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ABsTrRACT. We study a coupled system of equations describing the movement of a rigid body which
is immersed in a viscoelastic fluid. It is shown that under natural assumptions on the data and for
general geometries of the rigid body, excluding contact scenarios, a unique local-in-time strong solution
exists.

In this paper, we study the problem of interaction of rigid bodies and viscoelastic fluids in a strong
regularity setting. To describe the fluid, we use the Johnson-Segalman model, so that the viscous stress
tensor 7T satisfies the constitutive equation

D,T D,D(v)
Dt Dt )
where D(v) = (Vv + (Vv)T) is the deformation tensor, v is the velocity field, A; > 0 and Ay > 0 are
relaxation and retardation times respectively and p is a viscosity parameter. The derivative
D,T
Dt
includes the material derivative and the objective function

9o (T, V) :=TW (v) — W(v)T — a(D(v)T + 7D (v)),

which guarantees that 7 is frame-invariant. Here, W (v) := (Vv — (Vv)T) denotes the vorticity tensor
and the parameter a € [—1,1] is specific to the fluid. In particular, for a = 1, we recover the Oldroyd-
B model [27, 25]. For a mathematical exposition of Johnson-Segalman fluid flow and many results
concerning viscoelastic fluids in general, we refer to [28]. In particular, the existence of regular solutions
for finite time or close to equilibrium was shown for several classes of data, cf. [21, 13] and [3] in critical
spaces.

In order to include the rigid body in the flow problem, we assume that a container given as the
bounded domain O holds the body in a bounded domain B(t) with outer normal n(t) and that it is
otherwise filled by the fluid, in the domain D(t) = O\B(t).

T+ M

— 2u(D(v) + Ag

(0.1)

=07 + (v- V)T + ga(T, Vv)

The outer boundary of O is denoted by dO with outer normal v and the interface between body and
fluid is denoted by I'(t). We write

Qp:={(t,z) eR*: t c Ry, z € D(t)}

and similarly, Or.
The balance of momentum and mass for incompressible fluids with constant density 1 is given by

(0.2) { ov+ (v-Vv = divT + f, in Op,

dive = 0, in Qp,
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where we write T(7,q) = T — gldgs for the full stress tensor, g for the pressure and f for some exterior
force. If we split
T=:2u—DW)+7, andset«a:= &,
A1 A
as well as
Dyva(v) = 2uaD(v),
and include initial conditions, then (0.1) and (0.2) are equivalent to the system

ov+ (v-Vv—paAv+Vqg = divr+ f, in Op,

dive = 0, in Op,

(0.3) v(0) = vy, in D(0),
MO+ (v- V)T 4+ ga(T,VV))+ T = Dyi-a(v), in Qp,

7(0) = 70, in D(0).

We say that no-slip conditions hold on the fluid boundaries, so that
(0.4) v=0 on 90

on the outer boundary of the container and

(0.5) v(t,x) =n(t) +0(t) X (x — z.(t)), on QOr,

on the interface, where the right-hand side denotes the velocity of the rigid body. It is given by a
translational velocity vector 7 and an angular velocity vector 6, calculated with respect to the position
of the center of mass x.. They satisfy the equations of conservation of momentum and of angular
momentum of the rigid body,

mn'(t) + [pp) T(T, Q) (¢, 2)n(t,2) AT = fi(t), t € Ry,

(JO) () + Jpy(x — zc(t) x T(T, @) (t, 2)n(t, 2) AT = fo(t), t € Ry,

n(0) = no,

6(0) = 6o,
which contain the drag force and the torque exerted by the fluid onto the body. The constant m > 0 is
the body’s mass and J is its inertia tensor, whereas the functions f; and f; denote external forces and
torques. For example, in order to model a free fall of the body under the influence of gravitation, we
can set fo =g, fi = mg and f = 0 for a constant vector g.

For the Newtonian coupled problem given by (0.3) and (0.6) under the assumption that 7 = 0,
an extensive exposition of known results and open problems is given in [15]. The existence of global-
in-time weak solutions was shown for the 2D- and 3D-problems in [26, 32, 23, 4, 8]. It was shown
moreover in the case of several moving bodies, when contact may occur, that weak solutions still exist
[30, 10, 11]. Assuming regularity of solutions however, the modeling of possible contacts still seems
unclear, cf. e.g. the result in [22]. Excluding contact, the existence of regular solutions on a finite time
interval was shown first in [16] and [35, 5] in a Hilbert space setting. Recently, it was proved that the
operator corresponding to a suitable linearization of the problem generates an analytic semigroup in
L5/5 N L?(R3) and existence of local strong solutions was derived in the case that B is a ball [37]. In
[19], it is shown that the linear problem satisfies maximal LP-regularity estimates, corresponding to the
estimates on the Stokes problem, and that local-in-time existence of strong solutions follows for general
geometries of B.

Looking at non-Newtonian fluids, existence of strong solutions can be carried over to the case of
generalized Newtonian fluids of shear-thickening or -thinning type, [19]. In [12], it was moreover shown
that for strongly shear-thickening power-law fluids, global-in-time solutions exist also in the case of
several moving bodies and that contact will not occur.

Concerning the interaction of rigid structures and viscoelastic fluids, no results seem to be known
in the instationary case. Using a second-order-fluid model, the existence of stationary solutions in the
presence of gravity (the steady fall problem) was shown together with stability results for symmetric
bodies [15, 18]. Corresponding to experiments, they suggest that for some positive Weissenberg number,
normal stresses cause a rigid body to stabilize in the orientation opposite to the Newtonian stable steady
fall [17]. These effects give a strong motivation to study, also in a regular setting where uniqueness can
be expected, the interaction of rigid bodies and viscoelastic fluids. Considering this problem may thus be
interesting for a number of applications such as industrial processes involving particle sedimentation or

(0.6)



3

flow control using particles, as well as for the modeling and analysis of non-Newtonian fluids containing
small and large particles.

From a mathematical point of view, the key points in our analysis are a general technique of how to
deal with the geometric character of the interaction of rigid body movements and fluid flow (Subsection
4.1) and the construction of a suitable fixed point argument which combines the parabolic, hyperbolic
and ODE-parts of the system (Subsection 4.2).

1. MAIN RESULT AND STRATEGY OF THE PROOF

We combine equations (0.3), (0.4), (0.5) and (0.6) in one coupled system,

v+ (v- Vv — paAv+ Vg = divr + fo, in Qp,

dive = 0, in Op,

v(0) = vy, in D(0),

vlgr = n+6x(x—x), onOQr,

’U|a(g = 0, on 80,

(1.1) mn'(t) + [ry T(T,q)(t,2)n(t, x) AT = fi(t), te Ry,

(JO)(t) + Jppy (@ — ze(t) x T(T, @) (t, 2)n(t, z) AT = fa(t), teRy,
n(0) = no,
0(0) = 0o,

MO+ (v- V)T + go(T,VV)) + 7 = Dy1—a(v), in Op,

7(0) = 7o, in D(0).

in the unknowns v, ¢,7n, 0 and 7, and, implicitly, D(¢). The main result of this paper is the existence of
a unique strong solution to (1.1), under suitable assumptions on the data, requiring in particular that
the body keeps some distance to the wall 00. To make this notion more precise, we define the following
spaces of functions.

Definition 1.1. Let 1 < s,7 < oo and T > 0, then
L*(0,T; L"(D(-))) = {f € Lioe((0,T) x D)) = 1 fll oo 0. 71 (myy) < 203

where

T 1/s
lzsorier oo = (/o IOl dt) |

As an abbreviation, we write D := D(0) and Jp := (0,7) C R for T' > 0. Moreover, we shortly introduce
the following function spaces on fixed domains and shortly repeat some well-known properties. For a
domain D C R%, d € N and 1 < r < oo, the Sobolev spaces of order m € N are denoted by W™ (D).
The positive scale of Bessel potential spaces is denoted by H?" (D), 3 € Ry. On a domain of class C™
and for 0 < B < m, they can be given by complex interpolation of Sobolev spaces,

HP" (D) = [L"(D),W™" (D)2,

and they are compatible with the Sobolev spaces of integer order in this case. For every 0 < 8 < m,1 <
r < o0o,1 <s< oo, we define Besov spaces by real interpolation of Sobolev spaces,

B'IE%S(D) = (LT(D)7 Wm’T(D))B/m,sv
and we denote the Sobolev-Slobodeckii spaces W7 (D) by

Wor(D) if B €N,

WD) = { BS.(D) ip¢N.

They coincide with the Bessel potential spaces if » = 2 and we will also use their intrinsic charac-
terization. For more information on these function spaces, we refer to [36] and we often cite [33] for
interpolation and compactness results in vector-valued function spaces. In general, we do not distinguish
in the notation for these spaces, whether function are R- or R%valued. In specifying the norm, we often
use the short notation L*(L") for the space L*(Jr;L"(D)) and a similar convention for other R or
vector-valued function spaces.

We can now state the main theorem of the paper.
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Theorem 1.2. Let1l < s < 00,3 <r < oo and O and B C O be bounded domains with boundary of class
C?'. Let ng, 0y be in R? and vy € B,Z-QQ/S(D) satisfying the compatibility conditions given in Remark

1.3 below and let 9 € WHT(D). Let fo € WP*(Ry; L"(O)) for some 3> 0 and fi, fo € L*(R;R3). If
dist(B(0),00) > d for some d > 0,

there ezists a mazimal interval [0,T,), such that problem (1.1) admils a unique strong solution

L*(Jr; W2T(D())) N WH*(0, s LT(D(+))),

L*(Jr; WH(D())),

Whe(Jr.; R?),

Whe(Jr.; R?),

e C(Jr ;W (D() N W (Jr.; LT(D())).

4 I e 2
m M M M

Remark 1.3. The compatibility conditions on vg, 79 and 6y are divvg = 0 and

volr(z) = 6o x x+no,
vloo = 0,
if -+ 1 <1and
v0|F(‘/L') ’I”L(O,"E) = (90 X T+ 770) . TL(O,CL'),
voloo -v(z) = 0,

if % + % > 1. They are a consequence of the method of construction of the solution used below and of
the characterization of the time-trace space

(1.2) Dy, = (Lo, W2 N Wy N L5116

of the Stokes operator, given in [1, Theorem 3.4].

Remark 1.4. The reason for the assumption fo € W (R ; L"(O)) (instead of fy € L*(Ry; L"(0)))
will show in the proof of Lemma 4.3. Roughly speaking, the coupling of fluid pressure ¢ and the rigid
body velocities is so strong that ¢ must be included as a variable in the Schauder fixed point argument
employed in Section 4 for the existence proof. The potential part of fy on D(-), which is not known a
priori, must therefore yield compactness. Alternatively, we may ask that fo € L*(Ry; L% (D(+))), which
seems unnatural.

Remark 1.5. The maximal time T, of existence of the solution can be characterized as follows. Either
T, can be arbitrarily large or one of the functions

to o)l gavre oyt @]t 18] (@)l

is unbounded on [0, T} ), because otherwise, the solution could be extended. The second limiting condi-
tion on T is that the rigid body may not move too close to the boundary, such that dist(B(7%), 00) < %.
This distance can be estimated through the solution velocities 7, .

The remainder of the paper is organized as follows. As a first step, in the next section we change
coordinates in (1.1) so that we can consider the system on the fixed cylindrical domain J x D. Following
the approach of Inoue and Wakimoto in [24], this transform is defined in a way as to preserve the
solenoidal condition on the fluid velocity and and not to change the regularity of the solutions, cf. also
[35], [29] and [9]. Tt is important to note that in our situation, the transform is an unknown part of the
solution, so that we can only give a method of construction which should make sense for all possible
body velocities in the solution space W1 (Jr; R3). Section 3 contains a collection of preliminary results
and estimates. In Section 4, we construct a Schauder fixed point argument to show the existence of at
least one strong solution v, q,n, 0,7 as in Theorem 1.2. In the last section, it is shown that the solution
is unique in its regularity class.



2. CHANGE OF COORDINATES

We rewrite (1.1) as a system of partial differential equations on the fixed domain Ry x D. For
convenience, we assume that x.(0) = 0. If O were the whole space R?, we could choose a frame of
reference attached to the rigid body, centered at x.(0). This change of coordinates would be given by
diffeomorphisms X, Yy defined in the following way, cf. [16]. For every y € R*, we have Xo(t,y) =
Q(t)y + z.(t) with some matrix Q(¢) in SO(3), satistying the set of differential equations

{ O Xo(t,y) = m(t)(Xo(t,y) —zc(t) +n(t), Jr xR?,
X()(an) = Y NS RSa

where m(t) denotes the skew-symmetric matrix satisfying m(t)z = 6(t) xx. Note that from this equation,
we can see that Q € W2*(Jp;R3*3), if n,60 € WH*(Jr). The corresponding inverse Yy(t) of Xo(t) is
given by

(2.1)

Yo(t, ) = QT ()(z — zc(t))

or the differential equation

(2.2) { 332)((5:3 i ;7M(t)YO(t,x) —&(t), ZTE>}<R[§,3’
where
(2.3) M(t) == QT (t)m(H)Q(t), &(t) := QT (t)n(t).

We modify Xy and Yj such that they rotate and shift space only on a suitable open neighborhood of
the rotating and translating body. The main reason for this modification is that we want to treat the
case of bounded smooth fluid domains D. Thus, we must not rotate or translate the outer boundary
90. Let x € C*°(R3;]0,1]) be a cut-off function,

[ 1, if dist(z,00) > d
(2.4) x(@) = { 0, if dist(z,00) < 4,

and let b: [0,7] x R? — R? be a vector field

(2.5) b(t, ) = x(x — z(t))[m(t)(x — zc(t)) +1(1)] — Br (Vax (- — ze())mt) (- — z.()))(2).

Here, By : C°(K;R) — C°(K;R?) indicates the Bogovskil operator corresponding to an open set K
containing {z € R" : d < dist(z,00) < 4}. It is a bounded operator yielding div Bxg = g if [, g =0,
cf. [2]. The function b(t) belongs to C*°(R3) and it is bounded. Due to

/7 (Vx(y = 2c(0))m(t)(y — zc(t)) dy = / X(y = ze(t))trm(t) dy = 0,

B2\ B1 Bx\Bi
the correction by the Bogovskil term yields div b(t) = 0 for all ¢ € [0,T7], so b € W*(Jp; C% (R?)), if b
is extended by the rigid motion to B and by 0 to R3\O.
We now consider the ordinary differential equation
XX (ty) = bt,X(ty), JrxR3,

(2.6) X(0 — R3

(0,y) Y, y € R".
Given 1,0 € WhHs(Jp;R3), it yields a unique solution X € C!(Jr;C°(R3)), by the Picard-Lindel6f
theorem. The solution has continuous mixed partial derivatives %, %, where 3 € N} denotes
a multi-index. By uniqueness, the function X (¢, -) is bijective and we denote its inverse by Y'(¢,-). Since
divb = 0, Liouville’s Theorem implies that X and Y are volume-preserving, i.e.

JIx(t,y)Jy (t,X(t,y)) =Id and det Jx(t,y) = det Jy(t,z) =1,

for the Jacobians (Jx);(t.y) = 0;X;(t,y) and (Jy);(t, x) = 0,;Y;(t, x). Given X, the inverse transform
Y satisfies the differential equation

@27) oY (t,x) = b)Y (tx)), JrxR3
' Y(0,z) = =, r € R3,

where

(2.8) b (t,y) = —Jx" (8, y)b(t, X (¢,1))-

Note that by this definition, b*) and Y obtain the same space and time regularity as b and X. Within
the ball By, X, Y coincide with X, Yp; whereas in the complement of KU By, 0; X (t,y) = 0;Y (t,x) = 0.



For (t,y) € [0,T) x R?, let

ﬂ(t,y = ‘]Y<taX(t7y))’U(th(t’y))7
;B(t,y = q(t,X(t,y)),
(2.9) o) = QT (1)),

)
)
)
) = QT(n(),
Folty) = Jv(t, X(t,9)fo(t,y),
) = QTWf®), ie{1,2},
) =y X ()T X (Ey) Iy (8 X (),
) = QT(t)n(t,X(t,y))on I :=T(0).
It follows from (2.3) that
M(t)z = QT (t)m(H)Q(t)r = QT[0(t) x Q2] = (QT(HO(1)) x v = w(t) x x,
and by definition, N(¢,y) = N(y) is the outer normal vector of T" at y € I'. The transformed inertia
tensor I := QT (¢)J(t)Q(t) no longer depends on time since for all a,b € By,

(2.10) a-I-b=— (axy)-(bxy).
mJB(0)
To get the transformed rigid body equations we use that
T(7,q)n(t)dl’ = Q/ T(Dyo(t)+ 0,p)N dI'
r(t) r
and

/ (2 — 2o(8)) x T(7, @)n(t)dT = Q / y x T(D,.a(@) + 0, )N d.
(1) r

The first part of the system (1.1) transforms into

Oi + Mu — 2ualu —dive + N(a)+Gp = Fo, in Jr x D,

diva = 0, in Jp x D,

a(t,y) —wot)xy—£&(t) = 0, on Jr x T,

ﬂ‘ao = 0, on Jr x 00,
(NP) a0) = v in D,
mé + m@ x &) + [ T(Dpo(t) + 0,p)NdAI' = F, in Jrp,
I+ 0 x (Io) + [py x T(Dyo(u) +o,p)NAT = F, in Jr,
5(0) =To and U_J(O) = 90

on the cylindrical domain Jp x D. In this system, the operator £ denotes the transformed Laplace
operator and it is given by

(ﬁﬂ)l = Zik:laj (gjkﬁkﬂl) + 22?,k7lzlgklrékalﬂj
+Z§',k,l=1 (6k(gklr§l) + Ef’va:wklrﬁ ) -

The convection term becomes

(N(ﬂ))l = Zgzl’ﬁjaﬂii + E?’kzlrékﬁjﬂk.
The transformed time derivative and the transformed gradient are given by
Ma); = X505 + 3y (i + (00)(0%0)) 4
and
(GD)i = X3_19"0;D,
respectively. The coefficients are given by the metric contravariant tensor
(2.11) 97 = Ti_1(0kY3) (OkY)),

the metric covariant tensor

(2.12) 9i5 = Tii=1(0: Xk ) (9, Xx)



and the Christoffel symbol
(2.13) Iy =50 97%(0igji + 059k — Ongij) = Siy (0;00X1)0, Y.
1

Similarly, the transport equation in the second part of (1.1) becomes

(TE) MO+ (Y 4+a)-V)o+C(0,6,0):0)+0 = G in Jp x D,
0(0) = 19 inD,
where
EW) i = (1l — 3 ika - jka . ikrj Ik Vg
(Eu)ij = p(l — )Xy ;219" Oty + g7 Opti; + (9" Ty + g7 Ty ),
and where

22,1:10(@ §,@)ijkiOk

= SR immel {5jl(5myi)(5ka) + 0 (0mY5) (01X m) + (85, + i T3, ) Vi
1

, , 1 A .
+ (1 — a)anamX‘ir((sjlglnakX‘rr + 5ikg'jnalXﬂ') - 5(0‘ - 1)(63'11—‘21% + 6ikr?m)] Um

5
1 . . 1
+ [5(1 —a)(6159" Gkm + 0ikg”" Gim) — 5(1 + @) (8;10imOkn + 5ik51n5jm)]3nﬂm}0kl

Note that we often shortly write Y or Y for the functions given by (¢,y) — (Y o X)(t,y)) and
(t> y) = ((aty) o X)(t’ y) _

In the following, we use that a solution (u,p, &, @, ) to the coupled problem (NP) and (TE) yields a
solution (v, q, 7,0, 7) to the original problem by the definitions in (2.9). A posteriori, we can claim that
the transforms X, Y are sufficiently regular for making the two systems of equations equivalent in the
strong sense, cf. [24, Proposition 2.1, Theorem 2.5] and [29].

3. PRELIMINARY RESULTS

In this section, we state some preliminary results regarding the Stokes equation, the linearized trans-
port equation corresponding to 7 and the change of coordinates given by X,Y, which provide the
estimates necessary for constructing a solution via a compactness argument in the following section.

For 1 < s,r < 0o, the Stokes operator A, with Dirichlet boundary conditions in L’ (D) is defined by

Aru = Pr.pAu,
D(A,) = W2(D)nW,"(D)N Ly (D)),
where P, p denotes the Helmholtz projection on L™(D). In the following, we denote the corresponding
space of maximal regularity by

XTI =W (Jr; L7(D)) N L*(Jr; D(A,))

and the space for the associated pressure is
Vi o e LU @) [ p=o.
D
The following proposition is a classical result due to Solonnikov [34] and Giga and Sohr [20] for the case
r £ s.

Proposition 3.1. Let D C R, n > 2, be a bounded or exterior domain of class C? and 1 < s,r < 00,
0<T<Ty, fel(Jp;L7()) and ug € D, as defined in (1.2). Then there exists a unique solution
we XTI ., peY]l , to the Stokes problem

oiu—Au+Vp = f,  inJp xD,

divu = 0, inJr xD,

(3.1) u|aD = O7 on JT X F,
w(0) = wuo,

and there exists a constant KSS";O’”S > 0 independent of T, ug and f, such that

Stok g
lullxr  +lpllyr o < KSPUf ez + luollp, ,)-



This motivates the definition of the solution operators
(3.2) U(f,up) :=u € XST’T;(,, P(f,ug):=p€ Ygr,o

for problem (3.1), which give isomorphisms from L*(L") x D, to X7, , x Y[ ;. Note that the solutions
satisfy the relation

(33) vp(fv uO) = (Idlﬂ' - ]P)T,D)(Au(fa uO) + f)

In the following, we also deal with solutions u, p for the Stokes problem with in homogenous boundary
data. We thus define the spaces

X!, = WY (Jp; L'(D)) N L*(Jp; W'(D))
Yl = L(Jr; W' (D))
Wl o= W (I RY).

The following proposition yields embeddings properties of Xg:r which will be needed later on.

Proposition 3.2. Let D C R" be a CY'-domain with compact boundary, let s,r € (1,00), 3 € (0,1)
and Ty > 0. Then
(3.4) XTI — HP(Jp,; H* =P (D)).
In particular, if 7,5 € (1,00) U {0}, I € {0,1} and
2—1 n n no 1
2 2r  2r — s
then for all T € Jr,
XL — L¥(Jp; WHT(D)).
Moreover, there ezists a constant C(Ty) > 0, independent of T € Jr,, such thal the estimate
ull Ls (1 wn(pyy < C(To) “u||X§jT
holds true for all u € XI, o :={w e X, : w|;—o = 0}.
For a proof of this proposition by the mixed derivatives theorem (cf. [6]), we refer to [9, Lem. 4.2]
and [7]. At this point we also note the more elementary embedding constants

[fllpe STYS7Y5flle forall feL¥(Jr), 5>

and
/ 1 1
e STV Ay forall feWS, f(0)=0, —+—=1,

which will be used frequently.

The estimates we need on the diffeomorphisms X and Y and on the coefficients g;;, g"/, I‘;k, which

characterize the change of coordinates are summarized in the following Lemmas. The proofs are ele-
mentary but tedious, so they are quoted from [19, Lemma 6.3, Lemma 6.5], where they were used to
study the free movement of a rigid body in a Newtonian or generalized Newtonian fluid.

Lemma 3.3. Let Ty > 0 and L > 0. Then for all §,w € C(Jr,; R3) such that H§||C(JTO)—|—Hw||C(JTO) <L,
then the solutions X, Y € C'(Jg,; C°(R™)) of (2.6), (2.7) satisfy
& &
19" X e ey T 197 lerem)
for all multi-indices 1 < |B| < 3 and for some constant K;, > 0, independently of 0 < T < Ty.
Lemma 3.4. Let Ty > 0 and L > 0. Then for all {,w € C(Jr,) such that ||| + 19 < L,

Sup 1097 (O)llc) + 107955 ()l oy + 10°Ti B llepy < Ki
T

< Kj,

Jor all 0 < T < Ty and for all multi-indices 0 < |5] < 1 and a constant K;, > 0. Moreover,
sup |0;Y; — dijllcmemy) < KT and
Z’j

sup 9" = 6ijllc(rmemy < KiT,
i

where g', g;; and F;k are given by &, w through XY as in (2.11), (2.12) and (2.13).



The unknown part of the stress tensor o solves (TE) and belongs to the space
(3.5) Z>, = C(Jr; W' (D)) n W (Jp; L' (D)).
We have the following preliminary result on the linearization of (TE).

Lemma 3.5. Let 1 < p < oo and ¢ > 3, T > 0. Given 19 € WL (D)3*3, w € L*(Jr; D(A,))3,
C € L*(Jp; WHT(D))?*33%3 and £ € L*(Jp; W (D))3*3, there ewists a unique solution o € ZL, to

(3.6) Moo+ (w-V)o+C:ol+0 = &, in(0,T)xD,
) o(0) = 719, inD,
satisfying
1
ol Lo wiry < (I7ollwer + MT)QXP(CHV?UHLI(LOO) +ICllzr iy + €L wrry) =2 A,
and
Ti/P
100l Ls(Lry < K A(||w][ s qwrry +[ICllLs(zry + €l La (o) + e )

for some constant K. = K(r) > 0.

Proof. The proof follows very closely the proof of [14, Lemma 10.3]. In particular, we obtain existence
in the same way, by using the method of characteristics for smooth data and showing that the estimates
allow for finding o € ZZ, for Sobolev data by passing to the limit. We repeat the arguments of how to
obtain the above estimates, as they vary slightly and motivate the assumptions on the data. First, we
formally multiply the first equation in (3.6) by |o|" 20, pointwise in time, and integrate over D. This
gives

A d - -
gl +llolz- =< CMllCllzee llolzr + €] e lloll7,

as
57 i k=1 (Wi (Okoig), 0ijlo ) rp = Bi_(wk, Ok(|0]"))rp =0

by integration by parts. Secondly, we take the gradient of the first equation in (3.6) and formally
multiply by |Veo|"~2Vo and then integrate to get

Al r r r
Vol + Vel < O (IVwllz [VollLr +ICllz=IVollz- +[IVC]|z- )
+ V€]l
as
23 kim0 (Ok01045), 04| Vol 2)p = 0
and
, 1/r’
5 saomes OnCat)ous. On0) Vo ) < CIVElurlallm ([ (9071))
< CIVCllzrllollwrr Va7t
for v = —*5 and using that » > 3. Together, this gives

1d
rdt

We divide by A\ ||<7||€I711 to get

ol + ol < I€lwrr ol + 0C (IVwllze +lICwar) ol

d 1 1 1
G (bl + 55 )+ ollolwnr < COTwln + Il + el (lolwne + 55

It follows by Gronwall’s Lemma that

1
lollpewrry < (IIToIWl«r + A1K> exp(C||[Vwl|pr(pey + ICll Lrwrry + €l Lrwrry) = A
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Directly from (3.6),

IN

0ol Ellr +llolier) + Cllwllwer + Il L) o llwr

3

- 1 1
< C(llellwi.» + N([lwllwrr + |Cller + [|El - + -
< C(lloflw Alc)(II lw ICll - + 1€l )\10)

L
MK

< KA(fwllwrr +(IC e + 1] +

if we take C' = K,. This implies
Tl/s

0o |l L ry < KrA(Jwl s owrry + ICl L ry + 1€ML ory + NE

).
O

Remark 3.6. The Lemma shows that in the full coupled problem, if 7y is chosen to be symmetric, then
7(t) remains symmetric for all ¢ € Jp,. This is because for given u, £, w, the corresponding coefficients
C, & in equation (3.6) are symmetric, so that o? must satisfy the same equation as o. By uniqueness,
they must coincide. By the definition in (2.9), this property carries over to 7.

4. PROOF OF EXISTENCE

The existence proof is divided into three steps. In the first subsection, we define a suitable reformula-
tion of the problem. It is necessary to reduce to homogeneous data in the parabolic part and to linearize
the system in two steps. The first step is to use a modified Helmholtz projection on the fluid equations,
which is appropriate for the transformed gradient of the pressure Gp. The second step consists in finding
a linearization for the coupling of fluid and rigid body which yields strong estimates. After this, the
fixed point map ® is constructed in detail in Subsection 4.2. In the third subsection, it is shown that
Schauder’s fixed point theorem applies to ®. This proves the existence claim in Theorem 1.2.

4.1. Reformulation. From [19, Theorem 4.1], we obtain that the linearized Newtonian coupled system

oyu* — paAu* + Vp* = fo, in Jp x D,
divu* = 0, in Jp xD,
u*(0) = vy, in D,
uf—wt xy—¢&* on Jr x T,
(4.1) uw* =0, onJrx90,
m(£*) + [ T(Dya(u*),p*)NAT = fi, in Jr,
I(w*) + [py X T(Dyo(u*),p*)NAL = fo, in Jp,
£°(0) = no,
OJ*(O) = 90.

I
o

has a unique strong solution u*, p*, {*w* satisfying the estimate

lu*llxz, + 1P [lvz, + 1€ lwrsrr) + w0 lwrs ()

< C (1ol ya2repy + ol + 0] + 1 folleqary + Ifallze + 1 allze)
(4.2) = K.,.
We set
i = u—u",
5 = g_g*v
w = w-—-w

The Helmholtz projection applied to Gp(t) yields p € YST

T

(43) gﬁ = (Id - PT,D)gﬁ + Pr,Dgﬁ = Vﬁ + H(ﬁ)7

o such that
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where H(p)(t) € L7 (D) and p satisfies the weak Neumann problem associated to

Ap = div(gp), in D,
op a(gp) _ op
(4.4) % = XP =2 onT,

We write the system (NP) in terms of 4, p, £, w in a way that only linear terms appear on the left hand
side:

Ot — paAi+ V(p —p*) = Fog+divo, in Jr x D,
divi = 0, in Jp x D,
i(0) = 0, in D,
1L =wxy+E, on Jr x T,
(4.5) i =0, on Jp x 9O,
m¢ + [ T(Dy0(@),p—p*)NdT = Fy — [ oNdT, in Jr,
I(w) + fry X T(Dy,a(t),p—p*)NAI' = Fy — ny x oNdI', in Jrp,
£(0) =0,
w(0) = 0,
where
Fo = Fo— fo+pa(l—A)u—H(p) - M@)-N(),
F, = FA —f1+/(ﬁ—ﬁ)NdI‘n1—Inw x &,
r
(4.6) F, = F—fot+ / y X [(p—p)IAN]dT — @ x I.
r

Ignoring the F; would linearize the system and reduce the effect of the rigid body on the fluid flow to the
Dirichlet boundary condition on I'. However, this condition does not satisfy @|r-N = 0. In the following,
we construct a potential field which corrects this condition and redefine @ and p correspondingly. Then
we show how this affects the rigid body equations, following [15].

Let e; = (1,0,0),e2 = (0,1,0),e3 = (0,0,1) and let a(, o) be solutions of the Neumann problems

Aa = 0, in D,
851(\;) r = N-¢, onl,
ag;) o0 = 07 on 60,
Aal) = 0, in D,
aaji? r = (e; xy), onT,
a0 = 0, on 9O.

As the domain is smooth, we can find special

(4.7) a, oD e W (D)
solving these equations. For any given &, w € WOI’S(JT), let
(4.8) Ago(t) := Ziwi(t)a) + &(t)a  for all t € Jr,
which implies that
AAE,W (t) = 0, in D7
e = (w(t £)-N, onT
oI (W(t) xy+£(t) - N, onT,
%ﬁ|3@ = 0, on 00.

Or simply, VA¢ ,(t) = (Id — P, p)(£(t) + w(t) X -). Moreover, VA¢, € XI and
IV Ae ol o + 10 Aewl oy < CUENwre + [l

We define
U — VAo,

S

="+ O0rAco,



to obtain the system of equations

Oru — paAu + Vp

divu
u(0)

ulp —w xy—§

U|8o

mé’ + jr T(D,o(u+ VA ), p+ 0tAe )N dD
Iw/ + fp Yy X T(D;L,a(u + VA&,w)vp + atAg,w)N dr’

£(0)
w(0)

Fo + divo,

07

07

—VAe uloo,

F1 — «[F oN dF,

Fy — |y x oNdr,
07

07

in Jpr x D,
in Jp x D,
in D,

on Jpr x T,

on Jp X 3(9,

in JT7
in JT,

12

equivalently to (4.5). Note that now u satisfies u-N =0onT and u-v =00n 9O. Forall 0 <e < 1—1,

we introduce the operator

._7 . WE+1/7"7'(D;R3X3) N Rﬁ,M s (

JoMNdr )

Jry x MN AT

From the boundedness of the trace operator  : We/2+1/77(D) — L7(9D), it follows that

(4.10) |T(M)| < C’||MHWE+1/T,T(D),

for all M € WeH/mr (D).

We introduce the matrix I := ( mlds ) and the added mass matriz M of B, cf. [15, p. 685] in the

following way. Let a;j, bi;, cij, dij be given by

a)

ail
a21
M = a31
dyy
day
d31

where the point of this definition is that

T(9iAe.) =M ( &

a12
a22
a32
d12
daa
d3a

a13
a23
a3s3
di3
da3
ds3

C11
C21
C31
b11
ba1
b31

w

C12
C22
C32
b12
baa
b3a

).

C13
C23
C33
b13
ba3
b33

Q5 = / a(i)Nj dF, bij = / a(i)(ej X y) . Z\]dl—\7 Cij = / a(i)(ej X y) ']\/vdF7 dij = / Oz(i)Nj dr
T T T T
nd

By a direct calculation, it can be shown that the matrix M is symmetric and semi positive-definite, cf.
[19, Lemma 4.3], so that (I + M) is invertible. It remains to modify u in order to obtain homogeneous

Dirichlet boundary conditions on T'.

Counsider, similarly to the definition in (2.5), the function

ba(t,y) = —VAeo(t,y) + x(@)[E() +w(t) x

Yl

We have by € Wb (Jp; C?(D) N L7(D)) and the estimate

— Br[(VX)§(t) + w(t) x

[ballxr, < Clwllwzr + [I€llwz)-

The point of this definition is that

where

U(,
= P

(.U) + bA +U(F() +diVJ),
w) 4+ P(Fo + divo),

U(—0ba + paAby)
P(—0tba + palby).

1(y).
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It follows that(NP) can be written equivalently as

R(6.w) = (! ) =T (0) T (C(DyaU(Fotdiv ), P(Po-aiv o))
(4.11) w(0) = 0,
u—ba (&, w)—UE w) = U(Fo+divo),
p—P(ﬁ,w) = P(F()+diVU),
u(0) =0

where we define the bounded linear operator R : W x WI' — Ls(Jr) x L*(J7) by

R(E,w) 1= (1+M) S (6,0) + T(D(DyalU(E,)), P(E )
We used that

T (Do) = T(DpaU§,w)+ba+UFo+Ko)+ VAe))
= j(Du,a(u(gﬁw) +u(F0 + ICU)))7

as near I', D(by) = —D(V A¢ ). By the following lemma, the first equation in (4.11) can be solved for
¢, w, given any right-hand side in L*(Jr;RS).

Lemma 4.1. The operator R is bounded and invertible and

H( fj )H ” - = HRil(f)HWDTXWbT < Hf”LS(JT;]R"')
WExW

for all f € L*(Jr; RY).

Proof. The lemma is shown in [19, Lemma 4.4]. The proof is based on the fact that the operator

Ry = J(s(U(&w))) maps from WT x WT to H*(Jp) <> L*(Jr) for some fB(s,r) > 0 and that
J(IdgsP(§,w)) can be controlled by R;. O

4.2. Construction of the fixed point iteration. To prove Theorem 1.2, we show the existence of a
strong solution

w € X[,
p € Y.,
¢ e wh,
w € Wk,
o € zl.

to the coupled transformed systems (4.11) and (TE) via a Schauder fixed point argument, similar to
the method used in [13, 14] for studying the uncoupled viscoelastic flow. In the following, let

_yT ._ = T,Ry T,R1 T,R> T,R> T,R3,R4
V= VRl,R2,R3,R4 = {(U, P = Q, E) S XSJ,’O X YS,T X WS,O X Ws,o X ZS,T },

where
X = {Ue XL, o:Ulso =0,||Ul|xz, < Ra},
YJ%RI = {pPeY]: | Pllyz, < Ri},
Wi = {2e WY (UriR?) : Elimo = 0, |Z]lwre (g < Ra}
zl et = {5 e ZL 1Sl e ) < R I8¢l L (urinpy) < Ral}-
Let

W= L*(Jp; LT "W (D)) x L*(Jr; L"(D)) x C(Jr;R?) x C(Jr;R3) x C(Jr; L™(D)).
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For every Ry, Ro, R3, R4, T > 0 we construct a map

.V — V,

U P,
P @,
= — D
Q D,
X P,

such that a fixed point of ® solves (4.11) and (TE). Then we show that ®(V) is a convex, compact
subset of W and that ® is continuous in the topology of W. By the Schauder fixed point theorem, the
fixed point then exists. The map is defined in four steps.

(1) First, we calculate Fo,F; and F2 as defined in (4.6), as functions of (U, P, =,). For this, we

(4.12)

(4.13)

need U = U+u*+VAz g and Z = E+¢*, Q = Q+w*. By definition, they satisfy the estimates

1Tl xr, < Ri+ K.+ CRy

and
IZlwr < Ra+ K.,
[Qwr < Ry+ K.,
where K, is the constant from (4.2). To obtain the pressure P, we proceed in two steps. First,
we get P = P+ p* — 0; A= o. Then we solve the weak Neumann problem associated to
div(GP) = AP, inD,
P dF
% = %, on T,
98 = 28 on 90,
for P € WLT(D). This is possible as the matrix g, for any =,Q € WI'f2 given by ¢ =
(J;J;Jy)ij, is symmetric and has determinant 1, so that it is positive. Moreover, for A; > 0 the
eigenvalues of g, we know that II,A\; = 1 and X;\; = X9, = trg, where 0 < trg < CRs. It
follows that inf \; > (maxl 7 2 (trlg)2 > C21R§ and that uniformly in Z, ), the system remains
elliptic (cf. also [24, p. 309]). Using classical estimates, e.g. [31, Theorem 3.1], and by Poincaré’s
inequality, it follows that
IVP||zr < C|IVP|r.
We have that GP — VP = H(P) by construction, where VP = (Idy- — P,.p)GP and H(P) =
P, p(GP), see (4.3). We have sup; ; |97 —6; 00,00 < Kry+ k. T, where here and in the following,
Kp,+ Kk, denotes some polynomial of the constant Kg, |k, introduced in Lemma 3.4. It follows
that
IH(P)llLsry = Prp(GP —VP)
S KRQ_‘_K*THVP‘ LS(L'I‘)
< Kpg,ikx,T(R1 + K. + Ra).
From Lemma 3.4, it follows that the coefficients in E,M,/\_/ are bounded by Kg,+k, and
continuous, so that Fy,F; and Fs can be calculated from U, P,= and . We use that by
Proposition 3.2,
X(Z:T‘,O FEN H1/2,S(W1,r) N L§(W1,r)
with § = 25 to get
U + VAzollpswiry < CTY2?|U + VAz o Lsgwiry < CTY?(Ry + Ry)




for C > 0 a constant independent of 0 < T' < Tj. This allows us to get

IFollps(ery <

<

[FillLs + [[Fal[zs <
<

see also [19, Lemma 6.6]

1Fo = folls(Lry + pe||(£ — A)U|| s (1r
+ M@l s )y + INO) s oy + IHP) e (L

sup ||31YJ - 5inL<>°(LOC)Hfo| Ls (L")
i,j
+ apsup 19" = 6|l oo (o) |AU || Lo (1) + Crot i, U]

2%
+ |Ul Lo ) IVU || Loy + Cryy i, (R1 + Ry + K.)
Kpyik. [TK. +T(Ry + Ry) + T°(Ry + Ry)] + R?
Kr,1x.Ck, R,
[F1 = fillze + 1F2 = follps +m[|Q x =
Kpy+ i, T(K. + Ry) + C(K. + Ry)?
Kry 1k, Lk, ry»

We also have that

e+ 112,

|divEperry < TY*Rs.

15

L (W)

(3) From the second step and Proposition 3.1, we get J(T(D, o (U(Fo + div)),P(Fo + divi)))
with the estimate

1T (T(Dypa(U(Fo + div ), P(Fo + div X)) s < KJi*Kr, k. (Chy g, +T"/°Rs3),

and

1T ()| < Kpyrx, TY*Rs.

By Lemma 4.1 on R, this gives unique

(4.14) <§i )

satisfying

N

F,

¥, > — J(2) = T(T(D,.0U(Fo+divE)), P(Fo+div E)

[Pcllwr + Pullwr < Krytk.( f,?kesozj—‘;l,Rz + L% R, T T'/*Rs)

T
— MR17R27R3.

We define ®,,, ®,, from the last three equations in (4.11), i.e.

Dy
d

p

with the estimate
1@ullxr < U@ ®)xr, + [UFe +divE)xr -+ [[ba(®e, D)7
< CKgiOkesMgth,Rw

1@pllyz, < PR, @)y, + IP(Fo +divE)|lyr, < CKJME, g, g,-

bA(q)& (Pw) JFU((I)g, q)u_,) +U(F0 + diVE),
P(&¢, @) +P(Fo + div E),

(4) In the last step, by Lemma 3.5, we solve the following linearization of (TE),

(4.15) {

M(OPe + (Y +TU)-V)®, +C(U,E,Q): ®,) + D, = EU) in JpxD,

D,(0) = 79 in D.

From the definitions (2.6) and (2.7) of X and Y through Z, (2, we get that

le, =

le(w,

,Q)HLS(WLT)

D).

< Kpytk. (HU”LS(WW‘) + x| s wrry + HYHLS(WL"‘))

< Kpgyik, (Ri+TRy + K,),
< Knprr, (100neqwsny + 1 lpeqery + 1¥llzeon)
< Knpix. (TY?Ri+TR; + K. )
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and we have

IN

IEWO) || L= (wrr KR,y x, R,
IE@) ety < Kpyrr,T?Ry.

It only remains to consider

A

w:=Y +U+u" +VAz o

and show that w € L*(Jr; D(A,)). By construction, w|r = w|so = 0. We only need to check
that divY = 0. First note that det Jy = 1 by Liouville’s Theorem, so

0 = O det Jy = Z%lzl((}){)lkag(tjy)km, m € {1,2,3}.
Directly from equation (2.7), it follows that

S0V (XD = =S 10T m (8 9)bin (8, X (1, 9))]
= =5} 10TV Dk (Tx)ikbm — (T Dkm (Jx)1601bm
= —divb=0.

We thus obtain the estimate
HwHXZT < CRy+ Ry + K.

Tt follows that (4.15) can be solved by Lemma 3.5 and

1
[PollLee iy < ([[ollwrr + WK ) exp(Cl[Vwl| (o) + [[CllLrwrry + [[Fsl|Lrgwrr))
1
< (mollwer + 5—==) exp(C1(1 + Kpyx,)T"* [R1 + Ry + K.])
1487
for some Cy > 0 and
Tl/s
Hat(po'| Ls(L™) S C*Al(”w‘ LS(WLT‘) + ||C| Ls(Lm) =+ ||F3| Ls(L™) —+ 7A10)
5 Tl/s
(417) < C.M\ <C2T (R2 + Ry + K*) + w>
1

for some C5 > 0. Note that the constants may depend on T, but only in a way that C; =0
C, > 0 for some C, > 0.

4.3. Proof of Theorem 1.2. From the construction of ® and the estimates in the previous subsection,
we get the following.

Lemma 4.2. The map © is well-defined, i.e. ®(V) CV, if R;,Ro,Rs, R4 > 0 and T > 0 are chosen
suttably.

Proof. Due to the presence of “quadratic” terms, we must choose Ry, Ry, T < 1 and T possibly even
smaller, such that K, < 1. Considering the estimate (4.16), we set

R3 = A= Co exp(301(1 + KQ))

in this case. It remains to show that given R3, we can make R, Ro,T even smaller to obtain simulta-
neously that

H‘I’unxg,. + [|®p Yo, = CMzgl,RQ,Rs
= CO1R+Ci(R? + R
< Ry,
and
[Pellwr + [ Pollwr < CMghR%RS
Cy2R + Co(R3 + R3)
< Ry,
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where

R =C[T(Ry + Ry + R3 + K..) + K.(K, + Ry)].
W.lo.g., we take Ry > Ry and Cy = C5. Regardless of Ry, Ro, R3, we can always choose T' so small that
C1R < R;. Now choose Ry such that 2C1 R < Ry — C1R, then C1(R} + R3) < Ry —C1R < Ry — C1R

and the claim is proved. Setting Ry = C.Rj3 (CQTJ(RQ + Ri + K) + %) as in the estimate (4.17)
proves the lemma. [l

In the following, not only when denoting norms, we shortly write L°(L") for L*(Jp; L"(D)) and use
similar conventions for other vector-valued spaces.

Lemma 4.3. The set ®(V) is a convez, bounded and relatively compact subset of W.

Proof. By linearity of the equations and by Lemma 4.2, we have convexity and boundedness. From [33,
Corollary 4], we get that the embeddings
xI' S DL nwhn,
zT S o), and
wI & (IR,
are compact. It only remains to show relative compactness for the set of pressures
{®,} :={®, € YT : (@, ), D¢, Do, @) = (U, P, E, Q, %) for some (U, P,E,Q, %) € V}
which appear in the image of ®. By [33, Theorem 3], we must show that {®,} is bounded in L}, (Jr; X)

loc
for some space X <> L"(D) and that
s ®p]

Ls(L™) — 0
uniformly in {®,} as § — 0, where

dsf(t) := f(t+6) = f(D).
By construction, the first property clearly holds and ®,, satisfies ®,(t) € Ly(D) :={f € L"(D) : [, f =
0}. The dual space of L} is L , so that for every ¢ € L , there is some ¢ € W27 (D), such that

{ Ap = 1 inD,
g—]‘(’, = 0 ondOUT.
We split @, = P(®¢, @) + P(Fo + divX) First, we look at P(P¢, ®,,). Since dpba(t) — Aba(t) € LI,
we have, using the identity (3.3),
(P(®g, @u,)(t),)rp = (P(Pg, u)(t), Ap)rp = —(VP(Pe, Du)(t), Vio)rp
= ((Id =P p)AU(Pe, Du,)(1), Vo)r,p
= —(VU(R¢, u)(t), D*0)rp + (VU(Dg, Do) (E)N, Vo) rr
(4.18) + (VU(Pe, Du,)(H)N, Vo) r00
(4.19) < U(@e, Do) O llwrrsrer 91l -
By linearity, we obtain ||dsP(®¢, ®u,)|[s(rr) < [|ds (Pe, Py s (wi+1/r4e.ry. From the embedding (3.4),

we obtain that, up to some & > 0, U(®¢, @) € WS (W) for o = (1 — L —¢) and

T T _ )3
[ [ QO e U0 ) Olhgroeee) g5 < o,
0 0

This implies
[dsP (@, Poo) Lo (ry < [UPe, @)l s (rsr/rreny < 3 FCRy — 0,

uniformly in {P(®¢, D)}, cf. also [33, Lemma 5]. Similar arguments work for P(Fy + divX). Asin
(4.19), we get

(P(Fo +div)(t),¢)rp = ((Id=Ppp)(uall — MU = N(U) + Fo = fo), V)r,p
+((Id - ]P)»,"D)div Z, V(p)r’p,
where we use that (Id — P, p)H(P) = 0. Setting
Lkt = $5_1(059”%)0 + 2971,
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and
L;; = Zi,z,m:ﬁk(gleE'I) + QMF?ZL bm>
it follows that,
(Id =Prp)L(0),Vo)rp = 37,5121 (0k0;U:) + L (0kT1) + Li;Uj, 050) 0
= =57, 41 (0500 (0kg™), 0i0)r.0 — ((8;Ui) g™, (0k0i0))r. 1
+ (06U Nk, (8;0))rr + (Ok Uik, 0:0)r 00

< Kpyrx U ) [wasayesen [0 o
and
(Id =P p)MU),Ve)rp = 57,500 (Y;(0;0:) + [T Ye + (08Y3)(9;X0)]U;, 0:0)r 0
< Kpyrrx U@ [wrr [l e
and moreover,
(Id =Prp)N(U),Ve)rp = 37, 421(U;(0;0) + DU Uy, 850)rp
. 1 - _ _ PR
= *Ef,j,k:@(UjUi, 0;0;0)rp + (UiN;U;, 0ip)rr + (I, U Uk, 9ip) D
< Kryrx U@ e [T @) oo 191l v 4 Cre (12 + Q)[4 -

Similarly,
(divE, Ve)rp < [I5@)lw/reer 9]

-
From this, it follows that
l[ds Py

rorry < CUldsUl psqwsrsreery + ds (12 + |20)?] e
+ ||d62||LS(W1/T+E,7‘) + Hdé(fO - fO)‘
< Camin(a,ﬁ) for § <1

— 0 uniformly as § — 0,

Le(L™))

as we have ||U||W0¢,S(W1+1/'r‘+5,7‘) <R+ K.+ CR5, ||EHW5T + HQHWST < Ry + K, and
XMl weas (wisrrery < Rg + Ry

from the embedding Z7, — W?2**(W'=2*7) 0 < 2o < 1, cf. ([33, Lemma 7]). Moreover, by assump-
tiOIl, ||.7:0 - f0||WB,5(L7') S T(Rg + K*) ([l

Lemma 4.4. The set ®(V) is closed in W.

Proof. The proof works similarly as in [14, Theorem 9.1], where the authors treat pure viscoelastic flow.
We make adjustments for the new fixed point variables P, =, Q. Given a sequence (oy,), C ZE;R3’R4
which converges strongly to o in C(Jp; L™(D)), we know that there exist a subsequence (ox)x of (op)n
and 0 € ZSTJ such that

o, — 0, weakly™ in L>(W17) and
strongly in C(L),
0o — 00, weakly in L°(L") and
ok(0) = 4(0),

(4.20)

SO
||5||LW(W1,1v) < liminf HJkHLoo(Wl,r) < R3,
Hat&HLs(L,r) S lim inf HatO'kHLs(Lr) S R4.

It follows immediately that & € ZZ;f*% and ¢ = o. Similarly, a sequence (u,), C X. ./t which
converges strongly to u in L*(L7 N W) has a subsequence (uy)x such that

up — 4, weakly* in L>°(L") and
weakly in LP(LZ N W29) and
(4.21) strongly in C'(W~1:%°),
Opup — 0w, weakly in L%(L") and
U (O) = 07
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for some @ € Xg:r7o. It follows that
lallxr,  <liminf{lug|xr < R,

T,Rl
s,r,0 *

sou=u€X Similarly, for (p), C L¥(W") strongly converging to p € L¥(L"), we obtain
(4.22) pr — P,  weakly in LS(W")

for a subsequence (pi)r and some p € L*(Wh"). From p < liminf ||pg|/p:w1r) < Ry it follows that
p € Y1 Moreover, for (&3)n, (wn)n C W, converging in C(Jr) and bounded by R, we have
subsequences and £, w € WI, such that

Epywp — & w, weakly in W1 and
(4.23) strongly in C'(Jr),
§,wi(0) = 0,

and the bound and the initial value are preserved by the weak limit. ([

Lemma 4.5. ® is continuous in the topology of W.

Proof. Let (Uy, Pn,En, Qn, Zn)n C V be a sequence such that (Uy, Py, Zn, Qn, 2n) — (U, P,E,Q, %) in
the topology of W. If follows that there is a subsequence (Uy, Py, Eg, Qk, Xk )i converging as in (4.20),
(4.21), (4.22) and (4.23). We must show that

o(U,P,E,Q,%) = nlggO (U, Py En, Uy 20)
=: nlgr;o((q)u)m (@p)n, (Pe)n, (Pu)ns (Po)n)
= (D, Dy, Be, By, D).
We split the proof into four steps which correspond to the steps in defining ® above.
(1) We directly obtain
Uy =U,+u*+VA, - U=U+u"+VAzq
as in (4.21) and
Po=Py+p* — A, — P=P+p"—8A,  weaklyin L¥(W").

Here, we have Ay := Az, o, and (Eg, Q) — (E,Q) weakly in L*(Jr), so 0;Ar, — 0 A weakly
in L¥(WbT) and VA, — VAz g as in (4.21). We also have

Er=Ep+& - E=2+¢&
and

Q= +w" - Q=0+ w"
as in (4.23). We find P, and H(Py) from solving (4.13) as in step 1 of the construction of ®.
From (¢%), — ¢ strongly in C(Jp; C(D)), it follows that

P, — P, weakly in L¥(W")
and
H(Py) — H(P), weakly in L*(L}).
(2) From the definition in (4.6), together with the first step and Lemma 3.4, it follows that
(Fo(Uy, Px,Zx, %)) — Fo(U, P, ), weakly in L°(L"),

(F1(Ux, Py, Pe,Z1, Q1)) — Fi(U,P,Z,Q), weakly in L*,
(Fo(Ux, Py, Pe,Ex, Q) — Fo(U, P,
We have divE;, — divE weakly in L*(L"), so that
Uy =U((Fp)n +divE,) - UFg+divy)

o

[1]1 JI]I [1]1
2

o

), weakly in L?,

as in (4.21) and
Prn :i=P((Fo)n +divE,) — P(Fy + div)

as in (4.22) by the uniqueness of solutions of the linear Stokes problem.
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(3) By |33, Lemma 7|, (Un)n C Xg;{%l S Ls(WH/rrer) for all 0 < e < 1 — 1/r, so that we
have a subsequence (U)x which converges strongly in L*(W'*1/7+7) From the boundedness
of J, see (4.10), we obtain J (D, oUk)) — T (D,,o(Uf)) strongly in L*(J7). Since we have
a subsequence (Py)x of (P,), converging strongly in L°(L") and weakly in L5(W17), we get
strong convergence of J(Py) to J(P) in L*(Jr). Similarly, from %,, — X weakly in L$(W?17),
we obtain J (X)) — J(X) strongly in L® for some subsequence. We can thus take limits in the
definition (4.14) of ®¢, @, to obtain

() =r ()o@ p) - (5

strongly in W1*(Jr; R). We see that therefore also there are subsequences

(Pu)r = Ui + br((Pe)k, (Puw)r) +U(Pe)k, (Pus)k) — P
and
(@p)k = P+ P((Pe)k, (Pu)i) — Py
as in (4.20) and (4.22), so that continuity of the components ®,,, ®,, ®¢ and @, of @ follows.
(4) In the transport equation, we can also take the weak limit in L*(L") to get that lim, . (Ps))n
as well as @, satisfy

M@, + (Y +0)-V)®, +C(U,Z,Q): ®,)+ &, = EU) in Jp x D,
(I)J(O) = T0 in D,

where U, Z, () are given as in step 1 and Y,C, € are constructed from =, Q. By uniqueness, they
thus coincide.

O

We have shown that V is a convex, compact subset of W and that & is continuos in the topology of W.
By Schauder’s fixed point theorem, it follows that ® has a fixed point u,p, &, w, o € V solving (4.1) and
(TE) and that we can find @, p, &, @ correspondingly, so that (NP) and (TE) are solved. By construction,
the backward change of coordinates yields a solution v,q, 7,6, 7 of (1.1), proving the existence claim in
Theorem 1.2.

5. PROOF oF UNIQUENESS

In order to show uniqueness of the strong solution, we apply, in the usual way, Gronwall’s Lemma
to an energy estimate for the difference of two solutions. As the fluid domain is unknown a priori, we
work with the quasilinear equations (NP) and (TE) to obtain this estimate.

Given vo, 0o, 70, To, fo, f1, f2 as in Theorem 1.2, let v, ¢*, n*, 6%, 7¢, i € {1,2} be two solutions of (1.1).
We choose a fixed x as a cut-off function in (2.4) for both solutions and then define u?, p*, £¢, w?, 0%, i €
{1,2} as in (2.9). This gives two strong solutions of (NP) and (TE), such that their difference satisfies

= ul —u? EXSTW,
1 2

= - EY%,
= g _g €W37
= wl—w? ewl,

= ol —o? EZZr,

Q &Ems

and the equations

O+ Mu+ Mu? — po(Lu+ Lu?) — dive + N (u) + N(u?) + Glp+ Gp? = Fg — 72,
divu = 0,
U/ll"—u}X'—f =0,
ulpo = 0,
u(0) = 0,
(5.1) mé +m(w' x {4+ wx &)+ [ T(Dya(u) +o,p)NAI' = Ff — F7,
I +w x Tw+w x Tw? + [y x T(Dyo(u) +o,p)NAT' = F} — F3,
£(0) =0,
w(0) = 0,
Mo+ (Y 4+ub)-V)o+ (Y +u) - V)o2+Cl :o+C:0?) +0 = Elu+ Eu?,
c(0) = 0,
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on their respective domains. The operators M2, £2, ... are given by ¢2,w? and M = M! — M? [ =
L' — £2, ... Multiplying the i-th component of the first line by giljuj and integrating over the sum gives

3
1d
> 5t walu) +ua [ (6 gl 00 @)
i,5,k,l=1 D
3

(5.2) Z / ij((') uk)uj—l—/ulTU(DMa( )+ o, p)N; — /gwazkakuj /r,

iiki=17D r D
where

l”k = —Ma[(gl)il(algij_Z(Fl)gcigllj)]v

and where r satisfies, a.e. in Jp,

Irllzeoy < CUE W™D [+ [uTllwez + lu” |2 [u™[lwee + VP[22 + [l follz2]
(lullze + 1612+ lwl + llollz2), 7€ {1,2},

where we have used Lemmas 3.3 and 3.4 and chosen C(|¢™|, |w™|) > 0 such that it bounds a polynomial
of order 8 in |¢7|,|w™|. Note that the matrices (g*)* and (gi;) are bounded and symmetric positive
definite uniformly in Jpr x D (cf. the argument in step 1 in the construction of ®), so that there are
constants ci,C7 > 0, such that

o1 [IVul2 < pa / (9")* gL (Ohus) (Druy) < Co| V2
D

and thus the first term on the right-hand-side of (5.2) can be absorbed. Multiplying the sixth and
seventh line of (5.1) by £ and w, respectively, gives

1d
—Z?,jﬂ/ruiTij(Dma(u) top)N; = o4 —(mf? + w'Iw) + mE" (w x ) + W’ (W' x w)

(5.3) +EQT L+ W QT fo

Moreover, multiplying the i, j-component of the tenth line of (5.1) by fi(gj;,)(9};)oxi, where fi :=

gives
/ oL oy u( / (€05 (g1 gk owt — / g;l<r1>?;nunakz)
D D D

(5.4) = Am;i (/ Uz‘jf’kl(ﬂ%)@}z)) +/D73

where 7 is a function such that a.e. in Jr,

1
2pu(l—a)?

— C1 ™ i i ™
Py < FIVullze + U] W DB (U + [T llwes + o llwes + 0% [ + o [[ee [u™[wr2)
(lullgz + €7 + ] + llo]l72).

Again, the constant C(|¢7|,|w™|) > 0 bounds a polynomial in |[{™|, |w™| of order 16. To obtain this
estimate, we have used that, for example,

/D(YﬂLU)mme Moo < Opllgh < lVa?lzslole= (106 = (0O)2[lwre + Jullws.2)

C1 4
< IVullze +Co =g Iz llo* iy sllollze

+ Cp(I€7], lw™ Do lwa ([ullgs + €17+ [w]* + lloll72),
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where we note that the elementary estimate on b(¥") is shown in detail in [19, Lemmas 6.2-6.4]. Combining

(5

.2), (5.3) and (5.4), we obtain

3

d _ C1
E — / uigu; + mlé® + w' w + Al#/ oijgindnor | + —IVulli.
i,k 1=1 dt \Jp D 4

< C(llullze + €17 + lwl* + lo]l72)

3

C _

P Z (/ uigiljuj +ml¢f +wTw+ M / Uz'jgilkggz'lgkl> .
1 D JD

ij k=1

IN

As u(0) = 0, £(0) = w(0) = 0 and o(0) = 0 by definition, Gronwall’s Lemma implies that u! = u?,

51

=&, w!' =w? and ¢! = 0% on Jp and moreover that p' = p* in the space Y, ;. This shows that

the corresponding backward changes of coordinates coincide, so that also the solution to the original
problem (1.1) is unique.
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