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Abstract

We consider the solution of multiply shifted linear systems for multiple right-hand sides.
The coefficient matrix is symmetric, complex, and indefinite. The matrix is shifted by differ-
ent multiples of the identity. Such problems arise in a number of applications, including the
electromagnetic simulation in the development of microwave and mm-wave circuits and
modules.

The properties of microwave circuits can be described in terms of their scattering matrix
which is extracted from the orthogonal decomposition of the electric field. We discretize
the Maxwell’'s equations with orthogonal grids using the Finite Integration Technique (FIT).
Some Krylov subspace methods have been used to solve systems with multiple right-hand
sides. We use both the block-QMR method and a symmetric band Lanczos process based
on coupled recurrences with polynomial preconditioning.

We present a method for providing initial guesses to a linear solver both for systems with
multiple shifts and for systems with multiple right-hand sides each with a different shift.
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1 Introduction

Today, electromagnetic simulation forms an indispensable tool in the development of microwave
circuits. The description of the boundary of the computational domain has always been a key
issue in bringing up efficiency of electromagnetic simulation. The Perfectly Matched Layer (PML)
concept provides an excellent solution to this issue. However, the benefits of PML do not come
for free. In the frequency-domain case, the material tensors worsen the numerical properties of
the system of equations to be solved, which results in increased CPU time [20].

The subject under investigation are three-dimensional structures of arbitrary geometry which
are connected to the remaining circuit by transmission lines. Ports are defined at the outer
terminations of the transmission lines (see Fig. 1).
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Figure 1: The basic structure under investigation



Calculating the excitations at the ports, one obtains eigenvalue problems and then large-scale
systems of linear algebraic equations. In general, the computation of the eigenvalue problem
and of the system of linear algebraic equations have to be done for several frequencies. More-
over, these linear equation problems have to be solved repeatedly for different right-hand sides.
The number of right-hand sides depends on the number of ports and modes.

2 Scattering Matrix

The scattering matrix describes the structure in terms of the wave modes on the transmission
line sections at the ports. We consider all exciting modes with amplitudes a; towards the dis-
continuity and all amplitudes b; outwards from the discontinuity (see Fig. 1). As example for the
waves at the left port of Fig. 1 the transverse mode field at a cross-sectional plane z is given by

m(P) m(P) m(®)
E;(Z) = Z alEt7l€_]kle + Z blEt7le+]kle = Z wl(z)E’t,l (l)
I=1 =1 =1
with 3
wy(2) = qe a7 4 betE = qy(2) + by(2), 2)

where k_, is the propagation constant. We consider the application of (1) with (2) at a pair of
neighboring cross-sectional planes z, and z,ap. m®) denotes the number of modes which
have to be taken into account at the port p.

We get Et,z(zp) solving eigenvalue problems for the transmission lines. The scattering matrix S
(see [10]) is defined by

Z_;l, =Sa,, v=11)m,. (3)

The dimension m of this matrix is determined by the total number of modes at all ports. That
means, we have to solve m boundary value problems (see [9, 10]).

3 Boundary Value Problem

A three-dimensional boundary value problem can be formulated using the integral form of
Maxwell's equations in the frequency domain [2] in order to compute the electromagnetic field:

fﬁ.dg _ ]w/[e]E’-dQ , f[e]ﬁ.dﬁ _ 0,
oN Q Q
fﬁ-dg = —]u}/[/ﬁ]ﬁ-dﬁ : f[u]H-dQ = 0,
N Q Q

—

D=[dE, B=[uH. (5)

(4)

The electric and magnetic flux densities D and B are complex functions of the spatial coordi-
nates. w = 2w f is the angular frequency of the sinusoidal excitation. f denotes the frequency.



At the ports p the transverse electric field Et(zp) is given by superposing weighted transmission
line modes E;(z,) (see (1)):

m(P)

zp) = Z wl(zp)ﬁt,l(zp) . (6)
=1

All other parts of the surface of the computation domain are assumed to be an electric or a
magnetic wall:
Exn=0, Hxn=0. @)

We introduce a complex permittivity [¢] and a complex permeability [1] diagonal tensor to obtain
a reflection-free interface between the computational area and the lossy PML region:

[l = (OA], 4] = (u)[AW)] (8)
with
(6) = diag(el‘v €y; EZ) ) (:u) = diag(ﬂm:uynuZ) . 9)
[A(©)] and [A)] are defined for a PML in 2-, y-, or z-direction as follows (v € {e, u}):
[A ] _dlag()\ 7)‘l/7>\ )
[A(V)] = [A ]y - dlag( v )\ ) ) with (10)
AW =diag(\,, A\, )
A o=1— 2% and e fm (11)
Dow €o Mo

In case of overlapping at edges and corners the resulting PML tensor is the product of the PML
tensors of the individual PML walls that form the edges and corners, respectively.

4 Maxwellian Grid Equations

Maxwellian grid equations are formulated for staggered nonequidistant rectangular grids (see
Fig. 2) using the Finite Integration Technique with lowest order integration formulae [2, 14, 21]:

éﬂf~d§—>2(ifl-si), /Qf-dQ—>fQ, ﬁf—dQ%Z(iﬁQi). (12)

The discretized form of (4) results in an equation for each field component. Presenting each
equation using matrices provides a compact form:

CD gﬂb = JweopoD z€ 5DA55 = 0,

. . (13)
CDsg = —ijAb s SDAb = 0.

The diagonal matrices D DAe, Dy, and D 4 represent all cell quantities. The so-called curl

5/
(C, C) and source matrices (S, S) describe the topology of the two grids with the following
properties (see [22]): o ~

SC=0, SC=0, C=0CT. (14)
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Figure 2: Primary and dual grid

4.1 System of Linear Algebraic Equations

Using (14), eliminating the components of the magnetic flux density (I;) in (13), and multiplying
by D;/Q yields a symmetric form of linear algebraic equations:

(Dy/2CT Dsyp D3 OD; = ki D) D*8 =10, (15)

where ky = w,/€pfto denotes the wavenumber in vacuum. Moreover, the gradient of the electric
field divergence
[[]V([e]7*V - []E) =0 (16)

is equivalent to the matrix equation
(D;"?D 38" DL SD Dy *)DY*e = 0. )

The diagonal matrix Dy is a volume matrix for the 8 partial volumes of the dual elementary
cell.

The addition of Egs. (15) and (17) yields the form
(B9 — 2D @)@ =, (18)

Taking into account the constitutive relations (5), the boundary conditions (7), and the transmis-
sion line modes Eﬁ“(zp) (see (1)) we transform Eq. (18) into an inhomogeneous linear system
of equations where its right-hand side depends on (6). For it, we use the notations given in Table
1. Thus, we get from Eq. (18):

( 0 ) vy _(IE—IE 0 ) v\ _
- G G G — Y,
BE — gD )\ 4 By B 1D ) \ 4\



Table 1: Notations

G G
y(G) (() ())

Yg s Yr , vector of the unknown electric flux densities

nyG) (yég), yéj)) , given components of the solution vector 3(¢)
nyG) external points, yég) solution of the
dim(nyG)) =ng 2d eigenvalue problem
y}G) internal points, yég) given boundary points
dim(ng)) =n;, N =ng+n; of the 3d problem
B© = (B 0)+ (0, B dim(B@) = (n;, N),
dim(B\) = (ny,ng),
dim(B'“) = (ny, n;)
D@ = (0,D\y dim(D@) = (ny, N),
dim(D'\Y) = (ny, ny)
Ig identity dim(Ig) = (nE, HE)

0 B — k2D Y\ BS 0 )\ 4\ ’
G G G
< Ip 0 © ) yf(g) - yf(g) _ yJ(E) — 9 a9
0 B9 —2p| yi& — B9y A9

Therefore, the systems of linear algebraic equations
(B(G /{;2D )y§G) (G) (20)

are to be solved. The number of such systems (20) is m, (see Section 2).

4.2 Eigenvalue Problem

The vector yég) is the solution of the 2d eigenvalue problem. In the following, we consider a

longitudinally homogeneous transmission line. Thus, any field can be expanded into a sum of
so-called modal fields which vary exponentially in the longitudinal direction:

E(x,y,z+2h) = E(x,y, z)e™*=" (21)

where k, is the propagation constant, and 2/ is the length of an elementary cell in z-direction
(see Fig. 3) Thus, we get a two-dimensional eigenvalue problem for the transverse electric
fields § = Eyy(z,), | = 1(1)m®), (see (6)) on the transmission line region:

Af =y, v = e h2h L etka2h _ o — 4 sin?(hk.). (22)

A detailed derivation of the eigenvalue problem can be found in [11, 12, 13, 15].
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Figure 3: Transmission line

5 Symmetric Band Lanczos Process

We consider the iterative solution of large systems of linear algebraic equations which not only
have multiple right-hand sides, but also have multiple shifts for each right-hand side. The gen-
eralized form of Eq. (20) is the problem

(;B+ B;D)y9" =™ ;8 €C, (23)

withj=1,....,ngand k = 1,...,ny. Let n;, be the number of right-hand sides and n be the
number of shifts. The Matrix B is complex, symmetric, and indefinite. A standard way to solve
systems with multiple right-hand sides is to use a block approach [18, 8, 3].

Eqg. (23) can be transformed into

(D™'2BD™'2 4 o' B;1) (o D2y 0R)) = D=12cR) (24)
Thus, we get then the common equation
AV IR = (A 4 0;1)20F) = k) | 5, € C, (25)
i.e.,
A 2D o (LR o (L)
0 : ; .
AW) 20D oo R L pGmw) =
0 : : :
Alns) pnsl) o pnsk) oL ()



p oo pke Ll plmw)

1
po oo pR) Ll plmw) j
B L ) n

with
A = D71/2BD71/27 x(]yk) — O[le/Qy(.Zk)’ b(k) — D*1/2C(k)7 and 0’] = Q{;lﬁj .
For the special case that all right-hand sides in (25) are identical, i.e.,
2 = 20R pR) —p foral k=1,...,n, (26)

itis straightforward to exploit the shift structure when solving the n s systems by Krylov subspace
methods. We use the initial guess xé]) = 0 for all 5. In this case, the Krylov subspaces for all
ns systems are identical:

Kn(A+0;1,b) =K, (Ab) fordl j=1,...,n, and m>1. (27)

This means that the computation of suitable basis vectors for the underlying Krylov subspaces
has to be performed only once. A lot of Krylov subspace methods have been developed for
shifted matrix problems. A detailed derivation of a shifted coupled two-term algorithm without
look-ahead for

A0 = (A4, DaD =b, 0;€C, j=1,...,n,, (28)

can be found in [19].

5.1 Symmetric Block-QMR Method

We first describe the general form of block Krylov subspace iterative methods for the simul-
taneous solution of linear systems with multiple right-hand sides (see [8, 16]). Solving the n,
systems

Az =) =1, . ny, (29)

where A € CV*N 20 ¢ CN, and ) € CV is equivalent to solving the block system of
linear equations

AX =B, (30)
where B = b @ . pm)] € CV*™ and X = [zM) 2 .. gw)] € CVxme,
The block Krylov method generates a sequence of block iterates

X, = (2D 2@ g =12 (31)

where 21/ € 2§ + K.(A,R)foreach j =1,...,n,and R € CN*™,
Here, R = Ry = B — AX is the block of initial residual vectors and /C,,(A4, R) denotes the

8



f1-th block Krylov subspace generated by A and R, i.e., the first x4 linearly independent vectors

in the block Krylov sequence
R,AR,... AR, ... (32)

span the subspace K, (A, R).
By scanning the vectors in (32) from left to right and deleting each vector that is either linearly
dependent or almost linearly dependent on previous vectors, we obtain the so-called deflated

block Krylov sequence
Ri,AR,, ..., AF 1R, ... (33)

For k =1, we set R = R,.

In addition to the matrices A and R, the Lanczos-type process requires a second sequence
of vectors that span the block Krylov subspace ICM(AT, L) generated by AT and L, i.e., the
Lanczos-type process has produced right and left Lanczos vectors

{vi, ... v} and {wy, ... ,w,}, (34)
respectively, with
K.(A, R) = spanf{vy, ... ,u,}
and
K.(AT, L) = span{wy, ... ,w,}.

The vectors (34) are constructed to be biorthogonal, i.e.,

wivj—{o it i foradl i,7=1,... .

An important feature of the Lanczos-type process is that the vectors (34) are generated by
means (21, + 1)-term recurrences. These recurrences can be summarized in compact form as
follows:

AV, =V, T, + V¥ p=n—mg >1. (35)

Here, m,, denotes the reduced size of the current block in the deflated block Krylov sequence
(33) and n is the iteration index. V;, = [v; vy ... v,] € CV*" contains the first n basis
vectors, T, € C"** is a banded matrix with lower and upper band width 7, + 1 containing the
recurrence coefficients, and the matrix ij € CN*# consists of mostly zero column vectors
and a few nonzero columns with very small entries.
Each deflation step in the block Krylov sequence (33) reduces the lower band width of 7}, by
one. Additionally, the recurrences (35) are complemented by recurrences for the initial block R,
ie.,

Vi © + Vodf =R, Vp, €CV™  m <rank(R) <mny . (36)

The matrix © € C™*™ contains recurrence coefficients up to iteration when = 0. The
matrix Vodf € CV*™ consists of zero vectors and deflated vectors.

Notice that (35) only holds for ;« > 1, or equivalent for n > mg, where m; is the size of the first
block in the sequence (33), i.e., m; = rank(Ry).



The left Lanczos vectors in (34) are generated by means of recurrences similar to (35) and (36).
All possible block iterates (31) can be represented in the form

X, =Xo+V,Z,, Z,eCr ™. (37)

After each deflation in the v sequence, the size of the current block in the corresponding de-
flated block Krylov sequence (33) decrease by one. Additionally, one of the linear system of (30)
can be dropped from subsequent block QMR iteration (see [8]). The solution of all such deflated
systems can be recovered from the solution of the converged remaining linear systems. There-
fore, one of the columns from the matrices Xw X, and Zu in (37) can be dropped and only the
remaining iterates need to be updated. Then, for the current block iterate Xff, we can rewrite
(37) as

X;’" =Xy +VuZ,, Z,¢€ CHX™Mer - My < . (38)

The residual block Rff corresponding to Xﬁ’“ is given by
cr cr cr
R = B” - AX i
= Ry -ViT1,Z,-V¥Z,

=V, ({ (? ] —TMZM) -Vv¥z,. (39)

The matrix O € C™1*™er consists of those columns of © in (36) that correspond to columns
of X, retained in X"
The free parameter matrix Z,, in (38) is determined as the solution of the matrix least-squares

problem
[ ]-na o]

in the Euclidean norm. The matrix least-squares problem (40) is solved by means standard
techniques based on QR factorization of 7,. This allows to obtain the solution Z,, by updating
the solution Zu,l from the previous step. Implementation details are described in [8].

The banded matrix T, is factorized into a unitary matrix (@,,)”and a nonsingular upper trian-
gular matrix U,

= min
ZeCrxmer

' (40)

U nxn X
TM:(QM)H[ oﬂ’ Q.,eC™™, U, eCHr,

The lower bandwidth of the matrix Tu is at most n;, + 1. Its QR factorization can be updated
using n; Givens rotations at each iteration of the block QMR method. The update of the block
QMR iterates can be performed by means the following quantities:

@C'f‘

tCT‘
(£]-0.[9] meewm, e

w= || eee
Yu
The solution Z,, of (40) is given by
. —14cr
Z, = Uu by -

10



We also define a sequence of direction vectors py, pa, ..., pu, = 1,2,... , with
P,=[p1p2 ... pu) = Vngl.
Finally, the block QMR iterates can be updated by means
X=X+ V.U
T
X+ puy, -

It is well known that the classical Lanczos process for general matrices A simplifies when
applied to complex symmetric matrices. The resulting Lanczos process only involves one se-
quence of Lanczos vectors. The resulting simplified block QMR method does not require matrix-
vector multiplications with A7

Now, we consider an adaption of block QMR to shifted systems, i.e., systems of the type
(A"—O'][).T(]):b(]), O'jEC, jzl,...,nb. (41)

We sketch the general case (41) or the case (28) if non zero initial guesses, xéj) # 0, are
chosen. Then, the Krylov subspaces depend on j. We use the Lanczos process to still exploit
the shift structure of (41). Using the right initial block

R=Ry= [rél) r(()Q) 'r’é"b)] , r(()j) = b9 — (A + ajl)xéj) : (42)
we generate basis vectors {v; vy ... v,} for th u-th Krylov subspace /C,(A, R). The p-th

iterate :C,(f) for the j-th system in (41) is then defined by

xff) = x(()j )+ VuzLj ) (43)

where sz) € C* is the solution of the least-squares problem

Q¢ L Qcr .
J _ 7@ D = mi J _ 7@
[0 |- =[5 | -0 2
Using (35) and AY) = A + 0,1, we get
, B A i
AV, =V, T + VI (45)
Furthermore,
(A+o,1)V, = AV, +o;V,
= VT +o;V,+ V7
1
=V, <Tu+o—j [ 6‘ D +VI.
With T,Sj) =T, + 0 [ Ié‘ } we get from (44) the least-squares problem
. ‘ Qcr I
ZEL]):argglel(glL [0] :|_<(TM+Uj[6L:|)Z (46)

In (46), T,, is the matrix of Lanczos recurrence coefficients given by (35). The vector @;’" is
defined as the j-th column of the matrix ©°" (see (36) and (39)).

11



5.2 Symmetric Band Lanczos Method

The symmetric band Lanczos process is an extension of the classical Lanczos algorithm for
symmetric matrices and single starting vectors to multiple starting vectors (see [1, 4]). First,
we consider the ny linear systems (29), where A is a complex symmetric matrix and R =
[r(l) r® .. r("b)] is a block of ny right starting vectors. The symmetric band Lanczos process
generates orthogonal basis vectors for the subspaces spanned by leading columns of the block
Krylov matrix (see (32)):

K(A,R) =[R AR ... AN7'R]. (47)

The columns of the matrix JC(A, R) in (47) are all vectors of length N, and thus at most NV of
them are linearly independent. One needs to perform so-called deflation of linearly dependent
or in some sence almost linearly dependent vectors.

After n iterations, the algorithm has generated the first n Lanczos vectors
V1, V9, ... U, € CV. (48)
It will be convenient to introduce the notation
Vi=[viva ... v,), VIV,=1,, (49)

for the matrices whose columns are just the right Lanczos vectors (48). In addition to (48), the
algorithm has constructed the m., = m..(n) vectors

. . . N
Unt1s Unt2s « v s Ungme. € C° (50)

that are candidates for the next m,, Lanczos vectors, Up41, Un+2, --. , Untm,,. HEre me, is
the current block size. At the initialization phase, i.e., n = 0, we have

me = np and @j:r(j), 1<ji<ny.

Within the algorithm, m,,. is reduced by one every time a deflation occurs. The vectors (50) are
constructed so that they satisfy the orthogonality relations

VI, =0 foral j=1,...,me.. (51)

The recurrences can be summarized compactly as follows:

AV, = VT +[0 ... 0 Dpg1 Dng2 -+ Vg, | + Vrflf . (52)
\ /S ~- -

The entries of the matrix 7,,, T,, € C™*", are chosen so that the orthogonality conditions (49)
and (51) are satisfied. The matrix fo contains mostly zero columns together with the 0; vectors
that have been deflated during the first n iterations. We remark that n, — m, is the number
of deflated ©; vectors. It turns out that orthogonality only has to be explicitly enforced among
2m., + 1 consecutive Lanczos vectors and, once deflation has occurred, against n, —m,.,. fixed
earlier right Lanczos vectors. Thus, the matrix 7}, is essentially banded. More precisely, 7}, has

12



lower as well as upper bandwidth m,.,. + 1. Additionally, the recurrences (52) are complemented
by recurrences for the initial block R, i.e.,

R=Ry=V,0+ %df , Vi, € CV™ 0 my < rank(R) < ny. (53)

Here, m; < n; denotes the number of columns of the block R that have not been deflated. The
matrix %df € CN*™ contains the ny — my deflated starting vectors and my zero vectors as
columns, and © € C™ ™ is an upper triangular matrix whose entries are chosen such that
the columns of V,,,, are orthonormal.

If no deflation has occured or if only exact deflation is performed,i.e.,

UH—0 and UV =0,

then
VIAV, =VIV.T, =1T,. (54)

Furthermore, the so-called n-th Lanczos matrix 7, is symmetric:
7 = (VIAv)r =vIAv, =1,. (55)
In the case V¥ # 0, we get
T,=VIAV, +VIV¥ =T, + VIV¥  T,eC".

The matrix T~n consists of a symmetric banded part, 7;,, with decreasing bandwidth and a spiked
part with potentially nonzero elements only in rows and columns with index ¢ € Z and outside
of the banded part. The index set Z records the positions of the potentially nonzero columns of
V4 due to deflation.

The matrix 7}, is decomposed in T,, = L,U,,, where L, € C""™ and U,, € C"*™ are lower
and upper triangular matrices,respectively. The unit upper triangular U,, consists of a banded
part with bandwidth decreasing from n; + 1 to m.,. + 1. Analogous, the lower triangular L,
consists of a banded part with bandwidth decreasing from n; + 1 to m,, + 1:

I 0 1wy,
where [;; = u;; = 0forj +me <i<n,j=1,...,n— Mg, and n > m,.

We generate a second set of vectors
P2 o €CY L Pu=Ipip2 ... pal, (57)
that span the same subspaces as V,,, i.e.,
span{vy,va, ... ,v;} = span{py,ps, ... ,p;} foral 1<j<n.

Then we set
V., =P,U,. (58)

13



All block iterates can be represented in the form
X, =Xo+V,2Z,, Z,eCrm™, (59)
After each deflation, for the current block iterate X", we can rewrite (59) as

X = X+ Voz,, Z,eCrme
= X"+ PUZ,
= X+ PBY,, Y,=U,Z,cCvmer
Xiy+ palenYa). (60)
Using (52), (53), (58) — (60), and \A/,fr =0 ... 00py1 ... Optim, ] the residual block R
corresponding to X" can be represented as follows:
RT = B — AX®
= B - AX{ - AV, Z,
= R -V, 1.2, -V Z,-V¥Z,
= Vo ©7 =V, LY, — V2, -V¥2Z,

-V, q ? } _ LnYn) —VeZ, -V¥Z,. (61)

Using (61), Y,, is the unique solution of the least-squares problem

Y, =arg min
Y eCnxmer

@C'f‘
HEA -

We describe now the basic steps of the QMR approach. We first consider the solution of the
least-squares problem (62) for the case when no deflation occurs at iteration 1, while generating
U

Vn = [Vn—l Un] .

Using (56), we consider the decomposition of the n-th Lanczos matrix 7,

tln
TnI Tnfl : s tij:tjia 1§’l,j§n,
tnfln
tnl tnnfl ‘ tnn
Uin
T, = LnUn = Ln—l ‘ U Unil
lnl e lnn—l ‘ lnn Up—1n
0 | 1

Due to the fact that the lower and upper triangular L,, and U,,, respectively, consist of a banded

14



part with bandwidth m.,. + 1 we get the following terms:

i—1
lni = tni— E lnjuji , wz; =1,
Jj=j*

i—1
1
Uin = I (tin_;lijujn> )

Upp = 1 s
n—1
i=i*
for i* = max(1,n — me,), j* = max(l,n — mg.), and i = i*,...,n — 1. For the solution

of the least-squares problem (62) we get

LY,=5,, L.ecC™, Y,cCvmr 8, cC™m je,

) ) - )
lnj* e lnn—l ‘ lnn ynl e ynmcr Snl e Snmcr )

and
Ln—lyn—l = Sn—l
1 ; .
Yni = l_ <3m' — (ln]* U lnnfl)Yn(Z—)l) , 1= 17 ceey Mep (63)
nn
where Yn(i_)1 is the ¢-th column of the matrix Y,,_;. We set S,, = O forn = m,, and s,,; = 0

fori=1,...,m and n > m,.

Next, we describe the effect of deflation in the Lanczos-type algorithm for updating the block
iterates X" In this case, we set v,, = 0, which implies that

V, = [Vi_1 0].
V,, now only has column rank n — 1.

T V T, _ 0
_‘/ ‘/ n—1 n—1

. - Ln—lUn—l ‘ 0 - Ln—l ‘ 0 Un—l ‘ 0
ﬂ—“%—( 0 \o)—<o m)<o u)

For the case when no deflation occurs we get

LnYn _ [ tfi; } ’ t;r c C(n—mcr)xmcr ’ Trczr c Cmmﬂxmmn ]
n
In the other case we get
by e
~ " L, 1Y, _ . - _
LnYn = Tﬁr = Tgr_l = [ m 10 n—l } with Tgr € C(mcr xmer .
0 0
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At a deflation step, the residual block 2" corresponding to the block iterate X" in (60) is given
by
CcTr O
R =Voy| e | - (64)
T’I’L

The matrices ‘A/n” and fo consist only of zero column vectors. Since 7" is a rectangular matrix,
there exist a vector «y with 77"y = 0. Multiplying (64) from the right by -y gives

Ry ="V, { 2 } v=0. (65)
n

In practice, the vector ~y is computed by means of the last m,,. columns and the last m,, — 1

rows of the matrix L,,_1.

Using (65), we can express the approximate solution of the single linear system A:Lu, = By

in terms of a linear combination of columns of X" by setting

Ty =X, . (66)

Consequently, it is possible to delete one of the linear systems from block iterations, e.g., one
can delete the j-th system. The solution vector corresponding to the j-th system can be con-
structed when all vectors in the updated block iterate X" have converged after n,,,, iterations.
Using (66), we get

1 Mer

2l = — oy, =) a2l | (67)
Vi k=1
ki

Now, we consider shifted systems of the type (41) with (42). Using
V,=PYUY foral 1<j<n,

then the n-th iterate xﬁf ) for the j-th system is defined by

2

L ) B O o

29 4 POy o)

29 4 POy 0 — 0,0 ¢ o |

R UCATUR ©%

Using (54) and AY) = A + o1, we get

TY =VIADY, = VT(A+o;1)V, =T, +o;1. (69)
Using the decomposition Tr(bj) = Lg)Uéj), yr(lj) is the unique solution of the least-squares

problem

ygj) = arg min
yeCn

[ ?7 ] — ng‘>yH . (70)
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5.3 Preconditioned System of Linear Algebraic Equations

Unfortunately, standard preconditioning techniques with a preconditioner
M = MM, = (M, My)" = M7, (71)

such as SSOR preconditioning, destroy the special structure when they are applied to shifted
linear systems. The only technique we are aware of that allows to preserve the shifted structure
is polynomial preconditioning (see [7]).

Using standard preconditioning techniques, we apply the symmetric band Lanczos method to
the shifted linear systems (41)

ADFD =50 =1, ny, (72)

with o
AV = MY A+ oy My M) Myt = M7 AMy ! + 051
b = M9 and 70 = Mozl

It is easy to see that the linear systems (41) and (72) with (73) are not equivalent. Only, for
M = I the systems (41) and (72) are equivalent.

(73)

It is common when implementing algorithms which involve a two-sided preconditioner to avoid
the use of the ) variable. It is possible to write the resulting algorithm in terms of quantities
corresponding to the system (41). We have the following analogies:

Up — 6n:M1_1Un7 Pn %pn:MQan
6z:6n = UEM_lvn ) ﬁgﬁn = pZ:Mpn >
T A, = vIMYAM v, , prAp, = pLAp,.

5.4 Algorithm

We summarize the basic structure of the symmetric band Lanczos QMR method with deflation,
but without look-ahead (see [8, 4]).

0. Input: A= AT, B=[pWp@ . v {o,... 00}
A deflation tolerance dtol.
Choose Xy andset R = [rM) @2 . r(m)] = Ry = B — AX,.
Forj=1,...,m, sett; = rU). Set m,, = n; and index set Z = ().

Forn=1,2,...,do:

1. Compute 3 = || M; '0,]|. Set p = n — my,..
Decide if v,, should be deflated. If yes, i.e., < dtol, do the following:

1.1 If ;1 < 0, then delete one column vector from X", R, and ©".
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1.2 If u > 0 and the deflated vector ¥,, is nonzero, then set Z = Z U {1 }. Delete one
column vector from X" and R;;".

1.3 Setm, = my — 1. Ifm,. = 0, setn = n — 1 and stop.
Forj=mn,n+1,...,n+my —1,setd; = ;4.
Return to Step 1.

2. Update V' and preconditioned V' sequences.

2.1 Normalize v,, to become the n-th Lanczos vector: v,, =

=

2.2 If p < 0, thenset 077, = 3.
23 If p > 0, thensett, , = f.
2.4 Compute ,, = v M~tv,. 1f§, = 0 stop.
2.5 Advance the right Krylov subspace: 0., = A(M1v,).
2.6 Set k = max{1, u}. Orthogonalize the vector ¥y, ,,,, against vectors v;,
jeETU{k,...,n— 1}
U?Milf}n—i—mcr

tjn = S and  Onim.. = Ontme, — Ujljn -
j

2.7 Orthogonalize the vectors ¥y, = 1,..., M., against vector vy:
If £+ 7 <0, then

Tar—1x

v M 0
cr _Yn n+j ~ oA cr

——— and Uy = Uty — V0

n,n+j ~ n,n+j *
J 5n J
If £ 4+ 7 > 0, then
T -1
v, M Uy
_ Yn n+j N A
tn,,quj = 57 and Untj = Uptj — Untn“quj .
n

Forall j =1,...,n for which xg) has not converged yet:

3. Compute the decomposition of the matrix TV(Lj):
TY) =T, + 0,1 = LYUY) .
4. Compute the vector pg):
PO = p . p = V(U p =M, = > Pl
i=max{1l,u}

5. Compute the solution yﬁlj) of the least-squares problem (70).

6. Compute the n-th iterate xﬁf ) (see (68)).
End for (7).

7. Check if all solution vectors azgj) have converged. If yes, then recover solution vectors

(see (67)) and stop.

End for (n).
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6 Polynomial Preconditioning

We consider the shifted linear system
Az = (A+ol)z=b. (74)

We use polynomial preconditioning to speed up the convergence of the iterative methods for the
solution of (74), i.e.,

PO(ACH) A g = PO (A (75)
for left preconditioning and
AP Ay = POANADy =b, o =P7(AY)y, (76)

for right preconditioning, respectively. Here, Pﬁf) is a suitable chosen polynomial in A of a
small degree, i.e., with degree no more than m. Both linear systems (75) and (76) are equivalent.
We seek a polynomial 77,(7;7) with the following two properties [6, 5]:

e The coefficient matrix P57’ (A@) A is again a shifted matrix.

° Péf)(A(")) is an optimal polynomial preconditioner, i.e., the convergence of the iterative
method, applied to the preconditioned system, is speed up optimally.

First, for any polynomial, we can represent A@plo) (A©)) in the form

AP A = (A+ o)PY(A+0l) = APy (A) + 71 (77)
with 7 € C. Note that P\, P, and T are related by

(z+0)P(2+0)=2Pn(2)+7 and 7=0P,(—-0). (78)

We note that the coefficient matrix AP,,(A) of the preconditioned system (77) is Hermitian if,
and only if, P,, is a real polynomial. In order to guarantee that AP,,(A) is nonsingular, we
require that P,,,(z) # 0 for all z € .S with

o(A) C S=[a,b]U]c,d], c<d<0<a<b,

where g(A) is the spectrum of A.

Next, we turn to the question of optimal choice of polynomial P,,,. We have two different cases:

e 2Pn(z) >0 Vze S
e 2P(2) >0 Vze[a,b] and zP,(z) <0 Vz € [ed].

If the last case holds, then the preconditioned system remains indefinite. We can now state the
main result in the following form [6]:
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Let S = [a,b] U [c, d] be the union of a positive and negative interval with ¢ <
d<0<a<bandl = {(y,0) € RxR : § > 0} a parameter set. The
optimal polynomial P (z) of

w(’%a) = Igin Hf - ZPmHQ s

I = 2Pully = max|g(2) (f(z) = 2Pu()] 79)

1 if 2>0 1 if 2>0
g(z):{é if 2<0 f(z):{’y if z<0

is an indefinite polynomial preconditioner with

SY

+_E and 5219_—(3
+a d—¢

”)/:

S

The numbers @, b, ¢, and d are defined by

a = min zP,(z),

= max 2P, (2) ,
z€[a,b]

b
z€[a,b]
¢= min zPp(z), d= max zP,(z).
z€[c,d] z€[c,d]
Moreover, there exist parameters 7o and dg, (7o, d9) € I, such that Pz, (2, 7o, do)
is an optimal indefinite polynomial preconditioner.

(79) is a linear Chebyshev approximation problem depending on the two parameters (’y, 5) el.
We seek to approximate f(z) by polynomials of the form zP,,(z) in the weighted uniform norm
||.||g - The standard tool for the numerical solution of such general real Chebyshev approxima-
tion problems is the method of Remez. The Remez type procedure is based on the equioscilla-
tion property [6]. Implementation details are described in [19].

7 Initial Guesses

The use of initial guesses for systems with multiple shifts is not as simple. The problem of initial
guesses is related to the more general problem of solving systems with multiple shifts each with
a different right-hand side (see [17]).

7.1 Multiple Shifts with Identical Right-Hand Sides

We consider the systems (41) with the same right-hand sides (see (28)). Using the initial
guesses, x(()j), we get the residuals

r(()]):b—(A—i—O'JI)ZCé]), j:17"'7nbu (80)
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and then solve

b—(A+o; Dz = +§

(A+0; D)z — (A4 o, Nzl = r{

A+ o0, — 2@y = 70
(A+o0,1)2V = T((]j) , J=1,. .. (81)

Then, the solutions are given by W) = x(()j) + 2 for all j =1,...,n4. In general, the new
right-hand sides, r(()]), are not collinear. Therefore, the Krylov subspaces, IC,,(A + o;l, r(()])),
are not the same. Take

np

:L’((]j) = H(A+al-[) w (82)
i=1
i#]

for any vector w, then the new right-hand sides are all equal to

ny ny
i) =b—(A+0;0) S [[(A+ o) wzb—{fﬂA+mD}w- (83)
=1 =1
i#£]

The nyp systems (81) with (82) and (83) can be solved with standard multi-shift Krylov meth-
ods [19]. The problem is to find the best vector w for (82).

Given approximate solutions
.fj‘(j)%(A—FO'j[)ilb, jzl,...,nb. (84)

Using (83), we get
np
bz{IRA+mD}w.
i=1

Next, from the above expression, we derive the vector w:

np
iV~ (A+ o, 1) =~ H(A+U,~I) w
i=1
i#]
np
~ (A+oD) [[A+aD) pw, 1<j<m,
i=1
i,k
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i® ~ (A+ o, D)™

iV~ (A4 o)

7)) _ (k)
O — 05
70 _ 7@
0, — 0j
7) N
(o, — 0j)(01 — ;)
5 (k)
+
(0; — ow) (o1 — o)

Q

Q

Q

Q

Q

Q

ny

[[A+aD) pw
=1
ik
)
np
(A+oDS [[(A+a) pw, 1<k<m,
i=1
\ i#4.k
)
np
(A+oDS [[A+aD) pw, 1<i<n,
=1
\ 77,0
np
[[A+0D) pw
=1
i#j,k
ny
A+al [[ A+ah) pw, 1<jk<n,,
=1
i#£j.k,l
ny
H (A+0;l) pw
=1
i#j,l
ny
A+oD) [ A+l pw, 1<j1<n,,
=1
i#£j,k,l
ny

[[ A+al)pw, 1<jki<n,.

i=1
i,k
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This process can be continued up to HZ”’(A + 0;1) = 1. Using (84), we get

ny ) . ny 1
w= E cj:f:(]) with ¢; = H - (85)
j=1 i=1 J
i#]

Note that the coefficients ¢; can be become very large if the shifts o; with smaller differences
increase.

7.2 Multiple Shifts with Multiple Sources

Next, we are interested in solving the systems (41) with multiple sources. We need to find a set
of initial values, x(()j),j =1,...,ny, that give a common residul r:

T-O:Té]):b(J)—(A—FO'][).Té]), jzla"'unb-

This can be solved by setting
np—2

D= 7 Ak R
k=0

Then we get

ro = b9 —(A+ o)z
np 2
= b9 — (A+0;I) {ZAk ]k}
ny—2 np—2
= ) — {Z AFLER o Z Akz(j’k)} yi=1,... .
k=0 k=0

Equating powers of A and solve for 2k in terms of b's gives the following equations for 7, 7 =
1, c e, Ny

Z(]vnb_Q) — Z(Z7nb_2) ,
LUk 4 ajz(j’k) = 0D 4500 k=, —2 1,
b9 — ;200 = pO) _ 5,200

One can also solve this by considering the polynomials

nb72
G(A) = (A+ o Dp;(A) with i) = AR08 =p,(4)
k=0

at the special cases A = —o; 1,1 <[ < my:

ryl = b — g(—oyl) = bV — (—oy + all)xél) =,
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This gives the 1, equations for fixed j
¢j(—o ) = b9 — 3t =D —pD 1 <1 <y

Since qj(A) is a polynomial of order n, — 1 in A the system is uniquely determined. The
polynomial

np np

A + Ui] .
q;(A) = Z H P—— (b9 — M) (86)
i P

satisfies these equations. Using a:(()j) =p;j(A) = (A+0;1)"'¢;(A) we get

n | G) _ (k)
0 A+oil <b —b )
w'=> ¢ 11 - (87)
1 il 0; — O O'J'—O'k
ki itk

8 Numerical Results

A nonequidistant mesh of 57 664 elementary cells including graded PML regions is used for the
discretization of (4), that means the order of the system of linear algebraic equations is 172 992
(see (19)). The number of internal points y}G) (see Table 1 and Eq. (20)) is 152608. We use
three different matrices D (see (23)):

() D =diag(A), () D= % ~diag(A), )y D =10-diag(A).

We analyze the following systems of linear equations:

Linear system ‘ I Il 1]

0 Al‘(j) = b(j) (Oéj = 176j = 0) IO

1 (a;A+ B;D)x) = b9 (see Sec. 5.2) I, I, III
2 (ajA+ B;D)z) = bl (see Sec.5.2) I, I, IIIL
3 (A4 B;D)z) =bl9)  (see Sec. 7.2) I, II; III

The systems of linear equations in row 2 (I, I 15, I11,) are computed separately. The systems
of linear equations in row 3 (I3, I3, 1113) are computed with new initial guesses (see (87))
and a common new right-hand side (see Sec. 7.2). This method does not work very good for
more and/or smaller shifts. The initial residuals may be large. Thus, we use a fixed number of
right-hand sides, nbm, to get new initial guesses and a new right-hand side:

Is: nbm =6, IlI3: nbm =3, IIl5: nbm = 10.
The right-hand sides b(j),j = 1,...,ny, are generated by an uniformly distributed random

number generator. The stopping criterion was a reduction of the norm of the residual for the
preconditioned system (41-43) by 1072,

Based on the family of approximation problems (79), we have computed indefinite polynomial
preconditioners. For this purpose, the Remez algorithm in [19, Sec. 6.1] was used. Using the
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Nelder-Mead method (see [19, Sec. 6.2]), optimal indefinite polynomial preconditioners were
computed by solving the constrained optimization problem numerically. The experiments were
conducted on a workstation with Intel Xeon CPU W3520 (2,67 GHz, 8 cores) running 64-bit
Linux system.

We compare the iteration counts required to solve the n, € {1,3,5,10} linear systems (see
(29) and (41)) using the symmetric band Lanczos method without polynomial preconditioning
with the number of iterations required to solve with polynomial preconditioning. The choice of the
parameters (7,0) € I' and the computation of the 'optimal’ parameters (7, &) is described
in [19].

In Table 2 are denoted the estimated boundaries for the sets S, the parameters (y,9) € I’
for the examples considered here, and also the computed 'optimal’ parameters (g, §o) € I
The degree of the Lagrange polynomial L;(z) is { = 8 and [ = 9, respectively [19, Eq. (51)].

Table 2: The boundaries for S

I a b c d
2.24-107%  2.00 —0.45 —5.20- 1077
v —0.2241, 0~ 4.4610
=9 : = —0.7339, & ~ 4.3407

1 a b c d
1.27-107% 20.00 —3.66 —5.19-107°

v~ —0.1825, &~ 5.4782
=8 : ~p~—05635, & ~ 5.5894

" a b c d
0.48-1077 020 —6.48-10"2 —5.19-1078
v~ —0.3240, § ~ 3.0864
[=9: ~~—05066, & ~ 3.2273

We choose for the preconditioner Pm(A) (see (77)) the linear case. This choice decreases the
numerical effort and is more stable. The Tables 3 — 6 shows the numbers of iterations for shifted
and unshifted linear system, respectively. A convergence history of the three examples (see
Tables 4-6) can be found graphically in the Figs. 4-6.
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Table 3: Number of iterations for unshifted matrices, I

Iy Number of unshifted linear systems, n, 1 3 5 10
No preconditioning 1128 2712 4355 8844
Preconditioning: (fyo, 50) 569 1219 1965 4385

Table 4: Number of iterations for shifted matrices, I1—111;

I Number of shifted linear systems, 1, 1 3 5 10
No preconditioning 119 10722 18064 36212
Preconditioning: (7o, do) 58 5374 9225 18784

15 Number of shifted linear systems, 7, 1 3 5 10
No preconditioning 369 13329 14209 76780
Preconditioning: (7o, do) 195 4726 5657 34868

11 Number of shifted linear systems, n,, 1 3 5 10
No preconditioning 41 3642 6103 12581
Preconditioning: (7o, do) 20 1716 2953 6084

9 Conclusions

We have analyzed the solution of linear systems of equations with multiple right-hand sides
each with a different shift. We have presented a variant of the symmetric band Lanczos pro-
cess with multiple starting vectors. The symmetric band Lanczos process is based on coupled
recurrences. Polynomial preconditioners for indefinite linear systems leads to indefinite pre-
conditioned coefficient matrices. Such polynomials can be obtained via the solution of linear
Chebyshev approximation problems.

We have presented a method that produce initial guesses with a common right-hand side. It
could be very useful. The main difficulty then is keeping the initial residual under control.
Another problem is to find suitable informations on the location of the eigenvalues of A4, i.e., the
bounds of the two intervals [a, b] and [c, d].
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Table 5: Number of iterations for shifted matrices, Io—111,

I Number of shifted linear systems, 7, 1 3 5 10
No preconditioning 119 4883 5683 13975
Preconditioning: (’yo, 50) 58 2433 2823 6975

115 Number of shifted linear systems, n,, 1 3 5 10
No preconditioning 369 6549 8826 33506
Preconditioning: (7o, do) 195 3364 4569 18246

1115 Number of shifted linear systems, 1, 1 3 5 10
No preconditioning 41 2480 2746 3921
Preconditioning: (o, do) 20 1221 1343 2081

Table 6: Number of iterations for shifted matrices, I3—1113

I3 Number of shifted linear systems, 1, 1 3 5 10
No preconditioning 115 3381 2970 5360
Preconditioning: (Yo, do) 56 1647 1575 2720
11, Number of shifted linear systems, n,, 1 3 5 10
No preconditioning 364 4803 6551 22341
Preconditioning: (7o, do) 178 2425 3318 11036
1113 Number of shifted linear systems, n;, 1 3 5 10
No preconditioning 37 1100 1135 1175
Preconditioning: (’yo, 50) 20 581 594 637
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