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Abstract

We study the emergence of patterns in a diffusively coupled network that undergoes
a Turing instability. Our main focus is the emergence of stable solutions with a single dif-
ferentiated node in systems with large and possibly irregular network topology. Based on
a mean-field approach, we study the bifurcations of such solutions for varying system pa-
rameters and varying degree of the differentiated node. Such solutions appear typically
before the onset of Turing instability and provide the basis for the complex scenario of mul-
tistability and hysteresis that can be observed in such systems. Moreover, we discuss the
appearance of stable collective patterns and present a codimension-two bifurcation that
organizes the interplay between collective patterns and patterns with single differentiated
nodes.

1 Introduction

In his seminal work on the chemical basis of morphogenesis [1], A. Turing pointed out that stable
equilibria of certain chemical reaction kinetics can destabilize under the influence of a diffusive
coupling. In the last decades, this fundamental paradigm for the emergence of dissipative pat-
terns has been applied successfully for the explanation of various phenomena in continuous
media, e.g pigmentation of sea shells, gas discharges, aggregation of bacteria, vegetation pat-
terns and many others. As already mentioned in [1] and later studied in more detail by Othmer
and Scriven [2], the same instability mechanism applies not only to continuous diffusive media,
but also to the case of discrete units with a diffusive coupling between them, as they can found
e.g for biological cells [2], chemical reactors [3, 4], or metapopulation dynamics [5, 6].

Dynamics on complex network structures have been studied already extensively in the context
of synchronization, see [7, 8] and numerous references therein. In this context however, the main
focus is typically on the emergence of uniform behavior of non-uniform units,that are coupled in
various, possibly large and heterogeneous network structures. In contrast to that, there are up
to now only a few studies on the emergence of non-uniform behavior in networks of identical
units. For networks of coupled oscillators the emergence of diffusion-induced instability has
been reported in [9]. Earlier studies of activator-inhibitor systems have been mostly restricted to
regular networks or networks of small size [4].

Recently, Nakao and Mikhailov studied [10] the emergence of Turing patterns in large irregular
networks. Performing extensive numerical simulations for a system with Mimura-Murray reaction
kinetics on a large scale-free network, Nakao and Mikhailov demonstrated that in contrast to
classical diffusion in continuous media, the Turing instability in such network systems exhibits
the following peculiar behavior:
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� The emerging stable patterns are very different from corresponding unstable linear modes
(in the classical situation, both the modes and the patterns are stationary waves with sim-
ilar wave numbers).

� There exist stable patterns already before the homogeneous equilibrium undergoes the
Turing instability, i.e. the bifurcation is subcritical.

� There is a huge variety of coexisting patterns, showing multistability and hysteresis.

In this paper, we will show that a key to understand these phenomena is the existence of stable
localized patterns with single differentiated nodes. In Section 3 we present an analytical ap-
proach to solutions with a single differentiated node, that is based on the mean field approxima-
tion introduced in [11] and used also in [10]. In this framework we will explicitly calculate the rele-
vant bifurcations and derive conditions for the emergence of such non-homogeneous solutions.
In particular, we will show that these specific solutions generically bifurcate subcritcally from the
homogeneous state, i.e they represent stable patterns that exist before the homogeneous state
undergoes the Turing instability. In the following sections we will study a codimension-two bifur-
cation that reorganizes the solutions with a single differentiated node. In a first step, in Section
4, we will define and localize this bifurcation in the reduced mean-field approximation. Then, in
Section 5, we will discuss its implications for the full system and demonstrate in a numerical
example that for such parameter values we can indeed observe a supercritical bifurcation of a
collective Turing pattern.

We start from a system of the form

u̇i = f(ui, vi) +D
N∑
j=1

Lijuj (1)

v̇i = g(ui, vi) + σD
N∑
j=1

Lijvj (2)

TheN×N matrix L is the graph-Laplacian of the underlying network withN nodes, a symmet-
ric matrix with entries Lij = 1 if the nodes i and j are connected, Lij = 0 for not connected
nodes, and Lii = −di, where the degree di is the number of nodes connected to node i. The
reaction kinetics are given by the nonlinear functions f and g. The diffusion constants of both
species differ by a factor σ, which is typically used to unfold the Turing bifurcation.

At this point, we do not make any specific assumptions on the structure of the network. As we
will see later, our results will be applicable to a rather broad class of networks. In our numerical
examples in Sections 3 and 5 we will use a scale free network of rather moderate size (N = 20).

As a prototype for a reaction mechanism that displays a Turing instability, we will use the Mimura-
Murray kinetics

f(u, v) =
au+ bu2− u3

c
− uv (3)

g(u, v) = uv − v − dv2 (4)
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with the default parameter values

a = 35, b = 16, c = 9, d = 2/5 (5)

as in [10].

2 Turing instability

The main feature of the Turing instability is that a stable equilibrium (ū, v̄) of the reaction kinetics
u̇ = f(u, v), v̇ = g(u, v) is destabilized by the diffusive spatial interaction. The bifurcation
condition can be calculated from a dispersion relation λ(β) that is obtained for each fixed value
of of the bifurcation parameter σ from

det(Jβ(ū, v̄)− λId) = 0, (6)

where

Jβ(ū, v̄) =

(
fu − β fv
gu gv − σβ

)
,

and fu, fv, gu, gv denote the partial derivatives of the reaction kinetics at the fixed point (ū, v̄).
Recall that the stability of (ū, v̄) is reflected by the fact that the eigenvalues λ(0) have neg-
ative real part. The onset of Turing instability occurs, when for some σ = σT a curve of real
eigenvalues λ(β) touches zero at β = βT from below, which leads to the bifurcation conditions

λ(βT ) = λ′(βT ) = 0, λ′′(βT ) < 0. (7)

In the classical case of diffusion in a continuous medium, the parameter βT = κ2D selects the
critical wave number κ for a given diffusion length D. Here, in the same way, for given D the
critical network mode is determined, inserting

βT = −ΛcD

where Λc is the eigenvalue of the graph-Laplacian corresponding to the critical mode. Note that
all eigenvalues Λ of the graph-Laplacian are real and negative, except for the zero eigenval-
ues, corresponding to uniform modes on the connected components of the network. From the
bifurcation condition (7) one can derive

σT =
1

fu2
(fugv − 2fvgu + 2

√
fvgu(fvgu − fugv) (8)

βT =
gv + σTfu

2σT
, (9)

see e.g. [10]. In particular, for any nontrivial network mode with network eigenvalue Λ, we can
adjust D = −βT/Λ such that this network mode destabilizes exactly at the Turing point σ =
σT .

In the following, we will assume that for the reaction kinetics f , g there is a stable equilibrium
(ū, v̄) and positive values σ = σT and β = βT at which (ū, v̄) undergoes a supercritical Turing
bifurcation. For the Mimura-Murray kinetics (3)–(4) with the parameters (5) this occurs for the
equilibrium (ū, v̄) = (5, 10) at σT ≈ 15.507, βT ≈ 1.5377.
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Figure 1: Stationary solutions of system (10)–(11) with reaction kinetics given by (3)–(5) and
varying parameter σ. (a) For β = βT ≈ 1.54 transcritical bifurcation at the Turing instability
σT and fold. (b) For β = βS ≈ 1.08 the fold occurs at the minimal value σS . (c) For other
values of β both the fold and the transcritical bifurcation occur for values of σ larger than σT
and σS , respectively. (d) Fold curve in the (β, σ)-plane; region between fold curve and σ = σT
(shaded), where stable SDN-solutions can be expected.

3 Dynamics of a single node

We consider now the dynamics of a single node (uk, vk) under the assumption that all other
nodes are fixed at the stable equilibrium of the reaction kinetics

(ui, vi) = (ū, v̄) for all i = 1, . . . N, i 6= k.

Inserting this into the equations (1)–(2) we obtain the single node system

u̇k = f(uk, vk) + β(ū− uk) (10)

v̇k = g(uk, vk) + σβ(v̄ − vk). (11)

The parameter β, which is given by β = dkD, where dk is the degree of the network node
k, will be used as an additional bifurcation parameter; in this way we can trace the behavior
of nodes with varying degree within a single network. The system (10)–(11) coincides with the
mean field approach from [11] applied to the homogeneous solution and we will discuss below
its relevance for the full network dynamics.
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In a first step, we study the fixed points of system (10)–(11) and their stability. Obviously, the
fixed point of the reaction kinetics (uk, vk) = (ū, v̄) is a fixed point of this system, independent
on the choice of the parameters β and σ. Its stability is again determined by (6). Note that
the stability of (ū, v̄) that we assumed for β = 0 is retained for σ = 1 and all β > 0. For
increasing σ the condition (7) indicates the appearance of a zero eigenvalue λ(β) at σ = σT
and β = βT . Due to the fact that the equilibrium (ū, v̄) does not depend on the bifurcation
parameter σ, this zero eigenvalue leads here generically to a transcritical bifurcation (cf. Figure
1(a)). According to (7), there are values of β with λ(β) = 0 also for σ > σT inducing further
transcritical bifurcations for values β different from βT . The corresponding values of σ can
(locally) be written as a function σTC(β), which attains its minimal value σT exactly at βT (cf.
Figure 1(c)).

Now we study the branch of stationary solutions bifurcating from the branch (uk, vk) = (ū, v̄)
in the transcritical bifurcation. For given reaction kinetics, e.g. (3)–(5), it can be easily computed
numerically. Figure 1(a) shows the typical situation, where the part of the branch that emanates
unstable from the transcritical bifurcation undergoes a saddle-node (fold) leading to a further
branch of stable stationary solutions with (uk, vk) 6= (ū, v̄). The condition for this saddle-node
bifurcation is that at an equilibrium (uk, vk) 6= (ū, v̄) the matrix Jβ(uk, vk) has an eigenvalue
λ(β) = 0. Varying now the parameter β (cf. Figure 1(c)), this fold will appear for varying values
of σ. For the emergence of patterns in the original network system (1)–(2) with increasing main
bifurcation parameter σ, the minimal value σ = σS at which this fold can occur will be of
particular importance (cf. Figure 1(b)). The corresponding bifurcation condition is given by

λ(βS) = λ′(βS) = 0, (12)

where λ(β) is the leading eigenvalue of the matrix Jβ(u, v), evaluated at a fixed point (uk, vk) 6=
(ū, v̄) of system (10)–(11). Note that the corresponding value βS is in general different from βT
and the corresponding value σS is smaller than σT .

In Figure 1(d) we present the fold curve for parameters β and σ, using the reaction kinetics
(3)–(5). Since σS ≤ σT , we can also find values β−, β+, with β− ≤ βS ≤ β+, where the
fold curve crosses the line σ = σT , see Figure 1(d). Together with σS , these values will play
an essential role when we will use now the stable stationary solutions of system (10)–(11) to
describe certain stable stationary solutions of the full network system (1)–(2).

A stationary solution of system (1)–(2) where only one single node attains a value substantially
different from (ū, v̄), while all other nodes stay close to the homogeneous solution (ū, v̄) will
be called single-differentiated-node solution (SDN-solution). We will now discuss, under which
conditions a stable stationary solutions of system (10)–(11) can be used to describe a stable
SDN-solution for the full system (1)–(2). The assumption that the deviation of a single node
induces only a small deviation to all other nodes, that we used to derive system (10)–(11), is
asymptotically true in large networks with large average degree. Hence, by the implicit function
theorem the existence of SDN-solutions close to hyperbolic stationary solutions of system (10)–
(11) holds in an asymptotic sense in sufficiently large networks.

For the stability of a corresponding SDN-solution, we need in addition to the stability of the
approximating solution in system (10)–(11), that accounts for perturbations at the differentiated
node, also stability with respect to perturbations of the remaining nodes, which in system (10)–
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Figure 2: (i) Example of a scale-free network with 20 nodes. Degrees
(14, 10, 10, 9, 7, 7, 6, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3). (ii) Coexisting branches of stable
SDN-solutions of the full system with differentiated nodes of varying degree dk, predicted for
fixed D = 0.12 by the single-node system (10)–(11). Examples of numerically calculated
stable SDN-solutions for system (1)–(5) using the network given in (i) with various choices of
σ and degrees dk of the differentiated node that are indicated by dots in panel (ii): (A) dk = 5
and σ = 14.1; (B) dk = 9 and σ = 12.8; (C) dk = 14 and σ = 15.5.
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(11) are clamped to (ū, v̄). This stability is described, again in an asymptotic sense, by the
stability of the uniform stationary solution (ui, vi) = (ū, v̄) in the complementary system

u̇i = f(ui, vi) +D
N∑

j=1, j 6=k

Lijuj (13)

v̇i = g(ui, vi) + σD
N∑

j=1, j 6=k

Lijvj (14)

with i = 1, . . . N, i 6= k. This stability will be lost at the Turing point σ = σT , if the com-
plementary network has an eigenvalue Λ = −D/βT . In this way, we obtain that the stable
branch emanating directly from the transcritical bifurcation will in general not give rise to stable
SDN-solutions of the full network, but only the stable part beyond the fold of the other branch,
that lies below σT (shaded region in Figure 1(d)). For fixed σ ∈ (σS, σT ) solutions for all values
of β above the fold curve can lead to coexisting stable SDN-solutions of the full network with
differentiated nodes of corresponding degree dk = β/D, as soon as in a sufficiently large net-
work a node with this degree is available. In particular in a scale free network, where the degree
distribution extends over a broad range, and choosing a small diffusivity D this leads to a large
number of coexisting stable SDN-solutions. However, nodes with degree dk not in the interval
(β−/D, β+/D) can never be differentiated in a stable SDN-solution. In Figure 2(ii) we show
the resulting branches of coexisting stable SDN-solutions with different degrees that can appear
in the full system for fixed D = 0.12 as soon as a node with the corresponding degree is avail-
able. Using the example network given Figure 2(i) we have calculated numerically some stable
SDN-solutions, that are displayed in Figure 2(A)–(C). It turns out that already in this rather small
network, we get a reasonably good prediction from the single-node system (10)–(11). Note that
for increasing degree of the differentiated node, the solution for the full system comes closer to
that predicted by the single-node system.

A further consequence of our analysis is that the bifurcations at the two ends of each branch
of SDN-solutions are of a genuinely different nature. At the lower point, given by the fold curve,
the bifurcation takes place in a mode that is localized at the differentiated note, whereas the
destabilization at σT involves a collective mode of the full network.

4 A codimension two bifurcation in the single node system

In the previous section, we investigated the appearance of stable SDN-solutions in a generic
situation. Comparing the results with the classical Turing bifurcation in continuous systems, we
find two striking differences:

� The stable SDN-solutions appear for σ < σT , i.e. in a subcritical scenario, even though
the same reaction kinetics induce a supercritical Turing bifurcation in a continuous medium.

� The bifurcation diagrams show an asymmetry: in a stable SDN-solution, the differentiated
nodes take values only at one side of the homogeneous equilibrium. In our example,
uk < ū and vk < v̄.
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Figure 3: Stationary solutions of system (10)–(11). Varying the parameter c in the reaction ki-
netics the generic transcritical bifurcation at σT degenerates to a pitchfork bifurcation (other
parameters a = 25, b = 15, d = 0.5): (a) For c < cP the fold point is to the left of the
transcritical point; (b) For c < cP the fold point coincides with the transcritical point, inducing a
pitchfork; (c) For c < cP the fold point is to the right of the transcritical point. (d) Fixed c = cP
and varying β: pitchfork at β = βT (blue curve) and transcritical for other values of β (black
curves). (e) Appearance of stable SDN-solutions σS and onset of Turing instability σT for vary-
ing parameter c; both values satisfy σS ≤ σT and coincide at the pitchfork bifurcation c = cP .
(f) u-values uS of the first stable differentiated node appearing for β = βS at σS and ū of the
homogeneous solution for varying parameter c; both values cross at the pitchfork bifurcation
c = cP .
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We will now show that these properties are organized by a codimension-two bifurcation that
is specific for the Turing bifurcation in networks. Recall that the transcritical bifurcation occurs
generically in the single node system (10)–(11), when the homogeneous equilibrium looses
its stability at the Turing point. Inducing now a secondary parameter in addition to the Turing
parameter σ and following the branch of transcritical bifurcations in these two parameters, we
can generically meet the situation where the transcritical bifurcation degenerates into a pitchfork
bifurcation. We could try to find a pitchfork bifurcation by varying the parameter β in the single
node system. But this pitchfork will then occur generically at some βP 6= βT and hence σP will
be bigger than σT . But as we argued above, solutions of the single node system with σ > σT
cannot be stable in the full network. In order to obtain the pitchfork bifurcation at the stability
boundary of the homogeneous solution of the full network, we have to use a parameter of the
reaction kinetics as the second bifurcation parameter, and fix β at βT . Note that varying the
parameters of the reaction kinetics, the position of the homogeneous equilibrium (ū, v̄) will vary
and hence, according to (8) and (9), also the values of σT and βT .

Since this is a bifurcation of the stationary solutions only, the parameter value of the bifurcation
can be determined in general by a Lyapunov-Schmidt procedure. In the example (3)–(4), it can
even be reduced to a one dimensional problem, avoiding extra technicalities. The fixed point of
the reaction kinetics (ū, v̄) satisfies

ū2 +
( c
d
− b
)
ū− c

d
− a = 0 (15)

v̄ =
ū− 1

d
. (16)

Similarly, in the system for the fixed points of (10) with (3) we find

v = β
( ū
u
− 1
)

+
a+ bu− u2

c
(17)

In the remaining fixed point equation from (11) and (4)

v(u− 1− dv) + σβ(v̄ − v) = 0, (18)

we can use (17) and (16) to eliminate the unknown variables v and v̄. The result is a scalar
equation of the form

F(u, ū) = 0. (19)

that determines the fixed points of system (10)–(11) for given values of β and σ and a solution
ū of equation (15). This function has a double root both at the fold and at the transcritical
bifurcation discussed above. The pitchfork is characterized by

∂uuF(u, ū) = 0. (20)

Finally, we insert σ = σT and β = βT from (8) and (9), and u = ū to localize the pitchfork at
the Turing point. In this way, the bifurcation condition (20) involves only the coordinate ū of the
pitchfork point and the parameters of the reaction kinetics a, b, c, d. Together with (15) it can be
used to solve for the bifurcation point that turns out to be of codimension one with respect to the
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reaction parameters a, b, c, d. A second codimension was already introduced by the condition
σ = σT that we made above. Note that equation (19) is trivially satisfied for u = ū and does
not induce an extra bifurcation condition.

In Figure 3 we have illustrated the bifurcation scenario for the example (3)–(4). We have chosen
here the parameter c to unfold the pitchfork bifurcation and slightly adapted the other parameters
in order to avoid a Hopf instability of the equilibrium (ū, v̄). Panels (a)–(c) show the fixed points
of system (10)–(11) for varying σ and parameter values c before, in the moment, and after the
bifurcation. Note that in all three plots we have adjusted β = βT , that has to be determined
from (9) for varying c. Panel (d) shows that at the pitchfork bifurcation c = cP even for varying
β there exist no SDN-solutions for σ < σT and hence the SDN-solutions are all unstable. This
corresponds to the fact that due to our bifurcation condition, the emergence of SDN-solutions
at σS coincides here with the onset of Turing instability, i.e we have σT = σS (see panel (e)).
Finally, panel (f) illustrates that the differentiated node, when appearing in the minimal fold at σS ,
takes a value uS that switches to the other side of ū in the moment of the pitchfork bifurcation.
This holds true not only for this specific solution, but also for all other stable SDN-solutions.
In contrast to the solution from the minimal fold, they disappear not only directly at the point
of bifurcation, but are absent (i.e. above σT ) for an open interval of parameters c around the
bifurcation point cP .

5 The full system at the pitchfork bifurcation: supercritical
emergence of a collective pattern

In the previous section we showed that at the pitchfork bifurcation, the single-node system (10)–
(11) does not indicate the existence of stable SDN-solutions. In particular, there are no such
solutions before the onset of the Turing instability at σT . Hence, we can expect in this situation
a supercritical bifurcation of a collective pattern, i.e. a pattern given by the mode corresponding
to the critical eigenvalue of the graph-Laplacian of the network.

In Figure 4 we show the results of corresponding numerical calculations. As the underlying
network, we took again the scale-free network given Figure 2(i). Panel (a) of Figure 4 shows
that the homogeneous solution loses its stability in a pitchfork bifurcation, giving rise to two
branches of stable collective patterns. Note that the location of this pitchfork bifurcation of the
full system has been predicted in the previous section without taking into account the specific
structure of the network that has been used here.

Panel (b) of Figure 4 shows the critical linear mode at the instability that is given by an eigen-
mode of the graph-Laplacian. Panels (c) and (d) show the stable nonlinear patterns at the two
instances A and B indicated in panel (a), representing a short and a longer distance from the
point of bifurcation. Note that in contrast to the SDN-solutions, these patterns do not show any
preferred direction of differentiation. Obviously, each individual node differentiates in opposite
directions on the upper and lower branch, respectively.
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Figure 4: Supercritical bifurcation of a collective Turing pattern for increasing parameter σ; net-
work as in Fig 2(i), other parameters: a = 25, b = 15, c = 14.9, d = 0.5D = 0.12. (a)
numerically calculated branches of bifurcating solutions, stable (solid) and unstable (dashed);
(b) critical linear network mode; (c) stable stationary solution for σ = 12.9 (A); (d) stable sta-
tionary solution for σ = 13.2 (B).
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6 Conclusions

In this paper we investigated the emergence of differentiation patterns in diffusively coupled
networks with activator-inhibitor kinetics. In comparison to continous media, such systems with
irregular heterogeneous networks show a wealth of interesting and unexpected phenomena
that require new mathematical techniques [12]. We have demonstrated in this paper that in
such systems close to the onset of Turing instability there can exist two different types of stable
patterns. There are stable stationary solutions with single differentiated nodes (SDN-solutions)
and collective patterns that emerge from destabilizing eigenmodes of the network. The solutions
with single differentiated nodes appear typically in a subcritical bifurcation scenario, i.e. before
the homogeneous equilibrium looses its stability in a Turing bifurcation.

SDN-solutions, their stability, and their bifurcations have been studied in a reduced system
obtained by a mean-field approach. In particular, we showed how their competition with the
collective modes is organized in a codimension-two bifurcation of pitchfork type.

In sufficiently large networks, our results allow also to infer on the existence of stable solutions
with several differentiated nodes that are localized such that their neighborhoods do not over-
lap to much. In this way, the SDN-solutions can be considered as the basic building blocks for
a huge amount of coexisting stable solutions. The resulting complex spatial behavior can be
understood as a specific form of spatial chaos, that has been described before in regular net-
works (see [13, 14, 15]). Our results apply for a wide class of large heterogeneous networks. As
particular examples, we considered scale-free networks. Due to their wide degree-distribution,
they demonstrate the differences to systems in continuous media, or their discretizations, in a
prominent way.

Whereas Turing patterns in continuous media are characterized by their wave number, the pat-
terns in heterogeneous networks are characterized by the degrees of the nodes that take part
in the differentiation. For the collective modes, it is known that the corresponding eigenmodes
of the graph-Laplacian for scale-free networks are concentrated mainly on nodes of a charac-
teristic degree, that is proportional to the eigenvalue [16]. For the SDN-solutions, we calculated
the degree of the differentiated node at the onset of their existence and the growing range of
degrees that allow for differentiation in the course of the bifurcation. It turns out that, in general,
the characteristic degree of the eigenmode of the Turing bifurcation differs from the degree that
is prevalent for the SDN-solutions. This adds another aspect to the complex interplay between
localized an collective patterns.

In this paper, we have focused our attention to the stable patterns appearing at the onset of
Turing instability. Numerical observations in [10] indicate that there is an interesting transition
from this regime to the patterns that develop far from bifurcation. However, these more complex
patterns seem to be not accessible by the mainly analytical approach presented in this paper.
Instead, a numerical bifurcation analysis could possibly reveal further interesting phenomena.
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