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ON QUASI-MONTE CARLO SIMULATION OF SDE 

ABSTRACT. In a number of problems of mathematical physics and other fields 
stochastic differential equations are used to model certain phenomena. Often the 
solution of those problems can be obtained as a functional of the solution of some 
specific stochastic differential equation. Then we may use the idea of weak approx-
imation to carry out numerical simulation. 

We analyze some complexity issues for a class of linear stochastic differential 
equations (Langevin type), which can be given by 

dXt = -a:Xtdt + ,B(t)dWt, X 0 := 0, 

where a: > 0 and ,B: [O, 71 -+ ~. It turns out that for a class of input data which 
are not more than Lipschitz continuous the explicit Euler scheme gives rise to an 
optimal (by order) numerical method. 
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Then we study numerical phenomena which occur when switching from (real) 
Monte Carlo simulation to quasi-Monte Carlo one, which is the case when we 
carry out the simulation on computers. It will easily be seen that completely 
uniformly distributed sequences yield good substitutes for random variates, while 
not all uniformly distributed (mod 1) sequences are suited. In fact we provide 
necessary conditions on a sequence in order to serve for quasi-Monte Carlo purposes. 
This condition. is expressed in terms of the measure of well distribution. ·Numerical 
examples complement the theoretical analysis. 

1. INTRODUCTION 

The purpose of this paper is the study of weak solutions of Ito stochastic differential 
equations which are usually written as · · 

(1) Xt = X0 + l a(s,X,)ds + l u(s,X,)dW., 

where the first summand in (1) is the initial value, the second one represents the drift 
and the third one, which shall be understood as integral in the sense of Ito, driven 
by some Brownian motion {Ws, 0:::; s:::; T}, the diffusion of the stochastic process 
which solves equation (1). Here the funclions a and CJ' have to fulfill certain regularity 
conditions in order to ensure existence and uniqueness of solutions. 

The numerical treatment of stochastic differential equations, consists of two major 
branches. First, in case the driving Brownian motion is given, one may tempt to solve 
the corresponding equation by use of some (deterministic) scheme. The corresponding 
result will then be called strong solution. In a second approach one may think of 
the given stochastic differential equation as a defining relation and some functional 
of the solution has a certain meaning only. The latter situation is met often in 
connection with partial differential equations, when we may represent the solution of 
some boundary value problem in terms of a functional of some sto.chastic differential 
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equation. Thus we aim at approximating the distribution of an stochastic differential 
equation rather than finding solutions to some particular realization. In this context 
one may speak of weak solutions of stochastic differential equations. If this is the 
case then we may simulate the given stochastic differential equation, thus we are free 
to propose random mechanisms which are distributed according to the law of the 
solution of the stochastic differential equation. The natural way is to discretize the 
stochastic differential equation in time. Then, knowing that the increments of the 
Brownian motion are independent random normal variables with known variance, a 
numerical scheme is applied to find approximate values of the sample path step by 
step at the discretization points. It is well known, that we do not need to simulate 
normal variates, if we are only interested in weak solutions. Random variables which 
are distributed uniformly on the unit interval may serve the same purpose. It is even 
more surprising that discrete variables may be used, see [4, 6, 10]. 

In practice, when simulating stochastic differential equations at the computer, 
pseudo-random numbers are used instead of random ones. Pseudo-random num-
bers are deterministic and numerical methods based on the use of such deterministic 
analogs are often called quasi-Monte Carlo methods. The mathematical theory of 
quasi-Monte Carlo simulation is well developed for numerical integration. The heart . 
of this theory is ·the Koksma-Hlawka-inequality, which provides an error estimate for 
a quadrature formula based on quasi-random numbers in terms of the discrepancy 
of this sequence of numbers. Especially it follows that those sequences fit best which 
are of low discrepancy. The error estimate for a carefully chosen low-discrepancy 
sequence is even superior to the one provided by crude Monte Carlo, for a detailed 
discussion see [11]. 

The purpose of this paper can roughly be expressed in the question: Does this 
carry over to the simulation of stochastic differential equations? In other words, may 
we use low-discrepancy sequences instead of random variables, and if this is the case, 
may we improve the error estimate as this was true for the integration problem? It 
is well known, that we may proceed from numerical integration to the solution of 
Fredholm integral equations, see [3]. 

Below we are going to prove some negative result by providing necessary conditions 
a deterministic sequence of numbers has to fulfill in order to serve for a quasi-Monte 
Carlo simulation. Especially we prove that low-discrepancy points must not be used. 
This will also be transparent by simulation results given below. 

Moreover, we show that restricting uniformly (mod 1) distributed sequences to 
those which are completely uniformly distributed (CUD), yields sequences which 
may serve for quasi-Monte Carlo simulation. 

The next section formalizes the previous considerations. 
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2. PROBLEM FORMULATION 

The mathematical analysis of .the quasi-Monte Carlo simulation will be carried 
out for the following family of stochastic differential equations. Let {Wt, O ~ t ~ 
T} be a standard Brownian motion and consider the (one-dimensional) stochastic 
differential equation 

(2) 

for parameters a > 0 and functions (3: (0, T] __,.JR. Thus equations (2) are obtained 
from ( 1) by specifying 

a(s,x) :=ax, x E JR and o-(s,x) := f3(s), 0 ~ s ~ t. 
These stochastic differential equations are of Langevin type, the solution to which 
can be given analytically, namely, see e. g. (5], we have 

(3) X, = 1' e-a(t-s),B(s)dW., t > 0. 

We aim at approximating the second moment at the final time point T, i.e., 

We assume T = 1 for simplicity. The exact solution is a function, say S( a, (3), of the 
data (a, (3), see equation (3), that is 

. 1/2 
S(a,,8) := (l e-Za(l-s)l,B(s)l2ds) . 

The description of the mathematical problem will be complete after specifying the 
possible input. The problem elements under consideratfon, i.e., t'he class of equa-
tions (2) is described by restrictions on the values of a and functions f3: (0, 1] __,. JR. 
For a, b, L > 0 we let 

X( a, b, L) := { (a, ,8), 0 < a ::; a, 0~;& l,8( s )I ::; b, l,B( s) - ,8( t) I ::; Lis - ti} , 
hence the crucial restriction is the Lipschitz continuity of (3, the class of possible 
problem elements. If we equip X(a, b, L) .with metric 

p((a, (3), (a', (3')) :=la - a'I + sup lf3(s)- f3'(s)I, 
sE[0,1] 

then the set of problem elements admits a countable everywhere dense subset (it is 
separable). 

The mapping S: X(a, b, L) __,.JR is sometimes called solution operator. It is readily 
checked that this operator acts continuously on (X(a, b, L), p). 
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Next we specify the fund of admissible numerical schemes to treat stochastic dif-
ferential equations from type (2). To be precise let 

( 4) il( X (a, b, L), IR) 

:= { u(a, (3) = cp(a, (3(i1), ... , f3(tn)), n EN, ii, ... , in E [O, 1], cp: IRn+I -r IR}. 

Thus we allow any method based on evaluation of (3 at some time discretization 
points. The final methods, which shall be Monte Carlo methods are derived from 
this class il(X(a, b, L), IR) in Section 3. 

Below we shall analyze the Euler scheme with respect to an equidistant time dis-
cretization, N steps of step size 1/ N each, in more detail. The definition will be given 
for any realization of the Brownian motion in (2). That is, we obtain a recursive de-
scription of the approximation Yn, n = 0, ... , N - 1 as 

(5) - - a- n 1 -
Yn+i=Yn- NYn+f3(N)-JI(fn, n=O, ... ,N-1, Yo=O, 

where )N1o, ... , }N!N-l are the increments }Nik := W ~ - W ~ of the Brown-· 
ian ·motion {Ws, 0 ~ s ~ l}. For the purpose of simulation we observe that the 
random variables /k, k = 0, ... , N - 1 are independent with common standard 
normal distribution. It is also well known, that these random variables may be re-
placed by any other random variables having mean 0 and variance 1, without spoil~ng 
the asymptotic behavior of the approximation. So we may replace /o, ... , /N-l by 
v'3(1 - 2fo), ... , -/3(1 - 2eN-1), with independent uniformly distributed on [O, 1] 
random variables fo, ... , eN-l· But, since we aim at studying quasi-Monte Carlo 
simulation we will replace the eo, ... , eN-l by (deterministically from (0, 1) chosen) 
points wo, . .. , WN-l and arrive at 

(6) a n v'3 
Yn+I = Yn - NYn + (3(N) v'Fi(l - 2wn), n = 0, ... , N - l, Yo= 0. 

For each realization of the /o, ... , /N-l in equation (5) (or the respective choice of 
points w0 , ••• ,wN-l in equation (6)) the corresponding YN and YN are hopefully 
distributed close to the actual distribution of X1 . 

In the simple situation of the model equations of the form (2) we can provide an 
explicit representation of the final approximants YN and YN, respectively. We have 

_ 1 N-1 ( a)N-1-k k 
YN = - L 1- - (3(-)Jk v1Fi k=o N N 

and correspondingly 

1 N-1 ( a )N-1-k k 
YN = rr;r :L 1 - N (3(N)v'3(l - 2wk)· 

vN k=O 
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For the study of the quasi-Monte Carlo simulation we assume that we are given 
an infinite sequence of points (wi):0 C [O, 1) from the very beginning and that we 
sequentially take elements whenever they are needed. Thus we are looking for multi-
purpose sequences, working for any number of time steps chosen. The analysis would 
be different, if we would fit the sequence to a prescribed time discretization. 

To complete the numerical scheme we will simulate the second moment by the 
sample mean of M independent copies of X1 , in our case, 

or for the quasi-Monte Carlo simulation 

respectively, where the j-th copy of YN shall be obtained by replacing wk by wli), k __: 
0,.:., N - 1 which are obtained from the original sequence (wi):0 by letting wii) := 
W(j-l)N+k, which means 

(7) ]__ f:1Y1?!2 = ]__ f:1-1-I! (i- .::_)N-i-k /3(!__)v'3(1-2wf))l 2 

M i=l M i=l Vii k=o N N 

represents the mean of M trajectories from the Euler scheme YN := YN( a, /3) with 
N equidistant time points in the quasi-Monte Carlo simulation. · 

This is made precise below. 

3. MONTE CARLO SIMULATION 

Most texts on the Monte Carlo simulation to obtain weak approximations to equa-
tions (1) provide schemes of different order of weak approximation. In general there 
is a lack of optimality issues, i.e., there are no indications on lower estimates. In the 
present context, that is, dealing with such simple equations as (2), the optimal order 
on Lipschitz continuous input can be given. To do this we have to describe the class 
of possible input functions as well as the variety of admissible numerical schemes. 

Next we shall describe the fund of stochastic admissible numerical schemes, which 
in fact are Monte Carlo methods, each realization of which shall belongs to class 
il(X(a, b, L),JR.) introduced by ( 4). Thus such Monte Carlo method shall be a random 
element taking values in il(X(a, b, L), IR). It is important to note that we have only 
deterministic partial information on /3. Moreover we assume that for any given data 
(a, /3) the mapping w -t uw( a, /3) is measurable. To complete the description of the 
Monte Carlo scheme we note that any random mechanism driving w -t uw( a, /3) is 
allowed. This will be given by a probability space [n, F, P]. 
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To be precise, a Monte Carlo method P is given as a triple P = ([O, F, P], u, n) 
where 

(1) [O, :F, P] is a probability space. 
(2) For any data (a, (3) E X( a, b, L) the mapping w --)- uw( a, (3) is a real random 

variable. 
(3) The natural n is a fixed cardinality for which card(uw) ~ n 

Remark 1. The introduction of Monte Carlo methods as given above is presented in 
[9]. It turns out to be rich enough to include all known methods, not only within 
the treatment of stochastic differential equations, but in a fairly general context. 
However, within the present context information of the data is assumed to be deter-
ministic, which corresponds to a deterministic choice of time discretization. This is 
customary for treating stochastic differential equations. 

Let us also mention that we allow fixed cardinality only. In a more general frame-
work varying cardinality would also be of interest. We shall not turn to that problem. 

The (global) error of such a Monte Carlo method P (for the given solution operator 
S) shall be measured by 

. 1/2 
e(S, P) := sup (1 IS(a,,8)- uw(a,,8)l 2dP(w)) 

(a,,8)EX(a,b,L) n 

This is the usual mean squared error as customary for Monte Carlo methods. Our 
main goal is to minimize this Monte Carlo error with respect to a choice of Monte 
Carlo methods P with prescribed cardinality card(P) at most n - 1, thus we study 

e:c(S,il) :=inf {e(S, P), card(P) ~ n -1}. 
We are now in a position to provide the optimal rate of convergence within the present 
context of equations (2). 
Theorem 1. There are constants C > c > 0, such that 

c.!_ < e;:ic(S,il) ~ c!. 
n n 

Proof. The upper bound shall be obtained by using the Euler scheme with N equidis-
tant time· points as provided by the right-hand side in (7), which is easily seen 
to be a Monte Carlo method, obtained from a basic one, say P by independent 
sampling. This Monte Carlo method P, provided in equation (5) can be given by 
P = ([n, F, P], u, N) as 

(1) n =RN equipped with product a-algebra .rN and the corresponding product 
probability N(O, l)N, describing the choice of N independent standard normal 
variates. 

(2) For given (a, (3) the mapping u is given from equation (7). 
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(3) The equidistant design consists of N points tk := ~, k = 0, ... , N - 1. 
Using the notation from the previous Section 2 the error of P can be decomposed 
into the bias and the statistical error to arrive at 

The first summand in ( 8) is controlled by the step size of the Euler scheme and is 
known to be of the order 1 / N. We are left to show that this bound is uniform over 
input data from X( a, b, L ). First we observe that YN also admits a representation 
as an Ito integral of some step function fN which is piece wise constant on intervals 
[k/N, (k+l)/N), taking values (1- ;;)N((N-l)/N-k/N)f3(~) there. Let us for a moment 
denote the ac~ual integrand in equation (3) by 

J ( S) ~ e-a(l-s) (3( S ). 

With this notation an application of the triangle inequality provides 

1/2 1/2 ( r1 2) 1/2 I (EIX112) - (EIYNl2) I~ El Jo (f(s) - fN(s))dWsj 

Employing the basic isometry for Ito integrals we obtain 

I (EIX112)112 
- (EIYNl2)112

1 

< max max lf(s) - fN(s) I 
- k sE[k/N,(k+l)/N) 

(9) ~max max le-a(l-s)f3(s)- e-a(l-s)f3(k/N)I 
k sE[k/N,(k+l)/N) 

N(N-1_.!E..) 
+max max le-a(l-s)f3(k/N)- (i - Na) N N f3(k/N)I. 

k sE[k/N,(k+l)/N) 
(10) 

From this standard manipulation allow an upper estimate of the form 

I (EIX1l2)112 
- (E!YN1 2f12 I :::; ~ + c~ 

for some universal constant C < oo and N ~ N0 , where the first summand bounds (9) 
and the second the expression in ( 10). 

The second summand in (8), which represents the Monte Carlo error of the crude 
sampling is bounded by the dispersion of the integrand, which is (EIYNl2) 

112
, divided 
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by .JM. This implies 

(11) (El (EIX1l2)112 - ( ~ ~ 1n1f 21f 2::; C(a, b,L) (~ + ~) 
for N 2:'.: Na. 

Let us mention explicitly that the information on /3 does not change during the 
process of sampling, it is always at the time points previously chosen. The choice 
N := n and M := n2 in estimate (11) provides the required upper estimate in 
Theorem 1. 

We turn to the lower bound. It is easily obtained for equations of the type (2), since 
we have an explicit representation of the solution in terms of (a, /3) E X(a, b, L). To 
this end let P be any Monte Carlo method of cardinality less than n. Let (t0 , ••• , tn-i) 

. be the time discretization used by P. We denote by l:lk :=· [tk, tk+i), k = 0, ... , n-l 
(where we put tn = 1 ), and let dk := tk+1 -tk, k = 0, ... , n -1. We assume without· 
loss of gener~lity that mink=O, ... ,n-1 dk > 0. . 

We start our construction with some basic function r.p: [O, 1] ~ JR.+, given by 

(x) := { 2~. , if 0:::; x < ~ . 
r.p l-x 'f ! < < 1 

2£ ' 1 2 - x -

Finally we put 

- s -tk /3(s) :=min {1, 2bL} dkr.p( ~ ), s E l:lk, k = 0, ... , n - 1. 

The integral of this function can easily be estimated from below via 

[1P(s)ds2:'.: min {1, 2bL} 7f d~ 2:'.: min {1, 2bL} 1. 
lo 8L k=O 8L n 

Moreover it is seen that ( ~, P) E X (a, b, L) and 

a - /2 fl - 1 8(2,/3)2:'.:e-a lo /3(s)ds2:'.:C(a,b,L)-:;;,, 

for some constant C(a,b,L). Also the pair (~,O) belongs to X(a,b,L), where 0 
denotes the zero function .. The main observation is that the method P cannot dis-
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tinguish between both input data, they share the same information. This yields 

e(S, P) 

2 max { (J IS(i,O) - uw(i,0)12dP(w)(, (J IS(p) -11w(i,P)l2dP(w)(} 

2 max {(JI uw(i, 0)12dP(w) (, (j IS(p) - uw(i, 0)12dP(w)) 
112

} 

1 a - 1 1 > -S(- (3) > -C(a b L)-- 2 2' -2 '' n 
completing the proof of the lower bound and of the theorem. D 
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Remark 2. It is worth to discuss the above estimate from the complexity point of 
view. Suppose we chose an Euler scheme with N steps and do the simulation M 

. times. In general, for equations of the type (1) this requires n := N · M computations 
of the functions a and rJ. If we have for the general case of equations of type ( 1) ari 
estimate si:rriilar to ( 11), then, optimizing the choice· of N and M to minimize the 
error for given values n, we end up with M rv N 2 • In other wor.ds, the error can be 
bounded by cn-1!3 provided we are willing to allow n evaluations of the input data 
a and O". 

It is not known whether this is optimal for some more general class of data than 
X(a, b, L). Thus the picture from Theorem 1 is not a final one. For the present 
purposes it is however sufficient. 

4. QUASI-MONTE CARLO SIMULATION 

We leave this brief outline of Monte Carlo simulation and turn to the main problem 
of the paper. Instead of doing (real) Monte Carlo simulation we switch to quasi-
Monte Carlo simulation. 

For later use we shortly review the main facts concerning the quasi-Monte Carlo 
simulation for the approximate computation of integrals, see [8]. The main notion 
is th,e discrepancy of a point set in some unit cube. Let s be any positive natural 

· number. For brevity let us denote, given any a E (0, 1] 8
, a = ( a0 , ••• , a8 _ 1 ) by [O, a) 

the cube 

[ 0, a) : = { x = ( x o, ... x s-1) E [ 0, 1] 8, Xi < ai, i = 0, ... , s - 1} . 

For any given collection of M points ( xi)7=1 in [O, 1 )8 the quantity 

* (( 3.)M) l#{xi, xi E [O,a), j = l, ... ,M} I DM x . := sup - ao · · · as-1 
J=l aE(0,1]" M 

denotes the *-discrepancY.. 
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Observe that we suppress the dependence on s, since this will be clear from the 
sequence under consideration. 

This concept has far reaching applications. We recall the following 

Definition 1. An infinite sequence of points is said to be uniformly distributed 
(mod 1), if the sequence of the *-discrepancies of the initial segments tends to 0. 

Such sequences of points may be useful for the approximate computation of inte-
grals. In fact, if a sequence (xi)~1 C [O, 1)8 is uniformly distributed (mod 1) then 
~ 2=~1 f (xi) tends to f[o,l]s f ( x )dx for any Riemann integrable function on (0, 1] 8

• 

We note that the *-discrepancy can be seen as the uniform error bound for the inte-
gration of step functions X[o,a) by a quadrature formula of the type ~ 2=~1 X[o,a) (xi). 
This bound extends to functions of bounded variation (in the sense of Hardy-Krause). 
This is known as Koksma-Hlawka inequality, mentioned in the introduction . 

. Koksma-Hlawka inequality. For any given collection of M points (xi)::1 in [O, 1.)s 
and any (Riemann) integrable func_tion f: [O, 1 ]8 ~ lR we have 

1 M { 
(12) IM f,;!(xi)- l[o,i/(x)dxl 

s-1 
~I: I:* DM-(xp+I, ... ,s-I)-\!(P)(f( ... , 1, ... , 1)). 

p=O I, ... ,k;p 

For the complete explanation of the symbols used above we refer to [8, Ch. 2, §5]. 
There one can find further details and variations of this inequality. Since we shall 
make use of the two-dimensional case below we shall state it explicitly: 

For any given M points ((ei, 71i))~1 C [O, 1)2 and integrable function f: [O, 1] 2 ~ lR 
we have 

(13) 

Here y(i) denotes the (usual) variation of a function on [O, 1] (with respect to the 
variable as indicated). The symbol v<2) denotes the total variation (in the sense of 
Vitali), see [8, Ch. 2, §5]. 

First we shall return ·to the problem of approximating the solution S( a, (3) 2 by. 
expressions (7). We propose the following 
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Definition 2. An infinite point set (wi)~0 C [O, 1) is said to be consistent (for the 
solution operator S) if for all (a, /3) E X( a, b, L) we have 

~ t IY,4(a, /3)12-> S(a, /3) 2 

J=l 

if M and N tend to infinity (Here Yt are defined as in (7) ). 
The following result proves that there are many consistent sequences. We have 

Proposition 1. Almost all {with respect to the uniform distribution on [O, l]N) se-
quences are consistent. 

Proof. This is an immediate consequence of the strong law of large numbers, which 
implies that a.s. 

~ t IY,4( a, /3) 12 ---+ E!YN( a, /3) 12 

j=l 

·for M -+ oo and every N E N. Since (X(a, b, L), p) is separable and the mapping 
Sis continuous, it is sufficient to check the convergence on a countable subset X of 
problem elements. Thus we obtain a sequence f2x,N, x E X, N E N of sets of full 
measure on which the respective converge:i;ice holds. But it is readily· checked that 

_ . 2 1 N-1 ( a) 2(N-1-k) 2 k 
EIYN(a, /3)1 = N L 1 - N /3. (N) 

k=O 

which tend to S(a, /3) 2 if N tends to infinity, such that elements of nxex nN=l f2x,N, 
a set which has still probability 1, are consistent. D 

Thus the following question seems to be natural: Are uniformly (mod 1) sequences 
consistent? It turns out that this is not always the case. 

But a slightly stronger property than uniform distribution (mod 1 ), namely be-
ing completely uniformly distributed (mod 1) (often abbreviated CUD), provides 
sequences which are consistent. The original introduction of such sequences has 
probably been given by Korobov. The importance of the latter notion has been 
realized early when simulating Markov ,chains, see [1]. 

Let us recall the definition, which in fact is not the usual one. But as has been 
observed by Korobov in his dissertation, 1953, the present approach which focuses 
on Monte Carlo sampling is equivalent to the original one. 

Definition 3. An infinite point set (wi)~0 C [O, 1) is called completely uniformly 
distributed (CUD), if for all positives EN the sequence (w~i), ... ,w!~1):1 , which is 
defined by 

WU).·- W(. ) k - 0 s 1 J. E ~T k ·- J-1 s+k, - , • • ·, - , .L"l, 

is uniformly distributed (mod 1) in the s-dimensional unit cube [O, 1 )3
• 
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Thus for any s, the choice of subsequent s-tuples yields a sequence of vectors 
uniformly distributed (mod 1). In the excellent treatment [7, 3.5 B], such sequences 
are called oo-distributed. There one can find further discussion on the randomness 
and other properties. Also indications on explicit constructions are given. A thorough 
comparison of various types of uniformly distributed sequences in provided in [2]. 

For more recent references we refer to [11]. The following result is an immediate 
consequence of the definition. 

Proposition 2. CUD sequences are consistent for S on X( a, b, L). 

Proof. As mentioned in the proof of Proposition 1 we have that (EIYN(a, /3)1 2)112 

tends to S( a, /3) if N tends to infinity. Thus it is enough to verify that for every fixed 
N the convergence 

(14) ~ I:, IY,?( a, ,8)1 2 ---+ E[YN( a, ,8)1 2 

J=l 

for M --+ oo is true. But it can be drawn from the representation in (7), that the 
left-hand side above is the average of the values of the function f: [O, l]N--+ JR given 
by 

1 N-1 ( a )N-1-k k 
f(xo, ... , XN-d :=I r;:;r L 1 - N /3(N)Vs(l - 2xk)l 2 

vN k=O 

t M . t ( ( 1) ( 1) ) ( ( M) ( M) ) S. h . . 1 a p01n s w 0 , ... , wN-l , ... , w0 , ... , wN-l . ince t e ong1na sequence was 
supposed to be CUD, the sequence of points ( w~j), ..• , w~~1 ) : 1 

C [O, 1 )N is uniformly 
distributed (mod 1), such that the left-hand side in (14) converges as stated. D 

Remark 3. Looking at the above arguments we immediately recognize that CUD se-
quences may be used for quasi-Monte Carlo simulation whenever an explicit numeri-
cal scheme is used which is weakly convergent for some class of stochastic differential 
equations. For the appropriate setup we refer to [6, 9. 7] 

Next we turn to the problem of whether there are necessary conditions to be 
imposed on a sequence in order to be consistent for some class of problems. We start 
with the following 

Proposition 3. There are constants C = C(a, b, L) and N(a) E .N such that for any 
infinite point set (wi):0 C [O, 1) and for all ME .N, N ~ N(a) and j = 1, ... , M 
we have 
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Proof. The proof is based on the Koksma-Hlawka inequality. Let N(a). := 2( fa l + 1), 
such that N(a) ~ !· We fix any j, · j = 1, ... , M and rewrite YN = Yk as 

1 N-1 ( a) N((N-1)/N-k/N) k . 
YN = v13N N I: 1- N f3(N)(l - 2wkJ)). 

k=O 

For N 2:'.: N(a) we apply the Koksma-Hlawka inequality to the function 

( a) N((N-1)/N-x) 
f(x, y) := 1 - N f3(x)(1- 2y), x,yE[0,1), 

and obtain 

where we used the easily established fact that the respective variations off are all 
bounded by 2(L + b)/(1- a/N(a)) ~ 4(L + b) to derive (15) and the known fact that 
the *-discrepancy of 0, ~' ... , NNl is minimal and equal to ~- Taking into account 
that the double integral of f evaluates to 0 the proof can be completed. D 

To proceed we need a result which relates the discrepancy of a certain point set 
in the unit square to the marginal coordinate sequence. The following Lemma is a 
variation of an argument used in the proof of Theorem 2.2 in [8]. 

Lemma 1. There is a natural number N0 , such that for all N 2:'.: N0 and point sets 
(wi)~~1 C [O, 1) there is an m, 1 ~ m ~ N for which 

mD:,((w;)~~1 ) <". ~ DN((i.f N,w;)~~1 ). 

Proof. For completeness we repeat the argument from [8] briefly. Since the sequence 
N D'N((i/N, wi)~~1 ) tends to infinity, see [8, Thm. 2.1] we can find N0 for which 
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N DN((i/N, wi)f:~1 ) ~ 4, N ~ N0 • Since moreover the *-discrepancy is the supre-
mum over cuboids, we can find x, y E (0, 1] for which 

i/N < x, Wi < y, i = 0, ... ,N -1} - I> ~D* ((./N ·)f!-1) 
N xy - 2 N i ' Wi i=O • 

Let for N ~ N 0 the number m -1 be the greatest natural number smaller than xN. 
This yields 

# { ( i IN' Wi)' i IN < x' Wi < y' i = 0' ... ' N - 1} 
= # {wi, wi < y, i = 0, ... , m - 1}. 

Now we can conclude 

I # { Wi, Wi < y, i = 0, ... , m - 1} _ y I 
m 

=l#{(i/N,wi), i/N<x, wi<y, i=O, ... ,N-l}N -yl 
N m 

~. l#{(i/N,wi), i/N<x, wi<y, i=O, ... ,N,-l}N N I IN I - -xy - -xy-y 
N m m m 

2 2: D'f.r((i/N,w;)f:~1 ) -y~jx - ~I 
(16) 

~ 
2
N Djv((i/N,wi)~~1 ) - _!_, 
m m 

where we used the definition of m to derive (16). Employing the definition of the 
*-discrepancy and multiplying by m we obtain 

(17) 

By our choice of N0 estimate (17) yields 

mD;;.((w;)~~1 ) 2 ~ D'f.r((i/N,w;)~~1 ), 
completing the proof of the lemma. D 

In order to formulate the necessary condition we shall have to use a slightly stronger 
notion than discrepancy, which is related to the concept of well distributed sequences. 
Here we start with an infinite point set (wi):o C [O, 1) and put 

(18) D- (( )00 ) I# {wk+i, wk+i < x, i = 0, ... ,N -1} I 
N wi i=O :=sup sup -------N------- - x . 

kEN O<x9 
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Definition 4. A point set (wi):0 C [O, 1) is said to be well distributed (mod 1) if 
DN( ( wS:O=o) tends to 0. 

Since we are not aware of any name we shall henceforth call fJN ((wi):0 ) the 
measure of well distribution. 

It is known that there are sequences uniform (mod 1) which are not well distributed, 
see again [8, Ch. 1 §5]. The switch from uniformly (mod 1) distributed sequences 
to well distributed ones is plausible, since in the asymptotic analysis longer and 
longer segments from the original sequence may be disregarded. Now we turn to the 
main result of this section. It provides a necessary condition on sequences to allow 
consistency for the problem Son X(a, b, L). Recall that C = C( a, b, L) denotes the 
constant from Proposition 3. We have 

Theorem 2. For any point set (wi):0 C[O,1) which is consistent for Son X(a, b, L) 
we have 

(19) 

Remark 4. The above lower bound can roughly be reformulated that fJN must not 
decay to fast to ensure consistency. Remember that the minimal discrepancy of 
point set in [O, 1) is of the order loW"), see e.g. [8, Thm. 2.1], which is much faster 
than Theorem 2 permits. Let us emphasize that the necessary condition provided in 
Theorem 2 is also necessary for any class of input data containing some X( a, b, L). 
This means that low discrepancy sequences are not suited for the quasi-Monte Carlo 
simulation of stochastic differential equations. This is also supported by the compu-
tational results reported in Section 5. 

Proof of Theorem 2. w~ start with the observation that maX(a,J3)EX(a,b,L) IS( a, /3) I = 
IS(O, b) I 2::: b. Thus if (wi):0 C [O, 1) is any consistent sequence then for M 2::: M0 
and N 2::: Ni 2::: N( a), where N( a) is from Proposition 3, we have 

~ f JYt(o, b)l2 2: ~. 
J=i 

In view of the estimate provided in Proposition 3 we conclude that for M 2::: M0 and 
N 2::: Ni we have 

(20) ffi .~ax {n'N ((wii>):-i) + D'N (((k/N,wii)))~:Oi)} 2::: 2b0 . 
J-i, ... ,M k o 

Now suppose to the contrary of (19) that, starting from some N 2::: N2 we have 
Vf\1DN((wi):0 ) < i~c· The estimate (20) then implies that 

ffi ._max D'N (((k/N,wki)))N:i) 2::: 
5
2
0
b. 

J-i, ... ,M k O . 
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Let for any N ~ N2 the number j ( N) be such that the above maximum is attained. 
An application of Lemma 1 yields for all N ~ max { N0 , N1 , N2 } an m ~ N for which 

foD* ((w(j(N)))N-1) > ~ {N ViJD* ((k/N w(j(N)))N-1) 
m k k=O - 4 v ;:;:; N ' k k=O 

> _b_ fN 
- lOC y-:;;;· 

Returning to the original point set (wi):0 we provided fo~ any N ~max {No, Ni, N2 } 

an m(N) ~ N for which 

(21) ~- b /N 
y 1lt\1V )Dm(N)((wi):0 ) ~ lOC V-;:;;rN)' 

The sequence (m(N))NEN cannot be bounded, since then the left-hand side in (21) 
would be bounded, while the right-hand side would tend to infinity. Thus we may 
extract an infinite sequence of numbers mz, l = 1, 2, ... , converging to oo, for which 

~ b 
VmZDmz((wSf~o) ~ lOC' 

contradincting our initial assumption. This completes the proof of the theorem. D 

The theorem just proven has an immediate consequence on the measure of well 
distribution of CUD sequences. 

Corollary 1. There is a constant C > 0 such that for every CUD sequence ( wi):0 
we have 

limsup ffiDN((wi):0 ) ~ C. 
N--1-00 

It would indeed be interesting to have further results on the discrepancy of se-
quences which enjoy stronger properties than being uniformly distributed (mod 1). 
A rough explanation of the phenomenon presented above is that the properties of 
being independent and having low discrepancy are contradictory. This can be made 
more precise by introducing a corresponding measure of independence, related to the 
empirical coefficients of correlation as used in statistics. 

5. NUMERICAL EXAMPLES 

The theoretical results from the previous section are accomplished by some typical 
situations as met in computer simulations. We examine the most prominent examples 
of low discrepancy sequences, the Kronecker-Weyl-sequence and the v. d. Corput se-
quence. It will be transparent, that the computational results will tend to 0 rather 
than approximating the exact solution. This could also be forecasted from Proposi-
tion 3. 
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Finally we exhibit the action of the pseudo-random-number generator as imple-
mented in the Turbo Pascal compiler. 

Example 1. The Kronecker-Weyl-sequence. The construction of the Kronecker-
Weyl-sequence is sometimes called Diophantine approximation, [8, Ch. 2, §3]. For a 
given real number ( > 0 we let 

Wi := { i(} ' i E N, 
where { x} := x - r x l denotes the fractional part of any real number x. It is due to 
H. Weyl, that the resultant sequence (wi):0 is uniformly distributed (mod 1) ( and 
also well distributed) if and only if ( was irrational. The discrepancy and measure 
of well distribution depend on number theoretic properties of(. Especially, if ( is a 
quadratic irrationality, hence has bounded partial fractions, then we have 

D* (( ·)N-1) < D- (( ·)oo ) < 0 log(N) 
N Wi i=O - N Wi i=O - N 

for some constant C < oo. The fact that DN((wi):0 ) has convergence no worse than 
the *-discrep~ncy is easiest seen from the Erdos-Tur an inequality, see [8, Thm. 2.5]. 
Consequently, for ( = V2 the Kronecker-Weyl-sequence must fail for quasi-Monte 
Carlo simulation. This is demonstrated in the following table 

f3(t) - 1 f3(t) = e-t f3(t) = t f3(t) = t2 
EIX1l2 0.6321205 0.2325441 0.2642411 0.1708934 

approximate value 
(N = 50,M = N 2 ) 0.0412733 0.0154923 0.0208595 0.0180976 
approximate value 

(N = 100,M = N 2 ) 0.0166281 0.0061776 0.0117100 0.0106130 .. 
·•'-' 

Table 1 Numerical results obtained with the Kronecker-Weyl-sequence for a= ~ 
and different functions f3. 

Example 2. The v. d. Corput sequence. The following construction was first 
suggested by v. d. Corput. For any prime number p EN let 

Wi := 'Pp( i), i E N. 

Here 'PP denotes the radical inverse function which is defined as follows. We put 
cpp(O) := 0 and for i ~ 1 with a p-adic expansion i = L:.i=o aipi we let cpp( i) .-
L:J=o aip-i-1, see also [8, Ch. 2, §3]. It is clear that the elements constructed this 
way belong to the unit interval. 

It was proven by v. d. Corput, that we have 

D* (( ·)f!-l) < 0 Iog(N) 
N Wi i=O - N 
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for some constant C < oo. A careful inspection of the proof of Theorem 3.5 in 
(8] allows to extend this estimate to the measure of well distribution. Thus the 
v. d. Corput sequence provides a further example of a low discrepancy sequence which 
additionally has a low measure of well distribution, hence it must fail for quasi-Monte 
Carlo simulation. For p = 2 this is also demonstrated in the following table. 

f3(t) = 1 f3(t) = e-t f3(t) = t f3(t) = t 2 

EIX1I~ 0.6321205 0.2325441 0.2642411 0.1708934 
approximate value 
(N = 50,M = N 2

) 0.0112433 0.0042016 0.0100168 0.0087253 
approximate value 

(N = 100,M = N 2
) 0.0069880 0.0026074 0.0056135 0.0050400 

Table 2 Numerical results obtained with the van der Corput sequence for a = t 
and different functions f3 
Example 3. The prn-generator from Turbo Pascal. In the following table we es-· 
tablish the results with quasi-Monte Carlo simulation using the implemented pseudo-
random number generator from Turbo Pascal. The following table indicates that this 
is a possible choice of point set, at least for moderate Mand N. 

f3(t) = 1 f3(t) = e-t f3(t) = t f3(t) = t 2 

EIX1l2 0.6321205 0.2325441 0.2642411 0.1708934 
approximate value 
(N = 50,M = N 2 ) 0.6203815 0.2307061 0.2614001 0.1642161 
approximate value 

(N = 100,M = N 2 ) 0.6293551 0.2316389 0.2614481 0.1662125 

Table 3 Numerical results obtained with the prn-generator from Turbo Pascal for 
a = ! and different functions f3. 

Seemingly, the action of this pm-generator is correct. We are not aware of any 
. theoretical result supporting this behavior. Since this pm-generator is a linear con-

gruential one, it generates only a finite number of points, such that the asymptotic 
analysis we carried out does not apply. 

6. CONCLUDING REMARKS 

The above theoretical analysis as well as the computational results indicate that 
the program designer should be careful in using pseudo-random numbers for the sim-
ulation of stochastic differential equations. The (classical) analysis for the integration 
problem, based on the Koksma-Hlawka inequality does not carry over to schemes as 
used for the simulation of stochastic differential equations. It would be interesting 
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to provide also sufficient conditions, which can easily be checked, to evaluate given 
point sets with respect to their use in quasi-Monte Carlo simulation. This is espe-
cially important, since in general the exact solution of a given stochastic differential 
equation is not known, such that we need some a priori information on the validity 
of the computer simulations. 

Moreover, we carried out a first analysis of the Monte Carlo simulation from the 
complexity theoretic point of view. Since by now there is a large zoo of available 
numerical schemes to solve stochastic differential equations (in the strong as well 
in the weak sense), it would be important to be able to decide which to choose, in 
dependence of the given class of input data, hence smoothness properties. 
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