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1. INTRODUCTION 

This paper is devoted to the investigation of equations modelling the migration of 
charged species in heterostructures via diffusion and reaction mechanisms. Such 
problems arise e.g. in semiconductor technology. An overview on model equations 
in this field may be found in Hofler and Strecker [10]. 

Our aim is to show that for such model equations the free energy along solutions 
decays monotonously and exponentially to its equilibrium value, i.e., that the models 
are correct from the thermodynamic point of view. The same result will be obtained 
for a discrete time scheme. The paper does not contain any existence results. These 
will be given in a forthcoming paper which will essentially make use of the physically 
motivated estimates of Theorem 4.1 and Theorem 5.3 below to find global a priori 
bounds which guarantee the existence of solutions. 

The main tool in our investigation~ is an estimate of the free energy by the dissi-
pation rate (see Theorem 5.2). Such estimates for reaction-diffusion equations for 
uncharged particles go back to Greger [9] .. For a special case with only one sort 
of charged dopants but using the local electroneutrality approximation analogous 
results have been obtained by Glitzky, Greger and Hiinlich [6], [7]. In this paper 
we present a genera:l result for systems with arbitrarily many charged species which 
enables us to prove the expo11ential decay of the free energy to its equilibrium value 
along trajectories of the system. 

The paper is organized as follows. In the remainder of this section we introduce 
the model which our considerations are based on, we give the notation and collect 
some basic results we need in our investigations. Section 2 is devoted to the pre-
cise analytical formulation of the problem including the basic assum~tions. It also 
contains the definition of the physically motivated energy functionals and of the 
dissipation rate. In Section 3 we invest_igate the steady states. Under the Slater 
condition (3.3) we find exactly one steady state in the sense of (3.1 ). This state is 
related to the minimizers of certain convex functionals. Our first energetic estimates 
leading to the monotonicity and boundedness of the-free energy along solutions of 
the system and to some conclusions concerning the boundedness of the electrostatic 
potential are collected in Sectio:Q. 4. Section 5 contains our main results. At first, 
for motivation, we show asymptotics for solutions which are known to be globally 
bounded from above and from below away from zero. Next, under the additional as-
sumption (5.1) concernin.g the structure of the reaction system we prove an estimate 
of the difference of the free energy to its e~uilibrium value by the dissipation rate 
(Theorem 5.2). After this we obtain the asymptotics for solutions without using 
global upper and lower bounds. This is the essential new result in this paper. In 
Section 6 we show that for an implicit time discretization scheme the monotonous 
and exponential decay of the free energy to its equilibrium value remains true. 
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Now let us introduce our mathematical model. We use the notation 

xi, i == 1, ... 'm - mobile species 
qi - charges 

Vi 

Uo :== :E~1 qi Ui 
Vo 

(i :==Vi+ qiVo 

a.·- eCi i.-

Ji 

concentrations 
- chemical potentials 
- charge density of mobile species 
- electrostatic potential 
- electrochemical potentials 
- electrochemical activities 

mass fluxes. 

The relation between concentrations and chemical potentials is assumed to be given 
by the Boltzmann statistics 

Ui = Ui evi, i = 1, ... , m, 

where Ui are reference densities. Note, that in the case of heteros~ructures these 
reference densities generally depend on the space variable. The driving forces for the 
fluxes ji are the gradients of the electrochemical potentials (i. Thus the expressions 
for the fluxes ji contain diffusion and drift terms 

with diffusion coefficients Di. 
We consider mass action type reactions of the form 

where ( o:, /3) is a pair of vectors ( o:1, ... o:m), (/31 , •.. , f3m) of stoichiometric coeffici-
ents which characterizes the reaction from :E~1 O:i xi to :E~1 /3i xi and its converse 
reaction. Thereby 'R, describes the finite set of volume reactions under considera-
tion. In principle, the reaction rate of a reaction (a, /3) is proportional to terms of 
the form 

m m II bfi - II bfi 
i=l i=l 

where bi means some activity of the i-th species. From the literature and also by 
discussions with I. Rubinstein, G. Wachutka and others we could not decide if here 
the chemical activities bi = evi or the electrochemical ones bi = ai should be used. 
Assuming that the charge during the reaction is conserved, i.e. (a - /3) · q = 0, the 
difference between both versions is seen by 

m m m m II eviai - II evif3i = e-a·qvo (II afi - II afi) 
i=l i=l i=l i=l 

which means that there occurs a factor depending on the electrostatic potential 
if a· q # 0. As in Gajewski and Groger [5] we prefer to use the electrochemical 
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activities but allow the relaxation constants to depend on the electrostatic potential 

~(a, vo) = L Ra13( a, vo)( ai - f3i), 
(o:, /3)E'R 
. m ,. m 

Ra13( a, vo) = ko:13( ·, vo) (IT a~1c - II .a~1c) 
(1.1) 

k=1 k=1 

such that both versions are involved. Furthermore there may occur reactions on the 
boundary r of n. Similar to ( 1.1) we write 

Rf (a, vo) = L R~13 ( a, vo)( ai - f3i), 
(o:, /3)E'Rr 

m m 

R~13(a,vo) = k;13(·,vo)( II a~1c - II a~1c) 
k=1 k=1 

where nr describes the finite set of the involved boundary reactions. By 

S := span{a - (3: (a,(3) E 'RU 'Rr} C Rm 

(1.2) 

·we denote the stoichiometric subspace belonging to the considered volume and 
boundary reactions. 

The basic equations are the continuity equations for all species and the Poisson 
equation for the electrostatic potential 

8ui '7 . D. Q at + v . Ji + .Lt.i = , i = l, ... ,m, o~ lR+ x n, 
. Rr v. Ji = i' i = 1, ... , m, on R+ x I'; 

m 

-\1. (e\lvo) = f + L qiUi on lR+ x n, 
i=l 

v. (e\lvo) + TVo =fr on R+ x r; 
Ui(O) = ui, i = 1, ... ,m, on n 

where e is the dielectric permittivity, T represents a capacity of the boundary and 
the functions f and fr are fixed source terms not depending on time. 

From the above continuity equations follows the continuity equation for the charge 
density 

8uo ~ aui -
8 

= L..Jqi-8 on R+ x n, 
t i=l t 

m 

uo(O) = Uo := L qi Ui on n. 
i=l 

Now we introduce several symbols and collect some basic .results which we shall use 
in our considerations. Let be u E Rm. Then u > 0, u ~ c means Ui > 0, Ui ~ c 
for i = 1, ... 'm. If a E z+ then uo: denotes the product TI~1 uf'-. For the scalar 
product in Rm we use a centered dot. If there is no danger of misunderstanding we 
shall write shortly LP instead of LP(D,, Rk), and H 1 instead of H 1(f2, JRk), k E N. 
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Since the regularity results of Greger [8] for the Poisson equation which we need 
in our investigations work in the 2-dimensional case only, we restrict ourselves to 
the case n C JR. 2. Thus we can additionally make use of some helpful results of 
Trudinger (12]. 

Lemma 1.1. Let n C JR. 2 be a bounded Lipschitz domain. 

i) For each/ > 0 there exists a c(!) such that Jn ~lvldx, fr elvldI' < c(1) if 
v E H 1 (n), llvllHl '5:. I· 

ii) If v E H 1 (i1) then elvl E V(n), elvl E V(r) for all p E [1, oo ). 

Proof. The first assertion in i) follows directly from Trudinger [12]. The proof is 
based on the imbedding result of Trudinger 

and on the .Taylor expansion of the exponential function. For the second assertion 
in i) we use additionally the following imbedding resu}t which can be derived from 
Kufner, John and FuCik [11] 

Let v E H 1 (i1), llvllH1 '5:. ·/· Then we estimate the boundary integral by 

£ e1"1dr ::::; E :, 1111 ll~•cr) 

::::; 1 + llvllL•(r) + c [; :, k llvll~;cLi 1 

CX> 1 k 1 
:s;i+q+c {;k!1kkh/2(k-1))-. 

The quotient criterion shows that this series converges and that the L1(r)-norm of 
elvl is bounded by a constant c(! ). Assertion ii) is a consequence of assertion i). D 

2. FORMULATION OF THE PROBLEM 

Now we give a precise analytical description of the problem we want to discuss in 
the paper. We define function spaces, operators and physically motivated quantities 
like energy functionals and the dissipation rate. 
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At first we fix basic assumptions with respect to the data of the problem. 

n c JR. 2 bounded, Lipschitzian; 

-

Ui E L00 (n), Ui 2:: c > 0, 
Ui E L00 (f2), Ui 2:: 0, 
Di E L00 (n), Di 2:: c > 0, i = 1, ... ,m; 

ka{3 E Car(n x IR ), kaf3( x, y) ::; c ec IYI if x E n, y E JR., 

kaf3(x,y) 2:: CR> 0 if x En, y E [-R,R], 
k£f3 E Car(r x IR), k£f3(x,y)::; ceclyl ifx Er, y E IR, 
-r ka.{3( x, y) 2:: cR > o if x E r, y E [-R, R], 
(a, /3) E R U nr C Z~ x Z~; 

q E zm, a· q == /3 · q; 

e E L00 (n), e 2:: c > 0, r E L00 (r), r 2:: c > 0, 

f E L 00 (n), fr E L 00 (r). 

(2.1) 

Remember that we have defined U0 := 2:~1 qi Ui. For the weak formulation of our 
problem we use the variables 

We introduce the function spaces 

X := H 1(n,JR.m+l), W :== {w EX: wt E L00 (il), i = 1, ... ,m} 

and define the operators A: W x X ~ X*, E0 : H 1 ~ (H1 )* and E: X ~ X* 
by 

(A( w, v ), v) := l { f D;U;e"''\l (,,; \/ (;;; 
0 i=l 

+ :E k.,,s( ·, v0 ) ( e"·Cw - .!·Cw) (a - ,8) · (;;} dx 
(a., /3)E7l 

+fr 2: k£{3( ·, vo) ( ea·Cw - ef3·Cw) (a - /3) . (;; dr, 
r (a, f3)E7lr 

(Ev, ii) := (E0v, iio) + l f U;e"'ii; dx. 
0 i=l 

The problem we shall be concerned with consists in findii:ig a solution to 
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Problem (P): 

u'(t) + A(v(t),v(t)) = 0, u(t) = Ev(t) f.a.e. t ER+, u(O) = U, 

u E H1~c(R+, X*), v E L~oc(R+, X), (P) 
vt E L~c(R+, L 00 (!l)), i = 1, ... , m. 

The 0-th components of these equations represent the continuity equation for the 
charge density and the Poisson equation, respectively. By 1 we denote the function 
with the constant value 1 on n. We define . 

m 

U := { u EX*: Uo = L qiui, ( (u1, 1), ... , (um, 1)) ES} (2.2) 
i=l 

and introduce its orthogonal complement 

uJ.. = { v Ex: V"( = 0, ( E SJ.. where (i =Vi+ qivo, i = 1, ... 'm }. 

Note that (ui, 1) = fo Ui dx if Ui E (H1 )* n L1(n). By integrating the continuity 
equations over (0, t) x n one easily verifies the following invariance property. 

Lemma 2.1. If ( u, v) is a solution to (P) then u(t) EU+ U for all t E lR+. 

Next we ·define the energy functionals. We introduce the functional q>: X ~ lR 
where 

l e fr r l m . q>( v) := { -IY"vol 2 
- fvo}dx + {-v~ - fr Vo }cir+ L Ui ( ev' - 1) dx. 

n 2 r 2 n i=l 

Because of Lemma 1.1 we have dom q> = X. Moreover, the functional 1> is con-
tinuous, strictly convex and Gateaux differentiable, hence subdifferentiable, and it 
holds 81> =E. By F: X* ~ 1R we denote its conjugate functional (see [2]) 

F(u) := 1>*(u) = sup{(u,v)-1>(v)}. 
vEX 

Then F is proper, lower semicontinuous and convex. It holds u = Ev = 8q>( v) if 
and only if v E 8F( u ). If u E X* and u = Ev then F can be calculated as 

F(u) == r {~IY"vol 2 + t {ui(ln ~~ -1) + Ui}}dx + r ~v~dr lo 2 i=l u, lr 2 

where Vo is the solution to E0v0 == u0 • The value F( u) can be interpreted as the free 
energy of the state u. We intend to find estimates for the values of the functional 
F along trajectories of the system (P). For this purpose an other physical quantity, 
the dissipation rate 

D(v) :==(A(v,v),v), v E W, 

will play an important role. 
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3. STEADY STATES 

With regard to Lemma 2.1 it seems to be useful to discuss the steady states for 
Problem (P) which satisfy the invariance property stated in Lemma 2.1. These 
steady states of (P) are solutions to 

A(v,v) = 0, u = Ev, u EU+ U, v E W. (3.1) 

We introduce a further functional q>0 : X ~ R, 

q>o(v) :== q>(v) + lu.L(v)- (U,v), v EX. 

This functional is proper, lower semi continuous and strictly convex. Because of 
Lemma 1.1 we obtain by the Moreau-Rockafellar theorem (see [2]) that 

8q>o(v) = Ev + 81uJ.(v) - U, v EX. 

At first, we show that the steady states (3.1) correspoii~ to the minimizers of the 
functional q> 0 on X. Indeed, let (u,v) be a solution to (3.1). Then D(v) = 0 
which yields v E UJ_, q>0 (v) < oo, 8luJ.(v) == U. Moreover we have u == Ev and 
u - U == u E U. Therefore we conclude that 0 = u - u - U E 8q>0 ( v) which means 
q> 0 ( v) == rhiD.wex q>0 ( w ). On the other side, if v is the minimizer of q>0 then v EU\ 
0 E 8q>0 ( v) and there exists u E 8lu.L( v) == U with 

Ev-u- U == o. (3.2) 

First, equation (3.2) yields 

lo UieVihdx - (ui, h) - lo Uihdx == 0 Vh E H 1(n). 

Since evi E 1 2(0), ui, Ui E L00 (f!) we find that ui E L2(f!) and therefore uo -
E~1 qiui E L 2(f!). Moreover from (3.2) we conclude that Eov0 == uo + Uo and thus 
we obtain the boundedness of the electrostatic potential v0 E L00 (D,) and of the 
chemical potentials Vi == (i - qivo E L00 (D,) since ( == const. Thus v E W and 
because of v E UJ_ we have A(v,v) == 0. Therefore (Ev,v) is a steady state in the 
sense of (3.1). 

In order to ensure the existence of steady states we need an additional assumption 
which represents some kind of a Slater condition: 

1 f U;it;dx > 0 Vit E Sl., it::'.'. 0, it ol 0. 
0 i=t 

(3.3) 

Theorem 3.1. Under the assumptions (2.1) and (3.3) there exists a unique steady 
state (u*,v*). The element v* is the unique minimizer of q> - (U, ·) on UJ_ while u* 
is the unique minimizer of F on U + U. Furthermore 

u*, v* E L00 (n, Rm+i), v* E L00 (r, Rm+i), 

U • > c > 0 a e on n a* ·- evt+qivo > 0 .; - 1 m i - . . .1£" i .- ' ., - ' ... ' . 
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Proof. i) There will be a unique minimizer for <l>o if <l>o(1l) ~ oo for llvllx ~ oo. 
Suppose the last property to be not fulfilled. Then there exist R E IR+, Vn E Ul. 
such that llvnllx ~ oo and 

<l>o( Vn) = <!>( Vn) - (U, Vn) ~ R. 
This implies 

c{ llvnoll~1 + f llv;tll~2 } - (U,vn) ~ R. 
i=l 

(3.4) 

We set Wn = llv:llx, then Wn ~ W in X and we obtain 

{II 2 ~ ,, . + 11
2 } R llUllx· c WnollH1 + ~ wni £2 ~ llvnlli + llvnllx ~ 0. 

Thus Wno ~ 0 in H 1 (n), w~i ~ 0 in L2(n). Therefore we can conclude that Wni = 
w~i - w~ ~ Wi in L2(0) which shows that -wi ~ 0. Since Wn E Ul., for T/ni := 
Wni + qiWno we have VT/ni = 0 and T/n E Sl.. Together with Wno ~ 0 in H 1(n) 
. we get Vwni ~ 0 in L2(n), Wni ~ Wi in H 1(n). Therefore we find wn ~ w = 
(0, w1 , ... , wm) in X. Since Ul. is closed in X we obtain (w1 , ... , wm) E Sl. and 
because of llwnllx = 1 it holds ( W1, . .. , wm) -:f. 0. · 
From (3.4) it follows that 

In the limit it results 
-(U,W)=-Jfu,w,dx~O 

0 i=l 

which contradicts to assumption (3.3). 
ii) Let ( u*, v*) be the steady state. Then v* E 8F( u*), 

F(u)-F(u*) ~ (u-u*,v*) =0 VuEU+U 

since v* E Ul.. If u EU+ U and F(u) = F(u*) then 

(u,v*) = (u*,v*) = F(u*) + <!>(v*) = F(u) + <I>(v*) 

such that u = Ev* = u*. Thus u* is the unique minimizer of F on U + U. 
iii) We have already shown that the minimizer v of the functional <l>o is bounded, 
Vi E L00 (n) n H 1(n), i = 0, ... , m. Since Vi E H 1(n) we can extend Vi to a function 
in HJ(IR2) with the same L00-bound. The absolute continuity leads to the L 00

-

estimate on the boundary r. D 

Remarks: 

i) The assumption (3.·3) is necessary for the existence of a steady state in the 
sense of (3.1), too. For the proof let (u*,v*) be a steady state, KE Sl., K ~ 0, 
"' "I- 0. Then u* = Ev*, u* E U + U, which yields 

0 < ui = ui + L ta13(ai - f3i), i = 1, ... ,m, f.a.e. x. En, ta{3 E 1R 
(a,{3)E7W'R.r 
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and therefore, since a - /3 E S for all (a, /3) E RU Rr, 

0 < J f u; x:;dx = J f U;x:;dx. 
0 i=l 0 i=l · 

ii) If U fulfils (3.3) and fJ EU+ U then fJ fulfils (3.3), too. 
iii) If ( u*, v*) is the steady state corresponding to U and (ii,*, ii*) is the steady 

state corresponding to fJ then (u*,v*) = (u*,v*) if and only if U - fJ EU. 

4. MONOTONICITY AND BOUNDEDNESS OF THE FREE ENERGY 

By means of the unique steady state ( u*, v*) we define the functional W: X* ~ IR, 

w(u) := F(u)- F(u*)- (u - u*,v*). ( 4.1) 

As a sum of F and an affine function the functional W is proper, lower semi continuous 
and convex and we have '1!( u) ~ 0, '1!( u*) = 0. Let us remark that for u E U + U 
(especially for u = u( t) if ( u, v) is a solution to (P), see Lemma 2.1) the last term 
. vanishes such that w( u) = F( u) - F( u*) represents the distance of the free energy 
to its equilibrium value F( u*). For u E X* with u = Ev we obtain 

'1.i(u) = J { f { u;(ln u! - 1) + ui} + ~IV(vo - v~)l 2 }dx +fr i(vo - v~)2dr 
o i=l u, . r 

where E0v0 = uo, E0v~ = u~, and for such u we get 

c {~II~ -Jutll:, + llvo -v~ll~1} ~ \J!(u) 

~ c { f llu; - uill~2 + llvo - v~ll~1 } ( 4.2) 
i=l 

~ c{ ~ llu; - uill~2 + lluo - u~ll(H')' }· 
If ( u, v) is a solution to (P) then v( t )-v* E 8'1! ( u( t)) f.a.e. t E IR+ and by the Brezis 
form1:1la [1] we obtain 

e~t2 w( u( t2)) - e~tl w( u( t1)) 

= f e>.' {A\]! ( u( s)) + ( u' ( s), v ( s) - v •) } ds 

= f e>-•{ A\J!(u(s)) - (A(v(s),v(s)),v(s)-v*)} ds 

= f e>-•{ A\J!(u(s)) - D(v(s))} ds · 

( 4.3) 

since (A( v, v ), v*) = 0 because of v* E Ul.. Now we set in ( 4.3) .A = 0. Since 
D(v) ~ 0 and 'W(u) = F(u)- F(u*) for solutions to (P) we find 

Theorem 4.1. We assume (2.1) and (3.3). Let (u,v) be a solution to {P). Then 

F(u(t2))::::; F(u(t1)) for t2 ~ t1 ~ 0, 

9 



i.e., F decreases monotonously along any solution to (P). Additionally, 

F(u(t)) ~ F(U) Vt ~ 0, llD(v)lb(1.+) ~ F(U) - F(u*), 
m 

llvo -v~ll1ex>(J.+,Hl) + L llui(ln(ui/ui)-1) + uill£ex>(J.+,Ll) ~ c 
. i=l 

where c depends only on the data. 

Lemma 4.1. We assume (2.1) and (3.3). Then there exists a constant c > 0 such 
that for any solution ( u, v) to (P) 

llvoll£ex>(J.+,£ex>(O))' llvoll£ex>(J.+P·Q(r)) ~ c. 

Proof. Since by Theorem 4.1 the L1-norms of udn Ui are bounded for all t we have 
that also for the right hand side u0 of the Poisson equation E0v0 = u0 the L 1-norm 
of u 0 ln ju0 j is bounded for all t. Thus regularity results of Greger [8] for elliptic 
boundary value problems imply that 

llvo 11£ex>(J.+,Lex>(O)) ~ c. 

The estimate on the boundary is proved as in Theorem 3.1. 0 

5. EXPONENTIAL DECAY OF THE FREE ENERGY 

In what follows we are looking for sharper estimates which express the exponential 
decay of the free energy to its equilibrium value along ~rajedories of the system 
(P). First let us start with a.,result for nice solutions which are a priori known to be 
bounded from above and from below away from zero. 

Theorem 5.1. We assume (2.1) and (3.3). Let (u,v) be a solution to (P} such that 
1 
R~ui(t,x)~R~.e. onlR+xn, i=l, ... ,m, R>O. 

Then there exists a .:\( R) > 0 such that 

F(u(t)) - F(u*) ~ e-).(R)t(F(U) - F(u*)) Vt E lR+ 

i. e., F decays exponentially to its equilibrium value along such a solution. 

Proof. i) Under the assumptions of Theorem 5.1 we have 

Vi= ln ~i' lvil ~ c(R), lui - uil ~ c(R) lvi - vii a.e. on lR+ x n. 
Ui 

ii) By monotonicity arguments we obtain 
m · m 

c(R) L llui - uill12 ~ 1 L Ui ( e11
i - e11i)(vi - v;) dx 

i=l 0 i=t · 

~ (Ev - Ev*,v -v*) = (u - u*,v -v*). 

Since S.l. C H 1(f!, JR.m) we can use the orthogonal decomposition 

( = (' + (", (' E H1(f!,Rm) 8 S.l., (" E SJ... 
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Because of u - u* EU and(* E SJ.. we continue our estimate by 
m 

(u - u*,v -v*) = (uo - u~,vo -v;) + L(ui - u;,vi -vi) 
i=l 

m m 

=·l:(ui - u;, (i - (t) = i L(ui - ui)(1 dx 
i=t 0 i=t 
m 

::; L llui - ui 11£2 11'111£2 · 
i=l 

Thus we get I:~1 llui - uillL2 ::; c(R) I:~1 ll(IllL2 and therefore from ( 4.2) it follows 
that 

m 

'11 ( u) ::; c( R) L II (1 II ~2 • 

i=l 

iii) The dissipation rate D( v) may be estimated from below by the following expres-
sion 

iv) One easily proves this Poincar6-like inequality: There exi~ts a constant Co > 0 
such that for all (' ~ H 1(D., Rm) 8 SJ.. 

f11vc11~>+i L ((a-,8)-('}2dx 
i=l O (cx,/3)E'R. 

+ /, L ((a - ,8) · (')2 dr 2:: Co£: llCII!~,. 
r (a,,B)e'R.r i=l 

v) Combining the results of the previous steps we have the existence of a constant 
c( R) such that 

'll(u(s))::; c(R)D(v(s)) f.a.e. s ER+. 

Using now ( 4.3) with .>.. = c( ~) the proof is complete. 0 

To prove such asymptotic results for solutions to (P) where no upper and lower 
bounds are a priori known we need an additional assumption concerning the struc-
ture of the reaction system. At first we define the set M 

M := {a ER~, Vo E H1(D.): aa = a13 V(a.,/3) ER u nr, 
(Eovo, u1, ... , um) EU+ U where Ui := Ui ai e-qivo, i = 1, ... , m }. 

If (u,v) is a steady state of (P) in the sense of (3.1) then D(v) = 0, \7( = 0 
and ( E SJ... Defining ai := eCi = const > 0 we obtain that aa = al3 for all 
(a,/3) E RU Rr. Furthermore it holds (E0v0 ,u1 , ... ,um) EU+ U. Thus a > 0 
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and (a, v0 ) E M. On the other hand, if (a, v0 )' E M and a > 0 then defining 
Vi := ln ai - qivo, Ui := Ui ai e-qivo, i = 1, ... , m, u0 := E0vo we find that ( u, v) is a 
steady state of Problem (P) in the sense of (3.1 ). 

Obviously, if M contains elements (a, v0 ) with a f/:. int JR.+ then there is no corre-
spondence of such an element to a steady state ( u, v) of (P). This is caused by the 
fact that a vector u some components of which vanish on sets of positive measure 
does not lie in the image of the operator E. In the proof of the following theorems 
we need this correspondence between the steady state and the set M, therefore we 
shall suppose that 

(5.1) 

From this additional assumption it follows M = {a*, v~} and we are able to prove. the 
following estimate of the free energy by the dissipation rate which is the essential 
key for obtaining the exponential decay of the free energy along any solution to 
Problem (P) . 

. Theorem 5.2. Let (2.1), (3.3) and (5.1) be satisfied. Then for every R > 0 there 
exists a c R > 0 such that 

F(Ev) - F(u*)::; cRD(v) 

for all v E MR where 

MR:= {v E W: F(Ev)- F(u*)::; R, Ev EU+ U}. 

Proof. i) Let v E MR. Then the potentic~Js and activities have the following proper-
ties: 

llvollLoo(n) ::; c(R), vt, (t E L00 (n), ai E H1(n), ai > 0, V ai/ at E H 1(n). 
Since (* = const, (* E Sl. and ea·C = ef3·C we find for th~ dissipation rate defined 
in (2.3) that 

D(v) = f { f Diuievi-vllV((i -(;)1 2 

Jn i=l 

+ :E kafl(·, va) ea·(' (ea-((-(•) - efl-CH'l) (a - /3) · ( ( - (*)} dx 
(a, f3)E'R. 

+fr L k~f3(·,v0) ea·C (ea-(C-C) - ef3·(C-C))(a -/3). ((- (*) dr. 
r (a,,B)E'R.r 

Because of 

evi-v; IV( (i - C)l2 = e-qi(vo-vo) ec,-q IV( (i - C)l2 ~ c e-qi(vo-vo) Iv../ eCi-C; 12' 

(eZl - ez2) (z1 - z2) ~ c I# -y&;r 
we find a ea( R) > 0 (depending on R since the L 00-norm of v0 depends on R) such 
that 

D(v) ~ eo(R)D(a) (5.2) 
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where 

{ { m I ~12 m ~a.· m {3· 2} D(a) =Jn ?: \lyai/a; + L [p yai/ai i - n .jai/a; '] dx 
i=l (a.,f3)E'R. i=l i=l 

+fr L [ fi Ja;/ a;"' - ft Ja,/ at'·? dr. 
r (a.,{3)E'R.r i=l i=l 

Using the variables Wi : = .j ai /a; - 1 and a binomial expansion we get 
m 

D(a) = L ll\lwill~2 + Q(w), Q(w) := Qi(w) + Q2(w) 
i=l 

with 

where 
m m 

po=max{3,2 max :Lai, 2 max L,Bi}·· 
(a.,{3)E'R.U'R.I' i=l (a.,J3)E'R.U'R.I' i=l 

On the other hand, for u := Ev we find 

.jui/u; - 1 = e-qi(vo-v0)/2 Wi + e-qi(vo-v0)/2 - 1, i = 1, ... 'm. 

By ( 4.2) this together with u - u* E U yields 
m m 

c( R) { L llwi 11~2 + llvo - v~ 11~1 } :::; '11( u) :::; c L llui - ui 11~2, · ( 5.3) 
i=l i=l 

It remains to show that for every R > 0 there exists a CR > 0 such t_hat 

w( u) < cR D( a) \fv E MR, v =f. v* (with u, a corresponding to v ). 

ii) Suppose this assertion to be false. Then there exist R > 0 and sequences Cn E 
lR, Vn E MR with corresponding Un, an such that Cn ~ oo and 

R ?:. '11( Un) ?:. enD( an) > 0. 

Set An := .jw( un) and Wni := / ani/ a; - 1. Then 
m 

R?:. .Xn2 ?:. en{L llVwnill~2 + Q(wn)}. (5.4) 
i=O 

First, this implies \lwni ~ 0 in L2 , and since llwnll~2 :::; c(R) ( cf. the left hand side 
of (5.3)) we may assume that Wn converges in H1 to a constant vector w E JRm. 
Next, Fatou's lemma ensures that 

Q ( w) :::; lim inf Q ( Wn) = 0 
n-1-00 

and defining ai := ai(l + wi)2 , i = 1, ... , m, we obtain 
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Again the left hand side of (5.3) gives 

Thus, at least for a subsequence, Vno ~ Vo in H 1 , Vno --? v0 in L2 , L2 (I'), Eovno ~ 
Eovo in ( H 1 )*. Defining 

A A q•vA * ai q•(vA v*) o u· ·- ii·a·e- i 
0 = U· -e- i o- o i - 1 m 

' .- ' ' ' a'!' ' - ' ••• ' ' 
' 

we get 

and Evn ~ ( E0v0 , u1 , ... , Um) in X*. Since U + U is weakly closed we find 

(Eovo, u1, ... , um) EU+ U. 

By the definition of M we obtain 

(a,vo) EM. (5.5) 

Now assumption (5.1) implies that a= a*, v0 = v~ and consequently, u = u*. From 
the right hand side of (5.3) we then conclude that An --? 0 . 

. . . ) W t b Wni Uni - ui . Vno - V~ f 
111 e se ni := An ' Yni := An ' i = 1, ... 'm, Zn := An Because 0 

(5.4) we get 

1 m 2 1 - ~-2= llY'bnillL2 + Qi(bn) + ~ Q2(An bn)• 
Cn i=l n 

This implies V'bni --? 0 in L2 and since llbnll~2 :::; c(R) (see (5.3)) we may assume 
that bn converges in H 1 to a constant b E Rm. Moreover 

).~ 2 IQ2( ).n bn) I '.S C ( ).n II bnll;,.1 + ).n"°-2 IJbnll~l) -4 0. 

Therefore Qi(b) = 0 which means b E S1-. From (5.3) we have llznllH1 :::; c(R) such 
that, for a subsequence, Zn ~ z in H 1 , Zn --? z in L2, L 2(I') as well as Eozn ~ E0z 
in ( H 1 )*. Defining 

we obtain 

and (Eoz - EoO, Y1, ... , Ym) EU since (Eozn - EoO, Yni, ... , Ynm) E U. Because of 
b E Sj_ we find (z, 2b1 - qiz, ... , 2bm - qmz) E Uj_ and from this 
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This implies z = 0, b = 0, consequently y = 0. On the other hand, because of the 
right hand side of (5.3) it holds 

m 

1 ~ <~= llYnilli2 ~ 0 
i=l 

which yields the contradiction. D 

Theorem 5.2 gives the possibility to prove asymptotics for any solution. 

Theorem 5.3. Let (2.1 ), (3.3) and (5.l) be satisfied. Then there exists a A > O 
such that 

F(u(t)) - F(u*) ~ e->.t (F(U) - F(u*)) Vt ~ 0, (5.6) 
for any solution ( u, v) to {P), i. e., F decays exponentially to its equilibrium value 
along any trajectory. Moreover for some c > 0 depending only on the data it holds 

II Ju;(t)fu: - 1ili,
2

, II J a;(t)/ai - lL, llv0(t) -v~llH' ::; c e->.t/2
, 

llui.(t)/ui -111£1:::; ce->.t/2
, i = 1, ... ,m, Vt ~ 0. 

(5.7) 

Proof. Let ( u, v) be any solution to (P) and R := w(U). Then v( s) E MR f.a.e. s 
and 

w(u(s)) ~ CRD(v(s)) f.a.e. s. 

Setting now A == ~ in ( 4.3) we obtain (5.6) which me~ns the exponential decay 
CR 

of the free energy to its equilibrium value along this trajectory.· The first three 
inequalities of (5. 7) then follow directly from ( 4.2) and (5.3), respectively. For the 
last estimate in ( 5. 7) we· use 

llu;(t)/ui - lib ::; llJu;(t)/ut - illv llJu,(t)/ui + {, 
and the global boundedness of the L2-norm of .;:;:w (see Theorem 4.1). D 

Corollary 5.1. Let (2.1), (3.3) and (5.l) be satisfied. Then there exists a c > 0 
such that 

llva - v;llL2(J.+,H1), !Iva - v;llL1(1.+,L1), llva - v;llL1(1.+,L1(r)) ~ c, 

llui/u: - l llL1(1.+,L1), llui/u: - 111£1(1.+,Ll(r)) ~ c, i = 1, ... , m, 
for any solution ( u, v) to (P). 

Proof. The first three estimates follow directly from the third inequality of (5.7) by 
taking into account the continuous imbedding of H 1 (0,) i;rito L1(0,) and L1 (I'). For 
the fourth estimate we use the last inequality of (5.7). By the L 00 -estimates for v0 

and v~ we have 

lui/u; - ll ~ c(lai/a; - ll +Iva - v;I) 
~ c(IJaifai -112 + IJai/ai -11 +Iva -v;I), 
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because of uifui. E H1 therefore 

[Ju;fut - llfvcr; ~ c{ [[Ja;/ai -{, + llJaif ai -1JC + lfvo - v~[[H, }. 
Since by Theorem 4.1 llD( v )11£1(1.+) :=:; c we find by (5.2) that the norm of .j ai/ ai-1 
is bounded in L2 (IR+, H 1 ). This together with (5. 7) proves the last inequality of the 
corollary. D 

Remark. The proof of the exponential decay of the free energy to its equilibrium 
v~lue along solutions as in Theorem 5.3, i.e. without using the global upper and lo-
wer boundedness of the concentrations, for reaction diffusion processes of uncharged 
particles may be found in Groger [9]. For a special reacti~n diffusion model arising 
in semiconductor technology which uses only one sort of charged dopants as well as 
the local electroneutrality approximation analogous estimates have been obtained 
in Glitzky, Groger and Hiinlich [6], [7]. Gajewski and Gartner [3] have proved such 
results for the van Roosbroeck equations including magnetic field effects, too. 

Remark. There are reaction systems where assumption (5.1) is not fulfilled (see 
[9] fo:r examples). Whether the assertions of Theorem 5.3 are valid only assuming 
(3.3) remains an open question. 

Remark. If the reaction diffusion system (P) does not fulfil the assumption (5.1) 
there is at least the possibility to prove the exponential decay of the free energy to· 

·its equilibrium value under the assumption that the initial value U lies sufficiently 
near to the equilibrium value u*. Let d be defined by 

d := inf { F( u) - F( u*) I Ui = Uiaie-qivo, i = 1, ... , m, 

(a,vo) EM, a E 8R~}. 

Note that inf 0 = +oo. Therefore, if (5.1) is fulfilled then M corresponds to the 
steady state of (P) and d = +oo. We now replace (5.1) by the assumption, that for 
the given initial value U 

F(U) - F( u*) < d. (5.8) 

Then Theorem 5.2 may be reformulated as follows. 

Theorem 5.4. Let (2.1), (3.3) and (5.8) be satisfied. Then for every R belonging 
to the interval (0, F(U) - F( u*)] there exists a CR > 0 such that 

F(Ev)- F(u*) :=:; cRD(v) 

for all v E MR where 

MR:= {v E W: F(Ev)- F(u*) ~ R, Ev.E U + U}. 
Proof. The proof of Theorem 5.2 must be changed in the following way. Up to 
(5.5) the proof is exactly the same. We arrive at (a, v0 ) E M. Since W is lower 
semicontinuous, Uni -7 Ui in L 2(11), we obtain from w( Un) ~ R < d that 

w( u) ::; lim inf w( Un) ::; R < d. 
n-+oo 
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Thus (a, vo) t/:. ( aR+ x H 1(n)) n M and therefore a= a*, Vo = v~, u = u*. The 
following argumentation is exactly the same as in Theorem 5.2. D 

The results of Theorem 5.3 and its corollary remain true, too, if the assumption 
(5.1) is replaced by (5.8). 

Remark. The results of this paper, Theorem 4.1 and Theorem 5.3, can be used 
to prove a priori estimates and the existence of solutions to (P). A priori estimates 
for the concentrations u from above can be found by the first energetic estimate 
Theorem 4.1 and Moser technique (see [4] for the van Roosbroeck system and [5] 
for general systems as considered here). In a forthcoming paper we shall prove 
the existence of a priori lower bounds for the concentrations u away from zero (in 
[5] this property seems to remain unproved since in contrary to [4] no Dirichlet 
boundary conditions as well as more general reaction terms are involved). The 
integrability properties of Corollary 5.1 following from Theorem 5.3 enable us to 
show that In ui, i = 1, ... , m, may be estimated in L00 (IR+, L1) by a constant only 
depending on the data. By Moser iteration the desired lower bounds are obtained. 

6. DISCRETE-TIME PROBLEMS 

Our aim is to approximate problem (P) by a discrete-time problem which saves the 
important property of monotonous and exponential decay of the free energy along . 

. trajectories of the discrete-time system to its equilibrium value. This means, we 
look for a discrete-time problem which is correct from the thermodynamic point of 
view, too. 

We assume that we are given sequences of partitions { Zn}neN of IR+, 

Zn = { t~, t~, ... , t~, ... } , t~ = 0, t~ E R+, t~- 1 < t~, k E N, t~ -7 +oo as k -7 oo. 

Let 
hk ·- tk tk-1 sk ·- (tk-1 tk] -h ·- hk n .- n - n ' n .- n ' n ' n .- sup n. 

kEN 

For a given partition Zn of IR+ and a given Banach space B we introduce the space 
of piecewise constant functions 

C,,(lR+, B) := { u: lR+-----> B : u(t) = uk Vt ES!, uk E B, k EN}· 

We define the difference operator .6.n : On(R+, X*) ----> Gn(R+, X*) by 

1 (.6.nu)k := hk (uk - uk-1), uo := U 
n 

where U is the initial value of problem (P). For n EN, we investigate the problem 

.6.nUn +A( Vn, Vn) = 0, Un = Evn, 
Vn E On(R+, X), v~i E On(R+, L00 (n)), i = 1,. .. , m. 

This fully implicit scheme can be written in more detail as 

k hkA( k k) k-1 k E k k W k w o U Un + n vn, vn = Un ' Un = vn, vn E ' E i~, Un = . 
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First, let us note that the discrete-time problems (P n) fulfil the same invariance 
property 

Un ( t) E U + U Vt E JR.+ (6.1) 

as the continuous problem (P). This assertion follows easily by integrating the dis-
crete equations over (0, t~) x n, k E N. Furthermore, the discrete-time problems 
(P n) have the same steady state ( u*, v*) as the continuous problem (P). 

Theorem 6.1. We assume (2.1) and (3.3). Leth > 0 be given and let Zn be any 
partition of R+ with hn :::; h. Then the free energy decreases monotonously along 
any solution (Un, vn) to the discrete-time problem (Pn}, i: e., 

F(un(t2)):::; F(un(t1)):::; F(U) for t2;:::: t1;:::: 0. 

Additionally, if (5.1) or (5.8) is satisfied then there exists a.:\ > 0 such that 

F(un(t)) - F(u*):::; e->.t(F(U) - F(u*)) Vt;:::: 0 

for any solution (Un, vn) to {Pn}· 

Proof. Let (un,vn) be a solution to (Pn)· Then from (6.1) we have 

w( Un) = F( Un) - F( u*). 

Since u~ = Ev~ E 8<I>( v~) we find v~ E 8F( u~) which implies 

(u~ - w, v~) ;:::: F(u~) - F(w) Vw EX*. 

Let k > j ~ 0 and .:\;:::: 0. Then we conclude that 
. k 

e>. t; w( u~) - e>- t~ w( u~) = I: ( e>. t~ w( u~Y- e>. t~-l w( u~-1 )) 
l=i+1 

k L { ( e>.t~ - e>.t~-
1

) w( u~) + e>.t~-1 

( F( u~) - F( u~-1 ))} 
l=i+l 

k 
< L { e>.t~-1 

( e>.h~ - 1) w( u~) + e>.t~-i (u~ - u~- 1 , v~)} 
l=i+l 

k :::; L { e>.t~-1 e>.h .:\ h~ '11( u~) - e>. t~-1 h~ (A( v~, v~), v~)} 
l=i+l 

k :::; L h~ e>.t~-l { e>.h A w(u~) - D(v~)}. 
l=i+l 

Now, in the discrete problems the last inequality is used instead of the Brezis formula 
( 4.3). At first, since the dissipation rate is nonnegative, by setting .:\ = 0 we obtain 

w( u~) :::; w( u~) :::; w(U) Vk ;:::: j ;:::: 0 

which means 
F(un(t2)):::; F(un(t1)):::; F(U) Vt2 > t1;:::: 0. 

Next, set R := w(U). Since Un fulfils the invariance property (6.1) and Un= Evn, 
the v~, l E N, belong to the set MR defined in Theorem 5.2 and Theorem 5.4, 
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respectively. If we now choose A > 0 such that .A e>.hcR ~ 1, these theorems imply 
that 

'll(u~) ~ e->.t~'ll(U) Vk EN. 

Then the second assertion of Theorem 6.1 follows easily. D 

Acknowledgement. The authors are indebted to K. Greger for helpful advices 
and discussions. 
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