 (−∞, t) = 0, Q

(−)
0 (0, t) = ϕ(x0(t), t)− ϕ(−)(x0(t), t) for t ∈ R (1.16)

and

∂2Q
(+)
0

∂ξ2
= A

(
ϕ(+)(x0(t), t) +Q

(+)
0 , x0(t), t

) ∂Q(+)
0

∂ξ
for ξ > 0, t ∈ R, (1.17)

Q
(+)
0 (∞, t) = 0, Q

(+)
0 (0, t) = ϕ(x0(t), t)− ϕ(+)(x0(t), t) for t ∈ R. (1.18)

In order to investigate the problems (1.15)–(1.16) and (1.17)–(1.18) we introduce the function

ũ(ξ, x0) :=


ϕ(−)(x0(t), t) +Q

(−)
0 (ξ, t), ξ < 0, t ∈ R,

ϕ(x0(t), t), ξ = 0, t ∈ R,
ϕ(+)(x0(t), t) +Q

(+)
0 (ξ, t), ξ > 0, t ∈ R.

Now we can rewrite problems (1.15)–(1.16) and (1.17)–(1.18) in the form

∂2ũ
∂ξ2 = A(ũ, x0(t), t))

∂ũ
∂ξ
, ξ ∈ R, t ∈ R

ũ(0, t) = ϕ(x0(t), t), ũ(−∞, t) = ϕ(+)(x0(t), t), ũ(+∞, t) = ϕ(+)(x0(t), t).
(1.19)

The differential equation in (1.19) is a second order autonomous ordinary differential equation
(t is a parameter) , which can be analyzed in the phase plain (ũ, ũ′), where we have

∂ũ

∂ξ
=

∫ ũ

ϕ(−)(x0(t),t)

A(u, x0(t), t) du. (1.20)

From (1.20) and assumptions (A1) and (A2) we get that problem (1.19) has a unique solution
satisfying

|ũ(ξ, t)− ϕ(±)(x0(t), t)| ≤ c exp(−κ|ξ|) for ξ ∈ R(±), t ∈ R,

where κ and c are some positive numbers.

Therefore, we get that the boundary value problems (1.15), (1.16) and (1.17), (1.18) have unique
solutions satisfying the estimate

|Q(±)
0 (ξ, t)| ≤ c exp(−κ|ξ|) for ξ ∈ R(±), t ∈ R.

We also note that the zero-th order C1-matching condition (1.11) which implies

∂Q
(−)
0

∂ξ
(0, t) =

∂Q
(+)
0

∂ξ
(0, t) for t ∈ R (1.21)

is satisfied since we have

∂Q
(±)
0

∂ξ
(0, t) =

∫ ϕ(x0(t),t)

ϕ±(x0(t),t)

A(u, x0(t), t) du,
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and therefore according to assumption (A2)

∂Q
(−)
0

∂ξ
(0, t)− ∂Q

(+)
0

∂ξ
(0, t) =

∫ ϕ(+)(x0(t),t)

ϕ(−)(x0(t),t)

A(u, x0(t), t) du = 0.

Using (1.14) we get that the boundary layer functions Q(±)
1 (ξ, t) can be determined from the

equations

∂2Q
(±)
1

∂ξ2
− ∂

∂ξ

[
A
(
ϕ(±)(x0(t), t) +Q

(±)
0 (ξ, t), x0(t), t

)
Q

(±)
1

]
= Au

(
ϕ(±)(x0(t), t) +Q

(±)
0 (ξ, t), x0(t), t

)∂Q(±)
0 (ξ, t)

∂ξ
U

(±)

1 (x0(t), t)

+ x1(t)

[
Au

(
ϕ(±)(x0(t), t) +Q

(±)
0 (ξ, t), x0(t), t

) ∂ϕ(±)

∂x
(x0(t), t)

+ Ax

(
ϕ(±)(x0(t), t) +Q

(±)
0 (ξ, t), x0(t), t

)]∂Q(±)
0 (ξ, t)

∂ξ
+ q

(±)
1 (ξ, t) := r

(±)
1 (ξ, t)

(1.22)

and the additional conditions

Q
(−)
1 (0, t) = −U (−)

1 (x0(t), t)−x1(t)
∂ϕ(−)

∂x
(x0(t), t) ≡ p

(−)
1 (ξ, t), Q

(−)
1 (−∞, t) = 0, t ∈ R,

(1.23)

Q
(+)
1 (0, t) = −U (+)

1 (x0(t), t)−x1(t)
∂ϕ(+)

∂x
(x0(t), t) ≡ p

(+)
1 (ξ, t), Q

(+)
1 (∞, t) = 0, t ∈ R,

(1.24)
where

q
(±)
1 (ξ, t) =

[
A
(
ϕ(±)(x0(t), t) +Q

(±)
0 (ξ, t), x0(t), t

) ∂ϕ(±)

∂x
(x0(t), t)

+Ax

(
ϕ(±)(x0(t), t) +Q

(±)
0 (ξ, t), x0(t), t

)]∂Q(±)
0

∂ξ
(x0(t), t)ξ

+
[
A
(
ϕ(±)(x0(t), t) +Q

(±)
0 , x0(t), t

)
− A

(
ϕ(±)(x0(t), t, x0(t), t

)]∂ϕ(±)

∂x
(x0(t), t)

+B
(
ϕ(±)(x0(t), t) +Q

(±)
0 , x0(t), t

)
−B

(
ϕ(±)(x0(t), t), x0(t), t

)
+ x′0(t)

∂Q
(±)
0

∂ξ
.

The problems (1.22), (1.23) and (1.22), (1.24) are linear inhomogeneous problems with expo-
nentially decaying inhomogeneous terms. The solutions of these problems can be given explic-
itly

Q
(±)
1 (ξ, t) = z(ξ, t)

p(±)
1 (t)−

ξ∫
0

1

z(η, t)

 ±∞∫
η

q
(±)
1 (χ, t)dχ

 dη
 , (1.25)
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where

z(ξ, t) ≡ ∂ũ

∂ξ
(ξ, t)

(
∂ũ

∂ξ
(0, t)

)−1

.

From the representation for q(±)
1 (ξ, t) it follows that |q(±)

1 (ξ, t)| ≤ c exp(−κ|ξ|), therefore from

(1.25) we get that the functions Q(±)
1 satisfy the exponential estimate

|Q(±)
1 (ξ, t)| ≤ c exp(−κ|ξ|) for ξ ∈ R(±), t ∈ R,

where c and κ are some positive numbers.

The first order C1–matching condition reads

∂Q
(−)
1

∂ξ
(0, t) +

∂ϕ(−)

∂x
(x0(t), t) =

∂Q
(+)
1

∂ξ
(0, t) +

∂ϕ(+)

∂x
(x0(t), t). (1.26)

Using the expressions for ∂Q
(±)
1

∂ξ
(0, t) in (1.25) we can show that x1(t) is uniquely determined

by the equation
Ix(x0(t), t)x1(t) = Φ1(t), (1.27)

where Φ1(t) is the known smooth periodic function:

Φ1(t) :=
∂ϕ(+)

∂x
(x0(t), t)−

∂ϕ(−)

∂x
(x0(t), t)

−x′0(t)
(∂ϕ(+)

∂t
(x0(t), t)−

∂ϕ(−)

∂t
(x0(t), t) +

∂Q
(+)
0

∂t
(x0(t), t)−

∂Q
(−)
0

∂t
(x0(t), t)

)
−A
(
ϕ(+)(x0(t), t), x0(t), t

)
U

(+)

1 (x0(t), t) + A
(
ϕ(−)(x0(t), t), x0(t), t

)
U

(−)

1 (x0(t), t)

+

0∫
−∞

q
(−)
1 (ξ, t)dξ +

+∞∫
0

q
(+)
1 (ξ, t)dξ.

From assumption (A3) it follows that (1.27) can be solved uniquely for x1(t). The higher order

terms Q(±)
k can be determined by problems, which have the same structure as (1.22) (index

1 has to be replaced by index k and q(±)
k is a known function). The k-th order C1-matching

condition leads to an equation similar to (1.27):

Ix(x0(t), t)xk(t) = Φk(t), (1.28)

where Φk(t) is a known smooth periodic function.

Since A,B, u(±) are sufficiently smooth, the formal asymptotics can be constructed to any
order n. From these constructions it follows that the corresponding approximations satisfy (1.1)
up to order εn.
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2 Existence results

2.1 Main theorem

Let D(−)
n and D(+)

n be the domains

D(−)
n := {(x, t) ∈ R2 : −1 ≤ x ≤

n+1∑
i=0

xi(t)ε
i, t ∈ R},

D(+)
n := {(x, t) ∈ R2 :

n+1∑
i=0

xi(t)ε
i ≤ x ≤ 1, t ∈ R},

and let U (±)
n be the partial sums of order n of the expansions (1.8) and (1.10), respectively,

where ξ is replaced by
(
x−

∑n+1
i=0 xi(t)ε

i
)
/ε.

We introduce the notation

Un(x, t, ε) :=

{
U

(−)
n (x, t, ε) for (x, t) ∈ D(−)

n ,

U
(+)
n (x, t, ε) for (x, t) ∈ D(+)

n .

Then we have the following existence theorem:

Theorem 2.1 Suppose the assumptions (A0)− (A3) to be valid. Then, for sufficiently small ε,
there exists a solution u(x, t, ε) of (1.1) which has an interior layer near x0(t), i.e.

lim
ε→0

u(x, t, ε) =

{
ϕ(−)(x, t) for −1 ≤ x < x0(t), t ∈ R,
ϕ(+)(x, t) for x0(t) < x ≤ 1, t ∈ R

and satisfies
|u(x, t, ε)− Un(x, t, ε)| ≤ cnε

n for (x, t) ∈ D,
where the positive constant cn does not depend on ε.

2.2 Construction of upper and lower solutions

The proof of this theorem is based on the technique of lower and upper solutions. For the
convenience of the reader we recall the definition of these functions.

Definition 2.1 We say the functions α, β : D × Iε0 → R have the smoothness property S,
if they are continuous, twice continuously differentiable in x, continuously differentiable in t and
T -periodic in t. The functios α and β are called ordered lower and upper solutions of (1.1) for
ε ∈ Iε0 , if they have the smoothness property S and satisfy for ε ∈ Iε0 the following conditions:

1◦ α(x, t, ε) ≤ β(x, t, ε) for (x, t) ∈ D, (2.1)

2◦ Nε(α) ≥ 0 ≥ Nε(β) for (x, t) ∈ D, (2.2)

3◦ α(−1, t, ε) ≤ u(−)(t) ≤ β(−1, t, ε), (2.3)

α(1, t, ε) ≤ u(+)(t) ≤ β(1, t, ε) for t ∈ R.
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In case that there exists in D some smooth curve x = x̄(t), t ∈ R, periodic in t and deviding
D into two subregions D+ and D− such that α and β have the smoothness property S only in
D+ and D−, then α and β are called ordered lower and upper solutions of (1.1) for ε ∈ Iε0 , if
they satisfy the relations (2.1) and (2.2) in D+ and D−, the relation (2.3) and the inequalities

∂α

∂x
(x̄(t) + 0, t, ε) ≥ ∂α

∂x
(x̄(t)− 0, t, ε), (2.4)

∂β

∂x
(x̄(t) + 0, t, ε) ≤ ∂β

∂x
(x̄(t)− 0, t, ε). (2.5)

Remark 1. It is known (see, e.g., [1]) that the existence of ordered lower and upper solutions
implies the existence of a unique solution u(x, t, ε) of (1.1) satisfying

α(x, t, ε) ≤ u(x, t, ε) ≤ β(x, t, ε) for (x, t) ∈ D and ε ∈ Iε0 .

In what follows we describe a method to construct upper and lower solutions by some modifica-
tion of the formal asymptotic expansion of the solution to (1.1). For this purpose we introduce
T -periodic functions xβ and xα as the (n + 1)-th partial sums of the asymptotic expansion of
x∗(t, ε) with a small shift in the last term

xβ(t, ε) = x0(t) + εx1(t) + ...+ εn+1(xn+1(t)− δ),

xα(t, ε) = x0(t) + εx1(t) + ...+ εn+1(xn+1(t) + δ),

where δ > 0 is a small number independent of ε. The curves x = xβ(t, ε) and x = xα(t, ε)

divide the domain D into two subdomains D(−)

β , D(+)

β and D(−)

α , D(+)

α , where

D(−)

β := {(x, t) ∈ R2 : −1 ≤ x ≤ xβ(t, ε), t ∈ R},

D(+)

β := {(x, t) ∈ R2 : xβ(t, ε) ≤ x ≤ 1, t ∈ R}.

The domains D(±)

α are defined similarly.

Now we can define an upper solution β(x, t, ε) = βn(x, t, ε) and a lower solution α(x, t, ε) =
αn(x, t, ε) for ε ∈ Iε0 in D by the expressions

βn(x, t, ε) = β(±)
n (x, t, ε) = Ū

(±)
0 (x, t) + εŪ

(±)
1 (x, t) + ...+ εn+1Ū

(±)
n+1(x, t)

+Q
(±)
0 (ξβ, t) + εQ

(±)
1 (ξβ, t) + ...+ εn+1Q

(±)
(n+1)(ξβ, t)

+ εn+1
(
v(±)(x) + q

(±)
β (ξβ, t)

)
+ εn+2Q

(±)
(n+2),β(ξβ, t, ε)

=: U
(±)
n+1,β(x, t, ε) + εn+2Q

(±)
(n+2),β(ξβ, t, ε)

(2.6)

and

αn(x, t, ε) = α(±)
n (x, t, ε) = Ū

(±)
0 (x, t) + εŪ

(±)
1 (x, t) + ...+ εn+1Ū

(±)
n+1(x, t)

+Q
(±)
0 (ξα, t) + εQ

(±)
1 (ξα, t) + .....+ εn+1Q

(±)
(n+1)(ξα, t)

+ εn+1
(
q(±)
α (ξα, t)− v(±)(x)

)
+ εn+2Q

(±)
(n+2),α(ξα, t, ε)

=: U
(±)
n+1,α(x, t, ε) + εn+2Q

(±)
(n+2),α(ξα, t, ε).

(2.7)

10



Here, v(±)(x) := e±mx with m > 0 sufficiently large and independent of ε, ξβ = (x −
xβ(t, ε))/ε, ξα = (x− xα(t, ε))/ε.

The functions Q(±)
i (ξβ, t) and Q(±)

i (ξα, t), i = 0, ..., n + 1 are defined by replacing ξ by ξβ
and ξ by ξα in the terms of the asymptotics Q(±)

i (ξ, t).
The functions qα(ξα, t) and qβ(ξβ, t) are introduced into the interior layer part to compensate
the changes which are produced by the modification of the (n + 1)-th order term of the reg-
ular part of the asymptotic expansion and the interior layer curve expansion. The functions
q
(±)
β (ξβ, t) are determined by the problems

∂2q
(±)
β

∂ξ2
=

∂

∂ξ

[
A
(
ϕ(±)(x0(t), t) +Q

(±)
0 (ξ, t), x0(t), t

)(
q
(±)
β + v(±)(x0(t))

)]
+ δ

[
Au

(
ϕ(±)(x0(t), t) +Q

(±)
0 (ξ, t), x0(t), t

) ∂ϕ(±)

∂x
(x0(t), t)

+ Ax

(
ϕ(±)(x0(t), t) +Q

(±)
0 (ξ, t), x0(t), t)

)]∂Q(±)
0 (ξ, t)

∂ξ
for ξ ∈ R(±), t ∈ R

(2.8)

and the additional conditions

q
(−)
β (0, t) + v(−)(x0(t)) + δ

∂ϕ(−)

∂x
(x0(t), t) = 0, q

(−)
β (−∞, t) = 0 for t ∈ R, (2.9)

q
(+)
β (0, t) + v(+)(x0(t)) + δ

∂ϕ(+)

∂x
(x0(t), t) = 0, q

(+)
β (∞, t) = 0 for t ∈ R. (2.10)

Problems (2.8),(2.9) and (2.8),(2.10) can be investigated analogously as the problems (1.22),(1.23)
and (1.22),(1.24) and have a unique exponentially decaying solution for all real δ.
The differential equations to determine the functionsQ(±)

(n+2),β andQ(±)
(n+2),α are slightly different

from the equation for Q(±)
n+1. One can check that the functions Un+1,β(x, t, ε)

Un+1,β(x, t, ε) :=

{
U

(−)
n+1,β(x, t, ε) for (x, t) ∈ D(−)

n ,

U
(+)
n+1,β(x, t, ε) for (x, t) ∈ D(+)

n

and Un+1,α(x, t, ε)

Un+1,α(x, t, ε) :=

{
U

(−)
n+1,α(x, t, ε) for (x, t) ∈ D(−)

n ,

U
(+)
n+1,α(x, t, ε) for (x, t) ∈ D(+)

n

are discontinuous at the curves xβ(t, ε) and xα(t, ε), respectively. Particularly, we get from
(2.7), (2.6), (2.8) - (2.10)

U
(+)
n+1,β(xβ(t, ε), t, ε)−U (−)

n+1,β(xβ(t, ε), t, ε) = εn+1[q
(+)
β (0, t)+v(+)(x0(t))+δ

∂ϕ(+)

∂x
(x0(t), t)

−(q
(−)
β (0, t) + v(−)(x0(t)) + δ

∂ϕ(−)

∂x
(x0(t), t)) +O(ε)] = O(εn+2).
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The functions Q(±)
(n+2),β in (2.6) are introduced to get upper solutions which are continuous also

at the curve xβ(t, ε) and to satisfy the differential equation (1.14) up to the terms of order
(n+ 1) at the interior layer. They are defined as the solutions of the problems

∂2Q
(±)
(n+2),β

∂ξ2
=

∂

∂ξ

[
A
(
ϕ(±)(x0(t), t) +Q

(±)
0 (ξ, t), x0(t), t

)
Q

(±)
(n+2),β

]
+ q

(±)
n+2,β

(2.11)

with the additional conditions

Q
(−)
(n+2),β(0, t) = 0, Q

(−)
(n+2),β(−∞, t) = 0 for t ∈ R, (2.12)

Q
(+)
(n+2),β(0, t) = −

(
U

(+)
n+1,β(xβ(t, ε), t, ε)− U (−)

n+1,β(xβ(t, ε), t, ε)
)
,

Q
(+)
(n+2),β(−∞, t, ε) = 0 for t ∈ R,

(2.13)

where ξ = ξβ , the term q
(±)
n+2,β has the same structure as q(±)

n+2 in the corresponding problems

forQ(±)
(n+2) with the replacements ofQ(±)

(n+1) byQ(±)
(n+1)+q

(±)
β , Ū (±)

n+1(x0(t), t) by (Ū
(±)
n+1(x0(t), t)

+ v(±)(x0(t))), xn+1(t) by (xn+1(t)− δ), xn+2(t) by 0.

Corresponding results hold for αn. It is clear that the functions Q(±)
(n+2),β and Q(±)

(n+2),α will not
influence the estimates of the lower and upper solutions.

To verify that the introduced functions αn and βn are upper and lower solutions we substitute
the expressions for αn and βn into the operator Nε(u) defined in (1.1). We get

Nε(βn(x, t, ε)) = εn+1
[
A(ϕ(±)(x, t), x, t)

∂v(±)(x)

∂x
+
(
Au(ϕ

(±)(x, t), x, t)
∂U

(±)

0

∂x

+Bu(ϕ
(±)(x, t), x, t)

)
v(±)(x)

]
+O(εn+2) for (x, t) ∈ D(±).

(2.14)

It can be easily verified that by choosing v(±)(x) = e±mx, where m is sufficiently large, we get
that the coefficient of εn+1 in (2.14) is negative and therefore we have for sufficiently small ε

Nε(βn(x, t, ε)) ≤ −γεn+1,

where γ is a positive number. Similarly we obtain

Nε(αn(x, t, ε)) ≥ γεn+1.

In order to prove that αn(x, t, ε) and βn(x, t, ε) are ordered we use the approach proposed in
[3]. We divide the domain D into three parts:

D1 := {(x, t) ∈ R2 : −1 ≤ x ≤ xβ(t, ε), t ∈ R},

D2 := {(x, t) ∈ R2 : xβ(t, ε) ≤ x ≤ xα(t, ε), t ∈ R},

D3 := {(x, t) ∈ R2 : xα(t, ε) ≤ x ≤ 1, t ∈ R}.
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In D2 we obtain from (2.7),(2.6)

βn(x, t, ε)− αn(x, t, ε) = εn2δ
∂Q0

∂ξ
(0, t) +O(εn+1) for t ∈ R.

Using ∂Q0

∂ξ
(0, t) > 0 we get for sufficiently small ε

βn(x, t, ε)− αn(x, t, ε) > 0 for (x, t) ∈ D2.

In the domain D1 we apply the mean value theorem and get

βn(x, t, ε)− αn(x, t, ε) = εn2δ
∂Q

(−)
0

∂ξ
(ζ1, t)

+εn+1
[
2δ
(
∂Q

(−)
1

∂ξ
(ζ2, t) +

∂q
(−)
β

∂ξ
(ζ3, t)

)
+ 2v(−)(x)

]
+O(εn+2),

where ζ1, ζ2 and ζ3 are some values in the interval
[
(x− xβ(t, ε))/ε, (x− xα(t, ε))/ε

]
.

Using the known estimates
∂Q

(−)
0

∂ξ
(ξ, t) ≥ C1 exp(ν1ξ)

and ∣∣∣∂Q(−)
1

∂ξ
(ξ, t) +

∂q
(−)
β

∂ξ
(ξ, t)

∣∣∣ ≤ C2 exp(ν2ξ),

where C1, C2, ν1 and ν2 are some positive numbers, one can easily calculate that

βn(x, t, ε)− αn(x, t, ε) > 0 for (x, t) ∈ D1.

A similar approach can be used in the region D3.

We summarize the results of our construction of upper and lower solutions in the following
lemma.

Lemma 2.1. The functions βn(x, t, ε) and αn(x, t, ε) defined by the expressions (2.6) and
(2.7), respectively, satisfy the Definition 2.1, and therefore they are upper and lower solutions of
problem (1.1). Moreover, they obey the following relations:

βn(x, t, ε)− αn(x, t, ε) = O(εn) for x ∈ [0, 1], t ∈ R, (2.15)

βn(x, t, ε)− Un(x, t, ε) = O(εn) for x ∈ [0, 1], t ∈ R, (2.16)

∂αn
∂x

=
∂Un
∂x

+O(εn−1),
∂βn
∂x

=
∂Un
∂x

+O(εn−1) for x ∈ [0, 1], t ∈ R, (2.17)

Nε(βn(x, t, ε)) ≤ −γεn+1, Nε(αn(x, t, ε)) ≥ γεn+1. (2.18)

Therefore, we get that problem (1.1) has a solution which satisfies (see Remark 1)

αn(x, t, ε) ≤ u(x, t, ε) ≤ βn(x, t, ε) for (x, t) ∈ D and ε ∈ Iε0 .

13



The statements of Theorem 2.1 follow from the estimates (2.15), (2.16) of Lemma 2.1.

In our approach to investigate the stability (see Sect. 3) we need the following relations.

Lemma 2.2. The functions βn(x, t, ε) and αn(x, t, ε) satisfy for (x, t) ∈ D the following rela-
tions:

∂αn
∂x

=
∂u

∂x
+O(εn−1),

∂βn
∂x

=
∂u

∂x
+O(εn−1), (2.19)

where u = u(x, t, ε) is the periodic interior layer solution of problem (1.1), stated in Theorem 2.1.

Proof. The proof of Lemma 2.2 is based on the estimate for the difference zn(x, t, ε) ≡
u(x, t, ε)− Un(x, t, ε); estimate (2.19) then trivially follows from estimate (2.17).

The function zn(x, t, ε) satisfies the equation

ε

(
∂2zn
∂x2

− ∂zn
∂t

)
−
[
A(u, x, t)

∂u

∂x
− A(Un, x, t)

∂Un
∂x

]
− [B(u, x, t)−B(Un, x, t)] = εn+1ψ(x, t, ε) for (x, t) ∈ D

(2.20)

with zero boundary conditions, where |ψ(x, t, ε)| ≤ c1 . From Theorem 2.1 we get

zn(x, t, ε) ≡ u(x, t, ε)− Un(x, t, ε) ≤ cεn, (2.21)

and therefore
|r1| := |B(u, x, t)−B(Un, x, t)| ≤ cεn.

The second term of equation (2.20) can be represented in the form

A(u, x, t)
∂u

∂x
− A(Un, x, t)

∂Un
∂x

=
∂

∂x

∫ u

Un

A(s, x, t)ds−
∫ u

Un

Ax(s, x, t)ds.

From (2.21) it follows

|r2| := |
∫ u

Un

Ax(s, x, t)ds| ≤ cεn.

We can rewrite equation (2.20) in the following form

∂2zn
∂x2

− ∂zn
∂t
− kzn = −kzn +

1

ε

∂

∂x

∫ u

Un

A(s, x, t)ds

+
1

ε

[
r1(x, t, ε)− r2(x, t, ε) + εn+1ψ(x, t, ε)

]
for (x, t) ∈ D.

(2.22)

Now we can define

r(x, t, ε) :=
1

ε

[
r1(x, t, ε)− r2(x, t, ε) + εn+1ψ(x, t, ε)

]
.

From the estimates above we obtain

|r(x, t, ε)| ≤ cεn−1.
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Using the Green function for the parabolic operator of the left hand side of (2.22) we get the
following representation for zn (see, for example, [5]).

zn =

∫ 1

−1

G(x, t, ξ, t0)zn(ξ, t0)dξ −
∫ t

t0

dτ

∫ 1

−1

G(x, t, ξ, τ)(
−kzn(ξ, τ) + r(ξ, τ, ε) +

1

ε

∂

∂ξ

∫ u(ξ,τ,ε)

Un(ξ,τ,ε)

A(s, ξ, τ)ds

)
dξ.

(2.23)

Using integration by parts and the boundary conditions for G one can transform the last term in
(2.23) as follows ∫ t

t0

dτ

∫ 1

−1

G(x, t, ξ, τ)
1

ε

∂

∂ξ

∫ u(ξ,τ,ε)

Un(ξ,τ,ε)

A(s, ξ, τ)dsdξ =

−
∫ t

t0

dτ

∫ 1

−1

Gξ(x, t, ξ, τ)
1

ε

∫ u(ξ,τ,ε)

Un(ξ,τ,ε)

A(s, ξ, τ)dsdξ.

(2.24)

Using (2.24) we get from (2.23) the following representation for the derivative ∂zn
∂x

:

∂zn
∂x

=

∫ 1

−1

Gx(x, t, ξ, t0)zn(ξ, t0)dξ −
∫ t

t0

dτ

∫ 1

−1

Gx(x, t, ξ, τ)

(−kzn(ξ, τ) + r(ξ, τ, ε)) dξ +

∫ t

t0

dτ

∫ 1

−1

Gξx(x, t, ξ, τ)
1

ε

∫ u(ξ,τ,ε)

Un(ξ,τ,ε)

A(s, ξ, τ)dsdξ.

(2.25)

The validity of the representation (2.25) follows from the estimates∣∣∣ ∫ 1

−1

Gx(x, t, ξ, t0)dξ
∣∣∣ ≤ C,

∣∣∣ ∫ t

t0

dτ

∫ 1

−1

Gx(x, t, ξ, τ)dξ
∣∣∣ ≤ C.

We get that the first and second terms of the representation (2.25) have the estimates O(εn)
and O(εn−1), respectively. From the estimates for Gξx(x, t, ξ, τ) it also follows that the last
term in the representation (2.25) can be estimated by

1

ε

∣∣∣ ∫ u(ξ,τ,ε)

Un(ξ,τ,ε)

A(s, ξ, τ)dsdξ
∣∣∣.

Using these estimates, finally we get from (2.25)

∂zn
∂x

(x, t, ε) = O(εn−1) for (x, t) ∈ D. (2.26)

This completes the proof of Lemma 2.2.

3 Stability results

In this section we investigate the stability (in the sense of Lyapunov) of the periodic solution
u(x, t, ε) with the interior layer established in Theorem 2.1 by applying Theorem 4.4. from [2].
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Recall that we denote the lower and upper solutions α(x, t, ε) and β(x, t, ε) as asymptotic
lower and upper solutions of problem (1.1) of order q if they satisfy the corresponding differential
inequality with the residual term of order εq.
For convenience we restate the mentioned theorem which we apply to establish the asymptotic
stability of our periodic solution from Theorem 2.1 as the following lemma.

Lemma 3.1 Let α(x, t, ε) and β(x, t, ε) be lower and upper solutions of order q > 0 to (1.1),
let u(x, t, ε) be the corresponding periodic solution to (1.1). Suppose that for sufficiently small
ε, and all t and x it holds

|u(x, t, ε)|+ |α(x, t, ε)|+ |β(x, t, ε)| ≤ κ1,

|β(x, t, ε)− u(x, t, ε)|+ |α(x, t, ε)− u(x, t, ε)| ≤ κ2ε
p+1
2 ,

|∂xβ(x, t, ε)− ∂xu(x, t, ε)|+ |∂xα(x, t, ε)− ∂xu(x, t, ε)| ≤ c2ε
p−1
2 ,

where κ1, κ2 and p > q are constants. Then, for sufficiently small ε > 0, the solution u(x, t, ε)
to (1.1) is asymptotically stable in the sense of Lyapunov (see the definition, for example, in [1]).

In our case, it follows from Lemma 2.1 and Lemma 2.2 that q = n + 1, and p+1
2

= n, and
therefore p = 2n− 1. The condition of Lemma 3.1 p > q leads to the condition for the order of
our lower and upper solution. We get

n > 2.

Therefore applying Lemma 3.1 we can state the following theorem on the stability of the periodic
solution

Theorem 3.1 Suppose the assumptions (A0)− (A3) to be satisfied. Then for sufficiently small
ε the periodic solution of problem (2.1) with interior layer is asymptotically stable with the domain
of attraction α3(x, t, ε) ≤ u ≤ β3(x, t, ε).

4 Example

We consider problem (1.1) in the special case

A(u, x, t) ≡ −u, B(u, x, t) ≡ u, u(−)(t) ≡ −4 + k sin t, u(−)(t) ≡ 3,

where k satisfies
−1 < k < 1.

Thus, the boundary value problem (1.1) reads

ε

(
∂2u

∂x2
− ∂u

∂t

)
+ u

∂u

∂x
− u = 0

for (x, t) ∈ D := {(x, t) ∈ R2 : −1 < x < 1, t ∈ R},
u(−1, t, ε) = −4 + k sin t, u(1, t, ε) = 3 for t ∈ R,
u(x, t, ε) = u(x, t+ 2π, ε) for t ∈ R − 1 ≤ x ≤ 1

(4.1)
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and the assumption (A0) is fulfilled. The corresponding degenerate equation (1.2) can be writ-
ten as

−u (
∂u

∂x
+ 1) = 0.

The solutions u = ϕ(−)(x, t) and u = ϕ(+)(x, t) of this equation satisfying the initial values

u(−1, t) = −4 + k sin t, u(1, t) = 3

can be given explicitly

u = ϕ(−)(x, t) = x− 3 + k sin t, u = ϕ(+)(x, t) = x+ 2.

Thus, we have
ϕ(−)(x, t) < 0 < ϕ(+)(x, t) for (x, t) ∈ D,

A(ϕ(+)(x, t), x, t) = −ϕ(+)(x, t) < 0 < −ϕ(−)(x, t) = A(ϕ(+)(x, t), x, t) for (x, t) ∈ D.

Hence, assumption (A1) is satisfied. Furthermore, we have

I(x, t) =

∫ x+2

x−3+k sin t

−u du = −1

2
(5− k sin t)(2x− 1 + k sin t) = 0.

Thus, the equation I(x, t) = 0 has the smooth solution x = x0(t) = 1−k sin t
2

which 2π-
periodic. Finally, it holds

∂I

∂x
(x0(t), t) = −(5− k sin t) < 0 for t ∈ R.

Therefore, all assumptions (A3) of Theorem 3.1 are satisfied and we have the result

Theorem 4.1 The boundary value problem (4.1) has for sufficiently sall ε and −1 < k < 1 a
solution u(x, t) with the properties
(i) u(x, t) has an interior boundary layer near x0(t) = (1− k sin t)/2.
(ii) u(x, t) is asymptotically stable.
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