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ABSTRACT. We introduce an algorithm for diffusion weighted magnetic resonance imaging data
enhancement based on structural adaptive smoothing in both space and diffusion direction. The
method, called POAS, does not refer to a specific model for the data, like the diffusion tensor or
higher order models. It works by embedding the measurement space into a space with defined
metric and group operations, in this case the Lie group of three-dimensional Euclidean motion
SE(3). Subsequently, pairwise comparisons of the values of the diffusion weighted signal are
used for adaptation. The position-orientation adaptive smoothing preserves the edges of the
observed fine and anisotropic structures. The POAS-algorithm is designed to reduce noise
directly in the diffusion weighted images and consequently also to reduce bias and variability of
quantities derived from the data for specific models. We evaluate the algorithm on simulated and
experimental data and demonstrate that it can be used to reduce the number of applied diffusion
gradients and hence acquisition time while achieving similar quality of data, or to improve the
quality of data acquired in a clinically feasible scan time setting.

1. INTRODUCTION

Diffusion weighted magnetic resonance imaging (dMRI) has evolved into a versatile tool for
in-vivo examination of micro-structure in the human brain [Le Bihan, 2003], spinal cord [Clark
et al., 1999], or muscle tissue [Sinha et al., 2006]. The data is measured using the pulsed
gradient spin echo sequence [PGSE, Stejskal and Tanner, 1965] through application of diffu-
sion magnetic field gradients in different directions. The technique is based on the fact that nu-
clear magnetic resonance is sensitive to the diffusion of molecules, usually water. Each applied
magnetic field gradient yields a diffusion weighted image which, together with the non-diffusion
weighted image, reveals information about the average displacement of hydrogen protons in the
corresponding direction at each voxel.

In the past two decades the development of diffusion tensor imaging (DTI) made dMRI more fea-
sible for a wider range of clinical and neuroscience applications (see Mori [2007] and Johansen-
Berg and Behrens [2009] for an introduction). In order to characterize the data by a diffusion
tensor at least six gradient directions have to be measured. However, the diffusion tensor model
provides only an approximation for the more realistic case of inhomogeneous and restricted dif-
fusion, spurring recent interest in models beyond DTI [Assemlal et al., 2011]. Most of the meth-
ods developed to overcome the limitations of DTI require a larger number of diffusion weighted
gradients to be applied during measurement and hence a longer acquisition time.

Like all other imaging modalities dMRI suffers from significant noise which may render subse-
quent analysis or medical decisions more difficult. For DTI it has been shown that noise induces
a systematically biased assessment of features, like the fractional anisotropy (FA), which are
based on the ordered eigenvalues of the estimated diffusion tensor [Pierpaoli and Basser, 1996,
Basser and Pajevic, 2000]. Jones and Basser [2004] showed that noise creates artifacts for
dMRI data in general. Last but not least, increasing the spatial resolution inherently decreases
the signal-to-noise ratio (SNR). Attempts to achieve higher image resolution collide with the
deterioration of the acquired images. Noise reduction is therefore essential.

Besides simple isotropic smoothing, which potentially blurs fine structures, more sophisticated
methods for noise reduction have been developed, such as the Perona-Malik filter [Perona
and Malik, 1990, Parker et al., 2000], non-linear diffusion approaches [Weickert, 1998, Ding
et al., 2005, Duits and Franken, 2011], or the Propagation-Separation approach [Polzehl and
Spokoiny, 2006, Tabelow et al., 2008]. Other attempts combine wavelet filtering with subsequent
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non-linear diffusion [Lohmann et al., 2010], or perform smoothing in tensor space [Fletcher and
Joshi, 2007, Fillard et al., 2007]. It is generally preferable to smooth the diffusion weighted im-
ages directly rather than model dependent derived quantities. First, such an approach avoids
the bias for model dependent estimates induced by the noise. For DTI it also reduces the prob-
ability of estimating a degenerated tensor. Second, if the method does not refer to a specific
model, data can be subsequently analyzed with any model.

In this paper we will develop a position-orientation adaptive smoothing algorithm (POAS) for
dMRI, that does not rely on a specific model like the diffusion tensor or higher order models. This
is a significant development from our recent structural adaptive smoothing method for DTI [Tabe-
low et al., 2008], which was based on modeling of the dMRI data by the diffusion tensor model.
Furthermore, we will outline, how the specific geometry of the space in which dMRI is typically
measured can be used in order to benefit from the whole information of the data, in position and
orientation. Here, we will use results from a recent contribution by Duits and Franken [2011],
who developed a smoothing algorithm based on the non-linear diffusion equation. Our method
is based on the Propagation-Separation approach [Polzehl and Spokoiny, 2006] and hence, un-
like other smoothing methods, includes an intrinsic stopping criterion. The new method POAS
is able to reduce noise without blurring the edges of the structures observed with dMRI. We will
show through extensive simulation and experimental data, how the position-orientation adap-
tive smoothing algorithm significantly improves the quality of the diffusion weighted data prior to
estimation of diffusion tensors or higher order models.

2. THEORY

In the first part of this section we want to discuss the geometry of the space in which dMRI is
typically measured. We introduce a discrepancy function on this space following the approach
in Duits and Franken [2011]. Then, we present our new position-orientation adaptive smoothing
method (POAS) including further comments on the choice of parameter values.

2.1. The underlying geometry. In diffusion weighted imaging data is typically acquired on a
regular grid of voxels for varying directions of the diffusion magnetic field gradient at a fixed
b-value1. The latter can be described by a unit vector in S2, where S2 := {~u ∈ R3 : ‖~u‖ = 1}
denotes the 2-sphere. Hence, dMRI data form a function S : R3 × S2 → R.

In this section, we want to introduce a discrepancy function on R3 × S2. On that space there
exist neither a metric nor a group operation. So, following the approach in Duits and Franken
[2011] we embed the space R3×S2 into the Lie group SE(3) := R3oSO(3) of 3 dimensional
Euclidean motion, where SO(3) denotes the 3 dimensional rotation group and o the semidirect
product.

First, we remind of the concept of left coset spaces. The set

[g]H := g ·G H := {g ·G h : h ∈ H}, g ∈ G,
is called left coset of the groupG w.r.t. the subgroupH . The space of all left cosetsG/H forms
a partition of G. Considering the parametrization of S2 and SO(3) as given in Appendix A.1,
we note that each element ~u(β,γ) of S2 depends on two angles β and γ, while the elements

1Acquisition schemes that require multiple q-shells or varying b-value are not considered in this paper. The
methods proposed here may be applied separately for each b-value.
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R(α,β,γ) of SO(3) additionally depend on a third angle α which describes the rotation around
the z-axis. More precisely, for any ~u ∈ S2 there is a matrix R ∈ SO(3) such that R~u~ez = ~u.
This observation allows us to uniquely identify S2 with the left coset space SO(3)/stab(~ez) of
SO(3), which is defined as follows:

SO(3)/stab(~ez) :=
{[

R(α,β,γ)

]
: R(α,β,γ) ∈ SO(3)

}
,

where stab(~ez) ⊆ SO(3) denotes the group of rotations around the z-axis and[
R(α,β,γ)

]
:=
[
R(α,β,γ)

]
stab(~ez)

:= {R(α′,β,γ) : α′ ∈ [0, 2π)}.

In other words, we construct equivalence classes [.] by identifying all elements of SO(3) where
the angles β and γ coincide while the angle α is ignored. Then, for any ~u(β,γ) ∈ S2 it holds

~u(β,γ) ≡
[
R(α,β,γ)

]
∈ SO(3)/stab(~ez), ∀α ∈ [0, 2π).

Finally, it follows R3×S2 ∼= SE(3)/({~0}o stab(~ez)) since R3/{~0} = R3. In the following we
will write R3oS2 instead of R3×S2 referring to the group structure which has been introduced
on R3 × S2 by the embedding into SE(3).

The Riemannian 1-norm relates to the length of the geodesic, i.e. the shortest way within SE(3),
from the identity element e to g. Analogous to the well-known Lp-spaces, where L2 is often
preferred because of its technical advantages, we consider the Riemannian 2-norm instead of
the Riemannian 1-norm. It can be interpreted as L2-analog. In Duits [2005] the Riemannian
2-norm has been suggested as modulus function on SE(2). On SE(3) the Riemannian 2-norm
of g := (~v,R(α,β,γ)) ∈ SE(3) with ~v := (x, y, z)T can be approximated locally by

(1) ‖g‖R ≈
(

6∑
i=1

k2i

)1/2

,

where the coordinates {ki}6i=1 follow from

6∏
i=1

exp(kiAi) =

 R(α,β,γ)

x
y
z

0 0 0 1

 ≡ g ∈ SE(3)

using the matrix representation of SE(3). The left-invariant basis matrices {Ai}6i=1 and details
on the implementation are specified in Appendices A.2 and A.4.

The Riemannian 2-norm induces a discrepancy on SE(3) by

∆SE(3)(g1, g2) := ‖g−12 ·SE(3) g1‖R, g1, g2 ∈ SE(3).

It can be applied to elements of R3 o S2 via the introduced embedding as we will discuss in
Appendix A.3. However, a slight modification is recommendable since distances in voxel space
and in orientation space are not intrinsically related by the measurement process: This is high-
lighted by different physical measurement units and the fact that there is no natural relation
between the spatial distance and the applied magnetic field gradients. Therefore, we introduce
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a) b) c) d)

FIGURE 1. Diffusion weighted data Sg. a) Slice of diffusion weighted image for a
single (arbitrarily selected) diffusion weighting gradient direction. b) Same slice
shown after averaging over four subsequent measurements. (A larger version of
these images can be found in Figure 7.) c) Diffusion weighted data for all diffu-
sion gradients in a single voxel in corpus callosum. The image is created from a
3D plot of the data, where the diffusion weighted values are shown in their cor-
responding gradient direction. d) Same after averaging over four subsequent
measurements.

an additional parameter κ which allows for a balance between distances on the sphere and in
space. Finally, we get the following formula

∆κ(g1, g2) := ‖
(
R−1~u2 (~v1 − ~v2),R−1~u2 R~u1

)
‖R,κ ≈

(
3∑
i=1

k2i +
6∑
i=4

k2i /κ
2

)1/2

,

where gi = (~vi, ~ui) ∈ R3 oS2, i = 1, 2, and R~ui ∈ SO(3) is any rotation with R~uiez = ~ui as
introduced above.

2.2. Position-orientation adaptive smoothing (POAS) the diffusion weighted images. De-
note by Sg the measured diffusion weighted data at g = (~v,~b) ∈ R3 o S2, i.e., for some voxel

at position ~v and for an applied diffusion weighting gradient in direction~b. The noise distribution
of Sg follows a Rician distribution, which can be approximated by a Gaussian distribution for
large values of the data [Johansen-Berg and Behrens, 2009].

In order to construct a structural adaptive smoothing algorithm for diffusion weighted data we
first formulate a structural assumption on the data. This assumption represents the observa-
tion that the parameters of the distribution for the data show similarities in the vicinity of any
voxel separated by sharp discontinuities, e.g., at tissue borders, see Figure 1. We therefore as-
sume the existence of a non-trivial partition U of the space R3 o S2 into maximal homogeneity
compartments. As a consequence for each g1 ∈ R3 o S2 there is a vicinity U(g1) such that

ESg2 = ESg1 ∀ g2 ∈ U(g1),

where E denotes the expectation with respect to the Rician distribution. This assumption can
be extended to more complicated local models, e.g., local linear or local quadratic parameter
models. Here, we only consider local constant models for the sake of computational simplicity!
See Section 5 for the effects of a misspecified structural assumption.

Our method POAS to infer on expected values ESg, g ∈ R3 o S2, and their homogeneity
regions U(g) is based on the Propagation-Separation approach [Polzehl and Spokoiny, 2006]
and yields an iterative procedure with a prespecified number of steps k∗. At each iteration step
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the aggregated information on the homogeneity regions is used to obtain improved estimates
for the image values ESg, using kernel estimation. These estimates are then again used to
infer on the homogeneity regions.

The estimate for the image value ESg1 at g1 ∈ R3 o S2 and iteration step k is

(2) Ŝ(k)
g1

:=
∑

g2∈R3oS2
w(k)
g1g2

Sg2/N
(k)
g1

with N (k)
g1 :=

∑
g2
w

(k)
g1g2 and local weighting schemes w(k)

g1g2 for each pair of measurements at
g1, g2 ∈ R3 o S2:

(3) w(k)
g1g2

:= Kloc

(
∆κ(~b1,k)

(g1, g2) /h(~b1, k)
)
Kst

(
s(k)g1g2/λ

)
.

We call the weights w(k)
g1g2 adaptive. We use the term non-adaptive if the factor Kst(s

(k)
g1g2/λ)

is omitted in Eq. (3). In Figure 2 we show the non-adaptive weighting schemes for several
bandwidths and values of κ in order to demonstrate effects of the discrepancy function ∆κ.

Now, we shortly describe the terms used in Eq. (3):

� Kloc and Kst are kernel functions.
� ∆κ (g1, g2) is the discrepancy introduced above.
� {h(~b, k)}k=0,··· ,k∗ is an increasing sequence of bandwidths depending on the gradient

direction~b ∈ S2.
� The sequence {κ(~b, k)}k=0,··· ,k∗ describes for each gradient direction~b ∈ S2 the relation

between distances on the sphere and in voxel space.
� The statistical penalty s(k)g1g2 , defined by

s(k)g1g2 := N (k−1)
g1

· K
(
Ŝ
(k−1)
g1

σ̂
,
Ŝ
(k−1)
g2

σ̂

)
,

depends on the Kullback-Leibler distance between the two standardized Rician distribu-
tions in g1 and g2 with parameters Ŝ(k−1)

g1 /σ̂ and Ŝ(k−1)
g1 /σ̂, where σ̂ denotes an esti-

mate for the scale parameter of the Rician distribution. Evaluating the distance between
the estimated image values the statistical penalty tests for our structural assumption. The
Kullback-Leibler distance is approximated numerically. N (k)

g is an approximation for the
variance reduction at step k.

� λ is the adaptation parameter of the algorithm.

Note that both, the sequence of bandwidths {h(~b, k)}k=0,··· ,k∗ and the sequence of balancing

parameters {κ(~b, k)}k=0,··· ,k∗ possibly depend on the diffusion gradient direction ~b ∈ S2, as
most gradient schemes are not fully homogeneous on the sphere.

Starting at very local initial estimates that coincide with non-adaptive-smoothing on the sphere,
i.e. setting s(0)g1g2 := 1 and choosing h(~bl, 0) = 1, and using the discrepancy derived in the

previous section we iterate computation of weights (3) and estimation of ESg by Ŝ(k)
g (2), in-

creasing k with each iteration. This defines a position-orientation adaptive smoothing algorithm
for diffusion weighted data in the space R3 o S2.
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a) k∗ = 4 κ = 0.5 b) k∗ = 8 κ = 0.5 c) k∗ = 12 κ = 0.5

d) k∗ = 8 κ = 0.4 e) k∗ = 8 κ = 0.6 f) k∗ = 8 κ = 0.8

FIGURE 2. Non-adaptive weighting schemes defined by the discrepancy
∆κ(g1, g2) for one voxel and three directions close to the coordinate axes (black
- x, green - y and red -z) corresponding to three points g1 ∈ R3 oS2. Weights
are shown for the 60 gradient directions used in the experimental data, see
Section 3.2. The length of lines corresponds to the weight, the direction to the
respective gradient direction in g2 and the location to ~v(g2)−~v(g1). Upper row:
κ0 = .5 and number of iterations k∗ = 4 (a), k∗ = 8 (b) and k∗ = 12 (c).
Lower row: k∗ = 8 and varying κ0, κ0 = .4 (d) , κ0 = .6 (e) and κ0 = .8 (f)

Due to the statistical kernel Kst

(
s
(k)
g1g2

)
the adaptive weights are smaller than

the non-adaptive weights.

2.3. Smoothing the non-diffusion weighted images S0. Besides the diffusion weighted im-
ages Sg, g ∈ R3 o S2, the data contain nS0 ≥ 1 S0-images derived without applying an
additional diffusion gradient. Let S̄0 = (S̄(~v,0))~v∈R3 denote the mean over all S0-images.

The analysis of the diffusion weighted data is usually based on the quotient Sg/S̄(~v(g),0) where
~v(g) are the spatial (voxel) coordinates in g. Therefore, we have to adaptively smooth the mean
image S̄0 in a way that is compatible with the adaptive smoothing of Sg. This can be achieved
by defining adaptive weights for S̄0, which are coupled to the adaptive weights of the diffusion
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weighted images:

w̃
(k)
~v1~v2

:= Kloc

(
||~v1 − ~v2||/h(k)~bl

)
Kst

(
z
(k)
~v1~v2

/λ
)
,

with the Euclidean norm ‖.‖ in R3 and a statistical penalty

z
(k)
~v1~v2

:=
1

ngrad + nS0

[
nS0 · Ñ (k−1)

~v1
· K
(
Ŝ
(k−1)
(~v1,0)

σ̂
,
Ŝ
(k−1)
(~v2,0)

σ̂

)
+

ngrad∑
l=1

s
(k)

g
(l)
1 g

(l)
2

]

where g(l)1 , l = 1, · · ·ngrad, are the ngrad elements in R3 oS2 with ~v(g
(l)
1 ) = ~v1. Furthermore

we define s(k)g1g2 as in Section 2.2 and

Ñ
(k)
~v1

:=
∑
~v2

w̃
(k)
~v1~v2

.

Adaptive estimates for the mean S̄0 are obtained as

Ŝ
(k)
(~v1,0)

=
∑
~v2

w̃
(k)
~v1~v2

S̄(~v2,0)/Ñ
(k)
~v1
.

2.4. Choice of parameter values. The algorithm has a number of parameters, which mostly
have only minor influence on the resulting estimates Ŝ(k∗)

g and Ŝ(k∗)
(~v,0) [Polzehl and Spokoiny,

2006, Tabelow et al., 2008].

The main parameter of the procedure is the adaptation parameter λ which controls the amount
of adaptation. If λ is chosen very large, the influence of the value of the statistical penalty on
the weights is negligible. If it is chosen too small, the procedure easily adapts to noise, which is
equivalent to a random clustering of observed values. Fortunately, λ can be chosen independent
of the data by applying the propagation condition [Polzehl and Spokoiny, 2006] to a simulated
unstructured situation, i.e., with only one homogeneous region for Rician distributed data. This
condition ensures that the quality of the estimates in this situation may deteriorate only by a
factor 1 +α (e.g. α = 0.1) in comparison to its, in this case optimal, non-adaptive counterpart.
Then, this property also holds for situations with more than one homogeneity region [Polzehl
and Spokoiny, 2006], where the structural assumption is fulfilled.

The kernel functions K : R+ → [0, 1] should have compact support and be monotone de-
creasing. The kernel Kst should for theoretical reasons exhibit a constant plateau. The exact
form of the kernels is not important [see e.g. Section 6.2.3 in Scott, 1992]. Here, we choose
them as

Kloc(x) =

{
1− x2 x < 1
0 x ≥ 1

and Kst(x) =

 1 x < 0.5
2− 2x 0.5 ≤ x < 1
0 x ≥ 1

.

For a given gradient direction~b the sequence of bandwidths {h(~b, k)}k, starting with h(~b, 0) =

1, is chosen such that in case of non-adaptive weights w̄(k)
g1g2 = Kloc

(
∆κ(~b,k) (g1, g2) /h(~b, k)

)
,

it provides a variance reduction
∑

g2
w̄

(k)
g1g2

2/
(∑

g2
w̄

(k)
g1g2

)2
from step k−1 to step k by a fac-

tor 1.25.
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The parameter sequence κ(~b, k) in the discrepancy ∆κ(~b,k) (g1, g2) in Eq. (3) determines the
ratio of the amount of smoothing on the sphere compared to the voxel space, see Section 2.1.
κ(~b, k) is chosen as κ(~b, k) = κ0/h(~b, k) so that the amount of smoothing on the sphere only
depends on the distance ||~v1 − ~v2|| in voxel space. For dMRI the nature of the measurement
does not relate the radius of the q-shell (given by the b-value) with the voxel extension (given
in millimeter). The parameter κ0 can therefore be freely chosen. Note, that smoothing on the
sphere introduces a bias, as the diffusion weighted signal in a fixed voxel is surely a smooth
function on S2. The proposed choice ensures a stabilization of the estimates for the first steps
of the method by using a larger portion of the weights on the sphere rather than in R3. At later
iteration steps this portion is reduced leading to a decreased bias and hence more accurate
estimates. Based on numerical experience we recommend a value of κ0 indirect proportional to√
ngrad for common situations.

Finally, the number of iteration steps k∗ defines the maximal bandwidth for the examination
in R3 o S2 and hence determines the computational complexity of the algorithm. In fact, the
potential vicinities of voxels which have to be considered, grow with the third power of the band-
width since the kernel functions are chosen to have compact support. In contrast to smoothing
methods based on the diffusion equations, position-orientation adaptive smoothing has an in-
trinsic stopping criterion, which means that the quality of the best intermediate results holds (up
to a constant) for the final estimate, see Polzehl and Spokoiny [2006] for a theoretical study of
this property. Within homogeneous parameter regions, POAS behaves almost like non-adaptive
smoothing due to the application of the propagation condition for the choice of the adaptation
parameter λ. Thus, the number of iteration steps (and correspondingly the maximum band-
width) should be chosen to ensure a desired smoothness within homogeneous regions and a
reasonable computational workload.

In Figure 3 we illustrate the dependence of the smoothing result on the number of iteration steps
to shed light into the optimal choice of k?. We use a region-of-interest in the slice chosen for
Figure 6, see Section 4. We show the results for iteration steps k? = 0, 4, 8, 12, 16, 20, 25, 30.
k? = 0 corresponds to a non-adaptive smoothing on the sphere. Notice that the results with
a smooth appearance show up for intermediate numbers of iteration steps, i.e., k? = 12. At
later steps, the chosen structural assumption (local constant homogeneity regions) enforces
the reconstruction result to a step function with fine steps. Although this might not look as
convincing as the smoother result at intermediate steps, the stability of estimates and the bias-
variance relation in the method ensures a reasonably small error on the estimates due to the
misspecification of the structural assumption, see also Section 5.

2.5. Variance estimation. In the statistical penalty the estimation of the variance σ̂2 of Sg is
crucial. While the parameter λ can be chosen independent of the data at hand, see Section 2.4,
we need to determine the variance estimate from the data. In Polzehl and Tabelow [2009] two
approaches for voxelwise estimation of the standard deviations have been presented depending
on the availability of replicated non-diffusion images, i.e. distinguishing the cases nS0 > 1 and
nS0 = 1. In both cases, σ is estimated as the mode of the distribution of estimates of voxelwise
standard deviations. In our experience both approaches lead to similar estimates of σ.
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a) k? = 0 b) k? = 4 c) k? = 8 d) k? = 12

e) k? = 16 f) k? = 20 g) k? = 25 h) k? = 30

FIGURE 3. Dependence of the smoothing result on the number of iteration
steps k? (or correspondingly the maximum bandwidth h?) for the selected re-
gion of interest from the slice in Figure 6.

3. DATA

We first investigate properties of the smoothing algorithm by simulation experiments before
applying it to experimental diffusion weighted data. For example code, see Appendix B.

3.1. Simulation. We analyze two different artificial data sets to highlight basic properties of the
proposed smoothing algorithm.

Example 1. We created an artificial diffusion weighted data set with 32×32×32 voxels and 42
gradient directions. The latter are chosen to minimize symmetrized Coulomb forces on a sphere
following a proposal by Jones et al. [1999]. The data follow a tensor mixture model [Tabelow
et al., 2012] that corresponds to fiber bundles of four voxels width completely crossing the cube
along the coordinate axes and intermediate areas of again four voxels width in between. The
structure contains 22528 voxel with two fiber bundles, 8320 voxel with one fiber bundle and
1920 voxel without fibers. Single fiber bundles are characterized by a prolate diffusion tensor
with eigenvalues (1.4, 0.35, 0.35) · 10−3 mm2/s referred to as typical for white matter [Alexan-
der et al., 2001]. The SNR, defined by the chosen S0 value and the standard deviation of the
noise in k-space, is 10.

Example 2. We created a second artificial diffusion weighted data set with 32× 32× 11 voxel
and 42 gradient directions. The data contain two homogeneous regions separated by a hyper-
plane. In each region diffusion weighted data are generated using a tensor mixture model of
order two [Tabelow et al., 2012]. Here, tensor mixtures use prolate tensors with eigenvalues
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(1.4, 0.35, 0.35) · 10−3 mm2/s. Mixture coefficients in the first region are 0.6 and 0.4 respec-
tively with tensor orientations along the x- and y-axis. The second region has mixture coefficients
equal 0.5 and tensor orientations such that a tensor fitted to noiseless data coincides in both
regions, see Figure 5 (a) for an illustration. This means that we have no contrast depending on
estimated diffusion tensors between both regions which is the worst scenario for the smoothing
algorithm described previously in Tabelow et al. [2008]. A color coded FA map obtained from
noiseless data would be homogeneous with FA ≈ 0.38. The SNR used is 32.

3.2. Experimental data. The MR experiment was performed on a 7T whole body MR scan-
ner (MAGNETOM 7T, Siemens Healthcare, Erlangen, Germany) equipped with gradients allow-
ing a peak gradient amplitude of 70 mT/m with a maximum slew rate of 200 T/m/s (SC72,
Siemens Healthcare, Erlangen, Germany). For signal reception a single channel transmit, 24-
channel receive phased array head coil (Nova Medical, Wilmington, MA, USA) was used.

Scans were performed on five healthy young volunteers (age 25 ± 3 years). Written informed
consent was obtained from all participants in accordance with the ethical approval from the Uni-
versity of Leipzig. For all acquisitions, an optimized monopolar Stejskal-Tanner sequence [Morelli
et al., 2010] was used in conjunction with the ZOOPPA approach [Heidemann et al., 2008] pro-
viding an isotropic resolution of 800µm using the following imaging protocol parameters: 91
slices with 10% overlap and 800µm isotropic resolution, FOV 143× 147 mm2, TR 14.1 s, TE
65 ms, BW 1132 Hz/pixel, ZOOPPA acceleration factor of 4.6. Diffusion weighted scans were
performed with 60 directions with a b-value of 1000 s/mm2 and 7 interspersed S0-images. For
averaging the scans were repeated 4 times resulting in a total acquisition time of 65 min.

4. RESULTS

Example 1. Figure 4 illustrates results obtained for the first artificial example analyzed within
the diffusion tensor model after position-orientation adaptive smoothing. Color coded FA maps
are shown for a central slice. For this data tensor estimates have been obtained without noise
(a), from noisy data (b), and after smoothing the data using the proposed algorithm with λ =∞
(non-adaptive) (c) and λ = 5 (adaptive) (d). Results for the tensor model based algorithm
from Tabelow et al. [2008] (not reported here) are very similar due to a good tensor based
contrast between different homogeneous regions in this example. Figure 4 (c) clearly indicated
a loss of information due to blurring, if no adaptation is used.

Example 2. We use the second artificial data set to illustrate the difference between the pro-
posed algorithm and our earlier proposal in Tabelow et al. [2008] that was based on information
aggregated within the diffusion tensor model. As the method described in this paper does not
rely on a specific model for the diffusion weighted data, we show the resulting orientation distri-
bution functions (ODF) estimated in a tensor mixture model [Tabelow et al., 2012], other mod-
els like the expansion of the orientation distribution function to spherical harmonics for q-ball
imaging [Descoteaux et al., 2007] could have been chosen for visualization with similar results.
Figure 5(c) shows that the proposed algorithm is able to remove the distortions caused by noise
in Figure 5(b) without blurring the boundary between the two compartments, while the previous
algorithm from Tabelow et al. [2008] lacks sensitivity at the discontinuity due to its explicit use of
the diffusion tensor model for adaptation, see Figure 5(d).
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a) b) c) d)

FIGURE 4. Color coded FA maps for example 1 a) for noise-free data, b) for
noisy data, c) after smoothing the noisy data with the proposed method but us-
ing non-adaptive weights only, d) after position-orientation adaptive smoothing
the noisy data as proposed here.

c) d)

a) b)

FIGURE 5. Estimated tensor mixture model [Tabelow et al., 2012] a) for noise-
free data, b) for noisy data, c) after position-orientation adaptive smoothing as
proposed in this paper, d) after smoothing with structural adaptation as pro-
posed previously [Tabelow et al., 2008].

Experimental data. Due to the very high resolution of the experimental diffusion weighted data
the SNR for this data set is very low, see Figure 6(a) for a color coded FA map of some axial slice
for one subject. However, the position-orientation adaptive smoothing method proposed in this
paper using the described choices of parameters (see example code in Appendix B for explicit
values) and k? = 12 iteration steps results in an apparent improvement of the tensor estimates
without blurring the fine structures observed in diffusion weighted imaging, see Figure 6(b). The
previous version of our method explicitly based on the diffusion tensor model [Tabelow et al.,
2008] is not able to remove much of the noise in this data set, see Figure 6(c). The reason
is that the former algorithm relies on the diffusion tensor model known to be wrong for large
parts of the brain. It obviously fails for very low SNR. For comparison of the results of the
smoothing algorithm with a kind of ground truth the measured data set contains four repeated
measurements which can lead to a largely improved SNR, see Figure 6(d). This data set with
repeated measurements can also be smoothed using the proposed method (Figure 6(e)) and
the DTI based algorithm (Figure 6(f)) with apparent improvements. By visual inspection, the
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a)

Single data - original

d)

Avg. data - original

b)

Single data - POAS

e)

Avg. data - POAS

c)

Tabelow et al.(2008)

f)

Tabelow et al.(2008)

FIGURE 6. Slice showing color coded FA maps generated by estimating the
diffusion tensor from the experimental diffusion weighted data for one subject.
a) Here, dMRI data from only one measurement has been used. b) This data
has been smoothed using the POAS as proposed in this paper. d) In this Fig-
ure, the FA is estimated after averaging the dMRI data over four subsequent
measurements. Figure e) shows the result after structural adaptive smoothing
this averaged data. c) and f) show the estimated FA after smoothing with the
method based on DTI [Tabelow et al., 2008] for the single data set and the
averaged data set, respectively.
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a) b)

c) d)

FIGURE 7. a) Slice of diffusion weighted data for one (arbitrarily selected) gra-
dient direction. b) Same diffusion weighted data after POAS as proposed in
this paper. c) Same slice shown after averaging over four subsequent measure-
ments (same as Fig. 1). d) Smoothed averaged data set.

quality of the smoothed result based on a single measurement compares well with the repeated
data, which required a four times longer acquisition time.

In Figure 7 slices of an (arbitrarily selected) diffusion weighted image Sg are shown (same as
Figure 1), together with the results after smoothing. Furthermore, we show the comparison of
the diffusion weighted image for the averaged data set with and without smoothing.

Finally, in Figure 8, we provide fiber tracking results using a simple streamline algorithm [Mori
et al., 1999, Xue et al., 1999] with FA < 0.266 as stopping rule and a maximum angle of 45
degrees between the line segments. Figure 8(a-d) show only fibers through a region-of-interest
within the corpus callosum, while Figure 8(e-h) provides the results for the whole brain. Noise
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a) b) c) d)

e) f) g) h)

FIGURE 8. Fiber tracking results using the estimated diffusion tensors and a
simple streamline algorithm. a)-d) Only fibers through a region-of-interest de-
fined by the center of the corpus callosum are shown. e)-h) All Fibers with a
minimum length of 25 fiber segments in the whole data set are shown. a) and
e) are the results of the original data, b) and f) after POAS. c) and g) use the
averaged diffusion weighted data. d) and h) show the tracks after smoothing
this averaged data set.

obviously renders fiber tracking difficult for the single measurement Figure 8(a+e) in contrast to
the repeated measurement, see Figure 8(c+g). Position-orientation adaptive smoothing leads to
improved tracking results for a single measurement (Figure 8(b+f)) and comparable results for
the repeated measurement (Figure 8(d+h)). Of note is that for fiber tracking with the streamline
method the repeated measurement still has some advantages over the smoothed single mea-
surement. Other tracking methods could have been used, but this is beyond the scope of this
paper. The reduced FA and the low fiber density outside the occipital lobe is due the reduced
sensitivity of the receiver coil at 7T.

5. DISCUSSION

Generally, position-orientation adaptive smoothing yields similar results to methods based on
anisotropic non-linear diffusion. However, there is an important difference between both classes
of algorithms. Diffusion methods for infinite diffusion times end up with a completely homoge-
neous image and hence require an appropriate stopping criterion. In contrast to this, structural
adaptive smoothing based on the Propagation-Separation (PS) approach is known to provide
an intrinsic stopping criterion, where the quality of estimates is preserved up to a constant in
all later steps of the iteration [Polzehl and Spokoiny, 2006, Tabelow et al., 2008]. As a conse-
quence, the number of iteration steps k? or correspondingly the maximum bandwidth in Kloc

only defines the numerical complexity of the algorithm and the smoothness within homogeneous
regions. In cases of a misspecification of the structural assumption, i.e., if the data violates the
assumption of local constant image values, the Propagation-Separation approach forces the
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resulting reconstruction into a step function rather than a smooth function, which might look a
worse result, see Figure 3 in Section 2.4. However, as the bias is bounded by the standard devi-
ation of estimates obtained in intermediate steps of the algorithm and due to the stability of the
estimates for large bandwidths, the error by the misspecified local model remains small [Polzehl
and Spokoiny, 2006]. Alternatively the structural assumption may be replaced by a local smooth
assumption, leading to a local polynomial model, on the sphere. However, this would lead to a
much higher computational complexity.

Most of the other parameters of the method besides k? and κ are of only minor influence on
the smoothing results or can be chosen in advance by simulation independent of the data.
Further research may concentrate on the choice of the sequence of proportionality parame-
ters {κ(~b, k)}k balancing between distances in the voxel space and on the sphere. Here, we
proposed a choice yielding for all iteration steps a constant amount of smoothing on the sphere
while the considered region extends only in voxel space, see Section 2.4. In this case the choice
of the initial parameter κ0 is crucial. However, {κ(~b, k)}k could be chosen on its own, indepen-
dent of the bandwidth {h(~b, k)}k, by multivariate bandwidth selection taking into account the
distinct spatial and angular smoothness properties of the signal.

In Tabelow et al. [2008] we first proposed structural adaptive smoothing in the context of the dif-
fusion tensor model for dMRI. There are two important differences and extensions in the method
proposed in this paper. First, the algorithm in Tabelow et al. [2008] defines the homogeneity re-
gions and the statistical penalty using the estimated diffusion tensors. Therefore, the application
of the algorithm was restricted to DTI, see also Figure 5 and 6(c) for its limitations. The exten-
sion proposed in the current paper does not refer to any specific model and can thus be applied
to dMRI data prior to any further analysis. Second, the definition of the location weights is based
on a discrepancy on SE(3) (in which the measurement space R3oS2 is embedded) rather than
on R3. This includes smoothing on the sphere. The use of the specific geometry for smoothing
has been first introduced in Franken [2008]. There, smoothing of the diffusion weighted images
is based on the diffusion equation [Weickert, 1998]. The method proposed in this paper relies on
a different methodology as it defines local weighting schemes for adaptation to the underlying
structure of the data with an intrinsic stopping criterion.

In the presence of partial volume effects the diffusion weighted signal is a superposition of the
signals from the corresponding compartments. As a result the areas of local constant diffusion
weighted signal may be relatively small: If, e.g., the neighboring voxel contains approximately the
same mixture of fibers, the diffusion weighted signals in neighboring voxels are comparable and
the statistical penalty leads to a non-adaptive weight as desired. However, if one of the fibers is
absent in the neighboring voxel, the diffusion weighted signals will differ significantly and lead to
a vanishing weight for this voxel. The result is a non-optimal efficiency for the position-orientation
adaptive smoothing. On the other hand the adaptation avoids blurring at these borders with the
only effect of a reduced amount of smoothing compared to the (unrealistic) situation where we
had complete knowledge on the partial volume effects.

By naturally adapting to the structures of interest at different scales, the algorithm avoids loss
of information on size and shape of structures, which is typically observed when using non-
adaptive filters. More specific, by its iterative nature, the method accumulates information on
the spatial structure at small scales and uses this information to improve estimates at coarser
scales. The potential of this method has been shown in Section 4 for simulated data where the
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ground truth is known. Note again that the position-orientation adaptive smoothing algorithm
does not refer to a specific model for the dMRI data and hence data generation based on
such models does not work in favor of the smoothing method. For the experimental data the
improvements by POAS especially for very low SNR are apparent.

Another diffusion imaging method that might possibly benefit from adaptive smoothing is the
double wave vector dMRI [Koch and Finsterbusch, 2008]. The modification of POAS for this
image acquisition will be an interesting subject for future research.

6. CONCLUSION

In this paper we developed a position-orientation adaptive smoothing algorithm (POAS) based
on the Propagation-Separation approach for dMRI data. It has several important properties and
advantages:

� The proposed algorithm does not rely on a specific model for the dMRI data. Therefore,
after using the method for smoothing the diffusion weighted images any model can be
applied to the data, e.g., the diffusion tensor model or higher order models.

� The method has an intrinsic stopping criterion, which means that most of the parameters
of the method have only minor influence on the results, while the bandwidth parameter
k? is limited only by the available computational power and the desired smoothness in
homogeneous regions.

� POAS uses the special geometry of the measurement space R3 o S2.
� POAS is designed to be adaptive to the fine anisotropic structures observed in dMRI by

using a statistical penalty. This ensures propagation within homogeneous compartments
and separation between distinct compartments avoiding blurring at structural borders.

� The improved quality of the data after smoothing can be used for further analysis or
in clinical context for a reduction of number of diffusion weighting gradients and hence
acquisition time.
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APPENDIX A. MATHEMATICAL DETAILS

In the first two parts of this section we want to summarize some results of Franken [2008],
Duits and Franken [2011] on which Section 2.1 is based. Then, we discuss why POAS is a well-
defined operation on the left coset space SE(3)/({0} o stab(~ez)) and how the Riemannian
2-norm can be computed.

A.1. Parametrization of S2 and SO(3). Let

R~exθ =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , R
~ey
θ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , R~ezθ =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1
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denote the rotations around the x-, y- and z-axis. Then, we parametrize SO(3) by:

(α, β, γ) 7→ (R̂(α,β,γ)) := R~ezγ R~eyβ R~ezα ∈ SO(3), β 6= 0, π,(4)

(α, β, γ) 7→ (R(α,β,γ)) := R~exγ R~eyβ R~ezα ∈ SO(3), β 6= π
2
, 3π

2
.(5)

For the following parametrization of S2 it holds

(β, γ) 7→ ~̂u(β, γ) :=

 cos γ sin β
sin γ sin β

cos β

 = R̂(α,β,γ)~ez ∈ S2, β 6= 0, π,

(β, γ) 7→ ~u(β, γ) :=

 sin β
− cos β sin γ
cos β cos γ

 = R(α,β,γ)~ez ∈ S2, β 6= π
2
, 3π

2
.

In practice the use of (5) is sufficient since the solutions k1, . . . , k6 of (1) at the singularity
can be set to their unique limits. The parametrization in (4) has the disadvantage not to be
well-defined in the identity element E3 ∈ SO(3).

A.2. Properties of SE(3). SE(3) forms a Lie group with semidirect group product

g1 ·SE(3) g2 = (~v1,R1) ·SE(3) (~v2,R2) = (~v1 + R1~v2,R1R2), g1, g2 ∈ SE(3),

and the following table of Lie brackets:

[Xi, Xj ]i,j =


0 0 0 0 X3 −X2

0 0 0 −X3 0 X1

0 0 0 X2 −X1 0
0 X3 −X2 0 X6 −X5

−X3 0 X1 −X6 0 X4

X2 −X1 0 X5 −X4 0

 ,

where {Xi ∈ Te(SE(3)) : i = 1, ..., 6} denotes a basis of the corresponding Lie algebra
(Te(SE(3)), [·, ·]). Using the matrix representation of SE(3), which we denote by bold letters,
it holds for (l1, l2, l3, l4, l5, l6) := (x, y, z, γ, β, α) and g = ((x, y, z)T ,R(α,β,γ))

(6)
6∏
i=1

exp(liXi) =

 R(α,β,γ)

x
y
z

0 0 0 1

 =: Mg ≡ g ∈ SE(3),

where

exp(M) := In×n +
∞∑
k=1

Mk

k!
∈ Rn×n for all M ∈ Rn×n.

The corresponding basis matrices of the Lie algebra are

X1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 X2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 X3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0



X4 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 X5 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 X6 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .
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Then, the left-invariant vector fields {Ai}6i=1 on SE(3) are defined for U ∈ L2(SE(3),R) by

(Ai|gU)(g) = lim
h→0

U(g · exp(hXi))− U(g)

h
, i = 1, ..., 6,

where exp : Te(SE(3))→ SE(3) is the exponential map in SE(3). This yields with respect to
the parametrization given in Eq. (5):
A1|g = cosα cosβ ∂x + (cos γ sinα+ cosα sinβ sin γ) ∂y + (sinα sin γ − cosα cos γ sinβ) ∂z

A2|g = − sinα cosβ ∂x + (cosα cos γ − sinα sinβ sin γ) ∂y + (sinα sinβ cos γ + cosα sin γ) ∂z

A3|g = sinβ ∂x − cosβ sin γ ∂y + cosβ cos γ ∂z

A4|g = − cosα tanβ ∂α + sinα∂β +
cosα

cosβ
∂γ

A5|g = sinα tanβ ∂α + cosα∂β −
sinα

cosβ
∂γ

A6|g = ∂α

(7)

The left-invariant basis matrices {Ai|g}6i=1 of SE(3) can be obtained by replacing ∂x, ∂y, ∂z,
∂γ, ∂β, ∂α by X1, ...,X6 in Eq. (7).

The associated left-invariant dual-frame {dAi}6i=1 is uniquely determined by

〈dAi,Aj〉 := dAi(Aj) = δij, i, j = 1, ..., 6,

where δij = 1 if i = j and zero else.

A.3. Why POAS is well-defined. We have to show that POAS, introduced in Section 2.2, is
well-defined w.r.t. the embedding of R3 o S2 into SE(3), i.e. independent of the equivalence
classes. Following Duits and Franken [2011], we show further that the method is left-invariant.

Under the notations of Section 2.1 and Appendices A.1 and A.2 the Riemannian 2-norm of
g ∈ SE(3) is given by

‖g‖R := inf{δ > 0 : ∃ϕ ∈ C1 ([0, 1] , SE(3)) with ϕ(0) = e, ϕ(1) = g,

ϕ̇(s) =
6∑
i=1

ϕi(s)Ai|ϕ(s) and

(∫ 1

0

6∑
i=1

|ϕi(s)|2ds
)1/2

< δ}

This norm can be described by a metric tensor as we will discuss now.

Let G : SE(3)× T (SE(3))× T (SE(3))→ C denote a metric tensor, where

(8) G(~v,~u) :=
6∑

i,j=1

gij(~v,R~u) dAi ⊗ dAj

for a rotation R~u ∈ SO(3) with R~u~ez = ~u. Such metric tensor is left-invariant and well-defined
iff gij(~v,R~u) ≡ gij are constant for all i, j = 1, ..., 6 and

(9) {gij}ij = diag{g11, g11, g33, g44, g44, g66}
as shown in Duits et al. [2011, Appendix E].2

2Note, that in Duits et al. [2011, Appendix E] g66 := 0 since the considered diffusion operator should not be
enforced in direction A6 associated with rotation angle α. However, due to the non-zero commutators of the Lie-
group SE(3) the left-invariant vector fields A4 and A5 depend on A6, see (7), such that this direction can not be
avoided completely. Therefore we prefer to allow values g66 6= 0 yielding a metric over the whole space SE(3), or
rather R3 o S2. It can be directly verified, that this does not affect the results in Duits et al. [2011, Appendix E].
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For G := diag{1, 1, 1, 1, 1, 1} it holds
6∑
i=1

|ϕi(s)|2 = Gϕ(s)(ϕ̇(s), ϕ̇(s)),

why

‖g‖R = inf{
(∫ 1

0

Gϕ(s)(ϕ̇(s), ϕ̇(s))ds

)1/2

with ϕ ∈ C1 ([0, 1] , SE(3)) , where

ϕ(0) = e, ϕ(1) = g and ϕ̇(s) =
6∑
i=1

ϕi(s)Ai|ϕ(s)},

Hence, the Riemannian 2-norm is left-invariant and well-defined on the space R3 o S2. The
same holds true for ‖.‖R,κ with G := diag{1, 1, 1, κ2, κ2, κ2} yielding the identity

3∑
i=1

|ϕi(s)|2 +
6∑
i=4

κ2|ϕi(s)|2 = Gϕ(s)(ϕ̇(s), ϕ̇(s)).

Next, let us consider the non-adaptive estimator of POAS, i.e. Eq. (2) with Kst(s
(k)
g1g2/λ) ≡ 1.

This corresponds to a (discrete) convolution on R3 oS2, see Duits and Franken [2011, Section
3] for a definition, with convolution kernel Ψ(g) := Kloc(‖(~v,R~u)‖R,κ(~u,k)/h(~u, k))/N

(k)
g ,

g = (~v, ~u) ∈ R3 o S2, and k = 0, ..., k∗ fixed. Note, that the bandwidths {h(~u, k)}k do not
use the embedding of R3 o S2 into SE(3) and that the proportionality parameters {κ(~u, k)}k
depend on the gradient ~u only via the bandwidths. Therefore, we only show left-invariance for
the bandwidths. The bandwidths are determined by solving the following equation w.r.t. h(~u1, k)
for each iteration step k and g1 ∈ R3 o S2, see Section 2.4.∑

g2∈R3oS2
(w̄(k)

g1g2
)2 · (

∑
g2∈R3oS2

w̄(k)
g1g2

)−2
!

= 1.25k ·
∑

g2∈R3oS2
(w̄(0)

g1g2
)2 · (

∑
g2∈R3oS2

w̄(0)
g1g2

)−2,

where w̄(k)
g1g2 denote the non-adaptive weights depending on h(~u1, k). We observe that the

bandwidths h(~u1, k) depend only on the norm ‖.‖R,κ(~u1,k) with k = 0, ..., k∗ and on the fixed
values h(~u1, 0) = 1 and κ0. Thus, we get the left-invariance of {h(~u, k)}k and {κ(~u, k)}k. A
convolution on R3oS2 is left-invariant and well-defined iff the convolution kernel is left-invariant
and well-defined. Here, the convolution kernel Ψ depends directly on the left-invariant and well-
defined term ‖.‖R,κ(~u,k)/h(~u, k) yielding the desired properties of the non-adaptive estimator.

Finally, we look at the statistical penalty s(k)g1g2 . It is based on the estimates Ŝ(k−1)
g1 and Ŝ(k−1)

g2

from the previous iteration step starting for k = 0 with the non-adaptive and hence left-invariant
and well-defined estimate Ŝ(0)

g1 =
∑

g2
w

(0)
g1g2Sg2/N

(0)
g1 . Hence, it follows by induction that (2)

remains left-invariant and well-defined when using the adaptive weights instead of the non-
adaptive ones.
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A.4. Computing the discrepancy ∆κ(g1, g2). Let

ĝ :=
(
R−1~u2 (~v1 − ~v2),R−1~u2 R~u1

)
where gi = (~vi, ~ui) ∈ R3 o S2, i = 1, 2, and R~ui ∈ SO(3) is any rotation with R~uiez = ~ui.
We want to calculate the coordinates {ki}i=1,...,6 satisfying the equation

6∏
i=1

exp(kiAi|ĝ) =

 R(0,β̂,γ̂)

x̂
ŷ
ẑ

0 0 0 1

 = Mĝ ≡ ĝ

as introduced in Section 2.1. In other words, we calculate the coordinates of the element ĝ
w.r.t. the left-invariant basis matrices {Ai|ĝ}i=1,...,6 which have been defined in Eq. (7), see for
comparison Eq. (6). Note that the coordinates are independent of rotation angle α since the
Riemannian 2-norm is well-defined w.r.t. the embedding of R3 o S2 into SE(3). Further, the
rotation matrices R~ui ∈ SO(3) are defined by R~uiez = ~ui such that αi ∈ [0, 2π) can be freely
chosen. So, we set α1 = α2 = α̂ = 0 yielding an easier form than (7) for the basis matrices
{Ai|g}i=1,...,6. Then, it holds

3∏
i=1

exp(kiAi|ĝ) =


1 0 0 k1 cos β̂ + k3 sin β̂

0 1 0 k1 sin β̂ sin γ̂ + k2 cos γ̂ − k3 cos β̂ sin γ̂

0 0 1 −k1 sin β̂ cos γ̂ + k2 sin γ̂ + k3 cos β̂ cos γ̂
0 0 0 1


and

6∏
i=4

exp(kiAi|ĝ) =

 N(k4,k5,k6)

0
0
0

0 0 0 1

 ,

where N(k4,k5,k6) denotes an appropriate matrix depending only on

A4|ĝ = (cos β̂)−1X4 − tan β̂ X6, A5|ĝ = X5, A6|ĝ = X6.

Further, it holds

v̂ = R−1(0,β2,γ2)
(~v1 − ~v2),

β̂ = arcsin[sin β1 cos β2 − cos β1 sin β2 cos(γ1 − γ2)],
γ̂ = arcsin[cos β1 sin(γ1 − γ2)(cos β̂)−1]

and

R−1(0,β,γ) =

 cos β sin β sin γ − sin β cos γ
0 cos γ sin γ

sin β − cos β sin γ cos β cos γ

 .

So, we can deduce directly that

(k1, k2, k3)
T = R−1

(0,β̂,γ̂)
v̂.

The equation N(k4,k5,k6) = R(0,β̂,γ̂) is solved numerically yielding the coordinates k4, k5 and k6.
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APPENDIX B. CODE SNIPPETS

Computations are performed with our R-package dti [Tabelow and Polzehl, 2011] (version
1.0) on an Intel(R) Xeon CPU, Six-Core 2933MHz, 24 GB RAM. The operating system was
OpenSuse 11.3 with R version 2.12.1. The R-package is freely available on CRAN (http:
//cran.r-project.org) and NITRC (http://www.nitrc.org) and has been
described in detail in Polzehl and Tabelow [2011]. Our current implementation uses R [R Devel-
opment Core Team, 2010] with FORTRAN. Computation time for 3 Million voxels (approx. 180
million points in R3 o S2) in the experimental data using k∗ = 12 has been approximately 2 h.

In the following example the data, here in DICOM format, are supposed to reside in a directory
s0002. The number of slices in the scan is 91, the file b-directions.txt contains
the gradient directions including the non-diffusion weighted gradients in the order in which they
where scanned. The following code reads the data, performs the position-orientation adaptive
smoothing described in this paper, estimates the diffusion tensors and fractional anisotropy and
displays the color-coded FA for slice number 57.

> library(dti)
> gradient <- read.table("b-directions.txt")
> dwiobj <- readDWIdata(gradient, dirlist = "s0002",

format = "DICOM", nslices = 91,
level = 0)

> dwiobj.s <- dwi.smooth(dwiobj, kstar = 12, kappa = .4,
sigma = 60, lambda = 10)

> dtiobj.s <- dtiTensor(dwiobj.s)
> dtiind.s <- dtiIndices(dtiobj.s)
> plot(dtiind.s, slice = 57)

For more information on the usage of the package see the help files of the package dti and Polzehl
and Tabelow [2011].
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