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Abstract 
A continuous super-Brownian motion X ~ is constructed in which branch-
ing occurs only in the presence of catalysts which evolve themselves as 
a continuous super-Brownian motion fl· More precisely, the collision lo-
cal time L[W, e] (in the sense of Barlow et al. (BEP91]) of an underlying 
Brownian motion path W with the catalytic mass process fl governs the 
branching (in the sense of Dynkin's additive functional approach). In 
the one-dimensional case, a new type of limit behavior is encountered: 
The total mass process converges to a limit without loss of expectation 
mass (persistence) and with a positive (finite) limiting· variance, whereas 
starting with a Lebesgue. measure l, stochastic convergence to l occurs. 
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1 Introduction 

1.1 Motivation 

The. motivation for the study of catalytic branching comes from two differ-
ent viewpoints of catalytic chemical and biological systems - one microscopic 
and the other macroscopic. At the microscopic level in a chemical reaction a 
molecule can be involved in certain chemical reactions only in the presence of a 
catalyst. At the macroscopic level spatially distributed chemical reactions are 
described by reaction diffusion equations and the catalyst enters as a spatially 
heterogeneous rate function. In some cases the catalyst may only be present in 
some localized regions such as networks of filaments or the surfaces of pellets. 

Figure: Enzymes located on a networ~ of filaments 

Such a system is modelled by a catalytic reaction diffusion equation.in Rd of the 
form 

au 1 - as = 2.6.u+ eaR(u), 0 ~ s ~ t, (1) 

with t~rminal condition ula=t = cp, where R is the reaction term and{}$ describes 
the spatial density of the catalyst at time s and is assumed to be given by a 
continuous measure-valued path s 1-7 {!6 • (From a probabilistic point of view, 
this backward formulation is more natural than the usual forward one where cp 
would be the initial function.) Since {!6 might be rather singular, the precise 
meaning of this equation is made clear in the related evolution form (integrated 
form}, namely 
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u(s, t, a) Jdb p(t - s, b - a) cp(b) 

+ l dr j [!,.(db) p(r - s, b- a) R(u(r, t, b)). 
(2) 

where p( t, b) denotes the transition density of standard Brownian motion in Rd. 
Partial differential equation methods has been used to study ( 1) in the case 

in which fb is assumed to be a well-behaved measure concentrated on an open 
set or on a hypersurface; cf. Chadam and Yin [CY94], Chan and Fung [CF92), 
Bramson and Neuhauser [BN92], Durrett and Swindle [DS94]. On the other 
hand in some biochemical reactions (e.g. glycolysis) enzymes serving as catalyst 
are located on a filament network which might be modelled by a fractal set. 
(See the figure to ge.t an idea.) 

In the approach followed in this paper conditions on a general measure-
valued path f! in order for this equation (2) to make sense will be formulated. 
Note however if f!t(db) = u(db) and the latter measure charges some polar set, 
infinities can occur in the reaction term of this equation. This leads to restric-
tions that must be placed on f! which will be made precise in the probabilistic 
development below. 

There is a close. relation between a subclass of quasilinear reaction diffusion 
equations (with regular reaction term) and both branching particle systems and 
superprocesses. For instance, Dynkin and Kuznetsov [DK95] and Le Gall [LG95] 
have exploited this relation with superprocesses to study the question of remov-
able singularities for these equations. Gorostiza and Wakolbinger [GW95] have 
used both branching particle system and superprocess representations to obtain 
results on the long time behavior of systems of reaction diffusion equations. 

In· the same way, there is a relation between catalytic reaction diffusion 
equations and catalytic branching particle systems respectively superprocesses, 
and this may also lead to a probabilistic approach to the analysis of these 
equations. In addition the branching particle system viewpoint naturally leads 
to a "microscopic" level interpretation of the catalytic reaction as well as being 
of interest in its own right. 

Catalytic branching has been studied already in a series of papers: [DFR91, 
DF91, DF94, Fle94, DF95, DFLM95, DFL95, FL95, DLM94, Dyn94a]. 

1.2 Intuitive description of catalytic branching 
At ,the microscopic level we begin with a system of reactant particles and a 
spatially density field f! = {ut(b); t ;::: O, b E Rd} of a catalyst. Here et(b) is 
understood as the generalized derivative f!t ( db) / db at b of the (possibly singular) 
measure f!t ( db ). Let us assume that the reactant particles move independently 
in Rd according to standard Brownian motions W, except that each particle 
located at time t at b may die or branch with offspring generating function G 
at rate proportional to the "amount of catalyst u( t, b) present at time t at b". 
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Newly born particles start at the position of their parent but otherwise move 
independently. 

Let N(t) denote the (random) number of reactant particles at time t and 
:vi(t) the (random) location of the ith particle at time t. Then E~~) d:z:i(t) is 
the state of reactant at time t. If we start at time s with a single particle at 
a, this system of branching Brownian motions is described by its (transition) 
Laplace functional 

which satisfies the catalytic reaction diffusion equation 

8v( s, t, a) 1 ( ) - as = 2Dt.v(s,t,a)+us G(v(s,t,a))-v(s,t,a) , 

where cp is a non-negative measurable fu~ction on Rd. 
Heuristically; this equation can be reformulated (using the approach of Dyn-

kin [Dyn94b]) as 

v( s, t, a) = IT,,. [exp [-:- L( s, t)] exp [ - ip(W,JJ] 

+ J.'L(dr)exp( -L(s,r)]G(v(r,t,W,))l 

where Ils,a. denotes the law of Brownian motion W starting at time s at a. 
Moreover, L = L[W, u] is a continuous additive functional of W, the so-called 
collision local time between a Brownian particle with path Wand the catalytic 
medium u which heuristically is given by 

Now db (Wr )L( dr) gives a more precise meaning to "the amount of catalyst 
u(r, b) present at timer at b" meat by a reactant particle with path W (when 
Ur is a singular measure). This captures the microscopic view that a tagged 
Brownian particle with path W branches according to a "clock" given by the 
additive functional L[W, u]. 

Formally this covers the interesting case in which the catalyst also consists 
of diffusing particles: Ut = Li d'-y,.(t): Then 

L(W, u](s, t) = L, [dr 07,(rJ(W, ), 
i 

which makes sense in dimension d = 1. 
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If we assume that the offspring distribution of reactant has a finite second 
moment we obtain in the usual high density limit the catalytic super-Brownian 
motion X = xu = { Xf; t ~ 0} in Rd, described by the log-Laplace function 

v(s, t, a) = -log P6 ,o,.. exp-J Xtu(db) cp(b) 

which solves a special case of the catalytic reaction diffusion equation introduced 
in (1), namely 

8v(s,t,a) 1 2 I - a = -.6.v(s,t,a)-u&(a)v (s,t,a), s~t, v =<p, s 2 &=t 

(recall U6 (a) is understood as the generalized density function of the measure 
U" (da)). 

In the case in which Ut(db) = 7db, where '"Y is a (strictly) positive constant, 
xu is the usual (critical) continuous super-Brownian motion {SBM). However in 
applications the catalytic mass u can be a singular measure u( db) (e.g. concen-
trated on a hypersurface), may vary in time, Ut ( db), (varying medium), or even 
be sampled from a random object (random medium). For example, we could 
consider the situation in which u is an ensemble of catalytic particles which also 
undergo branching with constant branching rate. 

In fact, our first objective in this paper is to initiate the study of a catalytic 
branching model xu in which the catalytic mass process u evolves itself as a 
super-Brownian motion with constant branching rate '"Y· Note that in dimensions 
d ~ 2 the collision local time of a pair of Brownian particles is always zero (recall 
that independent Brownian particles do not meet in d ~ 2.). Nevertheless we 
will see that in dimensions d = 2, 3 a Brownian particle does have a nontrivial 
collision local time with a super-Brownian catalytic medium u, and that in these 
dimensions we can define a super-Brownian motion xu with a catalyst u which 
is a super-Brownian motion (with constant branching rate 7). 

The second main objective is to start the study of the qualitative behavior 
of this system. For example does the reacting species xtu die out in the long 
time limit t ~ oo? In order to address this problem it is necessary to consider 
spatially homogeneous initial conditions uo (e.g. Lebesgue measure £), and for 
this reason in our basic construction we consider a class of infinite measures. 

These models with "one-way interaction" can also be viewed as an inter-
mediate step to spatial branching models with proper interaction. A model of 
"two-way killing" using collision local time is developed in Evans and Perkins 
[EP94], and a model with "mutually catalytic branching" will be studied in 
Dawson, Mueller and Perkins [DMP95]. 

1.3 Further details on the model to be constructed 
Let us now discuss in more detail our case in which u is actually sampled itself 
from a continuous SBM in Rd with a constant branching rate '"Y > 0. Conse-
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quently, {] serves as a catalytic random medium for X = X e. For simplicity, we 
call e the catalyst process and xe the catalytic SBM. 

In the particle picture this means in particular that an X-particle (reactant) 
may branch only if it is in the vicinity of a (]-particle (catalyst). In other words, 
branching of a reactant is controlled by the collision local time L = L[W, e] of 
its Brownian path W with all the Brownian paths of the catalyst (occupation 
density of this X-particle on all the (]-particles). 

To be more specific, consider first the one-dimensional case d = 1. It is well-
known that here the continuous SBM {] lives in the set of absolutely continuous 
measures. Therefore in this case the Radon-Nikodym densities {}t ( b) of {]t ( db) / db 
(with respect to the Lebesgue measure db) taken at b exist for each t > 0, even 
as a jointly continuous field {et(b); t > O, b E R} (Konno and Shiga [KS88], 
Reimers [Rei89]). Thus, given {], 

(3) 

defines a continuous additive functional L = L[W, e] of Brownian motion W 
which we call the Brownian collision local time {BCLT} of (]. This L is used 
to govern the branching of a reactant with path W, in the given medium (]. 
At least intuitively, this makes clear that the one-dimensional xe as informally 
described above exists. 

The situation changes dramatically for dimensions d ~ 2, since then the 
random measures et(db) are singular (Dawson and Hochberg [DH79]). Hence, , 
one cannot use (3) to give an immediate definition for a BCLT of(]. Nevertheless, 
also in dimensions d = 2 and 3 Brownian collision local times L = L[W, e] exist 
non-trivially. For the case of a finite measure-valued SBM {], see Evans and 
Perkins [EP94, combine Theorem 4.1 and Proposition 4.7]. As a consequence· a 
non-degenerate catalytic SBM xe can be constructed in these dimensions, even 
in the infinite measure case. 

For dimensions d ~ 4 however, the Brownian collision local time L = L[W, e] 
of {] degenerates to O, since the closure of the graph of {] does not intersect with 
the graph of W, see Barlow and Perkins [BP93, Proposition 1.3]. In other words, 
here the reactants do not "feel" the catalyst, thus cannot branch. Therefore in 
these higher dimensions, if xe exists it must degenerate to the heat flow. 

1.4 Sketch of main results 
The first objective of the present paper is a rigorous construction of the contin-
uous catalytic SBM xe, for dimensions d ~ 3. For this we assume as a rule that 
both the catalyst process g and the catalytic SBM xe start off with a Lebesgue 
measure l. A basic step is to establish the existence of the Brownian collision 
local time L = L[W, u] of g for the present infinite measure-valued g (Theorem 
40 at p. 40). This heavily relies on results of Evans and Perkins [EP94]. Based 
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on this step we then rigorously define X El (in dimensions d ~ 3) as a continuous 
process. Here in constructing the process X El, first fl is sampled and then the 
Markov process xe evolves in this chosen fixed medium e (quenched approach). 

Before we turn to the long-term behavior, it might be convenient at this 
stage to briefly recall some well-known facts on the (critical) continuous SBM 
fl with constant branching rate ; > 0. (For more details we refer to Dawson 
[Daw93, Chapter 4].) 

If fl starts with a finite measure eo, then the total mass flt(Rd) degenerates 
to 0 after an a.s. finite time regardless of the dimension. When considering the 
total mass, the space structure becomes irrelevant since the branching rate is 
constant, resulting in Feller's critical branching diffusion. 

Concerning the long-term behavior of e starting with a Lebesgue measure 
l, it is well-known that flt suffers local extinction as t -+ oo almost surely, 
provided that d = 1, and stochastically if d = 2, whereas in all other dimensions 
convergence in law to a non-trivial steady state floo with expectation i takes 
place (Dawson [Daw77]). 

Our second objective is to initiate the study of the long-term behavior of 
xe, namely in the one-dimensional situation. Perhaps surprisingly at first 
sight, the picture is somewhat different from the results on one-dimensional 
branching models previously dealt with. In fact, for almost all realizations 
fl of the catalytic medium (starting with eo = £), the random Xf converges 
(stochastically) as t -+ oo to the starting Lebesgue measure X 0 = l (Theorem 
48 at p. 49). Consequently, here we have persistence, that is, no loss of intensity 
in the limit (which in usual spatial br~nching models occurs only in higher 
dimensions). Moreover, in the finite measure case, the total mass process of 
xe converges a.s. to a limit which is non-deterministic and again with full 
expectation (Theorem 47 at p. 46). 

On an intuitive level, this new type of long-term behavi~r of xe c~n be 
understood taking into account the clumping features of the (one-dimensional) 
catalyst process fl: At a late time, the spatially homogeneous f!t has already 
died out in most regions of the space (see Dawson and Fleischmann [DF88]). 
Hence the reactant has only a small chance to meet the huge but rare remaining 
clumps of catalyst. Therefore the random medium fl effects a tagged X-particle 
only during some finite initial time interval. As a consequence, each finite initial 
mass Xo undergoes a critical branching in a varying medium e for some finite 
time only, but does not change after this, except for its spatial dispersion by the 
heat flow, which is irrelevant for the total mass process. In particular, it cannot 
lose any expectation of mass as t-+ oo. In the infinite measure case, additionally 
a law of large number effect has to be taken into account for all independently 
evolving finite parts of X 0 • In simple terms, in dimension one, after a starting 
period, the random medium e no longer influences the X-process, which then 
evolves (locally) as the heat flow. 

This relatively complete picture concerning d = 1 however does not give a 
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hint for the long-term behavior of xe in the more delicate dimensions d = 2, 3 
which we leave open for a later study. 

1.5 Outline 

In the next section· we prepare some tools: branching rate functionals K and 
related cumulant equation settings. Section 3 is devoted to the construction of 
the infinite measure-valued SBM XK with general branching rate functional K, 
and the related occupation measure process Y K. This construction is carried 
out by extending the construction of superprocesses to the case of infinite initial 
measures and also by introducing a localized version of Dynkin 's admissibility 
condition [Dyn94b]. We give sufficient conditions on K for the existence of a 
continuous version of X K, and also for the absolute continuity of the states of 
XK and yK. 

In Section 4 we compile facts on the SBM with constant branching rate we 
later need for our catalyst process f!· In particular, we extend Sugitani's [Sug89] 
joint continuity of the occupation density field to joint Holder continuity, and 
in fact in a self-contained way. Section 5 contains our results on the Brownian 
collisi~n local time L[W, f!] of the catalyst process f!· These results extend the 
BCLT introduced by Barlow, Evans and Perkins [BEP91] to the case in which 
the super-Brownian motion has infinite initial measure. After these compre-
hensive preparations, the emstence of the catalytic SBM X e is established in 
§ 5.4. Finally, in Section 6 we study the longtime behavior of Xf as t-+ oo in 
dimension d = 1. 

2 Preparation: Cumulant equation 
The purpose of this section is to provide some equation tools needed in the next 
section to establish (Proposition 11 at .P· 17 below) the existence of an infinite 
measure-valued SBM XK with a given branching rate functional K, and, under 
an additional assumption on K, of a continuous version of X K. 

2.1 Preliminaries: Spaces 
If Eis a topological space, measurability always refers to the a-field of all Borel 
subsets of E. Let B(E) denote the space of all measurable (real-valued) functions 
on E. We write bB(E) for the subspace of all bounded functions. A lowe:r; index 
+ on a set refers to the subset of all of its non-negative members. 

Usually we consider the Euclidean space E = Rd of dimension d;::: 1, and 
in this case we mostly omit the "argument" E, and simply write B, bB. Often 
also the case E =Ix Rd appears, where I is always a finite closed subinterval 
[L, T], L ~ T, of R+. 
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Fix a constant p > d (with d the dimension of the phase space Rd), and a 
constant /3 ~ 0. Introduce the reference function </>p defined by 

</>p(a) := (1 + /3lal 2)-p/2
, (4) 

Let BP denote the set of all those cp E B satisfying jcpl s crp</>p for some constant 
Crp . If f3 > 0 then these are functions in bB with decay at least of order lal-p as 
a --t oo. For simplicity we then say that cp is of p-potential decay. 

Let BP11 denote the set of all those 1/; E B(I x Rd) which are dominated in 
the sense that l'l/J(s, ·)Is c,µ</>p, s E J, for some constant c,µ. 

Write C, bC, CP, CP11 for the subsets of all continuous functions in B, bB, 
BP, BP11 , respectively. BP and CP equipped with the norm ll'Pll := llcp/</>plloo, 
cp E BP or CP, respectively, are Banach spaces. (Here 11 · lloo always denotes the 
supremum norm.) Similarly, BP11 and CP11 , endowed with the norm 

ll1/Jll1 := SUPaeJ 11-rP(s, ·)II, (5) 

respectively, are Banach spaces. The subspace CPil of CP of those functions <p 
which have a finite limit limlbl~oo cp(b)/</>p(b) is even separable. The same is 
true for the analogously defined C p,I;l. 

We introduce the "dual" set Mp of all (locally finite non-negative) measures 
µ on Rd such that 

llµllP := (µ, </>p) < +00 

where we set (µ, cp) := fµ(db) cp(b). We endow Mp with the weakest topology 
such that the maps µ 1-7 (µ, cp) are continuous, for all cp E CPil. If f3 > O, 
then Mp is the set of p-tempered measures, equipped with the so-called p-vague 
topology (note that Mp and its topology are independent of the choice of the 
constant f3 > 0). Otherwise (if /3 = 0), the class Mp degenerates to the set M1 
of all finite measures on Rd endowea with the weak topology. 

Denote by .,Pp the function on Ix Rd which equals </>p constantly in time, 
that is 'l/Jp(r, ·) = </>p. In analogy to Mp introduce the set M: of all measures 11 
on Ix Rd such that (11, 'l/Jp)1 < +oo where 

(11, 1/;)i := f, 11(d[r, b]) .,P(r, b), 
IxR" 

(6) 

We furnish M: with the weakest topology such that .the maps 111-7 (11, .,P)i are 
continuous for all 'I/; E C p,I;l. 

Set llµllP := (µ, </>p), µ E Mp, and write 11µ11 for the total mass µ(Rd) if 
µEM1. 

The open ball in Rd with center a and radius r is denoted by B( a, r ). 
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2. 2 Branching rate functional K 
An essential ingredient for the branching models under consideration is the 
notion of ~ branchiI.lg rate functional K which we will introduce this in this 
subsection. 

Let W = [W, II.,,a, s ~ O, a E Rd] denote a standard Brownian motion 
in Rd, on canonical path spaces of continuous functions. (Although W is a 
time-homogeneous Markov process, for convenience we use the inhomogeneous 
setting Il6 ,a .) Write p for its continuous transition density function, 

p(t, a, b) = p(t, b- a):= (27rttd/2 exp-lb~;r~, t > O, a, b E Rd, 

and S = {St; t ~ O} for the related semigroup. Set formally St = 0 fort< 0. 
Put 

Ila,µ := f µ(da) IT6 ,a , s ~ O, µ E M 11 , 

for the "law" of W starting at time s in the point a "distributed" according to 
the (infinite) measure µ. 

Recall that a (non-negative) functional· A = A[W] of W is called additive 
if, given W, it is a measure A( dr) on R++ := (0, +oo ), finite on bounded 
subintervals, and moreover, if AJ := A(J) is measurable with respect to the 
universal completion of the u-field generated by {Wr; r E J}, for every open 
interval J := (s, t) where 0 ~ s < t. 

Definition 1 (branching rate functional K) An additive functional K = 
K [W] of the Brownian motion W is called a branching rate functional, if 

(a) it is continuous, i.e. K(dr) does not carry mass at any single point set,. 

(b) it has locally finite characteristic, i.e. has the following finite expectations 

( c) and finally if it is locally admissible, i.e. 

sup II6 ,a J.t K(dr) </>11 (Wr) O, 
aeR.t a [a,t],j.{ro} 

ro ~ 0. (7) 

Denote by K the set of all branching rate functionals, and by Ko the subset of 
those K E K satisfying both (b) and ( c) even with the reference function </>11 of 
( 4) replaced by the constant function 1 (or setting {3 = 0 in ( 4)). 

Write Kn t Ko if Ko, Ki, ... E K and if with probability one Kn(J) t 
K 0 (J) as n --+ oo for all open intervals J of R++. Call Ki, K2, ... E Ko an 
appro:vimating sequence of K E K if Kn t K. 0 
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Remark 2 (localization) (i) Dynkin [Dyn94b, § 3.3.3] called the functionals 
in Ko admissible. Our localized version of this (that is the definition of the set 
K) is motivated by our aim later to cover the case of the collision local time 
K = L = L[W, e] of Brownian motion W with the continuous SBM e starting 
with an (infinite) Lebesgue measure I.. 
(ii) Ko is dense in K in the following sense: To each K E K there exist an 
appro~imating sequence Kn t K. In fact, 

can be taken. 

Kn:= f K(dr) (1 /\ n</>p)(Wr) E Ko, 
le.> 

n ~ 1. 

(iii) If K(dr) belongs to K, then </>p(Wr)K(dr) belongs to Ko. 

(8) 

0 

In § 3.1 below, such branching rate functionals K will be used to govern the 
branching of particles hidden in clouds of populations. 

In order to conclude later for the existence of SBMs X K with finite higher 
moments or even having continuous paths, we will need some additional condi-
tions on K (which will be used already in § 2.4 below). 

Definition 3 Let K be a branching rate functional, that is KE K. 

(a) (functionals in K*) We say that K belongs to K* if for each (finite) 
I = [ L, T] C R+ there exists a constant x:.1 such that 

(That is, this supremum expression belongs to B~ .) 
(b) ( functionals in Ke) Let e > 0 be fixed. K is counted to befong to Ke if 

for each N > 0 there is a constant cN- > 0 such that . 

0 ::; s ::; t ::; N, a E Rd. 
0 

Note that Ke C K*. The set K* is devoted for the existence of XK with 
finite higher mom;nts, whereas Ue>o Ke is aimed to X K having continuous 
paths. 

Example 4 (special K) (i) In the constant branching rate case K(dr) = 
'Y dr, this functional K is non-random and homogeneous in time and space and 
belongs to Kon Ke with e = 1, and leads to the catalyst process u; see Section 
4 below. 
(ii) In the single point catalytic model of [DF94] (where d = 1), the branching 
rate functional K( dr) is given by the Brownian local time Le( dr) at a fixed 
point c ER, hence it also belongs to Kon Ke but now with e = 1/2. 0 



SB motion in a SB medium 13 

2.3 Basic equation setting 
A basic tool for super-Brownian motions is the so-called cumulant equation we 
now deal with. Fix a closed interval I := [L, T], 0 ~ L ~ T. 

Proposition 5 ( cumulant equation) Fi:e a branching rate functional K = 
K[W] in K and an additive functional A = A[W] of Brownian motion W 
having a locally bounded characteristic, i.e. 

SUP.seI II.s,a A[s, T] ~ cA</>p(a), (9) 

for some constant CA. Then the following statements hold: 

(a) (unique existence) There is e~actly one function v =: v1 [A, K] E B~·1 

satisfying the integral equation 

v(s,a) = IT,,.[A[s, T]-t K(dr) v2(r, W,)]. 

(b) (continuity in K) If Kn t Ko in K, the pointwise monotone convergence 
Vn {. vo as n -too holds for the corresponding solutions Vn. := v1 [A, K 11.] 

of equation (10). 

Example 6 (special A) An important special case of the additive functional 
A is given by A(dr) = 'lf;(r, Wr)a(dr) with 'If; E B~·1 and where a is a (non-
random) finite measure on I. In particular, if a = dT + l1(r) dr. In fact, 
the domination property ( 9) then follows from a corresponding property of the 
heat solution ST-.s'P(a) = IT,,,acp(WT) with terminal condition cp E BP (see e.g. 
Lemma 4.1 in [DF88]): 

(where the constant const depends on I). 

(11) 

0 

Proof 1° (localization) Ifin (10) we replace K by Kn from (8), then by The-
orem 3.4.2 of Dynkin [Dyn94b] there exists a unique non-negative bounded so-
lution Vn of (10) (the non-negativity follows from the construction given there). 
Then from (10) and (9) we get 

(12) 
Hence, ,the solution Vn is dominated. Moreover, by construction, Vn is monotone 
non-increasing in n. Denote by v the pointwise limit of Vn as n -t oo. 

2° ( emstence) The limit v ~ 0 is obviously dominated: It will solve (10) if we 
show that 

II.s,a J.T Kn(dr) v~(r, Wr) ---+ II.s,af.T K(dr) v2 (r, Wr) (13) 
.. n-+oo .s 
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for each s E I and a E Rd. This will be done via two-sided estimates. 
The l.h.s. can be estimated below by switching from Vn to v. Then the 

r.h.s. appears as the finite monotone limit as n--+ oo, since by (12) the l.h.s. is 
dominated, uniformly inn. 

Concerning the other direction, replace Kn by K at the l.h.s. of (13). As-
suming for the moment that we still have a finite expression, -we will be ready, 
again by monotone convergence. 

To show the mentioned finiteness, by (12) it suffices to show that 

II,,. J.T K(dr) ~.cw,)< co, 

But this follows from the local admissibility (7) by taking a sufficiently small 
partition of the interval (s, T), and using the Markov property. 

Altogether, we showed that the limit v satisfies (10), giving the existence 
claim in (a). 

3° (continuity) Assuming only Kn t K in ·K in the arguments of the previous 
step of proof, and uniqueness of solutions which will be shown in the next 
step, the continuity statement (b) follows by the same two-sided estimation 
arguments. 

4° (uniqueness) Assume for the moment that v1 and v2 are different solutions 
to (10). Let To denote the supremum over all s E I such that v1(s) f:. v2(s). 
If To = L, then from (10) we get v1(L) - v2(L) = 0 yielding a contradiction. 
On the other hand, if To > L, then by construction and using the domination 
property (12), 

(14) 

for s E [L, To) and a E Rd, and some constant c > O, where (in this proof) II· II.! 
refers to the supremum norm on [s, To) x Rd. Choose e > 0 such that ce < 1, 
and by the local admissibility (7) take Lo E [L, To) such that 

II,,. J.T' K(dr) ~,(W,) :5 e, 

Then from ( 14) we get 

lv1 - v2l(s, a) ~ ce 1lv1 - v2llLo, 

which yields a contradiction. This establishes uniqueness and finishes the proof 
of the proposition. B 

. The setting of the cumulant equation, provided in Proposition 5, will enable 
us later to construct a SBM XK with branching rate functional K, see § 3.1. 
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2.4 Derivatives of solutions to a small parameter 
In order to deal later with higher moment formulas of the processes to be con-
structed, in this subsection we will derive some estimates for higher derivatives 
of solutions of the cumulant equation with respect to a small parameter fJ. For 
typographical simplification, we introduce the following convention. 

Convention 7 (derivatives) If a function f on some space additionally de-
pends on a parameter fJ 2:: o, write on f for the nth partial derivative off with 
respect to fJ (if exists), and j(n) for on fla=o+. 0 

In this subsection we will actually work with the following hypothesis. Recall 
that I= [L, T], 0 :5 L :5 T. 

Hypothesis 8 Fix K E K* (recall Definition 3 (a)), f E 8~'1 , and let fJ 2:: 0. 
Assume that v = va E B~,I solves the equation 

v(s,a) = !Jf(s,a)-II,,. J.T K(dr) v2(r, W,), 

and set 
u = ua := fJ f - v. · 

Start with the following simple lemma (recall the Convention 7): 

(15) 

(16) 
0 

Lemma 9 (recurrence schema for derivatives) Under Hypothesis 8 we 
have 

u<1) = f - v(l) = O, (17) 
whereas the sequence { u(k); k 2:: 2} of functions on Ix Rd is uniquely determined 
by the fallowing recurrence schema: 

u<2>(s a) = 2 II r'!rK(dr) f 2 (r W:) , a,a Ja . ' r ' 

u(k)(s,a) = -2IIs,a fsTK(dr)kf(r, Wr)u(Jc-l)(r, Wr) (18) 

+ E25i 5k_ 2 (7) IIa,a J,,T K(dr) [u(k-i)u(i)](r, Wr ), 

Proof By definition, 

u(s, a) =II,,. J.T K(dr) v2(r, W,), 

Therefore, 

(19) 
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Now (15) implies v ~ 8f, hence v(o) = 0, giving u,(O) = 0 = u,(1). On the other 
hand, from the definition (16) we then conclude (17) and v(k) = -u(k), k ~ 2. 
Inserting into (19) implies (18). That all operations in this proof make sense 
can be seen by induction arguments as in the proof of the following lemma. • 

In order to get later moment formulas also in the case of signed test functions, 
we now allow f to be signed. Recall the definition of the norms 11 ·II and II· 111 
in BP and Bp,I, respectively, introduced in § 2.1. 

Lemma 10 {estimate for the solution of the recurrence scheme) There 
are constants c1c > O, k ~ 2, such that lim supk~oo c!/k < +oo and that, for 
givenK EK* andf E BP,I, the solution{u(k); k ~ 2} of the recurrence schema 
(18) e:nists uniquely and satisfies 

s E J, k ~ 2, (20) 

with K.J from Definition 3 (a). 

Proof Define { c1c ; k ~ 1} as. the solution of the following recursive system: 

C1=1, {21) 

with C = 1. Then the power series g( 8) := L:k> 1 Ck ()k, (} > O, satisfies the 
quadratic equation g(8) - (} = C g2 (8), which ca:ri" be solved if and only if(} :::; 
( 4C)- 1 . Hence, the radius of convergence of the power series g is positive, and 
the lim sup condition holds. With this sequence c1, c2 , ••• , it is very easy to 
verify (20) by induction. • 

3 Super-Brownian motion xx 
The main purpose of this section is the construction of a continuous super-
Brownian motion X K with branching rate functional K in Ke (Theorem 17 at 
p. 21). 

3.1 SBM XK with branching rate functional K 

The present paper is based on the model of an Mp-valued (critical) super-
Brownian motion X = X K with branching rate functional K E K we now 
introduce. Originally it goes back to Dynkin [Dyn91]. There XK was con-
structed as an M1-valued Markov process under restricted conditions on K, 
which had been removed in [Dyn94b), except keeping the condition KE Ko. 
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Proposition 11 (SBM XK) F~ KE K (recall Definition 1). 
(a) (existence) There e::cists a {time-inhomogeneous) Markov process denoted 

by X = X K = [ X, Ps, µ. , s ~ 0, µ E M p] with Laplace transition functional 

Ps,µ. exp- (Xt, cp) = exp-(µ, v(s, t, ·)), (22) 

0 :S s :St, µ E Mp , cp E B ~ , where v( ·, t, ·) ~ 0 is uniquely determined by 
the cumulant equation 

v(s, t, a)= II,,.[cp(W,) - l K(dr) v2(r, t, W, )], (23) 

0 :S s :S t, a E Rd. 

(b) (expectation and covariance formulas) For 0 :::; s :::; t, t 1 , t 2 and µ in 
Mp as well as cp, .,PE B~, 

Ps,µ. (Xt 'cp) = IIs,µ.cp(Wt) = (µ, St-s'P) = (St-sµ, cp) < oo, 

Cov s,µ. [ (Xt11 cp),(Xt~ 1 7/J)] = 2Ils,µ. J: 1 vt~ K( dr) St 1 -r'P (Wr) Strr7/J (Wr ). 
(c) (continuity in K) If Kn t Kin K, then XK.,,.-+ XK as n-+ oo in the 

sense of the convergence of all finite-dimensional distributions. 

This XK is called a (critical) super-Brownian motion {SBM} with branching 
rate functional K. (In fact, a hidden Brownian particle at position Wr at timer 
branches with rate K[W](dr).) Note that the covariance in (b) could be infinite 
at this stage. This was the reason that we introduced the subset K* of K which 
we will exploit in § 3.2. 

Proof Fix for the moment cp E B~, t ~ 0 and set I = [O, t] as well as 
A(dr) = cp(Wt) dt(dr). As already mentioned in Example 6, this A satisfies (9). 
Hence, (23) is a special case of (10) if we set v( ·, t, ·) := v[o,t] [A, K]. · 

The existence of Mrvalued Markov processes XK.,. satisfying (a) and (b) 
with K replaced by the approximating Kn E Ko from (8) is guaranteed by 
Dynkin [Dyn94b, Theorem 3.4.1]. The extension to Mp-valued Markov pro-
cesses XK.,,. is possible by the domination property (12). Based on Kn t Kand 
the monotone convergence Vn ..j.. v as in Proposition 5 (b ), we conclude for the 
convergence of the corresponding Laplace functionals (22), for fixed s, µ, t. Note 
that the limiting Laplace functional is proper since v ..j.. 0 if cp ..j.. O, recall (12). 
Hence, via (22) a limiting random measure Xt is determined. Moreover, by the 
semigroup structure of the solutions to (23) (which is based on the uniqueness 
of solutions) we may construct the laws of vectors [ Xt1 , ... , Xt1o]. These com-
patible finite-dimensional distributions determine a Markov process X (which is 
independent of the choice of the approximating sequence Kn , n ~ 1 ). This gives 
the existence claim (a). The continuity statement (c) is obvious by monotone 
convergencies. The moment formulas (b) also follow by monotone convergence 
from known ones; see, for instance, Dynkin [Dyn91, formulas (1.28) and (1.30)]. 
This finishes the proof. • 
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3.2 SBM XK with finite higher moments 
The existence proof of a continuous version of X K for K E Ke will be based on 
Kolmogorov's method of moments. Indeed, despite that branching is governed 
by a fairly general functional K (for instance, think of the singular K in the 
single point-catalytic model, see Example 4 (ii)), the SBM XK turns out to have 
(finite) moments of all orders, provided that KE K*. 

The following estimates will be provided for a bivariate process [X, Y]. (One 
can think of Y as the occupation measure related to X, that is Y ( dr db) = 
drXr(db); a justification will be given in §3.7.) Recall the notation (v,'if;)r 
from (6). 

Hypothesis 12 (bivariate process) Let 

[X,Y] = [XK,YK] = [[X,Y], Pa,µ, s~O, µEMp] 

be a (time-inhomogeneous) Markov process such that 

Pa,µ. exp[-(Xt,81cp)-(Yt,82'if;)[a,t]] = exp-(µ,v(s,t,·)), (24) 

0 ~ s ~ t, µ E Mp, cp Es+, 'If; E B~,[o,t], 81, 82 ~ O, where, for 81, 82, cp, 'If;, t 
fixed, v(·, t, ·)solves the equation 

v(s, t, a) = f(s, a) - IT.,.1' K(dr) v2 (r, t, W, ), 

0 ~ s ~ t, a E Rd, with 

(25) 

(26) 
where /i, h E B~,[o,tJ, and KE K*. 0 

Replacing f by 8f, 8 ~ O, and differentiating at 8 = O+, by. (17) we ge~ the 
e:vpectation formula 

(27) 

Lemma 13 (recursive schema for centered moments) Fix 0 ~ s ~ t, µ 
in Mp, cp E B+, 'If; E B~,(o,t), and 81, 82 ~ 0. Under Hypothesis 12 and with 
respect to Pa,µ, the centered random variable 

Z = zK := (µ,, f(s, ·)) - (Xt, 81cp) - (yt, 82'if;)[a,t) (28) 

has moments of all orders. Moreover, if v is taken from (25) but with f replaced 
by 8/, 8 ~ O, and if u. is defined as in (16), then the moments of Z satisfy the 
recursive schema 

Pa,µ.Zk = (µ,u,(k)(s,t,·)) 

+ 2:2~;9:-2 (kj1) (µ,' u,(k-i)(s, t, ·))Pa,µ zi' } (29) 
k ~ 2, 
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with the { u(k); k ~ 2} from (18). 

Proof From (24): 

P,,,µ.exp [OZ]= exp(µ, u(s, t, ·)). 

Differentiating once with respect to 0 yields (recall Convention 7) 

P,,,µ. Z exp [OZ] = (µ, D1u( s, t, ·)) exp(µ, u( s, t, ·) ). 

For k ~ 2, differentiate now k - 1 times at 0 = o+ to obtain 

k k-1 (k-1) ( (k- ") ) . P,,,µ.Z =:Ej=o j µ,u 3(s,t,·) P,,,µ.V 

Because of 
P,,,µ.Z = 0 = (µ,u< 1>(s,t,·)), 

(recall (27)), the summands for j = 1 and j = k - 1 disappear. Thus, (29) 
follows. That all moments exist finitely can be justified by induction arguments 
as in the proof of Lemma 15 below. · m 
Remark 14 (moments in the case of signed test functions) Recalling 
(26), it is easy to see that the solutions of both recursive schemes (18) and (29) 
are polynomials in [81, 01] ~ 0. This justifies to switch to signed test functions 
cp E BP and 'if; E Bp,[o,t] in both schemes, and Lemma 13 still remains valid for 
these cp and 'if;. 0 

3.3 Some estimates for higher centered moments of XK 

To get some estimates of centered moments for increments of the SBM X K 

in the case K E Ke, we will proceed as in our paper [DF94]. Start with the 
following result. 

Lemma 15 (higher centered moment estimates of X K) Fia; N > 0, and 
K E Ke for some e > 0. Then to each k ~ 2 there e:cists a constant Ck such 
that for the centered moments of the SBM X K the following estimates hold: 

0 ~ s ~ t ~ N, µ E Mp, cp E BP. 

Proof First assume cp E B~ and notice that XK fits into Hypothesis 12 by 
setting 82 = 0 and [X, Y] = [XK, O], and fi(s, a)= IT,,, 4 cp(Wt) (recall Remark 
14 and Example 6). Set 01 = 1 and note that by the domination (11), 

ll!ill[o,t] ~ const ll'Pll (31) 
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(with II · 111 introduced in (5)). If now k = 2, then the inequality (30) directly 
follows from (29) and (20). For a proof by induction, consider k ~ 3 and assume 
that (30) is true for the numbers 2, ... , k - 1. Then from (29), (20), and (31) 
we get 

IP,,µ ( s,_,µ - X, , 14 I :=:; const (11~II"11µ1 I. ( t - s )Ck- 1Je 

L2~;~•-2llµllP11~11•-;(t - s)CH-i)ell~ll;(t - s)W• L{;:;i 11µ11~) · 
But 

(k - 1) and (k - j - 1) + j/2 are both bounded below by k/2 (32) 

(for the considered j, k ). Thus we can continue to estimate from above to arrive 
at the r.h.s. of (30). This completes the proof by induction. • 

3.4 Holder continuous SBM XK 
The main purpose of this subsection is to introduce a continuous SBM X K with 
branching rate functional K E Ke. As a preparation we need a further lemma. 

Lemma 16 (estimates of centered moments of increments of XK) F~ 
N > O, k ~ 1, and K E Ke for some e > 0. Then for the increments of the 
centered process 

Zt := Xf - P8,µXf, 
we get the following even moment estimates: 

t ~ s, (33) 

· P8,µ (Zt+h - Zt, cp) 2
k ::; const [llS11.<p - cpll 21c + h1cell'Pll 21c] 2:;!~ 1 llµll~, 

0 ::; s ::; t ::; t + h ::; N, µ E Mp , cp E BP. 

Proof This follows from Lemma 15 along the lines of the Proof of Lemma 
3.2.2 in [DF94], with the obvious modifications related to the present time-
inhomogeneity and infinite measure case. • 

Let Vo = { cp1 , cp2, ••• } denote a countable subset of the domain of definition 
of the "generator" ll./2 of the strongly continuous semigroup S acting on C p;l, 

which is a dense subset of the separable Banach space CPil. We define a metric 
Pp on Mp by 

00 

Pp(µ, v) := L rm ( 1 A j(µ, 'Pm) - (v, 'Pm)l), 
m=l 

µ,vEMp, (34) 

which just generates the topology in Mp. Now we are ready to state the main 
result of this section: 
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Theorem 17 Fi:n a branching rate functional K E Ke for some e > 0. 
(a) (Holder continuity of the centered process) Fi:n N > O, µ E Mp, 

k ;::: 1, and e E (0, e/2). There is a modification Z of the centered process 
Z of (33) such that 

sup Ps,µ.[ sup j(Zt+h-Zt,cp)j/he]k < +oo, cpE1Jo. (35) 
05_s5_N s5_t5_t+h5_N 

In particular, Ps,µ.-almost surely, Z has locally Holder continuous paths of 
order e (in the metric Pp)· 

(b) (continuity of the SBM) Since K E Ke, there is a modification X of 
the super-Brownian motion X = XK of Proposition 11 with continuous 
paths. 

Proof Fix e, K, e, N and cp E 1Jo as in the theorem. Then 

llShcp - cpll ::; const h ll.6.cpll = const h, 

Therefore Lemma 16 implies that, for some constants Ck, 

Ps,µ.l(Zt+h - Zt, cp)l 2
k ::; ck hke L,;!~ 1 11µ11~, 

0 ::; s ::; t ::; t + h ::; N, k ;::: 1. 

(36) 

(a) (Holder continuity) Since 1J0 is converging determining in Mp, by Theorem 
1.2.1 of Revuz and Yor [RY91] we conclude from (36) that there is a modification 
Z of Z such that 

cp E 1Jo, 

for a E (o, k~~ 1 ). For all k sufficiently large, we can set a= e getting (35) 
for sufficiently large even k. But then (35) holds for all k ;::: 1. Based on the 
definition (34) of the metric Pp, by [Daw93, Corollary 3.7.3] we get the claimed 
Holder continuity. 

(b) (continuity) Since Ps,µ.Xf = St-sµ, and the map t 1-7 Stµ is continuous, 
we may set Xt = Zt + St-sµ, t;::: s. This finishes the proof. • 

In the following, in the case KE Ke we tacitly always work with a continuous 
modification according to Theorem 17 writing again X instead of X. As an 
immed~ate consequence of Theorem 17 (a) we get: 

Corollary 18 (Holder continuous SBM) Let K E Ke for some e > 0 and 
µ E Mp, s ;::: 0. Then XK is locally Holder continuous of order e < ~ with 
Ps,µ.-probability one if and only if t 1-7 St-sµ is locally Holder continuous of 
order e. 
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Remark 19 Holder continuities of XK had been considered in the constant 
branching rate case K ( dr) = ; dr by Reimers (Rei89], Dawson (Daw93, Corol-
lary 3.7.3], and Schied (Sch95]. It seems for us that continuous versions of XK 
had been establii>hed so far in special cases only, as K ( ds) = f (W,,) ds for 
f E bC+, or K(ds) = dc(W,,) ds. For the former case when branching occurs at 
site b with rate f(b), see Konno and Shiga [KS88], whereas continuity for the 
latter finite measure-valued single point-catalytic model was proved in Dawson 
and Fleischmann [DF94]. 0 

3.5 Convergence of the total mass process 
As an immediate consequence of the constructions so far we get the following 
result: 

Proposition 20 (convergence of the total mass process) Assume that 
KE Ke for some e > O, and lets 2:'.: 0 andµ, E M1. Then 

limHoo llXf II ezists P,,,,.,.-a.s. 

and has an e:IJpectation bounded by the total initial mass llµ,11· 

Proof By Theorem 17(b), the total mass process {llXfll; t 2:'.: s} is P,,,,.,.-a.s. 
continuous (take {3 in the definition of the reference function </:>p)· Actually, 
by the Markov property and the expectation formula in Proposition 11 (b ), it 
is a continuous non-negative martingale. Then the statement follows from a 
martingale convergence theorem (see, for instance, [RY91, Corollary 2.2.11]) 
and Fatou's lemma. • 

3.6 XK with absolutely continuous states 
In the following, we call§..= {en; n 2:'.: 1} a zero-sequence if en > O, n 2:'.: 1, and 
en -+ 0 as n -+ 6o. 

Proposition 21 (absolutely continuous states of X K) Consider K E K*, 
0 ~ s < t, and µ, E Mp . Assume that there is a Lebesgue zero set N C Rd with 
the following property. To each z E Rd\N there ezists a zero sequence§..= §..(z) 
such that 

II.s,µ. J,,t K( dr) p2 ( en(z) + t - r, Wr, z) 

---rII,,,µ.J,,tK(dr)p2(t-r,Wr,z) < +oo. 
n-too 

Then the L 2 (P,,,,.,.)-limit zt(z) of 

(37) 



SB motion in a SB medium 23 

exists as n -+ oo, for each z E Rd\N. Moreover, with respect to Ps,µ, the 
random measure Xt ( dz) is ab~olutely continuous: 

The fallowing moment formulas hold: 

Ps,µ Xt(z) 

Var8 ,µ :nt(z) 2 II8 ,µ J: K(dr) p 2(t - r, Wr, z), 

Example 22 (single point-catalytic model) If d = 1, K ( dr) = 8c (Wr) dr, 
and N = {c}, then (37) holds, and we recover a result of [DF91]. 0 

Proof of Proposition 21 1° (convergence of expectations) First of all, by 
the expectation formula in Proposition 11 (b), 

which is the desired limiting expectation. 

2° (Cauchy sequence) We want to show that :nr(z) is Cauchy in L2 (Ps,µ) as 
n-+ oo, for each z E Rd\N. By Step 1°, it suffices to show that 

Vars,µ[x~(z) - x~' (z)] 0. 
n,n 1-HX> 

But by the covariance formula in Proposition 11 (b ), these variances equal to 

Then the claim follows from (37). We also got the stated variance formula. 

3° (absolute continuity) The absolute continuity statement is a consequence of 
the Basic Lemma 2.7.1 in Dawson and Fleischmann [DF95]. a 

3. 7 The occupation measure process yK 

If the qranching rate functional K belongs to Ke for some e > O, then the SBM 
X = XK has continuous paths by Theorem 17 (b). In this case we can certainly 
define pathwise the (weighted) occupation measure process Y = yK related to 
Xby 

(Y,, 1/> )[•,t] := f.' dr (X,, 1/>( r, ·)), 0::; s ::;t, 1/> E Bp,[O,t], µ E Mp , P,,µ -a.s. 
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Note that Yt with respect to Ps,µ. is a measure on [s, t] x Rd. From Proposition 
11 (b} we immediately get the expectation formula 

(38) 

0 5 s 5 t, µ, E Mp , b E Rd. It is routine to show that the bivariate process 
[X, Y] satisfies Hypothesis 12 with 

fi(s, a)= IT,,.ip(W,), fa(s, a)= II,,. f.' dr .,P(r, W, ). (39) 

Moreover, by Lemma 13 and Remark 14, it has centered moments of all orders 
which satisfy the recursive schema (29). In particular, by setting f)i = 0 and 
82 = 1, the following variance formula holds (recall Remark 14): 

Var,,~ (Yi, .p )[•,t] = 211,,~ l K ( dr) [ l dcr II,., w • .,P( cr, W,,.) r, 
0 5 s 5 t, µ, E Mp, 'ljJ E Bp,[o,t]. 

(40) 

3.8 Occupation times with absolutely continuous states 
Introduce the occupation time 

Y[s',t] = Y[~,t] := [ dr x;<' 0 5 s 5 s' 5 t, (41) 

of the interval [s', t], related to the process xK distributed according to Ps,µ., 
µ E Mp. Opposed to Yt from the previous subsection, Y[s',t] is a measures on 
Rd. We also need the (inhomogeneous) Brownian potential kernel 

q(s',t,a,b) = q(s',t,b-a) := J.tdr p(r,a,b), . 0 5 s' 5 t, a,b E Rd. (42) 
s' 

Write 

. µ*q(s',t,b) := jµ(da)q(s',t,a,b), µ E Mp , 0 5 s' 5 t, b E Rd. 

Proposition 23 (absolutely continuous states of Y(~,t] ) F~ µ E Mp and 
0 5 ,s ~ s' ~ t. Ifs = s', additionally suppose that 

µ * q (0, r, z) is (finite and) continuous in r ;?: O, ( 43) 

for each z E Rd. Assume that K EK* satisfies 

IIs,µ. J.t K( dr) q2 (e + r', e1 + r', Wr , z) ---+ O, 
~ O<e:5e'.l-O 

(44) 
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for both r' = (s' - r)+ and r' = t - r. Then the L 2 (Pa,µ)-limit of 

Y[a',t](z) := (Y(a',t], p(e,·,z)), e > O, (45) 

e:nists as e + O, and is denoted by Y[a',t](z) = y~',t](z), for each z E Rd. Hence, 
with respect to Pa,µ, the random measure Y[a',t] on Rd is absolutely continuous 
with density function Y[a',t] : 

(46) 

The following moment formulas hold: 

Pa,µ Y[a',t](z) µ * q (s' - s, t - s, z), 
(47) 

Vara,µ Y[a',t](z) Ila,µ fat K(dr) q2 ((s' - r)+, t - r, Wr, z) < +oo, 
z E Rd. 

Y[a',t](z) = ~',t](z) is called the (weighted) occupation density (super-Brown-
ian local time) of XK (with respect to Pa,µ) at z during the time interval [s', t]. 
This proposition can be applied, for instance, in the single point catalyst model 
to restate partly a result of [DF94]. 

Proof 1° (convergence of e:npectations) First of all, by (38) we get for the 
expectation of ( 45): 

Pa,µ Y[a',t](z) = µ * q (e + s' - s, e + t - s, z), z E Rd. (48) 

By the assumption (43), we conclude that (48) (written as an appropriate differ-
ence) converges to µ * q( s' - s, t - s, z). This is the desired limiting expectation 
as it occurs in ( 47). 

2° (Cauchy sequence) We want to show that Y[a',t](z) is Cauchy in L 2 (Pa,µ) as 
e + 0. Because of Step 1°, it suffices to prove that 

Vafa µ [Y[a' t](z) - Y[:, t](z)] ----t 0. 
' ' ' e,e'.j.O 

Inserting the definitions ( 45) and ( 41), by the variance formula ( 40) with ,,P(r, ·) = 
l{s' :::; r:::; t} p(e, ·, z), the variance expression at the l.h.s. equals 

2 Ila,µ J:K(dr) [q(e+(s'-r)+, e+t-r, Wr, z)-q(e' +(s' -r)+, e1 +t-r, Wr, z)] 
2

• 

Assuming e :::; e1, this can be estimated from above by four times the sum 
(concerning the two cases of r1

) of the l.h.s. expressions in ( 44). (Note that 
no finiteness problems appear by the assumptions K E K* and e, e1 > 0.) 
Hence, Y[a',t](z) is Cauchy, therefore the £ 2-limit Y[a',t](z) exists, and the moment 
formulas ( 4 7) hold. 
3° (absolute continuity) The remaining statement ( 46) follows from the Basic 
Lemma 2.7.1 of [DF95]. · • 
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4 The catalyst process g 

K ( dr) = "Y dr is the most studied and very well understood special case. Here 
each hidden X-particle branches with the constant rate "Y > 0. Then, for smooth 
<p E C~ and t fixed, the solution v = v( ·, t, ·) of the cumulant equation (23) 
uniquely solves even the parabolic equation 

av 1 2 
- 8s = 2~V-"'fV' vl = cp, 

.!=t 

(differentiate (23) formally using the semigroup of W). The corresponding Mp-
valued Markov process X = X'Y dr (first constructed by Iscoe [Isc86]) is time-
homogeneous. So without loss of generality we may start it at time s = 0. 
Moreover, by Theorem 17 (b), it is continuous (Konno and Shiga [KS88]). 

As announced, the particular continuous super-Brownian motion X = X'Y dr 
will be used to govern the branching in the catalytic SBM we will introduce in 
§ 5.4. For convenience, from now on we write(} instead of X'Y dr, and Pµ instead 
of Po,µ in this case K( dr) = "Y dr, and call (} the catalyst process. 

If the initial state g0 of g is even random, we write P for the law of g. But 
for simplicity then we always impose that llfJollP = (go, </>p) has finite moments 
of all orders, and that the law of (}o is (spatially) shift invariant. (Note that 
this implies that the constant f3 in the definition of the reference function </>p is 
positive.) However, in most cases we assume (}o = l where l is a (no~ necessarily 
normalized) Lebesgue measure on Rd. Then, of course, P = P l . Note also that 
IP covers the case if {!o is distributed according to an ergodic steady state (in 
dimensions d ~ 3). 

The main objective of this section is to establish in dimensions d ~ 3 the 
existence of a jointly Holder continuous occupation density field related to the 
catalyst process (}, if the initial state {!o is not too irregular (Theorems 31 and 
33 at pp. 35 and 36). 

4.1 Jointly continuous occupation density field of {! 
For notational reason, we first restate a result of Sugitani [Sug89]. Recall that 
q denotes the Brownian potential kernel, and Y[J,:~t] the occupation time of the 
interval [ tS, tS + t], related to X'Y dr = g, introduced in ( 42) and ( 41), respectively. 

Lemma 24 (jointly continuous occupation density field) Let d ~ 3. F~ 
µ, E Mp and tS ~ 0. If 8 = O, assume additionally that 

[r, z] r-+ µ, * q(O, r, z) is continuous on R+ x Rd. (49) 

Then, with respect to IPµ, there is a (jointly) continuous field 
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on R+ x Rd such that for the occupation times Y[o,Ht] = Y[J,:~t] we have 

IPµ(Y(J,t~t](dz) = Y[o,Ht](z)dz for all t 2:: o) = 1. 

27 

y0 is called the (jointly continuous) occupation density field (super-Brownian 
local time) of Y[J,:~ (.)] . 

The next three subsections contain some preliminaries aimed to the proof 
of the announced Holder continuities of y0 • To carry this out, we use ideas 
from Sugitani [Sug89), but avoid his "formal" exponential moments and power 
series arguments, as well as his "identity" ( 4.6). In fact, an L2 (1Pµ)-functional 
of {flt; t 2:: a} for <5 > 0 will in general depend on (the random) f!o not only via 
its expectation S0µ. Under way we will give a self-contained proof of Sugitani's 
joint continuity property in § 4.5. 

Note that ( 49) automatically holds in dimension d = 1 ([Sug89, Proposition 
3.1)). Also, if a> O, then for anyµ E Mp and dimension d, instead of (49) even 
the following "delayed" local Lipschitz continuity statement holds: 

Lemma 25 (delayed local Lipschitz) Let d 2:: 1, µ E Mp , and a > 0. Then 
µ * q (a, <5 + r, z) is locally Lipschitz continuous in [r, z] E R+ x Rd. Moreover, 
the Lipschitz constants are proportional to llµllP = (µ, </>p)· 

To prepare for the proof, it is useful to expose the following elementary heat 
flow estimate ( cf. [Sug89, (3.17)]). 

Lemma 26 (a heat flow estimate) There is a constant const depending on · 
d and f3 entering in the definition ( 4) of the reference function </>p , such that 

Proof It suffices to show that 

jµ(da) exp 

for any µ, r, z. If we restrict the integral additionally to !al ~ 4lzl, then 
we can replace the exponential expression by 1 ~ const </>p (a)/ </>p ( z) • On the 
other hand, if lal 2:: 4lzl, then la - zl 2 2:: lal 2 /2. But for lal ~ 1 we estimate 
exp-':~~ from above by 1 ~ const </>p(a), whereas for lal 2:: 1 we bound it by 
~ const (lal2 /r )-P/2 ~ const </>p(a)(l + r )Pl2 • • 

Proof of Lemma 25 By the mean value theorem, 

Iµ* q (<5, a+ r, z +a:) - µ * q (a, <5 + r, z)I 
::; 16+r ds j µ(da) lzl p(s, z + 8z - a) lz + 9,. - al/ s 
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for some () = 8(z, z, a, s) E [O, 1]. Split a factor exp lzH:.s-al:i away from the 
p-expression. By Lemma 26, its integral with respect to µ( da) is bounded by a 
multiple of llµllP, uniformly in bounded z, z, s. But the remaining integrand is 
bounded by a constant times lzl, since sis bounded away from 0. Hence, we got 
the local Lipschitz continuity in z uniformly in a bounded r, with a Lipschitz 
constants proportional to llµllP. 

On the other hand, µ * q (5, c) + r, z) is locally Lipschitz continuous in r, 
uniformly in a bounded z, with a Lipschitz constants proportional to llµllP, 
which follows again from Lemma 26. • 

4.2 Another estimate for the recursive scheme 
As a preparation for the Proof of Lemma 24 we need a refinement of Lemma 10 
concerning an estimate for the solution of the recurrence schema for derivatives 
of the cumulant equation for a particular f and in the present constant branching 
rate situation K ( dr) = "Y dr. 

Lemma 27 (estimate related to time increments) Fiz N > O, and let 
d ~ 3. There are constants c1c > O, k ~ 2, such that limsupk-+oo c!/k < +oo, 
and that the following holds. Fiz 0 < e ~ N, z E Rd, and 0 ~ t ~ t + h ~ N. 
In the recurrence schema (18), consider the special case K(dr) = ')'dr and 

f ( s, a) = q ( ( t - s) + + e, t + h + e - s, a, z) , 
Then, fork~ 2, 

s EI= [O,t+h], a E Rd. 

lu(k)(s,a)I ~ k!ck("Yv'h+e)k-lq((t-s)+,t+2(h+e)-s,a,z), (50) 

0 ~ s :::; t + h, a E Rd. 

Proof Step 1 ° Trivially, 

f(s,a) ::=; q((t- s)+,t+ 2(h+e)- s,a,z). (51) 

Then from (18) we get 

f. t+h 
u<2)(s,a),~ 2')' .s drIT8 ,aq2 ((t-r)+,t+2(h+e)-r,Wr,z). (52) 

We consider two cases for the r-variable in this integral: r < (t V s), and the 
opposite. 

Step 2° In the first case, we conclude that t > s. Then for this part of (52) we 
obtain the upper bound 

f. t J.t+2(h+e)-r 
~ 2')' dr II.s,aq(t - r, t + 2(h + e) - r, Wr, z) du (27ru)-d/2 • 

.s t-r 
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But the Tl8 ,a-expectation of the q-expression equals q(t-s, t+2(h+e)- s, a, z), 
and, by the substitution t- r f-7 r, the remaining double integral can be written 
as rt-s 1r+2(h+e) 

Jo dr r dcr (27rcr)-d/2 
:::; const Vh + e, (53) 

where, in this proof, const always refers to a constant depending only on N. 

Step 3° In the case r ~ (t V s) we first rewrite q2 (0, t + 2(h + e) - r, Wr, z) as 

Then in the part of ( 52) under consideration we interchange the order of inte-
gration and get the upper bound 

except a factor const. The inner integral is a q-term, which, by the elementary 
inequalities t + 2(h + e) - (t V s) :::; 2(e + h) and 

if (55) 

can be estimated from above by q((t-s)+, t+2(h+e)-s, a, z). For the remaining 
integral we use 

since d:::; 3. 

Step 4 ° Altogether we showed 

"'( J:+hdr II8 ,aq2 ((t - r)+, t + 2(h + e) - r, Wr ,z) 
:::; c ("Y vh + e) q((t - s)+' t + 2(h + e) - s, a, z) (57) 

with a constant C depending only on N. Hence, by (52), we get (50) in the case 
k = 2 with C2 := C. 

Step 5° Define {c1c; k ~ 1} by (21). Then, based ·on (51) and (57), the claim 
easily follows by induction on k. m 
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4.3 Further estimates for the recursive scheme 
We still need a version of Lemma 27 for another function f. 

Lemma 28 (estimate related to space increments) Let d ~ 3. F~ num-
bers 0 ~ o < N and a constant a such that 

0 < a < l /\ (2 - d/2). (58) 

There are constants Ck > 0 1 k 2:: 2, such that limsupk-1-oo c!/k < +oo, and 
that the following holds. F~ 0 < c,"f ~ N, zi, z2 E Rd with lz1I, lz2I ~ N, and 
0 ~ t ~ o + t ~ N. In the recurrence schema (18), consider the special case 
K(dr) = 7dr and 

f(s, a) = q(c + o, c + o + t - s, a, z1) - q(e- + o, e + o + t - s, a, z2), 

s EI= [O,o +t], a E Rd. Then, fork 2:: 2, 

iuU~>(s,a)I ~ k!ck'Yk/2 lz1 -z2lkaQ(s,~), (59) 

Proof 1° (two inequalities) From [Sug89, (3.43), (3.44)], we borrow the fol-
lowing two inequalities concerning the Bro"YV"nian transition density: 

[p(r, a)+ p(r, b)] [p(s, a)+ p(s, b)] 

~ 3(rs)-df4 [P (r~a ,a) +P (r~a ,b)]' (61) 

lp(r, a) - p(r, b)I ~Ca r-~12 la- bla [p(2r, a)+ p(2r, b)], (62) 

r, s > O, a, b E Rd, where Ca is a constant only depending on a. 

2° (initial step of induction) In virtue of the initial formula in the recurrence 
schema (18), 

u,(2)( s, a) ~ 2 'Y J:+o dr IIa,a ~s+o, s+o+t-r]2 d[s1, s2] 

rr:=1 lp(si, Wr, z1) - p(si, Wr, z2)l· 
(63) 

We distinguish between two cases for the variable r in the outer integral, namely 
between s ~ r < ( o V s) and the opposite. In the first case, we conclude 
0 ~ r < o ~ s1 , hence, since o > 0 is fixed, 
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where, in this proof, const is always a constant only depending on a, 8, and 
N. For the other factor, related to s2, we apply (62) and calculate the II.,,a-
expectation. Thus, for the first part of the r .h.s. of ( 63) we get the bound · le 1e+c+t-r 2 

const 'Y lz1 - z21 2a dr ds2 s;a/2 L p(r - s + 2s2, a, zi) 
" e+c i=l 

(recall that lzi I ::; N). Since s2a/2 is bounded, the inner integral can be esti-
mated from above by const Q(s, a), whereas the remaining integral is bounded 
by const. 

Turning to the other case (8 V s) ::; r::; t + 8, we apply (62) and (61) to get 
the upper bound 

27 r+c dr II.,,a f d[s1, s2] c~ (s1s2)-a/2-d/4 

lcv., lre+c ,e+c+t-rp 

lz1 - z21 2a 3 [P( 2 .,:1f.;2 , Wr, Z1) + P( 2 6:1f.;2 , Wr, z2)] 

for this part of the r.h.s. of (63). Evaluating the expectation,_ interchanging the 
order of integration, and using (55) leads to the upper bound 

const 'Y lz1 - z2 l2a r d[s1' s2] ( s1s2)-af2-d/4 

lea, 2(e+c+t-.!)P 

12(e+c+t-ts) 
dr [p(r, a, z1) + p(r, a, z2)]. 

(a-.,)+ 

(The additional factor 2 in the upper integral bound of the outer integral will 
be useful later in related calculations of the induction step.) By our assumption 
(58) on a, the first of these integrals can be absorbed into const. 

Altogether, we showed 

u<2>(s,a)::; 2C7lz1-z212aQ(s,a) 

where C is a constant only depending on a, 8, and N. This finishes the initial 
step of induction. 
3° (induction step) Define the Ck by (21). Consider k 2:: 3, and assume that the 
inequality (59) holds for 2, ... , k-1. Then the two terms of uCk)(s, a) in (18) can 
be estimated as in the initial step of induction with the obvious modifications 
(in particular, enlarging C where needed). Here in the case of the first term, 
under (8 V s) ::; r ::; t + 8, we use (55) with [u1, u2] = [2s1, s2]. On the other 
hand, for the second term, under s::; r < (8 V s), apply 

r2(e+s+t-r) 
q(8-r,2(e:+8+t-r), Wr,zi)::; const lc-r ds1s~312 ::; const(8-r)-1!2 

which is integrable with respect to dr on the interval (0, 8). 
This then finishes the proof altogether. • 
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4.4 Moment estimates related to the occupation density 
With respect to IPµ, µ E Mp, as in ( 45), set 

Y[a,o+t](z)=(Y[a,o+t]1P(e,·,z)), o::;5::;5+t, e>O, zERd, (64) 

for the approximate (if e > 0 is small) occupation density at z during the time 
interval [5, d + t]. By the expectation formula (48), 

Zf'e(z) := µ*q(e+8,e+8+t,z)-y[0,o+t](z), t;:::o, zERd, (65) 
is the related centered field. Recall that 'Y is the constant branching rate. 

Lemma 29 (moment estimates for time increments of zo,e) Fiz N > O, 
and let d:::; 3. Then to each k 2:: 2 there exists a constant ck such that 

k-1 . 

llPµ[zt;h(z)-Zf'e(z)tl:::; ck ('Yvh+e)k 12 L [µ*q(5+t,8+t+2(h+e),z)f, 
i=l 

µ E Mp, 0 < e, 'Y:::; N, z E Rd, and 0 :::; 8:::; 5 + t:::; 5 + t + h:::; N. 

Proof Setting 

(Ji= O, 02 = 1, 1/J(r, a) =i l[o+t,Ht+h](r) p(e, a, z), 
and recalling h from (39) (with t replaced by 5 +t + h ), we may identify Z from 
Lemma 13 (with s = 0 and f = h) with the present zt;h(z) - z:,e (z) of the 
lemma. In particular, the corresponding moments satisfy the recursive schema 
(29). Then, based on Lemma 27 (with t replaced by d + t), we can proceed by 
induction using (32). • 

Lemma 30 (moment estimates for space increments of zo,e) Let d:::; 3, 
and fix 0 :::; 5 < N as well as a constant a satisfying (58). Then to each k 2:: 2 
there exists a constant Ck such that 

k-1 2 . 

'IPµ [ zt,e (z1)-zt,e (z2)t I :::; Ck 'Yk/ 2 lz1 -z2lka L [µ* L q(8, 2(e+d +t), Zj) r' 
i=l j=l 

Proof Setting 

81 = O, 82=1, 1/J(r,a) = l[a,o+t](r) (p(e,a,z1)-p(e,a,z2)], 
and recalling h from (39) (with t replaced by d + t), we may identify Z from 
Lemma 13 (with s = 0 and f = h and recalling Remark 14) with the present 
zt,e (z1) - zt,e (z2) of the lemma. In particular, the corresponding moments 
satisfy the recursive schema (29). Then, based on Lemma 28, we can again 
proceed by induction. • 
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4.5 Proof of Sugitani's joint continuity result 
The purpose of this subsection is to prove Lemma 24. Let d < 3. Fix J > O and 
µ E Mp satisfying ( 49) if J = 0. - -

1° ( e:nistence of Y[a,o+t] (z)) According to Proposition 23 at p. 24, for the 
existence of the L2 (1Pµ)-limit Y[a,o+t](z) of Y[a,o+t](z) (defined in (64)) as e + O, 
it suffices to show that for t ~ 0 and z E Rd fixed, 

l o+t 
Ila,µ dr q2 (e + r', e1 + r', Wr , z) 0, 

O O<e~e'.t.O 
(66) 

for both r' = (J - r)+ and r' = J + t - r. 
In the case r' = (8-r)+, rewrite q2 as in (54), and calculate the expectation 

over the new p-term to get 

ro+t dr r d[si, s2] (111+11~)ti/:l µ * p(r + 11:1+.::i 'z)' 
Jo J(e+(a-r)+ ,e'+(a-r)+p 

(67) 

except a constant factor. 
Consider first the r ~ J . part of this integral. Interchanging the order of 

integration, and using the elementary inequality (55) to get rid of ...!.1!.a..+11 in the 
111 ll:;i 

new µ * q-expression, results in the bound 

(assuming e1
::; 1). By the joint continuities (49) and Lemma 25 (i), thisµ* q-

expression is finite, and an estimate as in (56) shows that we are dealing with a 
negligible· term as e' + 0. 

If J > 0, we still have to handle the r::; J part of (67), and estimate this to 

except a constant factor. Since r + 11:;.;:i is bounded (recall (55)), the inner 
integral can be bounded by a constant. If we additionally assume that r ~ ~ , 
theri we may estimate the integrand to (s1 + s2)-3/ 2 (except a constant). By 
monotonicity in s1 and s2 of this new integrand, the remaining inner integral 
can be estimated from above by integrating over (e, e1

]
2 • By (56), this results 

also in .a negligible term. If on the other hand we restrict to r ::; ~ , then the 
integrand can be replaced by (s1s2)-

3/ 2. Again by monotonicity, we now may 
integrate over ( e + J /2, e' + J /2]2, ending up again in an error term. 

Altogether, (67) tends to 0 as e' + 0. 
Concerning the other case r1 = J + t - r, in (66) substitute r t-t J + t - r, 

estimate one q-factor by const fee' ds1 (r + s1)-df2, calculate the expectation of 
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the other q-factor to get µ * q( e + 8 + t, e1 + 8 + t, z) converging to 0 as e:' i 0 by 
applying twice the delayed local Lipschitz Lemma 25 (i). The remaining double 
integral also tends to zero. 

Summarizing, (66) holds, establishing the existence of Y[o,o+tJ(z). 
2° ( centering) Since IPµ Y[o,o+tJ(z) = µ*q(8, 8 +t, z) by the expectation formula 
in ( 47), which is jointly continuous by ( 49) and Lemma 25 (i), it suffices to show 
that the centered field 

(68) 

has a jointly continuous modification. 

3° (moment estimates) Fix N > 0 and k 2:: 1. Then, based on Lemma 29, we 
have the following moment estimates of time increments: 

2/c-1 . 

IPµIZt+h(z) - zf(z)l 2
/c ::::; c1c ('1 Vh)k L [µ * q(8 + t, 8 + t + 2h, z) r' (69) 

i=l 
0::::; t::::; 8 + t::::; 8 + t + h::::; N, z E Rd. (Recall that 'Y is the branching rate in 
the model we are just discussing.) In fact, by our joint continuity assumption 
( 49), by Lemma 25 (i), and by the £ 2-convergence of Step 1°, the l.h.s. can be 
estimated from above by 

liminflPµIZt:h(z)- Zf10 (z)l 2
1c e.io 

with Zf' 6 (z) from (65). Similarly, based on Lemma 30, for a fixed a satisfying 
(58), the following moment estimates of space increments hold: 

IPµ I zt ( Z1) - zt ( z2) 12/c 

::::; c1c 'Yk lz1 - z2 l2/ca :E;~~l [µ * E~=l q(8, 2(8 + t), Zj) f, 
lz1I, lz2j,7::::; N, o::::; t::::; 8 +t::::; N. 

(70) 

4 ° (conclusion) Choosing a number k sufficiently large, the existence of a 
jointly continuous version of Z 0 follows from (69) and (70) by Kolmogorov's 
moment criterion, since the sums at the r.h.s. are finite by the continuity as-
sumption (49) and the delayed Lipschitz Lemma 25 (i). 

This finishes the proof. • 

4.6 Holder continuous occupation densities 
In the previous subsection we used the moment est,imates (69) and (70) for the 
construction of a jointly continuous modification of the occupation density field 
Yo. But actually they even imply the existence of a jointly Holder continuous 
modification. (Recall that llµllP = (µ, </>p) .) 
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Theorem 31 (jointly Holder continuous occupation density field) Fw 
d ~ 3, e E ( 0, ~) , and let k denote the smallest natural number satisfying 

k > 2(d+l) 
1-4e · 

FiaJ µ E Mp and tS;::: 0. If tS = O, assume additionally that 

[r, z] i-t µ * q(O, r, z) is locally e-Holder continuous on R+ x Rd 
with Holder constants proportional to llµllP = (µ, </>p). 

(71) 

(72) 

Then, with respect to IPµ, there e~ists a modification of the occupation density 
field Yo = yrr = {Y[o,HtJ(z); t;::: O, z E Rd} related to Y[J,:~ (-)], such that, 
with IPµ-probability one, for each N;::: 1, 

IW,Ht1J(z1)-Y[o,Ht:JJ(z2)I ~ Ce,N,1cl[t1,z1]- [t2,z2Jle, (73) 

[ti, zi] E EN:= [O, N] x [-N, +N]d, i = 1, 2. Here Ce,N,Jc is a random constant 
with a finite moment of order 2k (with respect to IPµ) satisfying 

(74) 

with the constant const independent of µ. 
In particular, the occupation density field Yo is locally (jointly) e-Holder con-

tinuous. 

Proof Fix d, µ, '5, e, N as in the theorem, 0 < 'Y ~ N, and a > ~ satisfying 
(58). By this choice of a, using the triangular inequality we can combine the 
moment estimates ( 69) and ( 70) for the centered field zo (defined in ( 68)) related 
to y as follows: 

(75) 

[ti, Zi] E EN, i = 1, 2. Here, by the delayed local Lipschitz Lemma 25, c1c is a 
non-random polynomial in llµllP of at most order 2k. By the definition of k we 
have 

c < k/2 - (l+d) 
fi. 2/c • (76) 

Therefore, by Theorem 1.2.1 of [RY91] there is a modification of zo, for sim-
plicity again denoted by zo, such that 

Here C is a random constant with finite IPµ.-moment of order 2k, and from the 
proof there we conclude that this moment does not depend on the concrete 
distribution entering into the moment estimate (75), hence onµ. Thus, 
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with IPµC~k ~ const c1c ~ const (1 V llµll;k). From the triangular inequality, 
combined with assumption (72) and the delayed local Lipschitz Lemma 25 (i), 
the statements (73) and (74) immediately follow. • 

Remark 32 (Holder in the space variable) If we fix a time point t ;::: 0 and 
ask for regularity only in the space variable, then the analogous statements of 
the theorem hold even for e E ( 0, ~) , provided that ( 72) holds for such a e . In 
particular, then Y[o,o+t](z) is locally e-Holder continuous in z. (In fact, for the 
choice of a, impose additionally a > e' in order to guarantee the existence of a 
k with the required property (76). 0 

For our purpose, we later actually need a different version of the Holder 
property of Yo and in fact under IP. Recall that we agreed that IP means that {! 

starts with a random {!o having a shift-invariant law and finite moments of all 
orders of lluollP. In the following theorem, IP= IPt (with la Lebesgue measure) 
satisfies the assumption in the case J = O, whereas J > 0 is aimed to the steady 
state case in dimension d = 3. 

Theorem 33 (HOider in time with some space uniformity) Fix d ~ 3, e E (o, ~), J 2:: O, and IP. If 5. = O, assume additionally that (72) holds with 
µ replaced by f!o , with IP-probability one. Then, with respect to IP, there is a 
modification y0 of the occupation density field such that for each N ~ 1 

sup 
0 5 ti,t~ 5N 
z1 1 z~ E Re£ 

[t1 ,z1] 'f. [t~ ,z~] 

is finite IP-a.s. 

IY[o,o+ti](z1) </>p(z1) - Y[o,o+t~](z2) </>p(z2)I 
I [t1, z1] - [t2 , z2] le 

(77) 

Proof Fix d, e, J, IP as in the theorem, and let k denote the smallest natural 
number satisfying (71). Write H(B) for the supremum expression in (77) if 
there Rd is replaced by a Borel set B C Rd. It suffices to show that 

IP(H(Rd) > T) --+ 0. 
T--too 

(78) 

Now 
IP(H(Rd) > T) ~ Lm IP(H(Cm) > T) 

where Cm:= [O, l)d + m, m E zd. This inequality can be continued with 

(79) 
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By Theorem 31, the supremum expression can be bounded from above by a 
random constant Ce,N,m.k. Hence, using Tchebychev's inequality, for (79) we 
get the upper bound 

-2'/c'"' (,/... ( )) 2k 2k const T L..im ~P m IPCe,N,m,k. (80) 

By the shift-invariance of IP, the latter 2k-th moment expression is independent 
of m, and by (74) it can be bounded from above by const 1Plleoll;\ which is 
finite by assumption. Hence, (78) follows, finishing the proof. • 

Remark 34 (choice of the Holder index) The choices of the Holder indexes e in the Theorems 31,33 and Remark 32 are adapted to the dimension d = 3. 
For d < 3, these choices are not optimal. In fact, here e can grow by the factor 
2. Moreover, in dimension one, Y[o,o+tJ(z) is even differentiable in t since e has 
a jointly continuous density (see Proposition 44 below). 0 

5 Brownian collision local times 
The main purpose of the section is to construct the Brownian collision local 
time L = L[W, e] for IPL-almost all catalyst process paths g, see Theorem 40 at 
p. 40. (Recall l denotes a Lebesgue measure.) 

As in the finite measure case of Evans and Perkins [EP94], we proceed in 
two steps. First we construct L = L[W, 11] ·for an appropriate (deterministic) 
Mp-valued path 11, we call regular: Proposition 37 (a) below is a version of , 
Evans and Perkins (EP94, Theorem 4.1] adapted for our needs. In the second 
step (§ 5.3), we then verify that in dimensions d ~ 3 the catalyst process e 
has regular Mp-valued paths, a.s. with respect to IPL. Here our methods differ 
from those of [EP94] in that we replace estimates of the uniform modulus Of 
continuity bound by some Holder continuity properties of the occupation density 
field y := Y[o, . ] of g, established in Theorem 33, which for us seems to be a more 
natural approach. 

5.1 Preparation: Regular Mp-valued paths T/ 

For the moment, fix N > O, e E (0, 1], and 1J in the set C[R+, Mp] of all 
continuous Mp-valued paths. Set 

(81) 

(Recall that p denotes the Brownian transition density.) Heuristically, 
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approaches the "density" (</>pTJs, da.) at a of the finite measure </>p(b)TJs(db) on 
Rd as r ..!- s. Note however, that in the cases we are mostly interested in, 
these "densities" degenerate. But in (81) we have an additional integration 
with respect to dr. Hence, intuitively, the integral in (81) measures the "e-
accumulated density" of </>pTJ at [s, a]. 

Definition 35 (regular Mp-valued paths) For our purpose, a path TJ in 
C[R+ , Mp] is called regular if h( T}, t:, N) ---+ 0 for all N > 0 (and h defined in 
(81)). e-1.0 0 

Roughly speaking, TJ is regular, if the e-accumulated densities of the finite 
measure-valued path </>pTJ disappear as e..!- O, uniformly on [O, N] x Rd, for each 
N>O. 

Example 36 (one-dimensional regular paths) Ford = 1, all continuous 
Mp-valued paths TJ are regular. In fact, 

sup J.s+e dr ( TJr , </>p p(r - s, a,·)) ~ const Ve sup ( TJt, </>p) -7 O, 
s'5:_N, a.ER s t'5:_N+l e-1.0 

for each N > 0. 0 

5.2 Brownian collision local time L[W, 17] of a regular 77 
Recalling Definition 35, fix a regular path TJ, and e 'E (0, 1]. Define a continuous 
additive functional Le = Le[w, TJ] of the Brownian motion W by 

(82) 

We interpret Le as the collision local time of TJ with thee-vicinity of the Brownian 
path W. Now we are prepared to introduce the Brownian collision local tl.me 
L = L[W, TJ] of a regular T}, which at the same time satisfies all requirements of 
a branching rate functional (recall Definition 1). 

Proposition 37 (Brownian collision local time L[W, TJ] of TJ) Let TJ be a 
regular {Mp-valued) path. Then there ezists an additive functional L = L[W, TJ] 
of the Brownian motion W with the following properties. 
(a) (existence of L) Let'ljJ be a {strictly) positive function in CP,[O,N] (defined 

in§ 2.1), for N > 0. Then 

(b) (expectation of L) For measurable 'ljJ : R+ x Rd t-t R+ , and 0 ~ s ~ t, 
as well as a E Rd, 

II,,. [ L(dr) ,P(r, Wr) = l dr fr1.(db) p(r - s, a, b) ,P(r, b). (83) 
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( c ) (branching rate functional) This functional L belongs to K. 

Definition 38 (Brownian collision local time L[W, TJ] of TJ) If 1J is a regular 
(Mp-valued) path, then the additive functional L[W, TJ] according to Proposition 
37 is called the Brownian collision local time {BCLT) of TJ. <> 
Example 39 ( 1J with jointly continuous density) If the regular path T/ has 
a jointly continuous density field on (0, +oo) x Rd, that is 1Jr ( db) = 1Jr (b )db with 
[r, b] I-} 1Jr (b) continuous (as the catalyst process g has in dimension d = 1, see 
Proposition 44 below), then 

L(dr) = TJr(Wr)dr II.,,a-a.s., a E Rd. (84) 
<> 

Proof of Proposition 37 (a) First of all note that t I-} 'lfJ(t, a)TJt(da) is 
a continuous Mrvalued path on (0, N], for simplicity denoted by 'lj;1J. For 
e E (0, 1], define a related continuous additive functional Ae = Ae[w, 'if;TJ] as in 
(82), with TJ replaced by 'lj;1J. Recall that by the assumed regularity of 1], 

18+t: ! sup dr TJr(db)'if;(r,b)p(r-s,a,b)--+0,. 
-'$.N, a.ER" ., e.J,O 

N>O. 

Then by a simple modification of Evans and Perkins (EP94, Theorem 4.1], there 
is a continuous additive functional A = A[W, 'if;TJ] of W such that 

sup II.,,a. sup IAe(s, t) - A(s, t)l 2 --+ O, 
-'$.N, a.ER" 4$.t$.N e.J.O 

N>O. (85) 

(The modification, we apply without further. notice, consists in replacing their 
assumption that J 1Jt( db) 'if;( t, b) vanishes for t sufficiently large by restricting 
the consideration tot running in finite intervals [O,N].) Then we set L(dr) := 
A(dr)/'if;(r, Wr), and the existence statement (a) is obviously fulfilled. 
(b) For each fixed N > O, by monotone convergencies, we may restrict our 
considerations to 'if; satisfying additionally the assumptions in (a). Then from 
(a) we get the pointwise convergence · 

II.,,a. tLe(dr)'lfJ(r, Wr) --+ II.,,a. tL(dr)'if;(r, Wr)· 
~ e.J.O ~ 

By definition, the expectation at the l.h.s. equals 

J.' dr JT/r(db) p(e + r - s, a, b) ,P(r, b). 

But it is easy to show that this double integral converges to the r.h.s. of (83) as 
e-!- O, which is finite by our assumptions that 'if; is dominated and 1J is regular. 
(For instance, take two-sided estimates of p( e+r- s, a, b ), and monotone limits.) 

( c) Claim ( c) is an immediate consequence of the expectation formula ( 83), 
applied to 'if; = 'if;p , and the assumed regularity of 1J. This finishes the proof. • 
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5.3 BCLT of the catalyst process e in dimensions d ::; 3 
Now we are prepared to state the main result of this section. Recall that IP 
refers to the catalyst process starting with a spatial homogeneous initial state 
{!o such that lleollP has finite moments of all orders. Note that IP= IPt satisfies 
the assumption in the following theorem with 8 = O, whereas the case 8 > 0 
covers the ergodic time-stationary IP in dimension 3. 

Theorem 40 (Brownian collision local time of the catalyst process) 
Fiz d:::; 3, e E (o, ~ ), 8 ~ O, and IP. If 8 = O, assume additionally that (72) 
holds withµ replaced by {!o, with IP-probability one. Then IP-almost surely, the 
Brownian collision local time L = L[W, {!o+(·)] e:!Yists and is a branching rate 
functional in Ke. 

Proof 1° ( e:vistence) By Proposition 37 (a), for the existence of the BCLT 
L = L[W, e] it suffices to show that the paths UH(·). are regular with IP-
probability one. For this purpose, fix N > O, cp E B~, and, as in Definition 35, 
look at 

J.a+e f 
.s dr {!o+r(db)cp(b)p(r-s,a,b), 

Consider Sugitani's occupation density field y0 = {Y[o,o+t](z); t ~ O, z E Rd} 
related to the catalyst process (} (Lemma 24). Since Y[o,o+t] (z) is non-decreasing 
in t, for each fixed z E Rd, it determines a locally finite (random) measure .\S( dt) 
on R+. Then (86) can be rewritten as 

f J.
a+e 

dbcp(b) a .\~(dr)p(r-s,a,b). (87) 

Denoting by p the time derivative of p, we can use the elementary inequalities 

. a+e 
p(r - s, a, b) :=:; p(e, a, b) + 1 dcr l'f>(cr - s, a, b)I 

and 
jp(t,a,b)I :::; const r 1 p(t, b;ii), 

to estimate the interior integral in (87) from above by 

J.a+e 1a+e 
p(e, a, b) AH[s, s + e]) + const 

6 

.\~(dr) r dcr (er - s)-1 p(cr - s, b;ii). 

Interchanging the order of integration, we can continue with 

J.
a+e 

:::; p(e, a, b) Y(o+a, o+.s+e] (b) + const a dcr (er- s)-1 p(cr - s, b;ii) Y[o+a, o+a](b). 
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But by Theorem 33, supb Y[H,,,H,,+e](b)</>p(b) :::;, const ee, almost surely with 
respect to IP (with a random constant const). Using the fact that the db-
integration of the Brownian transition density functions equals one, altogether, 
for the expression i~ (87) we get the estimate 

:5 const [e< + l' du u<- 1 J. 

We therefore obtain 

(88) 

0 :::; s :::; s + e :::; N, a E Rd, that is uniformly in the considered s, a. Thus we 
get the desired regularity of UH(·) according to Definition 35, hence IP-almost 
surely the existence of the BCLT L = L[W, UH(")]· 

2° (branching rate functional in Ke) To complete the proof, according to Def-
inition 3 (b ), it suffices to show that 

(89) 

0 :::; s :::; s+e :::; N, a E Rd. By the expectation formula in Proposition 37 (b ), the 
expectation at the l.h.s. can be written as in (86) with cp = <1>;. Now proceed 
as in Step 1° with the only difference to replace the db-integration over the 
Brownian transition density functions by the domination property (11) of the 
heat flow to get out the </>p(a) needed for (89). This finishes the proof. • 

In dimension d = 1 the statement of Theorem 40 can be sharpened. In fact, 
as already noticed in Example 36, here all Mp-valued paths are regular. Hence, 
by Proposition 37(a), in dimension one the BCLT L[W, u] exists IPµ-a.s., for all 
µ E Mp. Moreover (recalling Definition 3 (b)): 

Lemma 41 (one-dimensional BCLT L[W, u]) In dimension d = 1, for allµ 
in Mp and IPµ-almost all paths u, the Brownian collision local time L = L[W, u] 

. belongs to Ke with e = ! . 
Proof We have to show (89). For this aim, consider (86) with cp = <1>; and 
~ = 0. If we restrict additionally to lb - al :::; lal/2, then lbl ~ lal/2, hence 
</>p(b) :::; const </>p(a), and we can use the inequality in Example 36 to arrive at 
the r.h.s. of (89). In the opposite case lb- al > lal/2, apply 

p(r - s, a, b) </>p(b) :::; p(r - s, a/2) :::; const (r - s)-1/ 2 </>p(a) 

instead, to finish the proof. • 
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5.4 Existence: Catalytic SBM xe for d ~ 3 

From now on we always assume that d ~ 3 and consider the catalyst process (} 
distributed by IP which is assumed to be either IP l (with l an Lebesgue measure) 
or an ergodic time-stationary law in dimension d = 3. Note that in the latter 
case f!o+(·) is again distributed by IP, for each o > 0. Hence, by Theorem 40, 
in both cases, the BCLT L = L[W, e] exists IP-a.s. and is a branching rate 
functional K in Ke, for all ~ < -1. Now we have together all ingredients to 
define the catalytic SBM rigorously: 

Definition 42 (catalytic SBM) If the branching rate functional K is IP-a.s. 
given by the BCLT L = L[W, e] of(}, then the we write Xll for the continuous 
SBM X K according to Theorem 17 (b), and P6~µ. , s ~ O, µ E Mp , for the 
quenched distributions of xu given f!· We call Xll the catalytic SBM in the 
catalytic medium (} distributed by IP. 0 

Remark 43 (arbitrary (}o in d = 1) Based on Lemma 41, the catalytic SBM 
Xll is also well-defined ifin Definition 42 we replace IP by IPµ, µ E Mp, provided 
that d = 1. 0 

Recall that by Lemma 15, X = Xll has finite moments of all orders (given 
(}). As a preparation for later usage, we want to expose here only the covariance 
formula. Indeed, by the expectation formula (83) for the BCLT of {}, from 
Proposition 11 (b) we get: 

Cov~,µ. [ (Xt1 , cp),(Xt2 , 'l/J)] 
= 2 J µ( da) J: 1 

vt
2 dr ff!r ( db) p(r - s, a, b) St 1 -r'P (b) Strr'l/J (b ), 

(90) 

6 Persistence of xu in dimension one 
The main purpose of this section is to study the long-term behavior of the 
catalytic SBM Xll in the one-dimensional case. Recall that under d = 1 one 
can start the catalyst process {}with any measure in Mp (Lemma 41). The 
main results will be the persistence Theorems 47 and 48 at pp. 46 and 49. For 
convenience, we first restate the existence of a jointly continuous density field 
of(}. 

6.1 Jointly continuous density of the catalyst process e 
The following result goes back to Konno and Shiga [KS88] and Reimers [Rei89]: 
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Lemma 44 (jointly continuous density in one dimensions) In dimension 
d = 1 and for all initial measures µ, E Mp, the catalyst process has a jointly 
continuous density field, for simplicity also denoted by {! : 

IPµ ( Ut(dz) = Ut(z) dz for all t > s) = 1, (91) 

Proof 1° (finite initial measure) Ifµ, is a finite measure, for a proof we refer 
to Konno and Shiga [KS88]. 

2° (decomposition of e) If B is a Borel subset of R, write {!B for the catalyst 
process starting with the restricted measure eo( · n B). Decompose R with the 
help of the intervals Cm = [m, m + 1), m E Z. By the branching property we 
get the representation {! = Lm {!m with conditionally independent {!m := u0 =, 
m E Z, given {!o; see [DP91, Chapter 6). 

3° (Borel-Cantelli) Letµ, E Mp. Decompose{! with this initial measureµ, as in 
the previous step. Then, for each bounded Borel set B C R there is a constant 
canst such that 

IPµ ( e~(B) > 0 for some t > 0) :::; const lml- 2 , m~2, 

see Iscoe [Isc88, Theorem 1]. Since this is summable in m, with IPµ-probability 
one only finitely many {!m will ever have mass in B, and by the Steps 1° and 2° 
the jointly continuous density field exists also in this infinite measure case. • 

Consider now the (one-dimensional) catalytic SBM xe with{! distributed by 
IPµ, µ, E Mp. Note that in this case, for smooth cp EC~ and t fixed, the solution 
v = v(·, t, ·)of the cumulant equation (23) uniquely solves the (one-dimensional) 
parabolic equation 

av 
as = .!:. ~v - nv2 

2 c: ' vl ·= cp, 
a=t 

(92) 

with{! the jointly continuous density function distributed according to IPµ (recall 
(91)). Notice also that v then satisfies the following "Feynman-Kac equation" 
(that is, Feynman-Kac version of the cumulant equation (92)) 

v(s, t, a) = II,,. <p(W,) exp - J.' dr l!r(Wr) v(r, t, Wr ), (93) 

0 :::; s :::; t, a E R, we will later use. (In fact, start for instance with Dynkin 
[Dyn94b, Theorem 4.2.1], and use the fact that each non-negative continuous 
function on [O, t] x R can pointwise be approximated from below by bounded 
smooth functions, and proceed by two-sided estimates and monotone limits as 
in the proof of (13).) 
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6.2 Finite time of interference in dimension one 
If the catalyst process e starts with a finite initial mass, llJ.£11 < oo, then by the 
extinction property of Feller's critical branching diffusion, e has only a finite life 
time: flt = 0 for all t sufficiently large, with IPµ-probability one. On the other 
hand, if llJ.£11 = oo, then (in the present one-dimensional situation), one still has 
a local e:vtinction: For each bounded Borel set B C R, 

et(B) = 0 for all t sufficiently large, IPµ-a.s., µ E Mp. 

Intuitively, in dimension d = 1, at a late time t, the catalyst process forms 
clumps of huge mass but each has (spatially) bounded support which will not 
intersect a given region. At time t, neighboring clumps have a "distance" of 
order t ([DF88]), whereas a tagged Brownian path W has a "range" of order 
v't. Thus, both g and W will "interference" only in a finite time. In other 
words, the intersection of the graphs of the density field g (recall (91)) and W 
is bounded: 

Proposition 45 (finite time of interference) Let d = 1, µ E Mp with 
1 < p < 2 {for instanceµ = £), and s ;::: O, b E R. Then there e:vists a (non-
Markovian) random timer;::: s such that for the jointly continuous density field 
e of the catalyst process, 

Proof 1° (decomposition and Borel-Cantelli) Fixµ, s, bas in the proposition. 
Decompose e = :Em em as in Step 2° of the proof of Lemma 44. By the 
extinction property of Feller's critical branching diffusion, there are stopping 
times Tm (life time of gm) such that 

We may set i := s V supm Tm ones we know that the number of those m =/= 0 
such that the event 

Em := { e": (Wt) > 0 for some t ;::: 1 V s} 

occurs, is finite with II.,,b x IPµ-probability one. For this, by Borel-Cantelli it 
suffices to show that 

:Em;eo II.s,b X IPµ( Em) < oo. 

2° (law of the iterated logarithm) Fix e E (o, (2-p)/p). From the law of iterated 
logarithm for Brownian motion we know that we can find a (random) constant 
c = c(W) > 0 such that 
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Now Em implies one of the following events: 

Ei := { er(B(O, lml/2) > 0 for some t?:. 1} 
E1r := { er(R) > 0 for some t?:. (~) 2/(i+e)}· 

45 

That is, em has to charge the centered ball of radius lml/2 after time 1, or it 
has to survive by time (~) 2/(l+e). Again by Iscoe [Isc88, Theorem 1], 

m =f. O, 

which is summable in m =f. 0. On the other hand, from the well-known survival 
probability estimate of Feller's critical branching diffusion, 

m =f. O, 

(with Cm = (m, m + 1)), which is also summable in m =f. O, since 2/(1 + e) ?:. p 
andµ E Mp by assumption. This completes the proof. • 

6.3 Variance of the total BCLT in one dimension 
By Proposition 45, in the one-dime.nsional case the time of interference of W and 
e is finite IPt-a.s. Hence, also the total BCLT L(O, +oo) of(! is finite. Actually, 
even its second moment with respect to IIo,b is finite: 

Proposition 46 (finite 2nd moment of the total BCLT) Let d = 1. Fi3; 
s ?:. 0 and b E R. Then the Brownian collision local time L = L[W, e] of e 
satisfies 

(94) 

Proof By homogeneity properties of Wand e, and since Lebesgue measure .e. 
is shift-invariant, without~floss of generality we may restrict to the case b = 0. 

1 ° (finite time interval) First of all, 

IT.,,0 L2 (s, K) < +oo IPt -a.s., K > s v 1. 

In fact, calculate the IPt -expectation: 

IPtII,,oL2(s, K) = 2 J.K dr iK dtII,,o IPt u,.(W, )l?t(W,). (95) 

From the covariance formula (90), forµ E Mp we get 

Cov µ[er (Wr ), et(Wt)] 
= 2"'1 J µ(da) J~ duj db p(u, b- a)p(r - u, Wr - b)p(t- u, Wt - b). (96) 

~ const ..Ji, J µ(da) p(r;wr - a). 
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Hence, (95) can be estimated from above by const K 512 < oo. 

2° (time interval [ s + 2n , s + 2n+l)) For a fixed n ~ 0, we decompose g as in 
Step 2° of proof of Lemma 44, but only in two terms: g = g1 + g2 where g1 starts 
with µ,1 which by definition is£ restricted to I~ := {a E R; !al ~ n2n/2 }, and g2 

starts with the "complementary" measure, namely£ restricted to I~ := R\J~. 
In the first. case, as in ( 95) we pass to the !Pt-expectation and use the estimate 
(96) to get 

Since s is fixed, using the elementary inequality 

{oo t 
}T da p(t, a) ::; T p(t, T), t,T> O, 

we can estimate (97) from above by ::; const 25n/2 exp [ - const n 2 ] with two 
positive constants const. But the latter expression is summable inn. Hence the 
process starting with µ,1 gives a finite contribution to the second moment of the 
total BCLT. 

Now we turn to the second case. By the cluster representation (see [Daw93, 
Corollary 11.5.3]), {u;; s+2n ::; ·r < s+2n+i} may be generated by a Poissonian 
number of clusters at timer= s+2n, namely with expectation i(I~)(s+2n)- 1 ::; 
const n2-n/2 • Hence, this Poissonian number is different from 0 with probability 
bounded from above by const n2-nl2 • Since this is summable in n, by Borel-
Cantelli only finitely many n produce a contribution to L2 ( s+l, +oo ). Exploiting 
Step 1 ° repeatedly, the proof is finished. a 

6.4 Persistence of the total mass process ( d = 1) 
In the finite measure-valued SBM with constant branching rate, the total mass 
process (which is Feller's critical branching diffusion) dies a.s. in a finite time. In 
the single point catalytic SBM (meaningful only in dimension d = 1), the total 
mass process converges to 0 a.s. as time tends to infinity (see Fleischmann and 
Le Gall [FL95, Corollary 5]). In contrast to both cases, for the one-dimensional 
X ll we prove a.s. convergence of the total mass process with preservation of the 
mean (persistence) and with a non-degenerate limit (non-zero finite variance). 

Theorem 47 (total mass persistence) Let d = 1. For !Pt-almost all g the 
following holds. F~ µ, E M1 and s ~ 0. Then 

m 2 := lim llXf 11 e3Jists P6~µ -a.s. 
t~oo 

where the limiting (total) mass mll has the Laplace function 

P6~µ exp .-8m2 = exp-(µ,, ue(s)), () ~ o, (98) 
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with u9 2:'.: 0 satisfying the Feynman-Kac identity 

u9(s, a)= IHI,,. exp- f."' dr g,.(Wr) u9(r, Wr ), s 2:'.: O, a ER. 

47 

(99) 

The {conditional) law of me is infinitely divisible and has the following e:r;pec-
tation and variance 

P,~µm' = ffµff, Var~,µ m• = 2II.,µ f."' dr g,.(Wr) < +oo (100) 

(which are non-zero if µ =:j:. 0). 

Proof Recall that by Lemma 41 for IPt-a.a. {! the BCLT L = L[W, u] is a 
branching rate functional in Ke, for e = ~ . For the following proof we fix such 
a g. 

1° ( a.s. convergence) The P&~µ-a.s. convergence of llXfll to a limit me with 
expectation bounded by 11µ11 follows from Proposition 20. 

2° (definition of ue) For the given g, the Laplace transform of llXtell satisfies 

P&~µ exp-8 llXfll = exp- jµ(da) v(s, t, a), (J 2:'.: o, (101) 

with v solving the Feynman-Kac equation 

v(s, t, a) = 6 IT.,. exp- J.' dr g,.(Wr) v(r, t, Wr) (102) 

(recall (93)). In the particular case µ = da., from the almost sure conver-
gence explained in Step 1°, we conclude for the existence of the finite limit 
liIIlt->-oo v(s, t, a)=: ue(s, a). 

3° (limiting cumulant equation) We want to establish that u9 satisfies the 
identity (99). First note that the integral at the r.h.s. of (102) can be written 
as 

J.' dr l{r ~ r}er(Wr )v(r, t, Wr) (103) 

with T the finite time of interference from Proposition 45. By bounded conver-
gence (applied to the finite measure 1 { r ~ T} f!r (Wr) dr and to the integrands 
bounded by 8), the integral (103) converges to 

[ dr g,.(Wr)ug(r, Wr) 

as t-+ oo. Again by bounded convergence, the r.h.s. of (102) tends to the one 
of (99). Consequently, u satisfies the Feynman-Kac equation (99). Again by 
bounded convergence, the Laplace function formula (98) follows. 
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4° (reduction to µ = 5a.) Since P-1~µ llXfll = f µ(da) P.!~a. llXfll, where we ab-
breviated Pl a. := pse 5 , and because the latter integrand equals 1, by bounded 
convergence 

1

it suffic~; to show the expectation formula in (100) for µ = <Sa., 
a E R. Similarly, by (90), 

Var;',µ llXtell = J µ(da) Var;',a. llXlll, 

and 

V ar~ •• JIXf JI = 2II, ,.L( s, t) t 2II,,. ['" dr l!r (W,) as tt +oa 

where the latter expectation is finite by Proposition 46. Hence, by monotone 
convergence it suffices to show the variance formula in (100) forµ= da.. 

5° ( e3)pectation) First of all, from the Feynman-Kac identity (99) we conclude 
uo(r, a) ::; fJ, and (98) implies Ps~a. exp -fJmB ~ e- 9 • Hence, taking the logarithm 
of (98) and differentiating with respect to (J gives 

0 < u' (r a) := !_ uo(r a) = eus(r,a.) pe mBe-9m
9 < e9 pe mB < e9 

- 9 ' 8(} ' r,a. _ r,a _ ' (104) 

(J > 0. On the other hand, 

uo(r, a)j 9=o+ = O, u~(r, a)j 9=o+ = Pr~a. mB::; 1. (105) 

Next consider 

we ( s, a) := II,,. e - f.= dr e.(W,) u.(r, w.) !."" dr l?r (W,) u~( r, W,). ( 106) 

Of course, the exponential expression is bounded by 1, whereas for the derivative 
term we use the bound ( 104). Therefore . . 

limsupwo(s,a)::; II.!,a.f.
00 

drer(Wr) = IT-1,a.L(s,+oo) < +oo (107) 
oio $ 

by Proposition 46. 
From (105) and differentiating (99) with respect to (J at (J = o+, we obtain 

the following expectation formula: 

with we from (106). But the latter limit expression disappears by (107), and 
we arrive at the claimed expectation formula P.!~a. mB = 1. Moreover, 

lim u~(r, a)= 1 uniformly in r, a, oio 
(108) 
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and by dominated convergence we get the following sharpening of (107): 

1ifo1wo(s,a) = II.,,aL(s, +oo) < +oo. 

6° (variance) From the Laplace function (98) we have 

v e e - "( )I ar.,,am - -u9 s,a O=o+· 
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(109) 

Differentiating twice (99) we get three terms. The first one is -2w(s, a) with 
w from (106) and results by (109) into the desired variance expression in (100). 
The second one is (J times a term as w but with the square of the latest integral 
in (106). By (104) and Proposition 46, this is a negligible term. Finally, the 
third term differs from (106) by having u~(r, Wr) instead of u~(r, Wr) (except 
the factor 8). Differentiating (104), we obtain the estimate 

lu~(r, Wr)I ~ e29 + e9 Pr~W.,. (mll)2 ~ e29 + e9 [1+2IIr,w.,.L(r, +oo)]. 

Inserting into the third term and using the Markov property of W, again a 
second moment expression occurs which is finite by Proposition 46. Altogether 
we showed the variance formula as desired, finishing the proof. II 

6.5 Persistence in the infinite measure case (d = 1) 
Starting xe with a Lebesgue measure, opposed to other one-dimensional spatial 
branching processes, here the catalytic SBM xe does not become locally extinct 
and is even persistent: 

Theorem 48 (one-dimensional persistence) In dimension d = 1, for IPL-
almost all realizations{} of the catalyst process, the catalytic SBM xe satisfies: 

Xl ---+ i P.,0 l - stochastically, s ;::: O, 
t~oo ' 

{in the p-vague topology). 

Proof Fix a catalyst process realization {} such that L = L[W, e] is a branching 
rate functional in Ke for e = ~ (which by Lemma 41 is possible with IPL-
probability one). Fix also s;::: 0 and a smooth cp EC+ with compact support. 
It suffices to show that 

By Proposition 11 (a), the l.h.s. is given by llv(s, t)ll1, where v solves (23), that 
is (92). By the Feynman-Kac identity (93) and Proposition 45, 

J.
t/\r 

v(s,t,a) = II.,,acp(Wt)exp [-
8 

drer(Wr)v(r,t, Wr)]. 
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Hence, 

for r ~ t /\ r, and we conclude 

Since the exponential expression converges monotonically and Il5 ,L-a.s. to one 
as t --+ oo, by dominated convergence the r.h.s. tends to II.!,l <,o(Wt) = ll'Pll1, 
which also dominates the l.h.s. Hence, llv(s, t)ll1 -----+ ll'Pll1, and the proof is 
finished. Hoo II 
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