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Abstract

This paper is concerned with a diffusion model of phase-field type, consisting of a
parabolic system of two partial differential equations, interpreted as balances of micro-
forces and microenergy, for two unknowns: the problem’s order parameter ρ and the chem-
ical potential µ; each equation includes a viscosity term – respectively, ε ∂tµ and δ ∂tρ –
with ε and δ two positive parameters; the field equations are complemented by Neumann
homogeneous boundary conditions and suitable initial conditions. In a recent paper [5],
we proved that this problem is well-posed and investigated the long-time behavior of its
(ε, δ)−solutions. Here we discuss the asymptotic limit of the system as ε tends to 0. We
prove convergence of (ε, δ)−solutions to the corresponding solutions for the case ε = 0,
whose long-time behavior we characterize; in the proofs, we employ compactness and
monotonicity arguments.

1 Introduction

The system we study was proposed for mathematical investigation in [5]; as to modeling issues,
its most directly relevant antecedents are two papers by Fried & Gurtin [8] and Gurtin [9], and a
paper by one of us [11].

A nonstandard phase-field evolution problem. The initial/boundary-value problem we dealt
with in [5] consists in finding two phase fields, the chemical potential µ and the order parameter
ρ, such that

ε ∂tµ+ 2ρ ∂tµ+ µ ∂tρ−∆µ = 0 in Ω× (0,+∞), (1.1)

δ ∂tρ−∆ρ+ f ′(ρ) = µ in Ω× (0,+∞), (1.2)

∂νµ = ∂νρ = 0 on Γ× (0,+∞), (1.3)

µ( · , 0) = µ0 and ρ( · , 0) = ρ0 in Ω, (1.4)

where Ω denotes a bounded domain of R3 with (sufficiently) smooth boundary Γ, and f ′ stands
for the derivative of a double-well potential f . This nonstandard phase-field model can be re-
garded as a variant of the classic Cahn-Hilliard system for diffusion-driven phase segregation
by atom rearrangement:

∂tρ− κ∆µ = 0 , µ = −∆ρ+ f ′(ρ). (1.5)

Note, in (1.1), the unpleasant nonlinear terms involving time derivatives, and the fact that we
have taken the mobility coefficient κ > 0 equal to 1. Moreover, recall that equations (1.5) are
customarily combined so as to obtain the well-known Cahn-Hilliard equation:

∂tρ = κ∆(−∆ρ+ f ′(ρ)). (1.6)
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Fried & Gurtin’s generalization of Cahn-Hilliard equation. In [8, 9] a broad generalization
of (1.6) was arrived at, with three measures:

(i) by regarding the second of (1.5) as a balance of microforces:

div ξ + π + γ = 0, (1.7)

where the distance microforce per unit volume is split into an internal part π and an
external part γ, and the contact microforce per unit area of a surface oriented by its
normal n is measured by ξ · n in terms of the microstress vector ξ;1

(ii) by interpreting the first equation of (1.5) as a balance law for the order parameter :

∂tρ = − div h + σ, (1.8)

where the pair (h , σ) is the inflow of ρ;

(iii) by requiring that the constitutive choices for π, ξ,h , and the free energy density ψ, be
consistent in the sense of Coleman and Noll [2] with a postulated “dissipation inequality
that accomodates diffusion”:

∂tψ + (π − µ)∂tρ− ξ · ∇(∂tρ) + h · ∇µ ≤ 0 (1.9)

(cf. equation (3.6) in [9]).

In [9], the following set of constitutive prescriptions was shown to be consistent with (iii):
ψ = ψ̂(ρ,∇ρ),

π̂(ρ,∇ρ, µ) = µ− ∂ρψ̂(ρ,∇ρ),
ξ̂(ρ,∇ρ) = ∂∇ρψ̂(ρ,∇ρ)

 (1.10)

together with
h = −M∇µ, with M = M̂ (ρ,∇ρ, µ,∇µ), (1.11)

provided the tensor-valued mobility mapping M̂ satisfies the residual dissipation inequality

∇µ · M̂ (ρ,∇ρ, µ,∇µ)∇µ ≥ 0.

With the use of (1.7), (1.8), (1.10), and (1.11)1, a general equation for diffusive phase segrega-
tion processes is arrived at:

∂tρ = div
(
M∇

(
∂ρψ̂(ρ,∇ρ)− div

(
∂∇ρψ̂(ρ,∇ρ)

)
− γ

))
+ σ;

in particular, the Cahn-Hilliard equation (1.6) is obtained by taking the external distance micro-
force γ and the order-parameter source term σ identically null, and by choosing

ψ̂(ρ,∇ρ) = f(ρ) +
1

2
|∇ρ|2, M = κ1 . (1.12)

1In [7], the microforce balance is stated under form of a principle of virtual powers for microscopic motions.
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An alternative generalization of Cahn-Hilliard equation. In [11], a major modification of
Fried & Gurtin’s approach to phase-segregation modeling was proposed. While the crucial step
(i) was retained, both the order-parameter balance (1.8) and the dissipation inequality (1.9) were
dropped and replaced, respectively, by the microenergy balance

∂tε = e+ w, e := − div h + σ, w := −π ∂tρ+ ξ · ∇(∂tρ), (1.13)

and the microentropy imbalance

∂tη ≥ − div h + σ, h := µh , σ := µσ. (1.14)

A further new feature was that the microentropy inflow (h , σ) was deemed proportional to the
microenergy inflow (h , σ) through the chemical potential µ, a positive field; consistently, the
free energy was defined to be

ψ := ε− µ−1η, (1.15)

with the chemical potential playing the same role as the coldness in the deduction of the heat
equation.2

Combination of (1.13)-(1.15) gives:

∂tψ ≤ −η∂t(µ
−1) + µ−1 h · ∇µ− π ∂tρ+ ξ · ∇(∂tρ), (1.16)

an inequality that replaces (1.9) in restricting à la Coleman-Noll the possible constitutive choices.
On taking all of the constitutive mappings delivering π, ξ, η, and h , dependent in principle on
ρ,∇ρ, µ,∇µ, and on choosing

ψ = ψ̂(ρ,∇ρ, µ) = −µ ρ+ f(ρ) +
1

2
|∇ρ|2, (1.17)

compatibility with (1.16) implies that we must have:
π̂(ρ,∇ρ, µ) = −∂ρψ̂(ρ,∇ρ, µ) = µ− f ′(ρ),

ξ̂(ρ,∇ρ, µ) = ∂∇ρψ̂(ρ,∇ρ, µ) = ∇ρ,

η̂(ρ,∇ρ, µ) = µ2∂µψ̂(ρ,∇ρ, µ)= −µ2ρ

 (1.18)

together with

ĥ(ρ,∇ρ, µ,∇µ) = Ĥ (ρ,∇ρ, µ,∇µ)∇µ, ∇µ · Ĥ (ρ,∇ρ, µ,∇µ)∇µ ≥ 0.

If we now choose for Ĥ the simplest expression H = κ1 , implying a constant and isotropic
mobility, and if we once again assume that the external distance microforce γ and the source
σ are null, then, with the use of (1.18) and (1.15), the microforce balance (1.7) and the energy
balance (1.13) become, respectively,

∆ρ+ µ− f ′(ρ) = 0 (1.19)

2As much as absolute temperature is a macroscopic measure of microscopic agitation, its inverse - the coldness
- measures microscopic quiet ; likewise, as argued in [11], the chemical potential can be seen as a macroscopic
measure of microscopic organization.
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and
2ρ ∂tµ+ µ ∂tρ− κ∆µ = 0, (1.20)

a nonlinear system for the unknowns ρ and µ.

Two-parameter regularization. Compare now the systems (1.19)-(1.20) and (1.5): (1.19) and
(1.5)2 are one and the same ‘static’ relations between µ and ρ, whereas (1.20) is rather different
from (1.5)1, for more than one reason:

(R1) (1.5)1 is linear, (1.20) is not;

(R2) the time derivatives of ρ and µ are both present in (1.20);

(R3) in front of both ∂tµ and ∂tρ there are nonconstant factors that should remain nonnegative
during the evolution.

Thus, the system (1.19)-(1.20) deserves a careful analysis. We must confess that we boldly
attacked this problem as is, prompted to optimism by the successful outcome of a previous
joint research effort [3, 4] devoted to tackling the system of Allen-Cahn type one arrives at via
the approach in [11] for no-diffusion phase-segregation processes. Unfortunately, the evolution
problem ruled by (1.19)–(1.20) turned out to be too difficult for us. Therefore, we decided to
study its regularized version (1.1)–(1.4), which we obtained by introducing the extra terms ε ∂tµ
in (1.20) and δ ∂tρ in (1.19), for small positive coefficients ε and δ. Motivations for the intro-
duction of such terms are proposed and discussed in [5]; interestingly, while the second can be
interpreted as a dissipative part of the distance microforce, so far we have not been able to find
a convincing physical interpretation for the first. But, our present study demonstrates – so we
believe – that it can legitimately be regarded as an efficient mathematical device.

Limit as the first parameter tends to 0. In [5], by assuming (as we did in [3, 4]) that f ′

is the sum of a strictly increasing C1 function f ′1 with domain (0, 1) that is singular at the
endpoints, and of a smooth bounded perturbation f ′2 (to allow for a double- or multi-well potential
f ), we first proved existence of a strong solution (µ, ρ) to (1.1)–(1.4) satisfying µ ≥ 0 and
0 < ρ < 1 almost everywhere in Ω × (0,+∞) (of course, we stipulated that the initial data
meet same requirements in Ω). Then, under some additional technical assumptions, we showed
that the component µ is bounded, and so is f ′(ρ); as a consequence, ρ stays away from the
threshold values 0 and 1. These boundedness properties are very useful in proving uniqueness
of solutions.

In some sense, passing to the limit as the regularizing parameters tend to zero is the challenging
final aim of our research project. For the moment being, we are able to deal with ε and to deduce,
by a rather delicate asymptotic analysis, an existence theorem for the limit problem. Precisely,
we let ε tend to zero and show that any weak or weak star limit of any subsequence of solutions
(µε, ρε) to (1.1)–(1.4) yields a solution (µ, ρ) to the resulting limit problem, which is obtained
by putting ε = 0 in (1.1)–(1.4) and rewriting the corresponding first equation in the form

2∂t(µρ)−∆µ = µ ∂tρ rather than as 2ρ ∂tµ+ µ ∂tρ−∆µ = 0. (1.21)
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This we do because it is not clear to us from the structure of the system whether a suitably
regular representation for ∂tµ could be recovered in the limit, while we are able to show that the
time derivative ∂t(µρ) actually exists, at least in some generalized sense.3

Here, as we did in [5], we also deal with the long-time behavior of the system. We prove that
each element (µω, ρω) of the ω-limit set for a certain trajectory is a steady state solution to
(1.1)–(1.4); therefore, in particular, µω is a constant (cf. (1.21) and (1.3)).4

An outline of our paper is the following: in Section 2, we carefully state assumptions and results;
Section 3 is devoted to the proof of the convergence theorem, so as to deduce the existence of
solutions to the limit problem; finally, in Section 4, we develop our argument for the characteri-
zation of the ω-limit.

2 Assumptions and main results

First of all, we assume Ω to be a bounded connected open set in R3 with smooth boundary Γ
and set, for convenience,

V := H1(Ω), H := L2(Ω), and W := {v ∈ H2(Ω) : ∂νv = 0}. (2.1)

We endow these spaces with their standard norms, for which we use self-explaining notation
like ‖ · ‖V . However, we write ‖ · ‖H for the norm in any power of H as well. The symbol 〈 · , · 〉
denotes the duality product between V ∗, the dual space of V , and V itself. Since Ω is bounded
and smooth, the embeddings W ⊂ V ⊂ H are compact. Moreover, since V is dense in H ,
we can identify H with a subspace of V ∗ in the usual way, i.e., in order that 〈u, v〉 = (u, v)H ,
where ( · , ·)H denotes the inner product in H , holds for every u ∈ H and v ∈ V . Then, also
the embedding H ⊂ V ∗ is compact.

As in [5], we assume that

f = f1 + f2, where f1, f2 : (0, 1) → R are functions satisfying: (2.2)

f1 is C1 and convex, f2 is C2, and f ′′2 is bounded, (2.3)

lim
r↘0

f ′1(r) = −∞ and lim
r↗0

f ′1(r) = +∞. (2.4)

As to initial data, we start with the assumptions

µ0 ∈ V and µ0 ≥ 0 a.e. in Ω; (2.5)

ρ0 ∈ W, 0 < ρ0 < 1 in Ω; and f ′(ρ0) ∈ H. (2.6)

The reader is referred to the forthcoming Remark 2.5 for weaker conditions.

3In fact, (1.1) has the equivalent formulation:

∂t(εµ + 2µρ)−∆µ = µ∂tρ,

which singles out the time derivative of the auxiliary variable εµ + 2µρ for ε > 0.
4Note that the steady state problem associated with both cases ε > 0 and ε = 0 is the same.
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Since we aim to let ε tend to zero, we stress the dependence of the solution found in [5] on the
parameter ε. In that paper, for any fixed T > 0, the following a priori regularity is required:

µε ∈ H1(0, T ;H) ∩ L2(0, T ;W ), (2.7)

ρε ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.8)

µε ≥ 0 a.e. in QT , (2.9)

0 < ρε < 1 a.e. in QT and f ′(ρε) ∈ L∞(0, T ;H), (2.10)

where QT := Ω × (0, T ). We note that homogeneous Neumann boundary conditions follow
from (2.7)–(2.8), in view of the definition of W (see (2.1)). Then, the ε-problem is:[

(ε+ 2ρε)∂tµε + µε ∂tρε −∆µε = 0 or
]

∂t(εµε + 2µερε)−∆µε = µε∂tρε a.e. in QT , (2.11)

δ∂tρε −∆ρε + f ′(ρε) = µε a.e. in QT , (2.12)

µε(0) = µ0 and ρε(0) = ρ0 a.e. in Ω. (2.13)

We recall the existence result of [5].

Theorem 2.1. Let T ∈ (0,+∞), and assume that (2.2)–(2.4) and (2.5)–(2.6) are satisfied.
Then, there exists a pair (µε, ρε) satisfying (2.7)–(2.10) and solving problem (2.11)–(2.13).

As to uniqueness, the result in [5, Thm. 2.2] holds for solutions that, in addition to (2.7)–(2.10),
have certain properties that, in turn, are guaranteed whenever the initial data fulfil the following
conditions, additional to (2.5) and (2.6):

µ0 ∈ L∞(Ω), inf ρ0 > 0, and sup ρ0 < 1

(see [5, Thm 2.3]). Within such a framework, since T > 0 is arbitrary, the existence of a unique
solution (µε, ρε) defined for every positive time was ensured, and its long-time behavior was
studied.

Here, our first concern is to construct a global solution (µε, ρε) to problem (2.11)–(2.13) that
satisfies (2.7)–(2.10) for every finite T , without assuming the just mentioned stronger conditions
on the initial data. We cannot ensure uniqueness, of course. The corresponding result reads:

Proposition 2.2. Assume that (2.2)–(2.4) and (2.5)–(2.6)are fulfilled. Then, there exists a pair
(µε, ρε) : [0,+∞) → W ×W satisfying (2.7)–(2.10) and solving problem (2.11)–(2.13) for
every T ∈ (0,+∞).

Starting from any family {(µε, ρε)}ε>0 of solutions of this type, we then let ε tend to zero. To do
this, we need to assume that

inf ρ0 > 0, (2.14)

in addition to (2.5)–(2.6). Under this assumption, we show that ρε is bounded away from zero
and that (µε, ρε) tends to some pair (µ, ρ) as ε ↘ 0 in a suitable topology, at least for a
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subsequence. Moreover, we determine the limit problem solved by (µ, ρ). The a priori regularity
we require for (µ, ρ) on every finite time interval is the following:

µ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), (2.15)

ρ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (2.16)

µ ≥ 0 a.e. in QT and inf ρ > 0, (2.17)

ρ < 1 a.e. in QT and f ′(ρ) ∈ L2(0, T ;H), (2.18)

µρ ∈ W 1,p(0, T ;V ∗) for some p ∈ (1,+∞); (2.19)

the corresponding limit problem is:

2〈∂t(µρ)(t), v〉+

∫
Ω

∇µ(t) · ∇v =

∫
Ω

µ(t) ∂tρ(t) v

for every v ∈ V and for a.a. t ∈ (0, T ), (2.20)

δ∂tρ−∆ρ+ f ′(ρ) = µ a.e. in QT , (2.21)

(µρ)(0) = µ0ρ0 and ρ(0) = ρ0 a.e. in Ω. (2.22)

Remark 2.3. The last integral in (2.20) makes sense because V ⊂ L3(Ω) and µ∂tρ belongs
at least to L1(0, T ;L3/2(Ω)), as a consequence of (2.15)–(2.16). Note that (2.20) incorpo-
rates the homogeneous Neumann boundary condition for µ in a generalized sense. More-
over, note that (2.19) implies that µρ is a continuous V ∗-valued function, so that the first
equality in (2.22) has a precise meaning. On the contrary, no continuity for µ is ensured at
the moment.

Here is our convergence result.

Theorem 2.4. Assume that (2.2)–(2.4), (2.5)–(2.6), and (2.14) are satisfied, and let
{(µε, ρε)}ε∈(0,1) be a family of solutions to problem (2.11)–(2.13) satisfying (2.7)–(2.10). Then,
there exists a pair (µ, ρ), satisfying (2.15)–(2.19) and solving problem (2.20)–(2.22) for every
T ∈ (0,+∞), such that (µε, ρε) converges to (µ, ρ) in a suitable topology,5 at least for a
subsequence εn ↘ 0.

Remark 2.5. The assumptions (2.5)–(2.6) are strong. In fact, while they are needed for
Theorem 2.1 and Proposition 2.2, some of them will not play any role in the following, as
it can be seen by looking at our a priori estimates. For instance, the last condition in (2.6)
will not be important, since just f(ρ0) ∈ L1(Ω) will be used. Accordingly, one can prove
a result similar to Theorem 2.4, but involving ε-approximations of less regular initial data
that, this notwithstanding, satisfy (2.5)–(2.6). Precisely, suppose we assume that

µ0 ∈ H, µ0 ≥ 0 a.e. in Ω, ρ0 ∈ V, f(ρ0) ∈ L1(Ω), and inf ρ0 > 0. (2.23)

Then, it would be possible to construct ε-approximations (µ0ε, ρ0ε) of such initial data
(µ0, ρ0) that satisfy (2.5)–(2.6) and whose norms of type (2.23) remain bounded as ε ↘ 0 :
e.g., as to ρ0ε, one could take the solution to the elliptic equation

ρ0ε − ρ0

ε
−∆ρ0ε + f ′1(ρ0ε) = 0 a.e. in Ω,

supplemented by homogeneous Neumann boundary conditions.
5to be specified in the course of the proof given in the next section.
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Remark 2.6. Theorem 2.4 and the previous Remark offer us the possibility of defining
and obtaining a weaker solution to problem (2.11)–(2.13) (that is, also for the case ε > 0),
if one writes equation (1.1) in the form (2.11). To see that this solution is weaker than
the one provided by Theorem 2.1, it suffices to compare (2.15)–(2.16) with (2.7)–(2.8). On
the other hand, we can just assume (2.23) and point out that in this approach one should
consider (2.19), (2.20), (2.22) with µρ replaced by (ε/2)µ+ µρ.

Our final aim is to study the long-time behavior of any solution constructed according to Theo-
rem 2.4. To this end, we introduce the ω-limit of the trajectory in a proper topology, and prove
that every element of it coincides with a steady state. We set:

ω(µ, ρ) =
{
(µω, ρω) ∈ H × V :

(
µ(tn), ρ(tn)

)
→ (µω, ρω)

weakly in H × V for some sequence tn ↗ +∞
}
. (2.24)

The above definition has a precise meaning, because the pointwise values of the (H × V )-
valued function (µ, ρ) are well defined thanks to the continuity properties stated in our next
result.

Theorem 2.7. Assume that (2.2)–(2.4), (2.5)–(2.6) and (2.14) are satisfied, and let (µ, ρ) :
[0,+∞) → H × V be given by Theorem 2.4. Then, (µ, ρ) is bounded, and its components
µ and ρ are weakly and strongly continuous, respectively. In particular, the ω-limit (2.24) is
nonempty. Moreover, every element of ω(µ, ρ) coincides with a pair (µs, ρs) such that

µs is a nonnegative constant,

ρs ∈ W, 0 < ρs < 1, f ′(ρs) ∈ H, and −∆ρs + f ′(ρs) = µs a.e. in Ω, (2.25)

i.e., it coincides with a steady state.

We stress that the above result does not necessarily hold for all possible solutions. Indeed, it
only deals with solutions obtained as limits of solutions to the ε-problem as ε ↘ 0. We also
observe that there is no reason for the function ρs mentioned in the statement to be a constant,
since f is not required to be convex.

The rest of the paper is organized as follows: in the next section, we prove both Proposition 2.2
and Theorem 2.4; the proof of Theorem 2.7 will be given in the last section.

3 Global solutions

We first prove the existence of a global solution to the ε-problem. The major part of the section
is devoted to the proof of Theorem 2.4 and the subsequent existence of a global solution to the
limit problem.

Proof of Proposition 2.2. We imitate, with minor changes, the proof of Thm 2.1 in [5], where
the final time T was fixed once and for all. Let ε be fixed and, for notational conciseness, let the
dependence on ε be omitted. The main tool used in [5] was an approximation procedure using

8



a time delay τ = T/N , for N a positive integer. Approximating τ -problems were constructed
and solved step by step in the time intervals In := [0, nτ ], n = 1, . . . , N . It turned out that
the resulting unique solution (µτ , ρτ ) coincided a posteriori with the one obtained by glueing
together solutions on the time steps [(n− 1)τ, nτ ], n = 1, . . . , N .

The necessary slight modification is the following. Take, e.g., τ = 1/N , and solve the same
problems as before step by step, now for every n ≥ 1. This provides a global solution (µτ , ρτ )
to the approximating τ -problem. Then, for every fixed T > 0, the argument of [5] applies, and a
solution for (2.11)–(2.13) on [0, T ] is constructed as the limit of the approximating solutions as
τ ↘ 0, at least for a subsequence. This holds, in particular, for T = 1, 2, . . . . Therefore, there is
a subsequence τ1,n ↘ 0 such that the restriction of (µτ , ρτ ) to [0, 1] converges to a solution to
problem (2.11)–(2.13) with T = 1. We denote this solution by (µ1, ρ1). Now, take the restriction
of (µτ , ρτ ) to [0, 2] with τ = τ1,n. Then, for the same reason, there is a subsequence {τ2,n} of
{τ1,n} such that the restriction we are considering converges to a solution (µ2, ρ2) to problem
(2.11)–(2.13) with T = 2. However, as {τ2,n} is a subsequence of {τ1,n}, the restriction of
(µ2, ρ2) to [0, 1] coincides with (µ1, ρ1). Proceeding inductively in this way, and then using a
diagonal procedure, leads to a global solution to problem (2.11)–(2.13). �

Preliminaries to the proof of Theorem 2.4. We begin by listing some of the tools we shall
use. First of all, the well-known continuous embedding, with the related Sobolev inequality, holds
in our 3-dimensional case:

W 1,p(Ω) ⊂ Lq(Ω) and ‖v‖Lq(Ω) ≤ Cp‖v‖W 1,p(Ω) for every v ∈ W 1,p(Ω), (3.1)

provided that 1 ≤ p < 3 and 1 ≤ q ≤ p∗ :=
3p

3− p
, (3.2)

with the constant Cp in (3.1) depending only on Ω and p; moreover,

the embedding W 1,p(Ω) ⊂ Lq(Ω) is compact if 1 ≤ q < p∗. (3.3)

In particular, V ⊂ Lq(Ω) for 1 ≤ q ≤ 6, and

‖v‖Lq(Ω) ≤ C‖v‖V for every v ∈ V and 1 ≤ q ≤ 6, (3.4)

where C depends only on Ω and the embedding V ⊂ Lq(Ω) is compact if q < 6. Furthermore
(see, e.g., [6, formula (3.2), p. 8]), we have the continuous embedding

L∞(0, T ;H) ∩ L2(0, T ;V ) ⊂ L10/3(QT )

and the related inequality

‖v‖L10/3(QT ) ≤ CT‖v‖L∞(0,T ;H)∩L2(0,T ;V )

for every v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), (3.5)

where CT depends on Ω and T . In our proof, we shall make use also of the well-known Hölder
inequality, mainly in the form

‖v1 · · · vn‖Lp(0,T ;Lq(Ω)) ≤
n∏

i=1

‖vi‖Lpi (0,T ;Lqi (Ω)) for vi ∈ Lpi(0, T ;Lqi(Ω)), i = 1, . . . , n,

provided that p, q, pi, qi ∈ [1,+∞],
1

p
=

n∑
i=1

1

pi

and
1

q
=

n∑
i=1

1

qi
.
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Remark 3.1. To avoid a cumbersome notation, the lowercase letter c stands for different
constants, each of which may depend on one or another of the data involved in our current
statement and on the coefficient δ, but never depends either on ε or on the final time T ;
consequently, the relative estimates continue to hold when we discuss both the system’s
asymptotic limit as ε tends to 0 and its long-time behavior. Moreover, a notation like cσ
signals that that constant has an additional dependence on the parameter σ. Hence, the
meaning of c and cσ may change from line to line, and even in the same chain of inequal-
ities. On the contrary, we use the uppercase letter C for precise constants we are going
to refer to after their introduction, such as Cp in (3.1) or CT in (3.4). Finally, in order to
lighten our notation, we do not write the subscript ε in performing our a priori estimates
until each estimate is completely proved; the same we do for the auxiliary function

uε := εµε + 2µερε. (3.6)

Next, we prove that ρε is bounded away from zero uniformly with respect to ε. Such a result
is essentially known from the proof of [5, Thm 2.3], among other properties there established
for a fixed ε. Nevertheless, we prefer to repeat the proof here, in order to make sure that the
constructed lower bound is in fact independent of ε, and that just the additional assumption
(2.14) is used.

Lemma 3.2. There exists some r∗ ∈ (0, 1) such that ρε ≥ r∗ a.e. for every ε ∈ (0, 1).

Proof. We set for convenience ρ∗ := inf ρ0 andM := supr∈(0,1) |f ′2(r)| and recall that ρ∗ > 0
by (2.14). Thus, owing to (2.4), we can choose r∗ ∈ (0, ρ∗] such that f ′1(r∗) ≤ −M . Then,
we test (2.21) by −(ρε − r∗)

− and integrate over Ω × (0, t) where t ∈ (0, T ) is arbitrary. By
omitting the subscript ε for simplicity, we have

δ

2

∫
Ω

|(ρ− r∗)
−(t)|2 +

∫ t

0

∫
Ω

|∇(ρ− r∗)
−|2 −

∫ t

0

∫
Ω

(
f ′1(ρ)− f ′1(r∗)

)
(ρ− r∗)

−

=
δ

2

∫
Ω

|(ρ− r∗)
−(0)|2 −

∫ t

0

∫
Ω

µ(ρ− r∗)
− +

∫ t

0

∫
Ω

(
f ′1(r∗)− f ′2(ρ)

)
(ρ− r∗)

−.

Every term on the left-hand side is nonnegative; in the right-hand side, the first term vanishes,
because ρ0 ≥ r∗, and the other two are nonpositive, because µ ≥ 0 and f ′1(r∗) − f ′2(ρ) ≤
f ′1(r∗) +M ≤ 0. Hence, (ρ− r∗)

− = 0, and the assertion is proved. �

Proof of Theorem 2.4. Our proof will proceed as follows. For a fixed finite final time T , we
shall perform a number of a priori estimates and use well-known compactness results to prove
that, as ε tends to 0, the solution (µε, ρε) to the ε-problem (2.11)–(2.13) we are considering
converges to a solution (µ, ρ) to problem (2.20)–(2.22), at least for a subsequence εn ↘ 0;
in particular, this holds for T = 1, 2, . . . . Having established this result, we shall be able to
argue as in the proof of Proposition 2.2. Indeed, a diagonal procedure provides a subsequence
εn ↘ 0 such that (µε, ρε) with ε = εn converges to a global solution (µ, ρ) to problem (2.20)–
(2.22) defined in the whole of [0,+∞). Therefore, just the case of a fixed final time T has to be
considered.
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First a priori estimate. We test (2.11) (e.g., the equation within square brackets) by µε, and
integrate over Ω× (0, t), for an arbitrary t ∈ (0, T ). We obtain∫ t

0

∫
Ω

∂t

(ε
2
µ2 + ρµ2

)
+

∫ t

0

∫
Ω

|∇µ|2 = 0,

whence

ε

2

∫
Ω

|µ(t)|2 +

∫
Ω

(ρµ2)(t) +

∫ t

0

∫
Ω

|∇µ|2 =
ε

2
‖µ0‖2

H + ‖ρ0µ
2
0‖L1(Ω) ≤ c.

Since ρµ2 ≥ r∗µ
2 thanks to Lemma 3.2, we immediately deduce that

‖µε‖L∞(0,T ;H) + ‖∇µε‖L2(0,T ;H) ≤ c. (3.7)

Second a priori estimate. We test (2.12) by ∂tρε, and use the second of (2.11) in order to
compute the right-hand side we get; we also recall (3.6). For t ∈ (0, T ), we obtain:

δ

∫ t

0

∫
Ω

|∂tρ|2 +
1

2

∫
Ω

|∇ρ(t)|2 − 1

2

∫
Ω

|∇ρ0|2 +

∫
Ω

f(ρ(t))−
∫

Ω

f(ρ0)

=

∫ t

0

∫
Ω

µ∂tρ =

∫ t

0

∫
Ω

∂t

(
εµ+ 2µρ

)
−

∫ t

0

∫
Ω

∆µ

=

∫ t

0

∫
Ω

∂tu =

∫
Ω

u(t)−
∫

Ω

(
εµ0 + 2ρ0µ0

)
≤ 3

∫
Ω

µ(t) + c.

Since (3.7) holds and f is bounded from below, we easily infer that

‖∂tρε‖L2(0,T ;H) + ‖∇ρε‖L∞(0,T ;H) + ‖f(ρε)‖L∞(0,T ;L1(Ω)) ≤ c. (3.8)

Moreover, because 0 < ρε < 1 a.e. in QT for every ε ∈ (0, 1), we conclude that

‖ρε‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ cT . (3.9)

Third a priori estimate. Taking into account (3.7)–(3.9) and the boundedness of f ′2, we see
that (2.12) yields

‖−∆ρε + f ′1(ρε)‖L2(0,T ;H) = ‖µε − ∂tρε − f ′2(ρε)‖L2(0,T ;H) ≤ cT .

By a standard argument (test formally by f ′1(ρε), for instance) and elliptic regularity, we con-
clude that

‖f ′1(ρε)‖L2(0,T ;H) + ‖ρε‖L2(0,T ;W ) ≤ cT . (3.10)

First conclusions. The above estimates allow us to use standard weak and weak star com-
pactness results. Thus, a triplet (µ, ρ, ϕ) exists such that

µε → µ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ) (3.11)

ρε → ρ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (3.12)

f ′1(ρε) → ϕ weakly in L2(0, T ;H), (3.13)
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at least for a subsequence εn ↘ 0.6 We note that µ ≥ 0 and that ρ ≥ r∗ a.e. in QT (the former
inequality holds because µε ≥ 0 for every ε, the latter by Lemma 3.2). Moreover, by (3.12) and
the compact embedding V ⊂ Lp(Ω) for p < 6, we infer that

ρε → ρ strongly in C0([0, T ];Lp(Ω)) for every p < 6, (3.14)

thanks to [12, Sect. 8, Cor. 4]. Hence, f ′2(ρε) converges to f ′2(ρ) in a suitable topology, for
instance, strongly in L2(0, T ;H), since f ′2 is Lipschitz continuous. In particular, we deduce
that

δ∂tρ−∆ρ+ ϕ+ f ′2(ρ) = µ a.e. in QT .

Furthermore, invoking both (3.14) and (3.13), and using a standard monotonicity technique (see,
e.g., [1, Lemma 1.3, p. 42]), we conclude that

0 < ρ < 1 and ϕ = f ′1(ρ) a.e. in QT .

Finally, (3.14) implies that ρε(0) converges to ρ(0) strongly in H , whence ρ(0) = ρ0.

In summary, so far we have proved (2.15)–(2.18), (2.21), and the second condition in (2.22). It
remains for us to show (2.19), (2.20), and the first condition in (2.22). For this purpose, further
arguments are needed.

Fourth a priori estimate. We recall (3.6), and we notice that the second (2.11) reads:

∂tuε = µε∂tρε + ∆µε . (3.15)

Moreover, µε satisfies homogeneous Neumann boundary conditions, since it is W -valued.
Therefore, we have∫ T

0

∫
Ω

∂tuε v =

∫ T

0

∫
Ω

µε∂tρε v −
∫ T

0

∫
Ω

∇µε · ∇v for every v ∈ L2(0, T ;V ). (3.16)

From (3.16), we derive an estimate for ∂tuε as a V ∗-valued function, in the framework of the
Hilbert triplet (V,H, V ∗). We treat the integrals on the right-hand side individually (for a while,
we omit the subscript ε in order to simplify the notation).

Assume that v ∈ L5(0, T ;V ). Then the Hölder inequality and the Sobolev inequality (3.4) with
q = 5 yield: ∣∣∣∫ T

0

∫
Ω

µ∂tρ v
∣∣∣ ≤ ‖µ‖L10/3(QT ) ‖∂tρ‖L2(QT ) ‖v‖L5(QT )

≤ c‖µ‖L10/3(QT ) ‖∂tρ‖L2(QT ) ‖v‖L5(0,T ;V ) .

On the other hand, inequality (3.5) holds. Therefore, on taking into account (3.7) and (3.9), we
conclude that ∣∣∣∫ T

0

∫
Ω

µ∂tρ v
∣∣∣ ≤ cT‖v‖L5(0,T ;V ) for every v ∈ L5(0, T ;V ). (3.17)

6Incidentally, we anticipate that the convergence results stated below will hold only for suitable subsequences.
Nevertheless, we will not mention such a detail.
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Next, we consider the second term on the right-hand side of (3.16). By assuming again that
v ∈ L5(0, T ;V ), and invoking (3.7) once more, we immediately find that∣∣∣∫ T

0

∫
Ω

∇µ · ∇v
∣∣∣ ≤ ‖µ‖L2(0,T ;V ) ‖v‖L2(0,T ;V ) ≤ cT‖v‖L5(0,T ;V ) .

Combining this estimate with (3.17) and (3.16), we obtain that

|〈∂tu, v〉| ≤ cT‖v‖L5(0,T ;V ) for every v ∈ L5(0, T ;V ).

In other words, we have that
‖∂tuε‖L5/4(0,T ;V ∗) ≤ cT . (3.18)

Consequence. From (i) the strong convergence (3.14) with p = 4, (ii) the weak convergence
µε → µ in L2(0, T ;L4(Ω)) implied by (3.11), and (iii) the Sobolev inequality (3.4) with q = 4,
we infer that

µερε → µρ weakly in L2(0, T ;H), whence uε → 2µρ weakly in L2(0, T ;H), (3.19)

since εµε → 0 strongly inL2(0, T ;V ), by (3.7). Hence, accounting for (3.18), we conclude that

∂tuε → 2∂t(µρ) weakly in L5/4(0, T ;V ∗), whence uε → 2µρ weakly in W 1,5/4(0, T ;V ∗),
(3.20)

so that (2.19) holds with p = 5/4. Moreover, (3.20) also implies that uε converges to 2µρ
weakly in C0([0, T ];V ∗); in particular, uε(0) → (2µρ)(0) weakly in V ∗. On the other hand,
uε(0) = εµ0 + 2µ0ρ0 converges to 2µ0ρ0, e.g., strongly in H . Thus, the Cauchy condition for
µρ in (2.22) follows.

In order to prove (2.20), one can try to let ε ↘ 0 in (3.16) first, then to get rid of time integration.
But, a trouble arises in dealing with the first term on the right-hand side, since, for the moment
being, both µε and ∂tρε are just weakly convergent. Hence, we have to prepare a new tool.

Fifth a priori estimate. We want to find a bound for∇uε, i.e., for the partial derivativesDiuε,
i = 1, 2, 3. As usual, we omit the subscript ε for a while. We have:

|Diu| = |εDiµ+ ρDiµ+ µDiρ| ≤ 2|Diµ|+ µ|Diρ|.

Now, on taking (3.7) into account, we see that Diµ is bounded in L2(0, T ;H), while µ is
bounded in L2(0, T ;L6(Ω)) thanks to the Sobolev inequality (3.4). On the other hand, (3.9)
provides a bound for Diρ in L∞(0, T ;H). Hence, using Hölder inequality, we see that the
product µDiρ is bounded in L2(0, T ;L3/2(Ω)). Therefore, we conclude that

‖uε‖L2(0,T ;W 1,3/2(Ω)) ≤ cT . (3.21)

Consequence. As (3.19) holds, from (3.21) we infer that

uε → 2µρ weakly in L2(0, T ;W 1,3/2(Ω)). (3.22)
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Now, we observe that the embeddingW 1,3/2(Ω) ⊂ Lq(Ω) is compact for every q < 3, by (3.3).
On the other hand, (3.20) holds. By using the Aubin-Lions lemma (see, e.g., [10, Thm. 5.1,
p. 58]), we deduce the strong convergence

uε → 2µρ strongly in L2(0, T ;Lq(Ω)) for every q < 3. (3.23)

We stress that, in particular, uε → 2µρ strongly in L2(0, T ;H).

Lemma 3.3. The strong convergence µε → µ holds in L2(0, T ;H).

Proof. We set u := 2µρ and argue a.e. in QT for a while. Thanks to Lemma 3.2, we have

|µε − µ| =
∣∣∣ uε

ε+ 2ρε

− u

2ρ

∣∣∣ =
∣∣∣2ρuε − εu− 2ρεu

2ρ(ε+ 2ρε)

∣∣∣ ≤ ε|u|+ 2|ρuε − ρεu|
4r2
∗

.

On the other hand, we have

|ρuε − ρεu| ≤ |ρ| |uε − u|+ |u| |ρ− ρε| ≤ |uε − u|+ 2µ |ρ− ρε|.

By combining these inequalities, we deduce that

‖µε − µ‖L2(0,T ;H)

≤ c
(
ε‖u‖L2(0,T ;H) + ‖uε − u‖L2(0,T ;H)+‖µ‖L2(0,T ;L4(Ω))‖ρ− ρε‖C0([0,T ];L4(Ω))

)
. (3.24)

The first two terms on the right-hand side tend to zero as ε ↘ 0, by (3.23); as to the last term, it
suffices to recall (2.15), (3.14), and (3.4) for q = 4. �

Conclusion. The strong convergence guaranteed by Lemma 3.3, together with the weak con-
vergence ∂tρε → ∂tρ in L2(0, T ;H) given by (3.12), imply that

µε ∂tρε → µ ∂tρ weakly in L1(QT ).

On the other hand, (3.20) and (3.11) hold. Hence, by letting ε ↘ 0 in (3.16), we easily obtain
that

2

∫ T

0

〈∂t(µρ)(t), z(t)〉 dt =

∫ T

0

∫
Ω

µ∂tρ z −
∫ T

0

∫
Ω

∇µ · ∇z (3.25)

for every z ∈ L5(0, T ;V )∩L∞(QT ). Now, take any v ∈ V ∩L∞(Ω) and any ζ ∈ L∞(0, T ).
Then the function z : t 7→ ζ(t)v is admissible in (3.25), and a standard argument yields

2〈∂t(µρ)(t), v〉+

∫
Ω

∇µ(t) · ∇v =

∫
Ω

µ(t) ∂tρ(t) v,

for every v ∈ V ∩ L∞(Ω) and for a.a. t ∈ (0, T ). Now, we note that, for a.a. t ∈ (0, T ),
each term in the above equation defines an element of V ∗. This is clear as far the left-hand side
is concerned, since ∂t(µρ) is V ∗-valued and µ is V -valued. For the remaining term, we recall
Remark 2.3. On the other hand, V ∩ L∞(Ω) is dense in V . Therefore, (2.20) follows, and the
proof is complete. �
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4 Long-time behavior

This section is devoted to proving Theorem 2.7. We first derive some a priori estimates, then we
prove the continuity property announced in the statement; finally, we characterize the ω-limit.

A priori estimates. We recall Lemma 3.2 and the a priori estimates (3.7) and (3.8), which
involve constants that do not depend on the final time. Hence, we immediately obtain that

ρ(t) ≥ r∗ and ‖µ(t)‖H + ‖∇ρ(t)‖H ≤ c for a.a. t > 0. (4.1)

Recalling that 0 < ρ < 1, we see, in particular, that (µ, ρ) is a bounded (H × V )-valued
function, as stated. For the same reason, we also deduce that

‖(µρ)(t)‖H ≤ c for a.a. t > 0. (4.2)

Moreover, the estimates (3.7) and (3.8) also yield the bounds

‖∇µ‖L2(0,T ;H) + ‖∂tρ‖L2(0,T ;H) ≤ c for every T > 0,

and we conclude that∫ ∞

0

∫
Ω

|∇µ|2 < +∞ and

∫ ∞

0

∫
Ω

|∂tρ|2 < +∞. (4.3)

Strong and weak continuity. As far as ρ is concerned, we have ρ ∈ H1(0, T ;H)
∩L2(0, T ;W ) for every T < +∞ by (3.12). Since the embedding

H1(0, T ;H) ∩ L2(0, T ;W ) ⊂ C0([0, T ];V )

holds, we immediately deduce that ρ is a strongly continuous V -valued function. The weak
continuity of µ is less obvious: we prove it by using the following well-known tool, whose proof
is left as an exercise to the reader.

Proposition 4.1. Let Z be a Hausdorff topological space, and let Z be a reflexive Banach
space such that Z ⊂ Z, where the embedding is continuous with respect to the weak topology
of Z . Assume that z : [0, T ] → Z is continuous and that z(t) ∈ Z and ‖z(t)‖Z ≤ M for
a.a. t ∈ (0, T ) for some constant M . Then z is Z-valued, i.e., z(t) belongs to Z for every
t ∈ [0, T ], and is continuous with respect to the weak topology of Z . Moreover, ‖z(t)‖Z ≤M
for every t ∈ [0, T ].

In our case, we argue on any fixed finite time interval [0, T ] and apply Proposition 4.1 twice, first
with Z = V ∗, with either the weak or the strong topology, then with Z = L1(Ω), endowed with
the weak topology. We set:

u := 2µρ, (4.4)

in order to agree with (3.6), and we recall that u ∈ W 1,5/4(0, T ;V ∗), by (3.20); in particular,
u ∈ C0([0, T ];V ∗). On the other hand, we have proved (4.2). We conclude that u(t) ∈
H for every t ∈ [0, T ] and that u is continuous with respect to the weak topology of H .
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Besides, ρ is strongly continuous as an H-valued function, and the first condition in (4.1) holds.
Hence, the same is true for 1/ρ, and we infer that µ = u/(2ρ) is a weakly continuous L1(Ω)-
valued function. Now, we recall the estimate of µ given by (4.1) and conclude that µ is weakly
continuous as an H-valued function.

Conclusion. It remains for us to show that every element of the ω-limit is a steady state. To
this end, we pick any (µω, ρω) ∈ ω(µ, ρ) and consider a corresponding sequence tn ↗ +∞,
as given by definition (2.24). We set:

µn(t) := µ(tn + t), ρn(t) := ρ(tn + t), and un(t) := u(t+ tn), for t ≥ 0, (4.5)

and study the sequence {(µn, ρn)} on a fixed finite time interval [0, T ] by using un as well.
From (4.1), (4.3), and weak star compactness, we immediately deduce that

µn → µ∞ weakly star in L∞(0, T ;H), ρn → ρ∞ weakly star in L∞(0, T ;V ),

|∇µn| → 0 and ∂tρn → 0 strongly in L2(0, T ;H),

at least for a subsequence. It follows that µ∞ is space- and ρ∞ time-independent. Thus, we can
write ρ∞(t) = ρs for a.a. t ∈ (0, T ) for some ρs ∈ V . On the other hand, we can reproduce
the estimates (3.10), (3.18), and (3.21), on the time interval [tn, tn + T ] instead of [0, T ]. We
obtain:

‖f ′1(ρ)‖L2(tn,tn+T ;H)+‖ρ‖L2(tn,tn+T ;W )+‖un‖W 1,5/4(tn,tn+T ;V ∗)∩L2(tn,tn+T ;W 1,3/2(Ω)) ≤ cT ,

where cT does not depend on n. This means that

‖f ′1(ρn)‖L2(0,T ;H) + ‖ρn‖L2(0,T ;W ) + ‖un‖W 1,5/4(0,T ;V ∗)∩L2(0,T ;W 1,3/2(Ω)) ≤ cT . (4.6)

Thus, ρ∞ ∈ L2(0, T ;W ), i.e., ρs ∈ W . Moreover, to derive a strong convergence for ρn

in C0([0, T ];H), we can argue as in the previous section. This allows us to ensure that f ′2(ρn)
converges to f ′2(ρ∞) strongly in L2(0, T ;H) and that the weak limit of f ′1(ρn) in L2(0, T ;H),
given by weak compactness, is f ′1(ρ∞). All this yields that

0 < ρs < 1 and −∆ρs + f ′(ρs) = µ∞ a.e. in QT ,

and we deduce that µ∞ is even time-independent. Thus, µ∞(x, t) = µs for a.a. (x, t) ∈ QT for
some constant µs. Furthermore, µs is nonnegative, since µn ≥ 0 for every n. This concludes
the proof that (µs, ρs) is a steady state.

Lastly, we show that (µs, ρs) coincides with (µω, ρω). Because ρn → ρ strongly in
C0([0, T ];H), we see that ρn(0) converges to ρ∞(0) = ρs strongly in H . On the other
hand, by assumption ρn(0) = ρ(tn) converges to ρω weakly in V . Hence, ρs = ρω. The
corresponding argument for µs and µω is a bit more involved. We remind that the embedding
W 1,3/2(Ω) ⊂ H is compact. Hence, from (4.6) and the Aubin-Lions lemma, we conclude that
there is some u∞ such that

un → u∞ weakly in W 1,5/4(0, T ;V ∗) ∩ L2(0, T ;W 1,3/2(Ω)), (4.7)

whence un → u∞ strongly in L2(0, T ;H). (4.8)
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On the other hand, the strong convergence ρn → ρ∞ in C0([0, T ];H) and the uniform in-
equality ρn ≥ r∗ imply the strong convergence 1/ρn → 1/ρ∞ in C0([0, T ];H). We infer
that

µn =
un

2ρn

→ u∞
2ρ∞

strongly in L2(0, T ;L1(Ω)).

Since µn → µ∞ weakly star in L∞(0, T ;H), we conclude that u∞/(2ρ∞) = µ∞, i.e., that
u∞(t) = 2µsρω for a.a. t ∈ (0, T ). Next, the first weak convergence (4.7) also implies weak
convergence in C0([0, T ];V ∗); in particular, un(0) converges to u∞(0) = 2µsρω weakly
in V ∗. On the other hand, by assumption µ(tn) → µω weakly in H and, due to the already
mentioned strong convergence ρn → ρ∞, ρ(tn) → ρω strongly in H . We infer that un(0) =
2µ(tn)ρ(tn) converges to 2µωρω weakly in L1(Ω). By comparison, we conclude that 2µsρω =
2µωρω, i.e., that µs = µω. �
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