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ABSTRACT. An optimal control problem to find the fastest collision-free trajectory of a robot
surrounded by obstacles is presented. The collision avoidance is based on linear programming
arguments and expressed as state constraints. The optimal control problem is solved with a
sequential programming method. In order to decrease the number of unknowns and constraints
a backface culling active set strategy is added to the resolution technique.

1. INTRODUCTION

In this paper, we are interested in finding the time optimal trajectory of a robot. The manipu-
lator must move from an initial position to a given final state without colliding with surrounding
obstacles.

Industrial robots are an important part of the competitiveness of nowadays industries. They
are asked to accomplish their task in a workspace containing obstacles as fast as possible or
with a minimized energy consumption. The search of their optimal collision-free trajectory is
an old and still topical question. The first significant paper dates from the seventies. Kahn and
Roth had the idea to compute the optimal trajectory by means of control theory, see [21]. The
research really started at the beginning of the eighties. See [5] for a good review. However,
because of the high complexity of the problem the obstacles could not be taken into account
in the model. The detection of collision was a different topic. In 1985, Gilbert and Johnson [16]
have for the first time coupled these two problems. They worked on a simple 2 dimensional
example. The collision avoidance was introduced as a state constraint in the optimal control
problem and based on the distance between two objects. Since then, other authors developed
similar models. Dubowsky, Norris and Shiller [7], Bobrow [3], and LaValle [22] also worked with
the distance function. However, they were working along a specified path. In [15] Gilbert and
Hong developed a model for a 3 dimensional manipulator. In this article, we will also express
the collision avoidance as state constraints in the time optimal control problem. However, our
constraints are not based on the distance function, which is non-differentiable in general, but as
a consequence of the Farkas’s lemma. The use of Farkas lemma yields an algebraic formulation
of the collision avoidance whose derivative is simple to obtain in comparison to the distance
function.

Let us consider a robot composed by m links connected to each other with revolute joints. The
joint angles defined at the joints of the robot are stored in the vector q. The vector v contains the
joint angle velocities and u represents the torques at the center of gravity of the robot links. As
cited in [6] the use of optimal control problems is nowadays a natural technique when we want
to find the best path of such a robot. The formulation of the optimal control problem (without
collision avoidance) is given by:

min ϕ(q(t0), v(t0), q(tf ), v(tf ), tf )

subject to

• Ordinary differential equations

q
′

= v,

M(q)v
′

= G(q, v) + F (q, u),(1)
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• boundary conditions

q(0) = q0, v(0) = 0, q(tf ) = qf and v(tf ) = 0,

• and box constraints
umin ≤ u ≤ umax.

In (1) M denotes the symmetric and positive definite mass matrix, the vector G is the gen-
eralized Coriolis forces and F denotes the vector of applied joint torques and gravity forces.
Equation (1) is the Lagrangian form of the dynamics of a robot. The vectors q0 and qf are the
given initial and terminal states. Details on the dynamics are given in Appendix A.

Let us define the vector

x =

(
q
v

)
∈ Rnx , with nx := 2m.

This new vector contains the state variables of the optimal control problem. Let nu denote the
dimension of u. In our case we have nu = m. With the definition of x and the non-singularity
of the matrix M , we can define the function f : Rnx × Rnu → Rnx as follows

f(x, u) =

(
v

M−1 (G(q, v) + F (q, u))

)
.

The above optimal control problem can be then transformed into

min ϕ(x(t0), x(tf ), tf )

subject to

x′(t)− f(x(t), u(t)) = 0, a.e. in [t0, tf ],

ψ(x(t0), x(tf )) = 0,

u(t) ∈ U := {u ∈ Rnu |umin ≤ u ≤ umax},
where the function ψ : Rnx × Rnx → R2nx contains the boundary conditions as follows

ψ(x(t0), x(tf )) =


q(t0)− q0
v(t0)
q(tf )− qf
v(tf )

 .

Diehl et al. [6] show that the direct approach is the best approach to solve such a system.
We will follow this technique of “first discretize, then optimize” and use a sequential quadratic
programming method to solve the resulting nonlinear problem.

A common technique to detect the collision between the robot and an obstacle is to describe
these objects as a union of convex polyhedra. However, Chang and Kavraki pointed out in [20]
that such a technique is not applicable in real-world problem. Indeed, real robots can contain
complex geometries and the number of convex polyhedra to approach such geometries can
explode. Pérez-Francisco et al. suggest in [23] to avoid to work with convex polyhedra and
propose a method which can work directly with nonconvex and curved objects. We still use the
convex division, but add a back-face culling strategy to avoid the explosion of the costs. This
strategy consists of applying the collision avoidance only between polyhedra which are visible
to each other. So, only a small number of convex polyhedra are needed to ensure the collision
avoidance. Our technique is then still relevant for practical cases.
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This article is divided as follows. Our collision avoidance criterion is introduced in Section 2.
Section 3 contains the final form of the time optimal control problem where the collision avoid-
ance is expressed as state constraints. The direct discretization of the optimal control problem
is presented in Section 4. Section 5 points out the large size of the discretized optimal control
problem and proposes the backface culling to decrease the number of unknowns and state con-
straints. At the end of this section the SQP algorithm coupled with the backface culling strategy
is sketched. Finally, numerical results for a 3-link robot are given in Section 6.

2. COLLISION AVOIDANCE

For simplicity, we suppose that only one obstacle is in the workspace. In the introduction, the
robot is described by the variables q and v. To establish the collision avoidance criterion, a
different description is used. As in [15, 16] the robot is approximated by a union of convex
polyhedra. This union is called P and is given by

(2) P =

np⋃
i=1

P (i), with P (i) = {x ∈ R3|A(i)x ≤ b(i)}

where np is the number of polyhedra in P and for i = 1, . . . , np, A(i) ∈ Rpi×3, b(i) ∈ Rpi and
pi is the number of faces in P (i). Every inequality in (2) describes a face of the polyhedron. The
exponent “(i)” refers to the data defined for the ith polyhedron in P .

Similarly, the obstacle is approximated by the following union of convex polyhedra, called Q

Q =

nq⋃
j=1

Q(j), with Q(j) = {x ∈ R3|C(j)x ≤ d(j)}

where nq is the number of polyhedra in Q and for j = 1, . . . , nq, C(j) ∈ Rqj×3, d(j) ∈ Rqj

and qj is the number of faces in Q(j). The exponent “(j)” refers to the data defined for the jth

polyhedron in Q.

In the following, the letters np, A, b and i are associated to the robot, and the letters nq, C , d,
and j are related to the obstacle. Furthermore, the robot will be identified with its approxima-
tion P and the obstacle with Q. A scheme is given in Figure 1 where P is composed by five
polyhedra, and Q by three polyhedra.

Robot Obstacle

P1

P2

P3 P4 P5

Q1

Q2

Q3

FIGURE 1. Approximation of the robot and the obstacle by a union of convex polyhedra.

Using the approximations P and Q, the robot and the obstacle do not collide if and only if

P (i) ∩Q(j) = ∅, ∀i = 1, . . . , np and ∀j = 1, . . . , nq.
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The definition of the polyhedra P (i) and Q(j) implies that the above relation is equivalent to the
in-solvability of the following linear system

(3)

(
A(i)

C(j)

)
x ≤

(
b(i)

d(j)

)
, ∀i = 1, . . . , np and ∀j = 1, . . . , nq.

According to Farkas’s lemma [1], the system (3) has no solution if and only if there exists a
vector w(i,j) ∈ Rpi+qj such that

w(i,j) ≥ 0,

(
A(i)

C(j)

)T

w(i,j) = 0 and

(
b(i)

d(j)

)T

w(i,j) < 0.

In conclusion, the pair of polyhedra (P (i), Q(j)) do not collide if and only if such a vector w(i,j)

exists. This forms the collision avoidance criterion between a pair of polyhedra. Between the
robot and the obstacle, the criterion reads

Proposition 1. Two unions of convex polyhedra P =
⋃np

i=1 P
(i) and Q =

⋃nq

j=1Q
(j) do not

collide if and only if for each pair of polyhedra (P (i), Q(j)), i = 1, . . . , np, j = 1, . . . , nq, there
exists a vector w(i,j) ∈ Rpi+qj such that

w(i,j) ≥ 0,

(
A(i)

C(j)

)T

w(i,j) = 0 and

(
b(i)

d(j)

)T

w(i,j) < 0.

Proposition 1 is established for motionless bodies. In practice the robotP moves in the workspace.
The approximation (2) then becomes

P (t) =

np⋃
i=1

P (i)(t), with P (i)(t) = {x ∈ R3|A(i)(t)x ≤ b(i)(t)}.

The time dependency occurs in the matrix A(i) and the vector b(i). For notational simplicity, the
definition of P (i) at t = 0 is just written as P (i)(0) = {x ∈ R3|A(i)x ≤ b(i)}.

A motion of P (i) is the composition of a rotation with a translation. Mathematically, the motion
takes the following form

P (i)(t) = S(i)(t)P (i)(0) + r(i)(t),

where S(i)(t) is the orthogonal matrix which describes the rotational motion and r(i)(t) is the
translational motion vector. Hence, a point x̃ belongs to P (i)(t) if and only if x ∈ P (i)(0) exists
such that

x̃ = S(i)(t)x + r(i)(t).

The matrix A(i)(t) and the vector b(i)(t) depend on S(i)(t), r(i)(t) and the definition of P (i) at
t = 0 in the following manner

Theorem 2.1. For all t > 0, we have

A(i)(t) = A(i)S(i)(t)T and b(i)(t) = b(i) + A(i)S(i)(t)T r(i)(t).

Proof. Let us recall that P (i)(t) is defined by

P (i)(t) = {y ∈ R3 |A(i)(t)y ≤ b(i)(t)}
= {y ∈ R3 | ∃x ∈ P (i)(0) such that y = S(i)(t)x+ r(i)(t)}.
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Let T denote the set

T = {y ∈ R3 |A(i)S(i)(t)Ty ≤ b(i) + A(i)S(i)(t)T r(i)(t)}.
The proof of the theorem consists of establishing that P (i)(t) = T . We start with the first
inclusion P (i)(t) ⊂ T and consider a point x̃ in P (i)(t). By definition of P (i)(t), there exists a
point x in P (i)(0) such that

x̃ = S(i)(t)x + r(i)(t).

Let us multiply this equation by A(i)S(i)(t)T . The orthogonality of S(i) yields

A(i)S(i)(t)T x̃ = A(i)x + A(i)S(i)(t)T r(i)(t).

Because x ∈ P (i)(0), we have

A(i)S(i)(t)T x̃ ≤ b(i) + A(i)S(i)(t)T r(i)(t),

which means that x̃ ∈ T .
For the inclusion T ⊂ P (i)(t), let us consider the point x given by

x = S(i)(t)T (x̃− r(i)(t))

and multiply this relation by A(i)

A(i)x = A(i)S(i)(t)T x̃− A(i)S(i)(t)T r(i)(t).

Yet, x̃ ∈ T implies

A(i)x = A(i)S(i)(t)T x̃− A(i)S(i)(t)T r(i)(t) ≤ b(i).

It follows that the point x belongs to P (i)(0). Consequently, x̃ ∈ P (i)(t). �

Applying Proposition 1 at a fixed time t with Theorem 2.1 gives the collision avoidance criterion
for a moving robot

Proposition 2. The robot P (t) and the obstacle Q do not collide if and only if for each pair
of polyhedra (P (i)(t), Q(j)), i = 1, . . . , np, j = 1, . . . , nq, there exists a vector w(i,j)(t) ∈
Rpi+qj such that w(i,j)(t) ≥ 0,(

A(i)S(i)(t)T

C(j)

)T

w(i,j)(t) = 0 and

(
b(i) + A(i)S(i)(t)T r(i)(t)

d(j)

)T

w(i,j)(t) < 0.

Hence, if a vector w(i,j) exists for each pair of polyhedra and for all t, then the robot does
not collide with the obstacle. To obtain an optimal collision-free trajectory for the robot, all we
have to do is to find such a vector. So, we naturally include w(i,j) as a control variable and
the relations in Proposition (2) as state constraints in the time optimal control. However, the
inequality constraint in Proposition (2) has to be relaxed. No strict inequality can be written in
the formulation of the optimal control problem. Moreover, the rotational matrices, S(i), and the
translational vectors r(i), i = 1, . . . , np are explicit functions of x = (q, v) as explained in
Appendix A. Consequently, the state constraints related to the collision avoidance are given for
all i = 1, . . . , np and all j = 1, . . . , nq by(

A(i)S(i)(x(t))T

C(j)

)T

w(i,j)(t) = 0,(4) (
b(i) + A(i)S(i)(x(t))T r(i)(x(t))

d(j)

)T

w(i,j)(t) ≤ −ε.(5)
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The constraints are called anti-collision constraints and ε > 0 is a given distance parameter.
The complete formulation of the optimal control problem is given in the next section.

3. OPTIMAL CONTROL PROBLEM

We combine the optimal control problem given in the introduction with the anti-collision con-
straints (4)-(5). This combination yields the model to find the optimal collision-free trajectory of
a robot surrounded by an obstacle. First, we simplify the expression of the anti-collision con-
straints by using a new numbering of the constraints. We carry out the following transformation

I : {1, . . . , np} × {1, . . . , nq} → {1, . . . , npnq}
(i, j) 7→ I = (i− 1)nq + j.

To each pair (i, j) there corresponds an index I in {1, . . . , npnq}. Reciprocally, for each I ∈
{1, . . . , npnq} only one pair (i, j) ∈ {1, . . . , np} × {1, . . . , nq} exists.

In the sequel, the index I is used instead of the pair (i, j). The control variable w(i,j) is then
numbered as wI . Let us also define the functions GI : Rnx → R(pi+qj)×3 and gI : Rnx →
Rpi+qj for I = 1, . . . , npnq as follows

GI(x) =

(
A(i)S(i)(x)T

C(j)

)
,

gI(x) =

(
b(i) + A(i)S(i)(x)T r(i)(x)

d(j)

)
.

Let us finally set:

• the number of indices I : M = npnq;
• the size of wI : nI = pi + qj ;

• the size of w := (w1, ..., wM): nw =
M∑

I=1

nI = nQ

nP∑
i=1

pi + nP

nQ∑
j=1

qj .

Then, after transformation onto the fixed time interval T := [0, 1] and with these new notations
the optimal control problem reads as follows:
(OCP): Minimize

ϕ(x(0), x(1), tf )

with respect to x ∈ W nx
1,∞(T ), u ∈ Lnu

∞ (T ), w ∈ Lnw
∞ (T ), and tf ≥ 0,

subject to the constraints

x′(t)− tff(x(t), u(t)) = 0 a.e. in T,

ψ(x(0), x(1)) = 0,

GI(x(t))
>wI(t) = 0, I = 1, . . . ,M, a.e. in T,

gI(x(t))
>wI(t) ≤ −ε, I = 1, . . . ,M, a.e. in T,

wI(t) ≥ 0, I = 1, . . . ,M, a.e. in T,

and
u(t) ∈ U .



7

As usual Lnu
∞ (T ) denotes the Banach space of essentially bounded functions mapping from

T into Rnu and W nx
1,∞(T ) denotes the Banach space of absolutely continuous functions with

essentially bounded derivative that map from T into Rnx .

4. DIRECT DISCRETIZATION

We outline a direct approach towards the numerical solution of the collision avoidance problem
(OCP) by means of discretization methods.

Depending on the numberM of anti-collision constraints, the problem is inherently sparse since
the artificial control variables wI , I = 1, . . . ,M , do not enter the dynamics, the boundary
conditions, and the objective function of the problem, but only appear linearly in the anti-collision
constraints with one-sided coupling through the state.

We attempt to solve the problem (OCP) numerically with a reduced discretization approach. The
approach is based on the grid

GN := {tk = t0 + kh | k = 0, 1, . . . , N},
which, for simplicity, is chosen equidistantly with the fixed step-size h = (tf − t0)/N .

4.1. Reduced Discretization. A reduced discretization is obtained by solving the discretized
differential equations and eliminating them from the problem formulation. To this end we prefer
to use explicit integration schemes.

A control parameterization is given by the B-spline representation

uh(t;u0, . . . , uN+r−2) :=
N+r−2∑

i=0

uiBir(t),

where Bir, i = 0, . . . , N + r − 2, denote elementary B-splines of order r on GN and
(u0, . . . , uN+r−2)

> ∈ Rnu(N+r−1) is the vector of de Boor points. The order r defines the
smoothness of the control approximation, that is, uh is r − 2 times continuously differentiable
for r > 2. Typically we use r = 1 (uN is piecewise constant) or r = 2 (uh is continuous and
piecewise linear).

As the elementary B-splines of order r sum up to one for all t ∈ T , the box constraints uh(t) ∈
U are satisfied, if

ui ∈ U , i = 0, . . . , N + r − 2.

The choice of B-splines is convenient as it is easy to create approximations with prescribed
smoothness properties and, even more important, the elementary B-splines Bir have a local
support only. The latter leads to certain sparsity patterns in the constraint Jacobian, which can
be exploited numerically, see [11, 12].

Solving the differential equations for the initial value x0 and a given tf by a one-step method
with increment function Φ, which typically defines an explicit Runge-Kutta method, leads to the
state approximations

xk+1(z) = xk(z) + hΦ(tk, xk(z), uh(tk;u0, . . . , uN+r−2), tf , h), k = 0, . . . , N − 1,

at the grid points tk, k = 0, . . . , N . The state approximations depend on the vector

z := (x0, u0, . . . , uN+r−2, tf )
> ∈ Rnz ,
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with nz = nx + (N + r − 1)nu + 1. In the simplest case we may choose the explicit Euler
method with

Φ(t, x, u, tf , h) := tff(x, u),

but typically we prefer higher order methods like the classic Runge-Kutta method of order four.

Similarly, the variables wI , I = 1, . . . ,M , are approximated by B-splines as follows

wI,h(t) = wI,h(t;wI,0, . . . , wI,N+r−2) :=
N+r−2∑

i=0

wI,iBir(t), I = 1, . . . ,M.

Introducing both, the control and state approximations, into the optimal control problem (OCP)
leads to the following finite dimensional nonlinear optimization problem:

Minimize

ϕ(x0, xN(z), tf )

with respect to z ∈ Rnz and wI,h(tk) ∈ RnI , for I = 1, . . . ,M and k = 0, . . . , N ,
subject to the constraints

ψ(x0, xN(z)) = 0,

wI,h(tk) ≥ 0, I = 1, . . . ,M, k = 0, . . . , N,

GI(xk(z))
>wI,h(tk) = 0, I = 1, . . . ,M, k = 0, . . . , N,

gI(xk(z))
>wI,h(tk) ≤ −ε, I = 1, . . . ,M, k = 0, . . . , N,

uk ∈ U , k = 0, . . . , N.

Extensions towards a multiple shooting method by adding additional shooting nodes are possi-
ble as well. Note however that the reduced problem is still a sparse and potentially large-scale
problem depending on the number M of anti-collision constraints.

4.2. Sequential Quadratic Programming (SQP). From now on we choose to use B-splines of
second order (i.e. r = 2). Hence, we have

wI,h(tk;wI,0, . . . , wI,N) = wI,k, I = 1, . . . ,M, k = 0, . . . , N.

For simplicity, the notation wI,k is prefered to wI,h(tk;wI,0, . . . , wI,N) in the discretized formu-
lation of the optimal control problem.

The reduced discretization method can be cast as an optimization problem with the following
structure:

(NLP): Minimize J(z) with respect to z ∈ Rnz and
w = (w1,0, . . . , w1,N , . . . , wM,0, . . . , wM,N)> ∈ R(N+1)nw



9

subject to the constraints

h(z) = 0,

wI,k ≥ 0, I = 1, . . . ,M, k = 0, . . . , N,

ḠI,k(z)
>wI,k = 0, I = 1, . . . ,M, k = 0, . . . , N,

ḡI,k(z)
>wI,k ≤ −ε, I = 1, . . . ,M, k = 0, . . . , N,

z ∈ Z := {z ∈ Rnz | z` ≤ z ≤ zu}.

Herein, z` ≤ zu define box constraints for z, where the settings±∞ are permitted, if a compo-
nent of z is not restricted from above or below.

Remark 1. The correspondence between the reduced discretization of (OCP) and the nonlinear
optimization problem (NLP) can be seen as follows:

Let J(z) := ϕ(x0, xN(z), tf ) and h(z) := ψ(x0, xN(z)). For I = 1, . . . ,M, k = 0, . . . , N
define ḠI,k and ḡI,k by

ḠI,k(z) := GI(xk(z)) and ḡI,k(z) := gI(xk(z)).

The Lagrange function with multipliers λ, µ = (µ1,0, . . . , µM,N)>,
η = (η1,0, . . . , ηM,N)>, σ = (σ1,0, . . . , σM,N)> and ζ read as

L(z, w, λ, µ, η, σ, ζ) = J(z) + λ>h(z) + ζ>z

+
M∑

I=1

N∑
k=0

[
µ>I,k(−wI,k) + η>I,kḠI,k(z)

>wI,k + σI,k ḡI,k(z)
>wI,k

]
.

The Hessian of L with respect to (z, w) is given by

L′′(z,w),(z,w) =


L′′zz (γ′10,z)

> · · · (γ′MN,z)
>

γ′10,z
... 0

γ′MN,z

 ,

where

γIk(z, ηI,k, σI,k) := ḠI,k(z)ηI,k + ḡI,k(z)σI,k, I = 1, . . . ,M, k = 0, . . . , N.

A typical requirement in a convergence analysis or for checking second order sufficient con-
ditions is that the Hessian matrix is positive definite on the null-space of the linearized active
constraints. It is not at all clear that the above Hessian matrix satisfies this requirement owing
to the zero block, which corresponds to L′′ww. A remedy could be to regularize the problem by
adding the term α‖w‖2 with a suitable value of α to the objective function. Then the zero block
is filled with αI . Such a regularization makes sense as the variable w apart from being feasible
is arbitrary. In particular, if w is feasible, so is βw for every β ≥ 1 owing to the linearity of the
anti-collision constraints. Hence, norming w makes sense.

The following prototype SQP algorithm can be applied to the optimization problem. We restrict
the discussion to the local SQP method only, but we point out that the algorithm needs to be
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augmented by a globalization strategy in order to achieve numerical robustness and conver-
gence from remote starting points. As in [27] we used an Armijo type line-search procedure for
the augmented Lagrangian function in our implementation.

Prototype local SQP method:

(0) Choose z(0) ∈ Z , w(0) ≥ 0, ν(0) := (λ(0), µ(0), η(0), σ(0), ζ(0)),
B0 := L′′(z,w),(z,w)(z

(0), w(0), ν(0)), and set ` := 0.

(1) If (z(`), w(`), ν(`)) is a KKT point of the optimization problem, STOP.
(2) Compute a KKT point (d(`), ν(`+1)) of the following linear-quadratic optimization problem:

Minimize
1

2
d>B`d+ J ′(z(`))dz

with respect to d = (dz, dw1,0 , . . . , dwM,N
)> subject to the constraints

h(z(`)) + h′(z(`))dz = 0,

w
(`)
I,k + dwI,k

≥ 0, I = 1, . . . ,M, k = 0, . . . , N,

ḠI,k(z
(`))>w

(`)
I,k + ḠI,k(z

(`))>dwI,k

+ Ḡ′I,k(z
(`))>(w

(`)
I,k, dz) = 0, I = 1, . . . ,M, k = 0, . . . , N,

ḡI,k(z
(`))>w

(`)
I,k + ḡI,k(z

(`))>dwI,k

+ ḡ′I,k(z
(`))>(w

(`)
I,k, dz) ≤ −ε, I = 1, . . . ,M, k = 0, . . . , N,

z(`) + dz ∈ Z.
(3) Set

z(`+1) := z(`) + d(`)
z , w

(`+1)
I,k := w

(`)
I,k + d(`)

wI,k
, I = 1, . . . ,M, k = 0, . . . , N,

and compute
B`+1 := L′′(z,w),(z,w)(z

(`+1), w(`+1), ν(`+1)).

Set ` := `+ 1, and go to (1).

Remark 2.

(a) If the constraints of the quadratic subproblem turn out to be infeasible, the quadratic sub-
problem is replaced by one with relaxed constraints, see [4, 24]. A convergence analysis
for an SQP method using the augmented Lagrange function can be found in [26, 27].

(b) In order to achieve convergence from remote starting points, the algorithm has to be
augmented by a globalization strategy, see [24, 27] for line-search based methods and
[8, 9] for filter methods.

(c) Instead of the exact Hessian matrix one can use BFGS update formulas for B`, which
guarantee thatB` is symmetric and positive definite and thus the quadratic sub-problems
are strictly convex. Special measures for handling sparse matrices and sparse Hessian
updates have to be taken for large problems, see [2].

(d) There are powerful algorithms for the numerical solution of quadratic optimization prob-
lems using primal or dual active set methods, see [17, 18, 19, 28], or interior-point meth-
ods, see [14, 29]. The method in [14] is designed for large-scale and sparse problems.
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5. BACKFACE CULLING ACTIVE SET STRATEGY

The discretized optimal control problem described in the previous section contains a large num-
ber of state constraints. At each time step tk, k = 0, . . . , N , and for every pair of polyhedra
(P (i), Q(j)), four collision avoidance constraints are defined. This yields 4M(N + 1) state
constraints in (NLP). This large number could be problematic to find the solution of (NLP) as
outlined in [23]. Are all these constraints necessary? Let us assume that at the time step tk the
obstacle is located far from the robot. In that case, the robot can move without colliding with the
obstacle. The collision avoidance constraints defined at tk are then unnecessary. In the same
way, if the obstacle is located behind the robot at tk, the robot can go forward without colli-
sion. The related state constraints are again superfluous. Furthermore, only few of the faces of
the convex polyhedra do actually collide while most faces are remotely located on the opposite
side of the object. This selection of visible obstacles and faces is called backface culling, see
[10, 25, 30].

Backface culling is mostly used in computer graphics. Vaněček Jr. in [30] first suggested to use
this technique for collision detection. However, his criterion to select the visible faces works only
between polyhedra which face each other. Here, we develop other criteria. They all concern the
position of the robot relative to the obstacles. The first criterion looks at the distance between
the robot and the obstacles. If this distance is large, then no collision will occur and there is no
need to consider the collision avoidance criterion for this case.

5.1. Criteria. In this section (P,Q) denotes a pair of polyhedra. The polyhedron P belongs to
the approximation of the robot and Q refers to the obstacle. In comparison to the previous sec-
tions, we drop the exponent (i, j) for more readability. Moreover, the figures in this section are
given for a two dimensional case, even if the criteria are established for two or three dimensional
domain. Finally, the criteria must be fast and easy to compute because they will be employed at
each intermediate SQP iteration, between each pair of polyhedra (i.e. for I = 1, . . . ,M ) and
at each time step tk, K = 0, . . . , N .

The first criterion check ifQ is far from P . The distance between P andQ is roughly computed.
A rectangle surrounded box is defined for each polyhedron. The intersection between the boxes
is then easily tested. If the intersection is empty, it means that Q is distant from P and the
anti-collision constraint is not taken in consideration for the pair (P,Q).

In order to compute these boxes, let us denote

• (xP
i , y

P
i , z

P
i ), i = 1, . . . , sP , the vertices of P with sP the number of vertices,

• (xQ
i , y

Q
i , z

Q
i ), i = 1, . . . , sQ, the vertices of Q with sQ the number of vertices,

and define for P and Q

xP
m = min

i=1,...,sP
xP

i , yP
m = min

i=1,...,sP
yP

i , zP
m = min

i=1,...,sP
zP

i ,

xP
M = max

i=1,...,sP
xP

i , yP
M = max

i=1,...,sP
yP

i , zP
M = max

i=1,...,sP
zP

i ,

xQ
m = min

i=1,...,sQ
xQ

i , yQ
m = min

i=1,...,sQ
yQ

i , zQ
m = min

i=1,...,sQ
zQ

i ,

xQ
M = max

i=1,...,sQ
xQ

i , yQ
M = max

i=1,...,sQ
yQ

i , zQ
M = max

i=1,...,sQ
zQ

i .
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The tuple (xP
m, y

P
m, z

P
m, x

P
M , y

P
M , z

P
M), resp. (xQ

m, y
Q
m, z

Q
m, x

Q
M , y

Q
M , z

Q
M), defines the smallest

rectangle box around P , resp. Q. For the criterion a larger box is considered. Let δ > 0. Let
BP , resp. BQ, denotes the box generated by the tuple (xP

m− δ, yP
m− δ, zP

m− δ, xP
M + δ, yP

M +

δ, zP
M + δ), resp. (xQ

m − δ, yQ
m − δ, zQ

m − δ, x
Q
M + δ, yQ

M + δ, zQ
M + δ). In other words, BP and

BQ are given by

BP = [xP
m − δ, xP

M + δ]× [yP
m − δ, yP

M + δ]× [zP
m − δ, zP

M + δ]

BQ = [xQ
m − δ, xQ

M + δ]× [yQ
m − δ, yQ

M + δ]× [zQ
m − δ, zQ

M + δ].(6)

An illustration in a 2 dimensional workspace is given in Figure 2. The boxes BP and BQ are
separated if

[xP
m − δ, xP

M + δ] ∩ [xQ
m − δ, xQ

M + δ] = ∅
or [yP

m − δ, yP
M + δ] ∩ [yQ

m − δ, yQ
M + δ] = ∅

or [zP
m − δ, zP

M + δ] ∩ [zQ
m − δ, zQ

M + δ] = ∅
This relation is equivalent to

xQ
m − δ > xP

M + δ or xQ
M + δ < xP

m − δ

or yQ
m − δ > yP

M + δ or yQ
M + δ < yP

m − δ(7)

or zQ
m − δ > zP

M + δ or zQ
M + δ < zP

m − δ

If at least one of the above strict inequalities is satisfied, then BP does not intersect BQ. It fol-
lows that Q is remote and the anti-collision constraint is not considered for the pair (P,Q). So,
the first criterion reads

Criterion 1 Build the boxes BP and BQ of P and Q according to (6). If one of the inequalities
in (7) is satisfied, then no anti-collision constraint is written for the pair of polyhedra (P,Q).

For the example in Figure 2, the second inequality of (7) is satisfied. The boxes BP and BQ are
separated and according to Criterion 1 no anti-collision constraint is considered.

Remark 3. The coordinates of the vertices of P evolve in time since they belong to the robot.
Hence the box BP has to be determined at each grid point tk, k = 0, . . . , N . Because the
obstacle does not move, the box BQ is computed only once.

Let us assume now that the polyhedronQ is close enough to P . The next criteria will determine
which faces ofQ are visible by P . Consider the situation depicted in Figure 3 (a): the polyhedron
P is moving downwards and vc indicates the velocity of the center of gravity.

In the definition Q = {x ∈ R2|Cx ≤ d}, each line of the system of inequalities describes
a halfspace. The union of all the halfspaces generates the polyhedron Q and each face of the
polyhedron is a piece of the associated hyperplane. Let us recall the collision avoidance criterion
between the two polyhedra P and Q: P and Q do not collide if and only if

(8) ∃w > 0, such that

(
A
C

)T

w = 0 and

(
b
d

)T

w < 0.

We can observe that each component of w is multiplying one line of A or C , and a component
of b or d. Hence each component of w is associated to a face of P or Q.
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x
Q
m

y
Q
m

x
Q

M

y
Q

M

xP
m

yP
m

xP
M

yP
M

δ

δ

x

y

P

Q

BQ

BP

FIGURE 2. The boxes BP and BQ of the polyhedra P and Q are separated.

Let us define the set Q̃ generated by the faces e1 and e2 of Q. Q̃ is represented in Figure 3 (b).
In fact e1 and e2 are the faces of Q visible by P . According to (8) Q̃ do not collide with P if and
only if

(9) ∃w̃ > 0, such that

(
A
C1,2

)T

w̃ = 0 and

(
b
d1,2

)T

w̃ < 0,

where C1,2 is the matrix composed of the first two lines of C and d1,2 is the vector composed
of the first two components of d.

x

y

P

Q
e2

e3
e4

e5

e1

vc
x

y

P

Q̃
e2

e3
e4

e5

e1

vc

(a) (b)

FIGURE 3. (a) The polyhedron P is moving downwards. The faces of Q are
denoted by e1, . . . , e5. (b) The set Q̃ is generated by the faces of Q visible by
P .

If w̃ exists, then by setting w = (w̃, 0, 0, 0) the criterion (8) is satisfied. It follows that P and
Q do not collide. In conclusion if no collision occurs between Q̃ and P , then Q and P do
not collide. In (9) only the faces visible by P are taken in consideration. The dimension of w̃ is
always smaller thanw, because the polyhedra are supposed to be compact. Hence the problem
to find w̃ is always smaller.
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In the sequel we will consider the collision avoidance criterion (9) defined only with the visible
faces of Q, (9) being faster to verify than (8). The next criteria concern the determination of the
visible faces of Q relatively to P .

The faces of Q which are located behind P are invisible for P . To find them we have first to
determine which vertex of P is located the most in the opposite direction of the velocity of the
center of gravity. This vertex is denoted by SR. Then we consider the lower halfspace generated
by the normal vector vc and the point SR. All faces of Q located in this halfspace are invisible.

The vertex SR is the vertex of P which minimizes the scalar product between the vertices of P
and vc. In other words, we have

SR = arg min
i=1,...,sP

vT
c

−−→
OSi,

where O is the origin and Si, i = 1, . . . , sP are the vertices of P . The equation of the lower
halpspace is then given by

H−
SR

= {x ∈ R3 | vT
c (x− SR) < 0}.

A face e of Q is located behind P if e is included in the lower-halfspace H−
SR

. Hence, if Se,i,
i = 1, . . . , se, denote the vertices of e, we have to test if

vT
c (Se,i − SR) < 0, ∀i = 1, . . . , se

or equivalently, to check if
max

i=1,...,se
(vT

c (Se,i − SR)) < 0.

H
−

SR
SR

x

y

P

Q

e2

e3
e4

e5

e1

O

vc

H
−

SR

SR

x

y

P

Q

e2

e3
e4

e5

e1

O

vc

(a) (b)

FIGURE 4. (a) The faces e3 and e4 of Q are located behind P . (b) All faces of
Q are located behind P .

Then the second criterion reads
Criterion 2 A face e of Q composed by the vertices Se,1, . . . , Se,se is invisible by P if

max
i=1,...,se

vT
c (Se,i − SR) < 0.

An example is given in Figure 4-(a) where the faces e3 and e4 satisfy Criterion 2. If all faces of
Q are located behind P as illustrated in Figure 4-(b), Q is not visible by P and the anti-collision
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constraint is not considered. This leads to

Criterion 3 If all faces of Q are invisible by P according to Criterion 2, then no anti-collision
constraint is written for the pair of polyhedra (P,Q).

Remark 4. We supposed for the computation of SR that the velocity of the center of gravity was
not equal to zero. If the velocity is null, Criteria 2 and 3 are not applied.

Not all remaining faces of Q are visible by P . Some of them can be hidden by other faces of
Q. It is the case for the face e5 in Figure 3-(b). Let consider the Figure 5-(a). In this figure the
vertex S of P can see the face e5 of Q. The hatched triangle BSA corresponds to the view
angle of S. In Figure 5-(b) the triangle BSA crosses the face e1 of Q. The vertex S cannot see
e5 because the face is hidden by e1. The face e5 is no more visible by S as soon as S is located
in the halfspaceH−

5 = {x ∈ R3 |C5 x < d5} generated by e5. From this observation comes
the last criterion which determines which faces ofQ are hidden for P . The fourth criterion reads
as follows

Criterion 4 The face ei of Q is invisible by the polyhedron P if

P ⊂ H−
i = {x ∈ R3 |Ci x < di},

which is equivalent to require that

max
j=1,...,sP

(CiSj − di) < 0,

where Sj , j = 1, . . . , sP denote the vertices of P .
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���������������
���������������
���������������
���������������

Q

P

H−

5
= {x ∈ R

2|C5x < d5}

e2

e3

e4

e5

e1

x

y

S

A

B

(a) (b)

FIGURE 5. (a) The vertex S, and consequently the polyhedron P , can see the
face e5. (b) The face e5 of Q is invisible by P because P ⊂ H−

5 .

A limit case exists with Criterion 4 when P is included in Q as depicted in Figure 6. In that
case all faces of Q are invisible for P according to Criterion 4. But in fact all these faces must
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Q
P

e2

e3

e4

e5

e1

x

y

v
c

FIGURE 6. All the faces of Q are deleted according to Criterion 4.

be considered in the anti-collision constraint. So, in this particular case Criterion 4 must not be
applied.

Remark 5. Criterion 4 can also be applied to detect which faces of P are visible by Q. Then
the anti-collision constraint defined for the pair (P,Q) can be reduced as it was done in (9).

In this section criteria to determine the visible faces of Q were developed, provided Q is visible.
The four criteria depend on the position of P (given by q) and also on the velocity of P for
Criteria 2 and 3 (given by v). In the next section we show how the backface culling strategy is
included in the SQP algorithm to solve (NLP).

5.2. Algorithm. Let us recall the index transformation that associates at each pair (i, j) the
new index I via the formula: I = (i− 1)nq + j. Let us also define the two following sets of pair
of indices

S := {(I, k) | I = 1, . . . ,M and k = 0, . . . , N},
K := {(I, k) ∈ S | the polyhedron Q(j) is visible by P (i) at tk}.

Hence, K is a subset of S and it is determined by applying the Criteria 1 and 3 established in
the previous subsection.

Let us also recall that wI belongs to Rpi+qj . The first pi components of wI are associated to
the faces of P (i) and the next qj components are related to the faces of Q(j). In other words,
the cth component of wI corresponds to

• the face c of P (i) if 1 ≤ c ≤ pi,
• or the face c− pi of Q(j) if pi + 1 ≤ c ≤ pi + qj .

Hence, let us define the following set of indices for each (I, k) ∈ K
JI,k := {c ∈ {1, . . . , pi} | the face c of P (i) is invisible by Q(j) at tk}

∪ {c ∈ {pi + 1, . . . , pi + qj} | the face c of Q(j) is invisible by P (i) at tk}.
This set contains the index of the faces of the pair (P (i), Q(j)) which are invisible at tk. The
invisibility of a face is determined with the Criteria 2 and 4 of the previous subsection.

Backface culling consists of considering the anti-collision constraints whose pair of indices
(I, k) belongs to K and write these constraints only with the components of the variables
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related to the visible faces. The algorithm to solve the (NLP ) problem is the SQP method
presented below in which the backface culling is added as an active set strategy. This means
that at each iteration we update the set K and then build the quadratic problem by considering
only the constraints whose pair of indices belongs to K.

Backface Culling Active Set Strategy

(0) Choose ε > 0, z(0) ∈ Z , w(0) ≥ 0 and ν(0) := (λ(0), µ(0), η(0), σ(0), ζ(0)).

Determine the sets of indices K(0) and J (0)
I,k for all (I, k) ∈ K(0).

Compute B0 := L′′(z,w),(z,w)(z
(0), w(0), ν(0)) and set ` := 0.

(1) If (z(`), w(`), ν(`)) is a KKT point of the optimization problem, STOP.

(2) Compute a KKT point (d(`), ν
(`+1)

K(`) ) with

ν
(`+1)

K(`) := (λ(`+1), µ
(`+1)

K(`) , η
(`+1)

K(`) , σ
(`+1)

K(`) , ζ
(`+1))

and

µ
(`+1)

K(`) := (µ
(`+1)
I,k )(I,k)∈K(`) ,

η
(`+1)

K(`) := (η
(`+1)
I,k )(I,k)∈K(`) ,

σ
(`+1)

K(`) := (σ
(`+1)
I,k )(I,k)∈K(`) ,

of the following linear-quadratic optimization problem:

Minimize
1

2
d>B`d+ J ′(z(`))dz

with respect to dz and dwI,k
, (I, k) ∈ K(`), subject to the constraints

h(z(`)) + h′(z(`))dz = 0,

w
(`)
I,k + dwI,k

≥ 0, (I, k) ∈ K(`),

ḠI,k(z
(`))>w

(`)
I,k + ḠI,k(z

(`))>dwI,k

+ Ḡ′I,k(z
(`))>(w

(`)
I,k, dz) = 0, (I, k) ∈ K(`),

ḡI,k(z
(`))>w

(`)
I,k + ḡI,k(z

(`))>dwI,k

+ ḡ′I,k(z
(`))>(w

(`)
I,k, dz) ≤ −ε, (I, k) ∈ K(`),

z(`) + dz ∈ Z,

dwI,k,c = 0, c ∈ J (`)
I,k , (I, k) ∈ K

(`).

Note: The constraints dwI,k,c = 0 are only included for notational simplicity. In prac-
tice these variables are actually eliminated from the problem formulation and thus no
Lagrange multipliers for these constraints are foreseen in the multiplier vector ν(`+1)

K(`) .
(3) Set

z(`+1) := z(`) + d(`)
z , w

(`+1)
I,k := w

(`)
I,k + d(`)

wI,k
, (I, k) ∈ K(`).
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Let ν(`+1) be the vector with ν(`+1)

K(`) sorted in at the appropriate positions and with the
remaining entries filled up with zeros.

(4) Update the sets of indices K(`+1) and J (`+1)
I,k for (I, k) ∈ K(`+1) according to Criteria 1

to 4 which depend on z(`+1).
Set ` := `+ 1, and go to (1).

6. NUMERICAL RESULT

Let us consider the robot presented in Figure 11 given in Appendix A. The robotic arm is com-
posed by a socket, two links and three revolute joints. The socket rotates along the z-axis. The
links rotate along the y-axis. At the end of the second link a load is fixed. We consider one
obstacle which is represented in Figure 7. The robot is asked to move the load around the ob-
stacle. For this numerical example, the collision avoidance is only applied between the load and
the obstacle.

−2

0

2

−10123

0

1

2

3

4

FIGURE 7. A 3-link robot with a load next to an obstacle.

The load is a cube. Its representation as a system of linear inequalities is given by

P = {x ∈ R3 |Ax ≤ b},
with

A =


1 0 0

−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

 and b =


0.25
0.25
0.25
0.25
0.25
0.25

 ,

where the origin of the system of axis is located at the center of the cube. Similarly, the obstacle
is given by: Q = {x ∈ R3 |Cx ≤ d} where C = A and

dT = (2, 2, 1.4,−1, 4.5,−1.5).

The definition of the obstacle is given in the reference frame.

The following parameters of the robot are used for the numerical computations



19

Parameter Value Description
m1 10 [kg] mass of socket
m2 2 [kg] mass of link 1
m3 2 [kg] mass of link 2
m4 1 [kg] mass of load
h1 1 [m] height of socket
l1 1 [m] length of link 1
l2 1 [m] length of link 2
r1 0.1 [m] radius of socket and links
r2 0.3 [m] radius of second socket
r3 0.5 [m] radius of platform
r4 0.1 [m] radius of load
b1 0 [m] offset of link 1
b2 0 [m] offset of link 2

The moment of inertia of the socket, the links and the load are respectively given by

J1 = diag(0, 0,
1

2
m1r

2
1),

J2 = diag(
1

4
m2r

2
1,

1

2
m2r

2
1,

1

4
m2r

2
1)

J3 = diag(
1

4
m3r

2
1,

1

2
m3r

2
1,

1

4
m3r

2
1)

J4 = diag(
2

5
m4r

2
4,

2

5
m4r

2
4,

2

5
m4r

2
4).

To solve the optimal control problem (NLP) with the SQP method, we choose 21 control grid
points and ε = 10−5 for the anti-collision constraints. The ordinary differential equations are
integrating with the classical Runge-Kutta method (RK4) and the control variables u and w are
approximated with B-splines of second order (i.e. r = 2).

In this example, the obstacle is always located close enough to the robot and never behind it.
Consequently, the number of state constraints is not reduced with the backface culling strategy.
However, the anti-collision constraints are written in a reduced form, i.e. they only contain the
components of w related to the visible faces of the robot and of the obstacle. So, with this
example, we can appreciate the reduction of the number of unknowns and the simplification of
the anti-collision constraints.

Some snapshots of the robot motion are given in Figure 8. A face of the obstacle is black, if
the face satisfies Criteria 2 and 4. Otherwise, the face is grey. From t1 to t5 the left face and
the bottom face are the sole visible faces. Between t6 and t8 the right face is also visible. From
t9, the left face is culled and from t15 only the right face remains visible. So, at most 3 faces
are not deleted. The faces on the side (except the bottom face) are always invisible. Hence, the
corresponding components in the control w can be eliminated. This means that the number of
unknowns is 50% less with the backface culling strategy.

The time evolution of the control variables u andw are represented in Figures 9 and 10. We can
observe a bang-bang-like behavior for u. This behavior is expected and was already observed
by [31] for robot motion planning. The control w do not follow a bang-bang phenomenon. In
Figure 10 (a) the first six components of w are plotted. These components correspond to the
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left

face

bottom face

at t1 at t4 at t6

at t9 at t11 at t13

right

face

at t15 at t18 at t21

FIGURE 8. Snapshots of the time minimum transfer of a load avoiding an ob-
stacle. The visible faces of the obstacle are in grey.

faces of the load. In Figure 10 (b) only the components related to the visible faces of the obstacle
are plotted. We have the relation:

• w9: the left face,
• w10: the right face,
• w12: the bottom face.

We can see that the component w10 becomes positive at t6. This corresponds to the new
visibility of the right face from t6. We can also remark that this event on w10 has an impact on
the other components ofw. From t1 to t5,w4 andw12 were increasing. The event at t6 changed
their behavior. Both started then to decrease. A similar phenomenon can be observed on the
variable w1, w2, w5 and w9: the trajectory of these variables is perturbed at t6.

At t9, the componentw9 becomes null and the left face is no more visible by the robot. Note that
between t6 and t9 all the positive components of w were decreasing and tending to 0. Once w9

becomes null, the other components of w start to increase again. The last event occurs at t15,
when w12 is equal to 0. An influence of the activation on the evolution of the other variables is
observable.
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FIGURE 9. Plot of the controls u along the time.
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FIGURE 10. Plot of the controls w along the time.

Finally, let us consider Table 1. In this table, we compare the results obtained with and without
the backface culling strategy. The final time, the number of iterations of the SQP method and
the CPU times are stored in this table. In the first column, the values are obtained by solving
the discretized optimal control problem without backface culling. The second column is obtained
with the algorithm depicted in Section 5.

First, let us note that the final times tf are equal. The trajectories are also similar. So, we can
validate the solution obtained with the backface culling strategy. The number of iterations is
smaller for the backface culling strategy: we need 530 iterations instead of 813. The gain of
the backface culling is even better when we compare the CPU times: almost 4 minutes for a
traditional resolution and less than 1 minute for the backface culling. So, we are almost 4 times
faster. This is due on one side to the smaller number of iterations and on the other side to the
smaller size of the problem to solve: less unknowns and reduced constraints.
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Global Backface culling
tf 0.4261s 0.4261s

Iter. 813 530
CPU 3 min 44.33 51.61 s

TABLE 1. Comparison of tf , the number of iterations in the SQP method and
the CPU times with and without the backface culling strategy.

The numerical solution of the collision avoidance problems turned out to be challenging. The
SQP method typically has difficulties to satisfy the constraints, if insufficient initial guesses are
provided. Appropriate scaling was necessary as well. A remedy is to shift some of the con-
straints into the objective function using a penalty term. In our experiments we have chosen the
terminal boundary conditions and added the penalty term

α‖x(tf )− xf‖2

with α > 0 sufficiently large to the objective function. The code then appears to be more robust,
but requires more iterates.

7. CONCLUSION AND OUTLOOK

A time optimal control problem to find for a robot the fastest trajectory that avoids collision with
surrounding obstacles was established. The robot and the obstacles were represented as finite
unions of convex compact polyhedra. This description combined with Farkas’s lemma allowed
us to express the collision avoidance as state constraints. A backface culling strategy was built
to apply the anti-collision constraints only between the visible part of polyhedra which can see
each other. This strategy was finally added in the SQP as an active set strategy. Numerical
results illustrated the gain of such a strategy in the resolution of (NLP).

Eventually, we outline an approach that can be used to further reduce or reformulate the collision
avoidance optimal control problems.

7.1. Elimination of Equality Constraints. The rank of the matrices GI(x) ∈ R(pi+qj)×3 is
supposed to be 3, which can be guaranteed for typical geometric objects like boxes or tetrahe-
dra. Hence, the equality constraints

GI(x(t))
>wI(t) = 0, I = 1, . . . ,M,

can be considered index-one algebraic constraints, where 3 components of wI are considered
algebraic variables. To this end, let J ⊂ {1, . . . , pi + qj} and J̄ := {1, . . . , pi + qj} \ J be
index sets such that GJ

I (x) is non-singular, where GJ
I (x) denotes those rows of GI(x) whose

index belongs to the index set J . For simplicity we assume that J does not depend on the index
I , that is, all geometric objects are described by the same matrices. By solving the algebraic
constraints we obtain

GJ
I (x)>wJ

I +GJ̄
I (x)>wJ̄

I = 0 ⇐⇒ wJ
I = −GJ

I (x)−>GJ̄
I (x)>wJ̄

I .

Define w̄I := wJ̄
I and reduced matrices

ḠI(x)
> := GJ

I (x)−>GJ̄
I (x)>,

ḡI(x)
> := gJ̄

I (x)> − gJ
I (x)>ḠI(x)

>.
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Taking into account the non-negativity ofwJ
I for I = 1, . . . ,M , we obtain the following reduced

optimal control problem with mixed control-state inequality constraints:

Minimize

ϕ(x(0), x(1), tf )

with respect to x ∈ W nx
1,∞(T ), u ∈ Lnu

∞ (T ), w̄ ∈ Lnw̄
∞ (T ), and tf ≥ 0 subject to

the constraints

x′(t)− tff(x(t), u(t)) = 0 a.e. in T,

ψ(x(0), x(1)) = 0,

ḡI(x(t))
>w̄I(t) ≤ −ε, I = 1, . . . ,M, a.e. in T,

ḠI(x(t))
>w̄I(t) ≤ 0, I = 1, . . . ,M, a.e. in T,

and

u(t) ∈ U := {u ∈ Rnu | umin ≤ u ≤ umax}.

This problem is smaller than the original problem and instead of the equality constraints resulting
from the anti-collision constraints it only has inequality constraints. It turned out in numerical
experiments that the latter problem seems to be more robust with regard to the choice of the
initial guess. Moreover, Criteria 1 and 3 of the backface culling can still be applied to select the
pairs of polyhedra for which the anti-collision constraints are defined. This is not the case for
Criteria 2 and 4. If only the visible faces are considered in the anti-collision constraints, then the
index set J may not exists.

7.2. Elimination of Artificial Control Variables. An alternate approach to handle anti-collision
constraints without artificial control variables uses the following parametric linear programs for
I = 1, . . . ,M :

LPI(x) Minimize gI(x)
>w w.r.t. w subject to GI(x)

>w = 0, w ≥ 0.

A collision does not occur, if the value function

dI(x) := inf{gI(x)
>w | GI(x)

>w = 0, w ≥ 0}

is negative for all I = 1, . . . ,M . Hence, collisions are avoided by imposing the non-linear and
non-differentiable constraints

dI(x) ≤ −ε, I = 1, . . . ,M,

for some ε > 0. The resulting optimization problem has the advantage of being small compared
to the previously discussed problems, but it has the disadvantage of being non-smooth and thus
methods for non-smooth optimization problems are required. The investigation of properties of
dI(x) regarding convexity and subdifferentiability and the exploitation in optimization methods
is supposed to be investigated in a future activity.

The solutions of the linear programs LPI(x
(0)), I = 1, . . . ,M , for a given initial guess x(0)

also provide an initial guess for the artificial control variables wI , I = 1, . . . ,M .
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APPENDIX A. DETAILS OF THE ROBOT MODEL

The configuration of the manipulator robot in three space dimensions is depicted in Figure 11.
Herein, q = (q1, q2, q3)

> denotes the vector of joint angles at the joints of the robot and q′ =
(q′1, q

′
2, q

′
3)
> denotes the vector of joint angle velocities.

FIGURE 11. Configuration of the manipulator robot.

Let the rotation matrices be defined as

S1(α) =

 cosα − sinα 0
sinα cosα 0

0 0 1

 , S2(β) = S3(β) =

 1 0 0
0 cos β − sin β
0 sin β cos β

 ,
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S12(α, β) = S1(α)S2(β), and S123(α, β, γ) = S1(α)S2(β)S3(γ). Then, the mount points of
the first and second link, respectively, are given by

P1 = S1(q1)

 −b1
0
h1

 ,

P2 = P1 + S12(q1, q2)

 b2
`1
0

 .

The centers of gravity of the three links of the manipulator in the reference system are given by

R1 =

 0
0

h1/2

 ,

R2 = P1 + S12(q1, q2)

 0
`1
2
0

 =

 −b1 cos q1 − `1
2

sin q1 cos q2
−b1 sin q1 + `1

2
cos q1 cos q2

h1 + `1
2

sin q2

 ,

R3 = P2 + S123(q1, q2, q3)

 0
`2
2
0


=

 (b2 − b1) cos q1 − sin q1
(
`1 cos q2 + `2

2
cos(q2 + q3)

)
(b2 − b1) sin q1 + cos q1

(
`1 cos q2 + `2

2
cos(q2 + q3)

)
h1 + `1 sin q2 + `2

2
sin(q2 + q3)

 .

The center of gravity of the load is given by

R4 =

 (b2 − b1) cos q1 − sin q1 (`1 cos q2 + `2 cos(q2 + q3))
(b2 − b1) sin q1 + cos q1 (`1 cos q2 + `2 cos(q2 + q3))

h1 + `1 sin q2 + `2 sin(q2 + q3)

 .

Hence, the rotation matrix and the translational vector related to each link of the robot and the
load are given by

S(1) = S1(q1), r(1) = 0,

S(2) = S12(q1, q2), r(2) = P1,

S(3) = S123(q1, q2, q3), r(3) = P2,

S(4) = S123(q1, q2, q3), r(4) = R4.

The angular velocities of the respective body coordinate systems with respect to the reference
coordinate system expressed in the body reference coordinate system are given by

ω1 =

 0
0
q′1

 , ω2 =

 q′2
q′1 sin q2
q′1 cos q2

 , ω3 = ω4 =

 q′2 + q′3
q′1 sin(q2 + q3)
q′1 cos(q2 + q3)

 .

The kinetic energy of the manipulator robot is given by

T (q, q′) =
1

2

4∑
i=1

(
mi‖R′i‖2

2 + ω>i Jiωi

)
,
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where mi and Ji = diag(Jx,i, Jy,i, Jz,i), i = 1, 2, 3, 4, denote the masses of the robot links
and the load and the moments of inertia, respectively.

Application of the torques u1, u2, and u3 at the centers of gravity of the robot links allow to
control the robot. The equations of motion are then given by

(10) q′′ = M(q)−1 (G(q, q′) + F (q)) ,

where M(q) := ∇2
q′,q′T (q, q′) denotes the symmetric and positive definite mass matrix,

G(q, q′) := ∇qT (q, q′)−
(
∇2

q′,qT (q, q′)
)
q′ denotes the generalized Coriolis forces and

F (q) =

 u1

u2 + u3 − g`1 cos q2
(

m2

2
+m3 +m4

)
− g`2 cos(q2 + q3)

(
m3

2
+m4

)
u3 − g`2 cos(q3 + q2)

(
m3

2
+m4

)


denotes the vector of applied joint torques and gravity forces.


