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Abstract

Recently it has been shown that large arrays of identical oscillators with non-local cou-

pling can have a remarkable type of solutions that display a stationary macroscopic pattern

of coexisting regions with coherent and incoherent motion, often called chimera states.

We present here a detailed numerical study of the appearance of such solutions in two-

dimensional arrays of coupled phase oscillators. We discover a variety of stationary pat-

terns, including circular spots, stripe patterns, and patterns of multiple spirals. Here, the

stationarity means that for increasing system size the locally averaged phase distributions

tend to the stationary profile given by the corresponding thermodynamic limit equation.

Recently, a new dynamical phenomenon has been reported that can be observed in arrays

of non-locally coupled phase oscillators. Under specific conditions there are solutions that dis-

play a stable stationary pattern of coexisting coherent and incoherent motion in a population

of identical oscillators. These solutions, called chimera states, have been first discovered in

one-dimensional arrays with periodic boundary conditions [1], and have attracted considerable

attention, bringing together the mathematical topics of synchronization in coupled oscillator sys-

tems and pattern formation.

Chimera states have up to now been observed in several types of coupled oscillator systems

ranging from Kuramoto-like systems with various types of non-local interaction [2, 3, 4, 5, 6, 7,

8, 9, 10] to more complicated oscillators [11, 12, 13, 14] or inhomogeneous systems [15, 16,

6, 17, 18, 19]. Generally speaking, to observe chimera states the following ingredients have to

be present in a system: First, the system has to represent a discrete medium, typically a large

array of coupled units. This coupling has to be non-local, providing an interaction in a range that

includes more than only next neighbors. Finally, there has to be a well tuned balance of attraction

and repulsion between the oscillator phases that is typically achieved by a Sakaguchi phase lag

parameter or a coupling delay. In addition to the careful choice of such a system structure with

suitable parameters, it is necessary to provide appropriate initial conditions, since the classical

chimera states typically coexist with the completely coherent (synchronized) state. This property

distinguishes them clearly from classical Turing patterns, that emerge in a bifurcation, where the

homogeneous state loses its stability with respect to a spatial modulation.

The motion in the incoherent region of a chimera state manifests itself as a spatially extensive

deterministic chaos with a corresponding weakly chaotic Lyapunov spectrum [20]. In the thermo-

dynamic limit of infinitely many oscillators with a macroscopic coupling structure, the incoherent

motion turns into a statistically stationary behavior that is described by the macroscopic local

mean field parameter. In this setting, the chimera states appear as spatially inhomogeneous

equilibrium profiles.

Whereas, there is already an extensive literature about one-dimensional chimera states, the

two-dimensional setting has received up to now much less attention. A first intriguing example
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of a coherence–incoherence pattern in a two-dimensional array has been reported by Shima

and Kuramoto [21] who presented a solution displaying a spiral wave of coherent oscillators

with a region of incoherent motion in its core. This spiral chimera has then been further studied

in [6, 22]. As a surprising fact, it occurs in a quite different parameter region than the classical

one-dimensional patterns. Moreover it has been presented not for periodic boundary conditions,

but for an unbounded domain, such that the coherent region is of infinite size. This is another

striking difference to the classical one-dimensional chimera where the coherent domain is typi-

cally smaller than the incoherent one.

Independently from the above mentioned results, Kim et al. [23] have studied a similar system of

coupled phase oscillators in a two-dimensional array with periodic boundary conditions. Using

only random initial conditions, they observed patterns with several incoherent spiral cores oc-

curring in a similar parameter region as the spiral chimera mentioned above. But these irregular

multi-spiral patterns are typically not stationary; instead, the incoherent spots at the spiral cores

show a slow motion that is caused by their mutual interaction and that may even lead to an an-

nihilation of several incoherent spiral cores in a collision. The parameter region of the classical

one-dimensional chimera also remained out of the scope of their study.

Figure 1: Snapshots of phase distributions Ψjk for trajectories of system (1) with N = 100,

showing three different types of coherence-incoherence patterns. (a) Coherent spot. Parame-

ters: R = 44, α = 1.52. (b) Incoherent spot. Parameters: R = 32, α = 1.35. (c) Stripe

pattern. Parameters: R = 40, α = 1.44.

In this paper, we present the two-dimensional counterparts of the classical one-dimensional

chimera. We show a variety of spot and stripe patterns (see Fig. 1) with properties that resemble
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those of the chimera states in one dimension and occur in a similar parameter regime. Our

model is a two-dimensional array of N × N identical phase oscillators of Kuramoto-Sakaguchi

type with phases {Ψjk(t)}
N

j,k=1 evolving according to

Ψ̇jk = ω −
1

|BR(j, k)|

∑

(m,n)∈BR(j,k)

sin(Ψjk − Ψmn + α). (1)

Both indices are considered modulo N , inducing a torus structure on the array. We take the

natural frequency ω of all oscillators identical and hence it could be set to zero without loss of

generality. The coupling range R, with 0 < R < N/2, is used to define for every point (j, k)
the circular neighborhood

BR(j, k) :=
{

(m, n) : (m − j)2 + (n − k)2 ≤ R2
}

,

where distances m − j and n − k have to be calculated regarding the above mentioned torus

structure of the array. The non-local interaction term in (1) is normalized by the number of

points |BR(j, k)| in the neighborhood BR(j, k), and, finally, α ∈ (0, π/2) denotes the phase

lag parameter. This particular setting is identical to that in [23] and has been mainly chosen for

the reason of simplicity of numerical computations. However, we expect that any lattice system

that is described by our thermodynamic limit equation (see Eq. (5)–(6) below) should display

similar phenomena. Corresponding numerical experiments (not shown) for triangular or even ir-

regular lattices confirm this. We also remark that coherence-incoherence patterns reported here

can be found for different non-local coupling schemes with exponential or sinusoidal coupling

functions, as have been used in [21, 6, 22].

Since chimera states are typically observed in coupled systems with large numbers of oscil-

lators, the thermodynamic limit N → ∞ becomes the most powerful tool for their investiga-

tion [1, 24, 25]. Indeed, with N → ∞ and a macroscopic coupling range r = R/N that

tends to a constant, it provides a macroscopic description where the chimera states appear

as stationary solutions revealing important macroscopic properties such as the size and shape

of the coherent region and the averaged phase velocities of oscillators. To explain this limiting

procedure in more detail, let us first rewrite system (1) in the equivalent form

Ψ̇jk(t) = ω + Im
(

Zjk(t)e
−iΨjk(t)

)

, (2)

where

Zjk(t) =
1

|BR(j, k)|

∑

(m,n)∈BR(j,k)

eiΨmn(t)e−iα
(3)

is the non-local mean field, given by the oscillators’ positions on the unit circle averaged over

the coupling range. Then we introduce for each oscillator Ψjk its normalized position

xjk := (j/N, k/N) ∈ S = [0, 1] × [0, 1] ⊂ R
2.

With increasing N these positions densely fill the unit square. Following the approach of Pikovsky

and Rosenblum [26], we may assume that for any point x ∈ S the oscillators in a small vicin-

ity of this point behave as a globally coupled sub-population. The collective behavior of the

3



sub-populations is then characterized by a local complex mean field z(x, t) defined according

to

z(x, t) := lim
N→∞

1

|BN
δ (x)|

∑

(j,k)∈BN
δ

(x)

eiΨjk(t), (4)

where BN
δ (x) = {(j, k) : |x − (j/N, k/N)| < δ} denotes a neighborhood of the point x.

This is asymptotically correct in a thermodynamic limit where together with N → ∞ the number

of sub-populations as well as the number of points in the neighborhood BN
δ (x) tend to infinity.

Interpreting the space variable x as a sub-population index [26], we obtain an integro-differential

equation for the effective dynamics of the local mean field z(x, t)

∂z

∂t
= iωz(x, t) +

1

2
Z(x, t) −

z2(x, t)

2
Z∗(x, t), (5)

where

Z(x, t) =
e−iα

πr2

∫

|x−y|<r

z(y, t)dy, (6)

and the symbol ∗ denotes the complex conjugate. Recall that x, y ∈ R
2 and the distance |x−y|

has to be taken on the torus R
2/Z

2. Note that (4) implies 0 ≤ |z(x, t)| ≤ 1 for all x and t. For

|z(x, t)| = 1 the oscillators around the point x are synchronized in phase, while |z(x, t)| = 0
corresponds to the local absence of phase synchronization. For a chimera state, |z(x, t)| = 1
identifies the coherent domain, while |z(x, t)| < 1 holds true in the incoherent domain.

In the framework of Eq. (5)–(6), a chimera pattern appears as a standing wave of the form

z(x, t) = ẑ(x)eiΩt,

where Ω is the common frequency of the coherent oscillators and ẑ(x) is a complex-valued

stationary profile. Note that, as a result of averaging procedure (4), ẑ(x) is a continuous function

of its argument x ∈ S. The coexistence of regions with coherent and incoherent motion is

reflected by the fact that |ẑ(x)| = 1 and |ẑ(x)| < 1 in the corresponding regions. The motion

of an oscillator in the coherent region is asymptotically given by

Ψjk(t) = Ωt + arg ẑ(xjk). (7)

In contrast to that, the phases of the oscillators in the incoherent region evolve irregularly and

their motion can not be represented by a continuous profile.

Since any chimera pattern is a statistically stationary solution of system (1) it inherits the ergod-

icity property that the stationary local space-average ẑ(x) can be approximated by the time-

average of the single oscillator located at the corresponding point x. More precisely, choosing a

reference oscillator Ψcoh from the coherent region of the pattern we obtain for large N

ẑ(xjk)ẑ(xcoh)
−1 = lim

T→∞

1

T

T
∫

0

ei(Ψjk(t)−Ψcoh(t))dt, (8)

where xjk = (j/N, k/N) and xcoh is the position of the reference oscillator Ψcoh. Eq. (8) is

useful for computing stationary mean field profile ẑ(x) numerically. In Fig. 2 we illustrate the
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limit N → ∞. Panels (a)–(d) show the phase distributions for increasing N . Their local av-

erages converge for N → ∞ to the thermodynamic limit (panels (e), (f)). The corresponding

stationary mean field profile ẑ(x) has been evaluated according to (8). The sharp pattern struc-

ture for this time averaged quantities is a clear indication for the stationarity of the underlying

coherence-incoherence pattern. In a similar way also the stationarity of the other patterns in

Figs. 1 and 6 has been checked.

Numerical search for stationary patterns: As it has been pointed out for the classical one-

dimensional chimeras ([1, 2]), such solutions exist only in a rather narrow parameter range

and require suitably prepared initial data to find them in a numerical simulation.

For our initial search for stationary patterns, we performed massive parallel simulations using

varying parameters α and R, and various types of initial conditions. We used initial data given

by the formula

Ψjk = g(j/N, k/N)ξ,

where ξ is a random variable uniformly distributed within the interval [−π, π] and g(x1, x2) is a

modulation function. For coherent and incoherent spots we used

gcoh(x1, x2) = 1 − exp(−10((x1 − 0.5)2 + (x2 − 0.5)2))

and

gincoh(x1, x2) = exp(−15((x1 − 0.5)2 + (x2 − 0.5)2)),

respectively. For stripes we chose

gstripe(x1, x2) = sin2(πx1).

Our numerics are based on the Runge-Kutta solver DOPRI5 that has been integrated by a soft-

ware for large nonlinear dynamical networks [27, 28], allowing for parallelized simulations with

different sets of parameters and initial conditions. By visual inspection of the simulation data,

we were able to find three types of stable stationary patterns in the parameter regime where the

classical one-dimensional chimeras can be found: an incoherent spot in a coherent background

and a coherent spot in an incoherent background, see Fig. 1 (a)–(c). Fig. 3 shows that inco-

herent spots (circles) appear for smallest values of α ≈ 1.3, followed by stripes (crosses) and

coherent spots (diamonds) for α closer to π/2. Note that the regions partially overlap, which

indicates the coexistence of patterns of different type.

Similarly to the classical one-dimensional chimera [2, 3], for all these patterns the relative size of

the coherent region varies for changing parameters α and R. In Fig. 4 we show the two branches

of coherent and incoherent spots, which appear for fixed R = 36 and varying parameter α.

Panel (c) shows that for increasing α the relative number of coherent oscillators, given by the

synchronization rate S, decreases monotonically. We display the biggest incoherent spot (a),

which loses stability before it starts to interact with the boundary. Panel (b) then shows the

biggest coherent spot. This Figure indicates in particular that there is no trivial transition regime

between these two types of patterns.

The stripe patterns could be considered as a trivial extension of the well-known patterns in one

dimension. However, their stability cannot be inferred from corresponding 1D results. Indeed,
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for varying aspect ratio of the domain, the stability of the stripe patterns changes. In Figure 5

we show different examples that illustrate how the stability is influenced by the length of the

stripe. In panel (a), we have chosen parameter values outside the stability region for the square

domain (given by blue crosses in Fig. 3). Anyhow, for a sufficiently short length, the stripe is

stable. This corresponds to the fact that also in 1D there is a corresponding stable pattern. In

panels (b) and (c), we have chosen parameter values inside the stability region for the square

domain. For a domain of 120×100, the stripe pattern is still stable (b). For larger aspect ratio, an

instability with respect to a longitudinal modulation of the stripe width appears. This instability

is subcritical, and panel (c) shows only a snapshot of a transient starting with a stripe initial

condition, but converging to a state without a chimera pattern.

In addition, for much smaller values of α and R we found a stable configuration of four spirals

(see Fig. 6 (a)). Note that the stationary pattern with a single spiral in an unbounded domain,

presented in [22] does not exist for periodic boundary conditions. However, as for spiral waves

in reaction-diffusion systems, an even number of counter-rotating spirals can satisfy periodic

boundary conditions. Fig. 6 (b) shows that the stationary spiral pattern (cf. Fig. 6) can be ob-

served in a rather distant region of the parameter space.

The numerical complexity to determine these regions by simulations is extremely high. We per-

formed simulations of system (1) with N2 = 10, 000 variables over a time intervals of length

T = 1000 for various initial conditions and parameters α and R. In principle, the stability

boundaries of the stationary patterns could be investigated more efficiently by a linear stability

analysis of the thermodynamic limit equation (5), subject to a numerical path-following approach.

However, due to the presence of continuous spectrum for the corresponding integral operator

(see [20] for details), standard algorithms fail here and further theoretical investigations are

required.

In addition to the stationary patterns that are presented here, we observed also indications for

various types of oscillatory and intermittent behavior. In particular, at the stability boundaries we

numerically observed a wealth of interesting dynamical phenomena. Moreover, for similar values

of α as in Fig. 3(a) and considerably smaller R, we cannot exclude the possible existence of

patterns with multiple stripes or spots. But seemingly their stability is very sensitive to the proper

choice of parameters and initial conditions, such that we were not able to detect them within this

study.
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Figure 2: Coherent spot pattern with R/N = 0.4, α = 1.54 for increasing N ; Snapshots of

phases Ψjk: (a) N = 25, (b) N = 50, (c) N = 100, (d) N = 200; thermodynamic limit

profile: (e) arg(ẑ(x)), (f) |ẑ(x)|.
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Figure 3: Parameter regions, where different types of stable stationary patterns from Fig. 1

have been observed in system (1) with N = 100: incoherent spots (circles), stripes (crosses),

coherent spots (diamonds).

Figure 4: (c): Synchronization rate S for stable incoherent spots (circles) and coherent spots

(diamonds) observed in system (1) with N = 100 and R = 36 and varying α. Panels (a) and

(b) show the biggest incoherent spot and the biggest coherent spot.
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Figure 5: Stripe patterns for different aspect ratio of the domain: (a) stable stripe for α = 1.54,

R = 36 in a domain of 50 × 100; (b) stable stripe for α = 1.44, R = 40 in a domain of

120 × 100; (c) unstable stripe for α = 1.44, R = 40 in a domain of 180 × 100 (snapshot of

transient, starting from a stripe initial condition).

Figure 6: Stationary pattern of four spiral waves with incoherent core. (a) Snapshot of

phases Ψjk. Parameters: N = 100, R = 10, α = 0.60. (b) Parameter region, where the

pattern has been observed.
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