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Abstract

Finite element and finite difference discretizations for evolutionary convection-diffusion-
reaction equations in two and three dimensions are studied which give solutions without
or with small under- and overshoots. The studied methods include a linear and a non-
linear FEM-FCT scheme, simple upwinding, an ENO scheme of order 3, and a fifth or-
der WENO scheme. Both finite element methods are combined with the Crank—Nicolson
scheme and the finite difference discretizations are coupled with explicit total variation di-
minishing Runge—Kutta methods. An assessment of the methods with respect to accuracy,
size of under- and overshoots, and efficiency is presented, in the situation of a domain
which is a tensor product of intervals and of uniform grids in time and space. Some com-
ments to the aspects of adaptivity and more complicated domains are given. The obtained
results lead to recommendations concerning the use of the methods.



1 Introduction

Evolutionary convection-diffusion-reaction equations are contained in many
models of processes from applications, since these equations describe, e.g.,
chemical reactions or the conservation of concentrations or energy (temper-
ature). Often, the convection is the main mechanism in these processes. In
general, the equations have to be solved numerically, which poses difficulties
in the convection-dominated regime.

This paper studies numerical methods for linear time-dependent convection-
diffusion-reaction equations

ug—eAu+b-Vu+cu=f in (0,7] x €,
wu=0  onl0,T]x 09, (1)
u(0,x) = up(x) in €.

In (1), Q@ Cc R4, d € {1,2,3}, is a bounded domain, [0,T] is a time interval,
e > 0 denotes the diffusion parameter, b(t,x) is the convection field, ¢(t,x)
describes the reaction, f(t,x) models sources and sinks, and wug(x) is the initial
condition. The use of homogeneous Dirichlet boundary conditions in (1) is just
for simplicity of presentation. The numerical studies will consider also other
boundary conditions.

Solutions of (1) possess in general a distinct feature, namely layers. In these
layers, the values of the solution change rapidly in a very small subdomain,
which is too small to be resolved by the underlying grids. This causes the
difficulties in the numerical simulations. So-called stabilized methods have to
be used. But even with stabilization, under- and overshoots in a vicinity of the
layers might occur or the layers might be smeared to a width which is larger
by magnitudes than in reality. Both features are unwelcome in simulations of
applications, but in particular the under- and overshoots might be perilous
since they describe non-physical situations like negative concentrations. Un-
physical values might become even the reason for instabilities in simulations
of strongly coupled systems, if solutions obtained with such values serve as
input to other equations in the model and the unphysical values lead to in-
correct model parameters [15]. There has been a lot of research to construct
methods that give numerical solutions with sharp layers and without under-
and overshoots [27]. In this paper, two classes of such methods will be com-
pared numerically. Only such classes will be considered, where the numerical
solutions do not possess under- or overshoots or where they are at least small.

A possible approach for discretizing (1) consists in using stabilized finite el-
ement methods in space which are combined with simple implicit time step-



ping schemes. Several papers appeared in the last years which studied this
approach by providing error estimates [6,14] or by comparing them numer-
ically with respect to accuracy [16,17]. In the latter studies, it was found
that the only methods of this approach which provide solutions without large
under- and overshoots are Finite Element Flux Corrected Transport Methods
(FEM-FCT) from [21,20,19]. For this reason, only such finite element schemes
will be considered here. One of the schemes is linear and the other one is
nonlinear. This raises another issue besides accuracy, namely the efficiency of
the schemes. Both issues will be included in the assessment of the methods.
Two ways of obtaining the system matrices will be studied: assembling in each
discrete time and the so-called group finite element approach [8].

If Q is a simple domain, like a tensor product of intervals, the use of fi-
nite difference schemes for the discretization in space is an attractive op-
tion. The simplest approach for dealing with convection-dominated problems
is the application of simple upwinding [22]. However, it is well known that
with this method in general rather smeared solutions are obtained. In the
last decades, essentially non-oscillatory (ENO) and weighted ENO (WENO)
schemes have been developed in the context of hyperbolic partial differential
equations. These schemes use a wider stencil than the simple upwinding. ENO
schemes were proposed the first time in [11]. The ENO strategy consists in
computing several finite difference approximations of the convective term and
to choose the smoothest of these approximations. With this approach, solu-
tions of hyperbolic partial differential equations with high order accuracy in
smooth regions and with sharp shocks are obtained. In the WENO method-
ology, which was proposed the first time in [23] and reviewed recently in [29],
a convex combination of several finite difference approximations is used to
approximate the convective term. In this way, higher order methods can be
constructed on the same stencils as the ENO schemes. The WENO methodol-
ogy was combined already with discontinuous finite elements in [25]. All finite
difference approaches (simple upwinding, ENO, WENO) will be included in
the numerical studies. They will be combined with total variation diminish-
ing (TVD) explicit Runge-Kutta schemes as temporal discretization. To our
best knowledge, comprehensive numerical studies of ENO and WENO schemes
for convection-diffusion-reaction equations in multiple dimensions are not yet
available in the literature.

It might be already expected at this point that the explicit schemes will be
faster than the implicit methods. Also, that the more complicated nonlinear
FEM-FCT scheme will be in general more accurate than the linear methods.
However, to our best knowledge, there is no quantification of the gains and
losses of the individual schemes compared with the other schemes available in
the literature. The main goal of this paper consists in providing such a quan-
tification. It will be concentrated on the simplest situation, i.e., the domain €2
is a tensor product of intervals and uniform grids in time and space are used.



There are applications where this situation occurs, even with d > 3, like in
the simulation of population balance systems [15,3]. The application of the
methods to problems defined on more complicated domains and adaptivity in
time and space will be also discussed to some extent.

The paper is organized as follows. Section 2 introduces the FEM-FCT schemes
and Section 3 the finite difference methods. Numerical studies are presented in
Section 4. A discussion on adaptivity and more complicated domains follows
in Section 5. The conclusions of the numerical studies are summarized in
Section 6.

2 The FEM-FCT Schemes

The used FEM-FCT schemes are basically the same as in [16,17]. A detailed
description of the schemes can be found already in [16]. To keep this paper
self-containing, a short presentation of the schemes, which provides the basic
ideas, will be given here. In addition to [16,17], prelimiting was applied and
the group finite element version of the schemes was used.

Consider continuous piecewise linear or piecewise d-linear finite elements. Ap-
plying the Crank—Nicolson scheme and the standard Galerkin finite element
method for the discretization of (1) gives at time ¢,, an algebraic equation of
the form

At,

A A A
. A>un:<MC— ln n tn

3 A) w S S (2)

(et

where (M¢);; = (¢j, i) is the consistent mass matrix, the matrix A is the
stiffness matrix containing the sum of diffusion, convection, and reaction, and
At,, is the current length of the time step. The vectors of the coefficients of
the finite element functions are denoted by u,, f,, etc. and the length of these
vectors (number of degrees of freedom) is denoted by N.

At the beginning, (2) is modified such that the matrix on the left hand side
gets properties of an M-matrix. To this end, define

L=A+D,
D = (dij>7 dij = — max{(), aij7 @ji} = min{O, —am _@ji} fOl" 7 7é j,

N

j=1.j#i

N
My, =diag(m;), m;= Z mij. (4)
i=1



The diagonal matrix My is the lumped mass matrix. Instead of (2), now the
equation

At, At, At, At,
< 2 ) tn = (ML T L) e N L)

is considered. This is the algebraic representation of a stable low order scheme,
whose solution does not possess under- and overshoots but widely smeared
layers. In the next step, the smearing of the layers will be reduced by a mod-
ification of the right hand side of (5)

(ML Qtn ) u, = (M Qtn ) u,_ 1+ Qtnfn_l + Qtnfn 4 £ (un’ un_l) .

An appropriate ansatz for f*(u,,u,_1) is needed. To this end, consider the
residual vector defined by the difference of (5) and (2)

(o (e 2
(- (- 2

At,
:(ML—M0> (un—un_l)—i- 9 D(un+un_1).

Now, the modification of the right hand side of (5) is defined to be
£ (w,, u,—1) Zawr”, 1=1,...,N,

with the weights a;; € [0,1]. FEM-FCT methods determine these weights in
such a way that they are close to one in smooth regions (this recovers the
Galerkin finite element method) and close to zero at layers (this recovers the
stable low order scheme). The other contribution to f'(u,,u,_1) stems from
a decomposition of the residual vector

N N
Ty = Zﬂ‘j = Z {mij(un,i — Unj) = Mij(Un—1i — Un—1;)
j=1 j=1
At At
_TTldij (Un,i — Un,j) - Tndij (Un—1i— unfl,j) 5

i = 1,...,N. The derivation of this representation uses (3) and (4). The
numbers r;; are called fluxes.

The nonlinear FEM-FCT scheme from [20] utilizes an explicit solution u with



the forward Euler scheme at the time ¢, — At,, /2

Using u, a prelimiting of the fluxes is applied in the nonlinear scheme
if Tij (INLZ — ﬂ]) < 0 then set Ti; = 0,
which is recommended in [20,19].

The linear FEM-FCT scheme, which will be used, is a special case of one of
the schemes presented in [19]. In this scheme, the vector u,, in the flux r;; is
replaced by an approximation which can be obtain with an explicit scheme.
Defining u,,_1/2 = (u, +u,_1)/2 and inserting this expression into r;; leads to

Tij = 2mz‘j (un—l/Q,i - unfl,i) - 2mij(“n—1/2,j - unfl,j>
—Atndij(Up—1/2; — Un—1/2,5)-
An approximation of u,_;/» can be obtained with the forward Euler scheme

applied in the low order method (5) with time step At, /2, see (6) for the
solution u. Inserting this approximation gives

rij = Aty [mij (Un—1/2,i - Un—1/2,j) — dij(t; — ﬂ])}

with

)

Note that both FEM-FCT schemes use an explicit method as predictor, which
results in a CFL condition for these methods, see [20,19].

Un—1/2,i = <ML_1(fn—1 - Lun—1)> :

The weights are computed as described in [16], using Zalesak’s algorithm [34],
see also [20] for discussions of this algorithm. The algorithm looks as follows

(1) Compute

Pt = g: max{0,7;;}, P, = g: min{0, 7 }.
j=1,j#i J=Li#
(2) Compute
QF =max{0, _max (i — @)}, Q7 =min{0, _min (i — i)}
(3) Compute
RY = min{l miQi} R = min{l miQ"_}
i P g " PT




If the denominator is zero, set the value equal to 1.
(4) Compute

mll’l{R:r,R;} if Tij > 0,

min{R; , R} } otherwise.

This presentation followed [20]. Note that there is a different scaling in the
definition of R} and R; with respect to the length to the time step in [19],
which comes from a different scaling of the fluxes 7;; compared with formula
(39) in [19].

In all simulations presented in Section 4, it was not exploited that the coef-
ficients of the equations are constant in time such that the computing times
correspond to the general situation where the coefficients are time-dependent.
This is the case, in particular, if the convection field is a computed flow field.
In this situation, the matrix A changes in each discrete time. The standard
way to obtain A consists in assembling this matrix every time.

But there is an alternative approach called group finite element method [8].
The group FEM-FCT (GFEM-FCT) was applied already, e.g., in [19,20].
Starting point of the group finite element method is the divergence formu-
lation of the convective term of (1) b-Vu = V - (bu), where the convection
is considered to be divergence-free. The basic idea of this method consists in
not only using u, but also the group (bu), as finite element variable in (1).
Let {p;}/L, be the finite element basis functions, {b;}_; be the values of
the convection at the nodes, and {u;}}_, be the unknown degrees of free-
dom of the solution. Then, the ansatz for the group finite element method is
(bu) = Z;yzl(bjuj)gpj, whose insertion leads to the following approximation

(V- (bu), ¢i) ~ ]; (Z(akSOja %)(bj)kuy‘) : (7)

J=1

The matrices C = (Okpy, cpi)fffj:l, k =1,...,d, have to be assembled only
once. To obtain the approximation of the convection matrix from (7), Cj
has to be multiplied with the k-th component of the convection. In this way,
the group finite element method obtains an approximation of the convection
matrix by some multiplications of pre-computed matrices and the current
convection vector, instead of applying numerical quadrature. Comparing (7)
with the standard assembling procedure, one can see that in the group finite
element method the value of the convection at the node j is used instead of
the values at the quadrature points around the node j as in the standard
approach. Hence, both approaches are not identical but the differences can
be expected to be small, in particular on fine grids. Diffusion and reaction
are assumed to be independent of time such that the corresponding matrices
needed to be assembled also only once.



To our best knowledge, numerical analysis for the FEM-FCT schemes is not
available.

3 ENO and WENO Finite-Difference Schemes

On simple domains, finite difference methods are always attractive for dis-
cretizing partial differential equations. In this section, some methods based on
the ENO and WENO interpolation procedure are described, which are com-
bined with explicit total variation diminishing Runge-Kutta methods. It was
noted in the review [29] that for problems in more than one dimension, finite
difference methods should be preferred to finite volume approaches if ENO
and WENO schemes are used.

Consider first the Runge—Kutta schemes. An optimal second order TVD Runge—
Kutta method [30] is the method of Heun, which is given by

kl = F(tnfb unfl)a
]{?2 =F (tn—l + At, Up—1 + Atk‘l) s

At
Up = Up—1 + 7(1{;1 + k2)7 (8>

where F(t,u) = f +eAu—Db-Vu— cu. An optimal third order TVD Runge-
Kutta method has the form [30]

kl = F(tn—b un—l)>
/{?2 = F(tn_l + At, Up—1 + Atk1)7

At At At
ks=F (%1 + o0 tn + Zlﬁ + 4k2> ;
ki ko 4k
n — Un— At | — — — |-
Up = Up—1 + t<6+6+6> (9)

The terms on the right hand sides in these schemes will be approximated by
finite differences. In the case of dominant convection, the discretization of the
first order derivative has to be performed particularly carefully.

Let for simplicity Q = (0,1)¢. This domain can be triangulated with a grid
consisting of grid lines that are parallel to the axes of a Cartesian coordinate
system. Thus, it is sufficient to describe the finite difference schemes for a
single coordinate, e.g. for x. Consider a partition of (0,1) such that zo = 0 <
r1 < ...<xy =1andset h; = x; —x;,_1,1 = 1,...N. Fix a discrete time
t = t,_1 and denote by u} = uy(t,x;) the finite difference approximation to



u(t, x;). For the approximation of the second derivative, the standard central
finite difference is used

(upt —up)/higa — (up, —uy ') /By
hi + hia .

The reactive term c(¢, z;)u(t, z;) is approximate by c(t, z;)ul.

The simplest stable finite difference discretization of the first order term is the
simple upwind scheme, which approximates

(ulf, — i M) hy if by(t, 2;) >0,

o (10)
(uptt — )/ higq if bi(t, 2;) <O,

Uy (t, ;) = (UZ)I =

where by (t, z;) is the first component of the convection vector at (t,x;).

In the convection-dominated case, the accuracy of the approximation of the
convective term is essential for the spatial accuracy of the finite difference
method. A more sophisticated choice than simple upwinding consists in ap-
proximating u, (¢, x;) by an ENO interpolation procedure. To obtain a higher
order approximation than with the simple upwind scheme, second order infor-
mation on the numerical solution has to be employed. Consider first the case
bi(t,z;) > 0 and define

(up™ = up) i — (), — wi ) /D

a; = - = ulwi1, Ti, Tiga),
i T it
uh —ub ) /by — (ui Tt —ul ) i
ag:( L ) l; 1(—|—hh‘ ) i = ultig, Tio, T,
71— 7

where u|-] denotes divided differences. Dirichlet boundary conditions are ex-
tended off €2 to define values outside [0, 1]. The basic idea of ENO interpolation
consists in using the smoother approximation, where smoothness is measured
by the absolute value of the second order divided differences (which is pro-
portional to the curvature). That means, if |a;| < |az|, the second degree
polynomial based on the nodes {z;_1,x;,x;11} is applied to approximate the
derivative at x;

ug(t, ;) ~ (UZ)a: = (uy, — uz_l)/hi + aih;.

Otherwise, the derivative at z; is approximated using the second degree poly-
nomial based on the nodes {z; o, z; 1, z;}

Uw(t,l'z) ~ (u%)x = (U;.L_l — U;‘l_2)/hi_1 + CLQ(QhZ‘ + hi—l)-



If by(t,x;) < 0, the same idea is used, where now the choice is between the
two polynomials based on the nodes {x; 1, x;, x; 1} and {x;, 541, T2}

Now, an ENO scheme of order 3 is introduced. Denote by P;(z) the polynomial
that interpolates the function w at the nodes {41, Tiyo—j, Tits—j, Tiva—j},
j=1,---,4,and set a; = (P;),(z;). Then u,(t, z;) will be approximated by an
appropriate value a;. Depending on the sign of by (¢, z;), one of the polynomials
Pi(z) or Py(x) is not needed. Thus, this scheme possesses a stencil with the
six nodes {z;_3,..., T2} or {x; o,..., xi13}.

Consider the case by(t,z;) > 0. Following the ENO strategy, the smoothest
approximation is applied. The first smoothness indicator checks a quantity
which is proportional to the second derivative of the polynomials through the
nodes {x; o, x;_1,2;} and {z;_1,x;,x;41}, respectively. After this, quantities
which are proportional to the third derivative of the two polynomials of degree
three, which involve the three nodes which were chosen in the first step, are
compared. Thus, the algorithm reads as follows

if |U[$i_1, Ti, iL‘Z‘_H” < |u[:v,~_2, Ti-1, $Z]|
if ’U[%fz?%fl,xi,xiﬂ]‘ < ’u[$i717$iaxi+1axi+2”
choose as
else
choose aq
end
else
if ’U[»’Uz‘f:s?%fz,xifl,l'i]‘ < ’u[$i727xi71axiaxi+1”
choose ay
else
choose as
end
end

Note that in the case by (¢, z;) > 0 the stencil is biased to the left. An analogous
scheme is used in the case by (¢, x;) < 0 where the stencil is biased to the right.

A further possibility to increase the order of the approximation of w,(t,x;)
consists in not taking just one of the polynomials but to use a convex com-
bination of them with appropriate weights, which gives a WENO scheme.
The WENO interpolation ideas are explained very well in the review [29]. A
WENO scheme of fifth order with a stencil of six nodes, that is used in many
applications [29], defines the approximation of w(t,z;) in the case by (t,z) > 0
as follows [12]

10



PRI
hel =g 3 9 Tk 6 |

i 1 uZ’Q i1, Up u%“
(uh)w,2—h< 6 — Uy, +?+ R

i 1 w3 i1 1L,

(uh)e = w1 (u}) a1 + wo(U)) s + ws(U}) a3,

where the weights w; are given by

67 . .
wj=———#¥— 1=1,23, with
a1+ g+ a3

d;
= 1 =1,2,3, dy =3/10, dy = 3/5, d3 = 1/10.
Ce‘i‘ﬁi’ ? ) 45 9y 1 / y W2 /7 3 /

Q;

The parameter ¢, is introduced to avoid that the denominator becomes 0. In
the numerical studies ¢, = 107% was used. The values f3; are the so-called
smooth indicators of the stencil [12]

13 , , ) 2
b= 15 (@ — 2 + )+
13
be=15
13/ i1 i )2
5325 (ﬂ% > —ou l—i—uh) +

, . N2

(33, — 4w, +w?)
. N2

—i—1 —i+1

(uh — Uy ) )

(> — 4m ' + 3@2)2 ,

. N2
|
w, = 2u, + U ) -

/N

e B Wl e

where ), = (uﬁl — u2_1> /h are the cell averages of the first spatial derivative.

The case by (t,x) < 0 is treated in a similar way with the stencil biased to the
right.

In higher dimensions, the described approximations of the derivatives have to
be applied in each direction. In principle, the combination of both introduced
TVD Runge-Kutta methods with all given approximations of the first order
derivative is possible. Often used are combinations of discretizations which
possess the same or at least a similar order. In the numerical studies presented
below, the simple upwind scheme (10) will be combined with the method of
Heun (8) and the ENO and WENO schemes with the Runge-Kutta method
(9). Since the time-stepping schemes are explicit, a CFL condition applies,
similarly to the FEM-FCT schemes.

11



4 Numerical Studies

This section studies the proposed schemes on some examples defined in two-
and three-dimensional domains to quantify their differences in accuracy, in the
sizes of under- and overshoots, and in efficiency. For shortness of presentation,
only a few characteristic examples are presented.

Several iterative methods were studied for solving the linear system of equa-
tions. The basic solver was the (flexible) GMRES method [28]. As precondi-
tioner, the Jacobi method, the SSOR method with overrelaxation parameter
1.5, or a multigrid method were used. The multigrid method was performed
with the V(1,1)-cycle and the SSOR method was used as smoother, also with
overrelaxation parameter 1.5. In 2D, in addition the popular sparse direct
solver UMFPACK [7] was included in the studies.

The nonlinear problems of the nonlinear FEM-FCT method were solved by
a fixed point iteration. Besides the standard fixed point iteration, a so-called
Anderson acceleration [1,33] was applied. This acceleration leads to a quasi-
Newton method. To build the necessary information, certain vectors from the
previous m iterations have to be stored. Results for m = 3 and m = 5 will
be presented. The iterations for solving the linear and the nonlinear problems
were stopped if the Euclidean norm of the residual vector was less than 1071,

All simulations in 2D were performed on the unit square = (0,1)%. A grid
consisting of N x N squares was used. In 3D, the problem was defined on
the unit cube Q = (0,1)3 and the grid was given by N x N x N cubes. The
temporal discretizations were applied with the equi-distant length of the time
step At. Integrals were evaluated by Gaussian quadrature with two nodes in
each direction.

The simulations were performed with the code MOONMD [13] on a HP
BL2x220c computer with 2933 MHz Xeon processors. The simulations with

the finite difference schemes were double checked with a code written in MAT-
LAB.

Example 1. Transport of an impulse. The first example considers the
transport of an impulse along a grid line. It is defined in Q = (0,1)? and the
coefficients of the equation are given by ¢ = 1078, b = (1,0)7, ¢ = 0, and
f =0. On the inflow boundary, x = 0, the condition

lLify e[0.5— 107%,0.5 + 10’8],
u = 5 t Z O,
0 else

is prescribed. Zero boundary conditions are set at the boundaries y = 0 and

12



y = 1 and a homogeneous Neumann boundary condition is prescribed at the
outflow boundary x = 1. At the initial time, u is set to be zero for all internal
degrees of freedom. The number of mesh cells in each coordinate direction was
N = 128 and the length of the time step At = 0.001.

With this setup, the impulse at the inflow boundary should be transported to
the outflow boundary along the grid line y = 0.5. This transport should take
around one time unit such that the value of the solution at the point (1,0.5)
should raise to become one at this time.

Figure 1 shows the temporal development of u,(1,0.5) for the considered
schemes. It can be observed that the FEM-FCT schemes failed for this ex-
ample in the sense that the value at the outlet stayed much smaller than
one. The strong smearing of the simple upwind scheme is represented by the
smooth transition of u,(1,0.5) from zero to one. A much sharper transition
was obtained with the ENO finite difference scheme. The transition with the
WENO scheme is even sharper. These two schemes show certainly the best
results in this example among the considered methods.

e e e e e e ]

e linear FEN-FCT
nonlinear FEM-FCT
FDM UPW

—==FDMEND

— =DM WEND

0.8

06f

u,(1.05)

0.4r

A s . o o, 1

0.zf

S P —

e _a

Fig. 1. Transport of an impulse; temporal development of the u(1,0.5).

The different behavior of the methods is due to the fact that a dimensional
splitting is used in the finite difference schemes but not in the FEM-FCT
schemes. There are no peaks on the horizontal lines but there is a peak on
the vertical lines. The finite difference schemes do not see these peaks but the
multi-dimensional FEM-FCT schemes do. This aspect leads to a strong clip-
ping of the peaks. One-dimensional versions of the FEM-FCT schemes would
cure this situation. The transport of a peak along a grid line will occur seldom
in practice such that the results of this example should not be overemphasized.
However, it seems us to be important to make the reader aware that schemes
can fail in situations where at first sight one would not expect trouble.

Example 2. The rotating body problem. The rotating body problem is a
standard example for studying discretizations in the case of very small or even
vanishing diffusion [22,20,19]. Let Q = (0,1)%,e = 1072, b = (0.5—y,2—0.5)%,
and ¢ = f = 0. Initially, three bodies are given, a column with a slit, a cone,

13



and a hump. The position of each body is defined by its center (zg,yy) and
each of the bodies lies within a circle of radius ro = 0.15 with the center
(20, Yo). Outside the three bodies, the initial condition is zero.

Let r(z,y) = \/(x —20)? + (y — y0)?/ro. The center of the slotted cylinder is
in (z9,v0) = (0.5,0.75) and its geometry is prescribed by

Lif r(z,y) <1, |z — zo| > 0.0225 or y > 0.85,
u(0;z,y) =
0 else.

The conical body at the bottom side is described by (zq, o) = (0.5,0.25) and

u(0;z,y) =1 —r(z,y).

Finally, the hump at the left hand side is given by (xg, y0) = (0.25,0.5) and

u(0;z,y) = i<1 + cos(mmin{r(x,y), 1})>

The convection field is prescribed by a rotation around the center (0.5,0.5) of
Q. If the diffusion is very small, the initial condition should be nearly recovered
after one revolution.

First, the case N = 128 and At = 0.001 will be studied in more detail since
these parameters are often used in the literature, e.g. in [20,19,16]. The solu-
tions obtained with the studied schemes are presented in Figure 2, errors at
different times and in different norms are shown in Table 1, and the computing
times are given in Table 2. It can be observed in Table 1 that for the FEM-FCT
schemes the assembling of matrices in each discrete time and the group finite
element approach led in fact to almost identical results. Important criteria for
the assessment of the quality of the solutions are the smearing of the layers
and the size of under- and overshoots. It can be seen that the simple upwind
finite difference method led to a strongly smeared solution, the hump has al-
most vanished after one rotation. The best solution was clearly obtained with
the nonlinear FEM-FCT scheme. Somewhat more smearing was introduced
by the WENO scheme. A stronger smearing is clearly visible for the solution
obtained with linear FEM-FCT scheme and even a little bit stronger smearing
for the result computed with the ENO scheme. The accuracy of the computed
solutions from Figure 2, in particular the smearing, is well represented by the
errors in L*(Q) in Table 1. With these errors, the superior accuracy of the
nonlinear FEM-FCT scheme becomes even more obviously. In addition, it can
be seen that the accuracy of the WENO scheme is not much higher than of
the linear FEM-FCT scheme.

Notable under- and overshoots could be observed only for the ENO and the
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Fig. 2. Rotating body problem, N = 128, At = 0.001; solutions after one rotation,
linear FEM-FCT, nonlinear FEM-FCT, FDM Upwind, FDM ENO, FDM WENO;
from left to right, top to bottom.

WENO scheme, see Figure 3. They were comparably large at the beginning of
the simulations, in particular for the WENO scheme. However, this amount of
under- and overshoots is still much less than introduced by most of the finite
element methods studied in [16] (20 — 80 %). The application of prelimiting in
the FEM-FCT schemes led to solutions that are free of under- and overshoots
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Table 1

Rotating body problem, N = 128, At = 0.001; errors e in L?(Q) at different times

and error in L?(0,6.28; L*(Q)).

scheme leB19)Iz le6:28)lz2 llell iz
FDM upwind + (8) 1.562136e-1 1.782738e-1 3.763692e-1
FDM ENO + (9) 8.993286e-2 9.837932¢-2 2.220209e-1
FDM WENO + (9) 7.375359e-2  7.898270e-2 1.835204e-1
lin FEM-FCT + CN 7.927153e-2  8.758556e-2 1.921963e-1
lin GFEM-FCT + CN | 7.927153e-2 8.758556¢e-2 1.921963e-1
nl FEM-FCT + CN 5.844967e¢-2 6.106624¢e-2 1.408550e-1
nl GFEM-FCT + CN | 5.844967¢-2 6.106623e-2 1.408550e-1

if a direct solver was used or at most of the size of the stopping criterion for
the iterative solvers. Without prelimiting, small under- and overshoots were
observed in [16].

0

— =" FOMEND
— = FDM WEND

npLE e |

o
55
o
B

undershoots
overshoots
=
5}

i Kol
E 1.005 i'{'
== FDMEND 1
== FDM WENQ

0 1 2 3 4 g B
time

-0.08

Fig. 3. Rotating body problem, N = 128, At = 0.001; undershoots and overshoots
with the FDM ENO and the FDM WENO scheme.

Considering the computing times, it can be seen that all explicit finite dif-
ference schemes were faster than the implicit finite element methods, as it
was expected. With respect to the FEM-FCT schemes, the gains of using
the group finite element approach and of applying the Anderson acceleration
can be clearly observed. It turned out that the simplest of the considered
solvers was most efficient. A main reason for this behavior is the availability
of a good initial guess for the iteration, namely the solution of the previ-
ous discrete time. Considering methods with comparable results, the ENO
simulations were faster by a factor of about two compared with the fastest
linear GFEM-FCT scheme. The nonlinear GFEM-FCT scheme took around
ten times longer than the WENO scheme. It is probably possible to reduce
these differences somewhat for this concrete example by using a different iter-
ative scheme and by optimizing the parameter in the Anderson acceleration.
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However, it can be expected that the order of magnitude for the overhead of
the FEM-FCT schemes will stay similar.

Table 2

Rotating body problem; computing times in seconds, N = 128, At = 0.001.
scheme direct GMRES GMRES GMRES

or expl. +Jacobi + SSOR +MG

FDM upwind + (8) 8
FDM ENO + (9) 49
FDM WENO + (9) 86
lin FEM-FCT + CN 1890 237 252 271
lin GFEM-FCT + CN 1801 111 127 147
nl FEM-FCT + CN + fp 62012 1992 2322 3887
nl FEM-FCT + CN + acce. m =3 26425 1061 1216 1708
nl FEM-FCT + CN + acce. m =5 24433 1025 1167 1614
nl GFEM-FCT + CN + fp 61800 1843 2168 3401
nl GFEM-FCT + CN + acce. m =3 26577 922 1079 1577
nl GFEM-FCT + CN + acce. m =5 24521 890 1034 1492

Results obtained with different refinement levels in space are presented in Ta-
ble 3. It can be seen that the ranking of the methods with respect to accuracy
and efficiency is the same on all levels. In the case of the finite difference meth-
ods, the increase in computing time scales with the number of unknowns. The
increase is somewhat larger for the FEM-FCT schemes because the number
of iterations for the solvers increases with the refinement.

Table 3

Rotating body problem; errors in L?(0,6.28; L?(Q2)) / computing times in seconds,
different refinement in space, At = 0.001, FEM-FCT schemes with GMRES +
Jacobi.

scheme / N 64 128 256
FDM upwind + (8) 0.434/2  0.376/8  0.323/34
FDM ENO + (9) 0.290/12  0.222/49  0.164/197
FDM WENO + (9) 0.249/21  0.184/86  0.138/347
lin GFEM-FCT 4 CN 0.260/25 0.192/111  0.140/525
nl GFEM-FCT + CN + acce. m =5 | 0.201/229 0.141/890 0.102/3809

Table 4 shows that the error in space dominates the error in time. The very
slight increase of the errors for the finite difference schemes is due to larger
quadrature errors with respect to the temporal variable because of the longer
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time intervals. The computing times for the finite difference schemes scale with
the number of time steps. For the FEM-FCT schemes, the iterative solver has
better initial guesses for small time steps and less iterations per time step are
needed in this case such that the computing times scale somewhat better than
with the number of time steps.

Table 4
Rotating body problem; errors in L2(0,6.28; L?(€2)) / computing times in seconds,
N = 128, different length of the time step, FEM-FCT schemes with GMRES +
Jacobi.

scheme / At 0.01 0.005 0.001
FDM upwind + (8) 0.376/1 0.376/2 0.376/8
FDM ENO + (9) 0.218/5  0.219/10  0.222/49
FDM WENO + (9) 0.183/8  0.184/17  0.184/86
lin GFEM-FCT + CN 0.198/13  0.195/25 0.192/111
nl GFEM-FCT + CON + acce. m =5 | 0.155/158 0.145/248  0.141/890

Accuracy per computing time is illustrated in Figure 4. The best simulations
in this diagram are those in the lower left corner since they are accurate
and they were obtained in a short computing time. Accordingly, the WENO
and the ENO scheme with the explicit Runge-Kutta methods are the most
efficient schemes with respect to the considered error. But the linear GFEM-
FCT method is often only a little less efficient than those schemes.

0.5 T T
@ linear GFEM-FCT
n4sf nonlinear GFEM-FCT
FDM UPW
DAar *  FDMENG
_ O FOMWENO
g 0.35F
B uar x ® *
T 025 = &
* *
0z o0 Yo
E *
b5 o? “po

0.1

' o ' 2 B +

10 10 10 10 10 10
time

Fig. 4. Rotating body problem; computing time vs. error in L2(0, 6.28; L?(12)), sim-
ulations with N € {64,128,256}, At € {0.01,0.005,0.001}; for the combination of
N =256 and At = 0.01 all methods were unstable.

Example 3. Transport of a species through a three-dimensional do-
main. This example was defined in [17]. It models a typical situation that is
encountered in applications. A species enters a domain and it is transported
through the domain to an outlet. In the domain, the species is diffused some-
what and in the subregion where the species is transported, also a reaction
occurs.
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Let Q = (0,1)% with the inlet at {0} x (5/8,6/8) x (5/8,6/8) and the outlet
at {1} x (3/8,4/8) x (4/8,5/8). The convection b = (1, —1/4, —1/8)" points
from the inlet to the outlet. The diffusion is prescribed by e = 107% and the
reaction by

Lif [[x — glls < 0.1,
c(x) =
0 else,
where g is the line through the center of the inlet and the center of the outlet
and || - ||2 denotes the Euclidean norm. This ratio of diffusion and convection
can be found in many applications. There are no sources, i.e. f = 0.

solufion
-1 .00

0.75
0.50
025

.0.00

solution solution
-1.00 -1.00
0.75 RN 0.75
mae (O ROC
0.50 - \'Q_‘f 0.50
.0.25 .0.25
0.00 0.00
solution solution
-1.00 -1.00
N
075 = \:5\\1\\3 0.75
e AN
0.50 SR 050
.0.25 .0.25
0.00 0.00

Fig. 5. Transport of a species through a three-dimensional domain, N = 32; solutions
at t = 2, linear FEM-FCT, nonlinear FEM-FCT, FDM Upwind, FDM ENO, FDM
WENO; from left to right, top to bottom.

In contrast to the first example, the transport of the species does not occur
along grid lines. At the initial time, there is no species inside the domain,
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u(0,x) = 0. Then, the injection of the species starts, it increases, stays con-
stant for a while, and finally it decreases. A boundary condition at the inlet
describing this process is given by

sin(7t/2) if t € [0,1],
uin(t) = ¢ 1 if t € (1,2],
sin(w(t —1)/2) if t € (2, 3].

Homogeneous Neumann boundary conditions are prescribed at the outlet and
homogeneous Dirichlet conditions on the rest of the boundary.

Result are presented for N = 16, N = 32, and At = 0.001. Solutions for
N = 32 at t = 2 are given in Figure 5. The cut planes contain the line between
the center of the inlet and the center of the outlet. In addition, evolutions of
the concentration at the center of the outlet are given in Figure 6. These curves
provide information of the amount of loss of concentration due to the smearing
of the solutions by numerical diffusion. It can be observed that the solutions
obtained with the finite difference schemes and the linear FEM-FCT scheme
were much smoother than the solution computed with the nonlinear FEM-
FCT scheme. The latter solution can be considered to be the most accurate
solution obtained in this study, note also the largest concentration at the center
of the outlet, Figure 6. The finite difference simple upwind scheme was again
much more diffusive than the other schemes. Only a comparable small amount
of the species reached the outlet. Based on Figures 5 and 6, the second most
accurate solutions were obtained with the WENO scheme. Then the solutions
computed with the linear FEM-FCT scheme follow, which in turn are slightly
better than the solutions obtained with the ENO scheme. Thus, on the one
hand, the nonlinear FEM-FCT scheme and the WENO scheme and on the
other hand, the linear FEM-FCT scheme and the ENO scheme led to similar
results, with the FEM-FCT schemes in both cases somewhat more accurate.
Due to the coarser grids, we could observe that the differences between the
standard and the group finite element version of the FEM-FCT schemes were
more visible than in Example 2. However, the overall quality of the respective
solutions was the same.

Undershoots, which are larger than those caused by the stopping criteria of the
iterations, could be observed in this example only for the solution computed
with the WENO scheme. They were of order 10°.

For the FEM-FCT scheme it is not clear if the incorporation of the reactive
term in the matrix A in (2) and consequently in the FCT algorithm is an
appropriate way. For this reason, simulations were performed with an explicit
treatment of the reactive term such that only diffusion and convection were
treated with the FCT algorithm. It can be seen in Figure 7 that almost the
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Fig. 6. Transport of a species through a three-dimensional domain; temporal devel-
opment of the numerical solutions at the center of the outlet, left N = 16, right
N = 32, standard version of FEM-FCT schemes.

same results were obtained. Thus, in the case that reaction does not dominate,
the inclusion of the reactive term in the matrix A seems to be a reasonable
approach. This might change in the reaction-dominated regime, whose study
is, however, not within the scope of this paper.

0.5
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Fig. 7. Transport of a species through a three-dimensional domain, N = 32; com-

paring the approach of including the reactive term into the matrix A for the FCT al-

gorithm and for treating the reactive term explicitly, standard version of FEM-FCT

schemes.

Since the scalings of the computing times with respect to the length of the time
step and to the number of degrees of freedom were similar as in Example 2,
detailed results are presented only for one grid in time and space, see Table
5. Again, the higher efficiency of the group version of the FEM-FCT schemes
and the positive impact of using the Anderson acceleration can be clearly
observed. Comparing methods with similar accuracy, the simulation with the
ENO scheme was faster of nearly four times than the fastest simulation with
the linear group FEM-FCT scheme, which is twice as much as in Example 2.
Obviously, the overhead of solving the linear systems of equations is larger in
three dimensions. The solution of the nonlinear problems in the FEM-FCT
scheme needed less iterations than in Example 2. It turned out that the WENO
scheme was about thirteen times faster compared with the fastest simulation of
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the nonlinear group FEM-FCT scheme. Altogether, the differences in efficiency
are somewhat larger than in the two-dimensional problem. But they are not
so large that it should be dissuaded from the use of the FEM-FCT schemes,
depending of course on the requirements of the concrete application. Since
there is no actual error which can be measured in this example, the accuracy
per computing time could not be studied.

Table 5
Transport of a species through a three-dimensional domain At = 0.001, N = 32;
computing times in seconds.

scheme GMRES GMRES GMRES
+Jacobi + SSOR +MG

FDM upwind + (8) 15

FDM ENO + (9) 70

FDM WENO + (9) 119

lin FEM-FCT + CN 926 942 987

lin GFEM-FCT 4+ CN 265 275 333

nl FEM-FCT + CN + fp 3858 4136 6544

nl FEM-FCT + CN + acce. m =3 2517 2827 3084

nl FEM-FCT + CN + acce. m =5 2265 2413 3013

nl GFEM-FCT + CN + fp 3434 3759 6174

nl GFEM-FCT + CN + acce. m =3 1997 2047 2512

nl GFEM-FCT + CN + acce. m =5 1635 1855 2559

5 Further Aspects of the Methods

This section discusses some further aspects of the methods, like adaptivity
and more complicated domains. Both issues deserve comprehensive studies in
future, which are, however, beyond the scope of this paper.

Depending on the concrete example, adaptivity in time and space might be
very useful to increase the efficiency of the methods.

Consider first the FEM-FCT schemes which are combined with simple im-
plicit time-stepping schemes. Adaptive time step control is often based on the
comparison of the results of two time-stepping schemes. Besides the Crank—
Nicolson scheme, one has to perform the current time step with another
scheme, like backward Euler or the fractional-step #-scheme, as it was pro-
posed for the time-dependent Navier—Stokes equations in [31]. This procedure
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roughly doubles the costs per time step. Somewhat less expensive is the use
of an explicit scheme for comparison, like the Adams-Bashforth scheme as
proposed in [9]. A heuristic approach, which does not increase the computa-
tional costs, consists in measuring the rate of change of the solutions of two
subsequent time steps [32,26]. Concerning adaptivity in space, standard error
indicators can be used for adaptively refining or coarsening the grids. Such in-
dicators include the gradient indicator or the Zienkiewicz—Zhu indicator [35].
Since there is no numerical analysis of FEM-FCT schemes for time-dependent
equations available, there are, in particular, no a posteriori error estimators,
i.e., there are no computable quantities which bound the error of the FEM-
FCT schemes in a rigorous way. Adaptive grid refinement in combination with
FEM-FCT methods can be found, e.g., in [24,26].

Adaptive time step control for the upwind, ENO, and WENO schemes com-
bined with explicit TVD Runge-Kutta methods can be done easily via em-
bedded schemes. In such schemes, only a different linear combination of the
stages k; is applied to obtain a scheme with one order less. Appropriate linear
combinations for the schemes (8) and (9) are

At
Up = Up—1 + Atkla Up = Up—1 + 7(1{31 + k’g),

respectively. The embedded schemes are just the forward Euler scheme and
the method of Heun. In this way, results of two schemes with different orders
are obtained with negligible additional costs. Based on these results, the time
step can be controlled, e.g., with the PI or PID controller [10]. The extension
of the considered schemes to include adaptive time step control in this way is
straightforward.

Finite difference methods can be used most easily on regular grids, consisting
of lines which are parallel to the coordinate axes. This requirement makes the
application of adaptive grid refinement or coarsening in multiple dimensions
less flexible than for finite element methods, because this property of the grid
can be kept only by removing or adding whole grid lines. For 1D problems,
ENO and WENO schemes with spatial adaption were presented in [5,18]. This
adaption is based on a sparse point representation using wavelets. In multiple
dimensions, a substantial gain in efficiency can only be expected, if the features
of the solution, which require a fine grid, are concentrated in a small part of the
domain. Optimally, these features should be aligned to one of the coordinate
axes. For convection-diffusion equations, layers may have this property, since
these are local features. As indicator for adding and removing grid lines, a
criterion can serve that is similar to the gradient indicator, i.e., grid lines are
included where the gradient of the current approximation of the solution is
large and they are removed where the gradient is very small. Thus, a simple
adaptive algorithm for the ENO scheme in one dimension looks as follows:
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(1) Choose an initial subdivision of the interval [0, 1].

(2) Compute the ENO approximation at the first discrete time.

(3) For every subinterval I; = [z;_1, 7] compute e; = |u} —u} *|,i=1,..., N,

(4) If e; is greater than a given tolerance tol,pp, then halve the interval [,

whenever the new intervals do not become smaller than a prescribed

minimal interval size [;,.

(5) If e; and e;;; are both less than a given tolerance toljoy,, suppress z;,
whenever the new interval does not exceed a maximum prescribed size
Lnax.-

(6) Insert nodes such that the ratio of the lengths of two subsequent intervals
of the new grid is not smaller than 0.5 and not larger than 2.

(7) Interpolate the ENO approximation to the new mesh and use it as initial
condition for the next time step.

(8) Continue with the procedure until the final time is reached.

In multiple dimensions, a new grid can be chosen first with respect to the
x-coordinate and the solution is interpolated to this new grid, then the same
procedure is applied for the y-coordinate and finally for the z-coordinate. The
insertion of nodes in Step 6 prevents the situation that neighboring intervals
are of very different sizes. Since the stencil of the ENO scheme covers several
intervals, a rather smooth transition of the lengths of the intervals seems to
be advisable. In fact, we could observe in numerical tests that the application
of Step 6 increased the accuracy of the obtained results considerably com-
pared with the adaptive algorithm without Step 6. An appropriate example
for adaptive grid refinement is certainly the transport of an impulse from Ex-
ample 1. A typical result and the evolution of uy(1,0.5) are presented in Figure
8. Using the adaptive grid, the speed-up of the simulations was around 25 —
30. However, the solution on the adaptive grid is more smeared than on the
uniform grid. We have observed an increase of the smearing on adaptive grids
in other examples in one and two dimensions, too. In most of the examples,
the speed-up obtained with the adaptive simulations led to an improvement
of the efficiency since an adaptive approximation of comparable accuracy to a
uniform approximation could be computed in less CPU time. Further research
is needed to improve the proposed adaptive algorithm such that less smeared
solutions are computed.

Another possibility to increase the efficiency of ENO and WENO schemes
consists in combining them with other finite difference methods. For instance,
in a vicinity of the layers, the WENO scheme is used and in smooth regions a
less expensive scheme is applied. This approach belongs to the class of hybrid
adaptive ENO schemes as proposed in [2].

An important aspect are also more complicated domains than Q = (0,1)%. A

detailed discussion of this issue, in particular for the finite difference schemes,
is beyond the scope of this paper. It will be only indicated that there are ways
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Fig. 8. Transport of an impulse; adaptive grid at ¢t = 0.5 with I,.x = 0.1,
Imin = 0.001, tolypp = 0.1, and tol,, = 0.001, and temporal development of
uh(1,0.5).

to deal with this issue also for the finite difference ENO and WENO schemes.

If the domain is more complicated than a tensor product of intervals, FEM-
FCT schemes can be applied without modification, even on triangular or tetra-
hedral grids. For the finite difference methods, an approach similar to the
spectral smoothed boundary method can be used, which was proposed in [4].
The basic idea consists in including the domain €2 in a tensor product domain
Q) and to triangulate Q by a tensor product mesh. Considering first homoge-
neous Dirichlet boundary conditions, then (1) is solved in 2 and the solution
at the nodes in \ © is just set to be zero. An example of this strategy is
presented in Figure 9. For the simulations of this example Q = {(z1,x2)
(11 —0.5)% 4 (29— 0.5)% < 0.42}\ {(z1,72) : (71 —0.5)*+ (29 —0.5)? < 0.2%},
e=10"1% b = (2,31, c=0, f =1, up(z1,72) = 0, and T = 0.6 were used.
The third order ENO method was applied and a solution with sharp boundary
layers without visible oscillations was obtained.

Fig. 9. A problem in a more complicated domain, result obtained with the FDM
ENO method.

In the case of non-homogeneous Dirichlet boundary conditions, one can try
to apply a trick which is used in the numerical analysis of finite element
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methods. One has to find a sufficiently smooth function @ which fulfills the
boundary condition and considers an equation for u —@. Of course, depending
on the actual boundary condition, it might be difficult to find an appropriate
function. Homogeneous Neumann boundary conditions might be treated in
the same fashion as in [4] by employing a mollification of the characteristic
function of (2.

6 Conclusions

This paper studied the accuracy and efficiency of finite element and finite
difference discretizations for evolutionary convection-diffusion-reaction equa-
tions which give solutions without under- and overshoots or with small under-
and overshoots. The simplest situation was considered in detail, namely that
the domain is a tensor product of intervals and that the discretizations are
applied uniformly in time and space.

Concerning the accuracy, the following observations were made:

e The most accurate results were generally obtained with the nonlinear FEM-
FCT scheme.

e The differences in accuracy of the results obtained with linear FEM-FCT
scheme and the finite difference ENO and WENO schemes were often not
large. Among these schemes, the best results were generally computed with
the WENO scheme and the less accurate results with the ENO scheme.

e The simple upwind scheme led to very inaccurate solutions due to a very
large smearing of the layers.

e In all considered examples, no under- and overshoots (or at most of magni-
tude of the stopping criteria for the iterative solvers) could be observed for
the FEM-FCT schemes and the simple upwind finite difference method.

e For the ENO scheme and especially for the WENO scheme, small under- or
overshoots were often present.

A very special problem was constructed, Example 1, for which the two-dimensional
version of the FEM-FCT schemes led to unsatisfactory results.

With respect to efficiency, the following results were obtained:

e The group version GFEM-FCT of the FEM-FCT schemes was more efficient
than the standard version with repeated matrix assembling.

e A simple iterative solver was sufficient for solving the linear systems of
equations in the FEM-FCT schemes efficiently.

e An acceleration technique, like the Anderson acceleration, increases the effi-
ciency of solving the nonlinear equations of the nonlinear FEM-FCT scheme
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considerably.

e On a fixed mesh in time and space:

— Simple upwinding was by far the fastest approach. It was faster by a half
to one order of magnitude compared with the ENO and WENO scheme.

— The nonlinear FEM-FCT scheme took the most computing time.

— The ENO scheme needed roughly half of the computing time of the WENO
scheme.

— The ENO scheme was faster than the linear GFEM-FCT scheme by a
factor of two to four.

— The WENO scheme was faster by about one order of magnitude than the
nonlinear GFEM-FCT scheme.

— The differences in computing time between the GFEM-FCT schemes and
the finite difference schemes were larger in three dimensions than in two
dimensions.

e Considering accuracy per computing time, the differences between the schemes
became smaller. The linear GFEM-FCT scheme might be even competitive
with the finite difference schemes. However, this aspect depends on the ex-
ample.

The actual recommendations from these results depend on the requirements
of the considered application:

e under- or overshoots cannot be tolerated:
— computing time is a strong issue: use the simple upwind scheme,
— computing time and accuracy are both important issues: use the linear
GFEM-FCT scheme,
— accuracy is a strong issue: use the nonlinear GFEM-FCT scheme,
e small under- or overshoots can be tolerated or the cut-off of small under-
and overshoots can be tolerated:
— computing time is a strong issue: use the ENO scheme,
— otherwise: use the WENO scheme.

Some remarks on more general situations were also provided in Section 5.
Comprehensive studies of such situations are future research.
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