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Abstract

We consider the solution of multiply shifted linear systems for multiple right-hand sides.

The coefficient matrix is symmetric, complex, and indefinite. The matrix is shifted by differ-

ent multiples of the identity. Such problems arise in a number of applications, including the

electromagnetic simulation in the development of microwave and mm-wave circuits and

modules.

The properties of microwave circuits can be described in terms of their scattering matrix

which is extracted from the orthogonal decomposition of the electric field. We discretize

the Maxwell’s equations with orthogonal grids using the Finite Integration Technique (FIT).

Some Krylov subspace methods have been used to solve systems with multiple right-hand

sides. We use both the block-QMR method and a symmetric band Lanczos process based

on coupled recurrences with polynomial preconditioning.

We present a method for providing initial guesses to a linear solver both for systems with

multiple shifts and for systems with multiple right-hand sides each with a different shift.

Contents

1 Introduction 2

2 Scattering Matrix 3

3 Boundary Value Problem 3

4 Maxwellian Grid Equations 4

4.1 System of Linear Algebraic Equations . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Symmetric Band Lanczos Process 7

5.1 Symmetric Block-QMR Method . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2 Symmetric Band Lanczos Method . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3 Preconditioned System of Linear Algebraic Equations . . . . . . . . . . . . . . 17

5.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Polynomial Preconditioning 19

1



7 Initial Guesses 20

7.1 Multiple Shifts with Identical Right-Hand Sides . . . . . . . . . . . . . . . . . . 20

7.2 Multiple Shifts with Multiple Sources . . . . . . . . . . . . . . . . . . . . . . . 23

8 Numerical Results 24

9 Conclusions 26

List of Figures

1 The basic structure under investigation . . . . . . . . . . . . . . . . . . . . . 2

2 Primary and dual grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Transmission line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Number of iterations for (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Number of iterations for (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Number of iterations for (III) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1 Introduction

Today, electromagnetic simulation forms an indispensable tool in the development of microwave
circuits. The description of the boundary of the computational domain has always been a key
issue in bringing up efficiency of electromagnetic simulation. The Perfectly Matched Layer (PML)
concept provides an excellent solution to this issue. However, the benefits of PML do not come
for free. In the frequency-domain case, the material tensors worsen the numerical properties of
the system of equations to be solved, which results in increased CPU time [20].
The subject under investigation are three-dimensional structures of arbitrary geometry which
are connected to the remaining circuit by transmission lines. Ports are defined at the outer
terminations of the transmission lines (see Fig. 1).
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Figure 1: The basic structure under investigation
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Calculating the excitations at the ports, one obtains eigenvalue problems and then large-scale
systems of linear algebraic equations. In general, the computation of the eigenvalue problem
and of the system of linear algebraic equations have to be done for several frequencies. More-
over, these linear equation problems have to be solved repeatedly for different right-hand sides.
The number of right-hand sides depends on the number of ports and modes.

2 Scattering Matrix

The scattering matrix describes the structure in terms of the wave modes on the transmission
line sections at the ports. We consider all exciting modes with amplitudes al towards the dis-
continuity and all amplitudes bl outwards from the discontinuity (see Fig. 1). As example for the
waves at the left port of Fig. 1 the transverse mode field at a cross-sectional plane z is given by

~Et(z) =

m(p)
∑

l=1

al ~Et,le
−kzlz +

m(p)
∑

l=1

bl ~Et,le
+kzlz =

m(p)
∑

l=1

wl(z) ~Et,l (1)

with
wl(z) = ale

−kzlz + ble
+kzlz = ãl(z) + b̃l(z), (2)

where kzl is the propagation constant. We consider the application of (1) with (2) at a pair of
neighboring cross-sectional planes zp and zp+∆p. m(p) denotes the number of modes which
have to be taken into account at the port p.
We get ~Et,l(zp) solving eigenvalue problems for the transmission lines. The scattering matrix S
(see [10]) is defined by

~̄bν = S~̄aν , ν = 1(1)ms . (3)

The dimension ms of this matrix is determined by the total number of modes at all ports. That
means, we have to solve ms boundary value problems (see [9, 10]).

3 Boundary Value Problem

A three-dimensional boundary value problem can be formulated using the integral form of
Maxwell’s equations in the frequency domain [2] in order to compute the electromagnetic field:

∮

∂Ω

~H · d~s = ω

∫

Ω

[ε] ~E · d~Ω ,

∮

Ω

[ε] ~E · d~Ω = 0 ,

∮

∂Ω

~E · d~s = −ω

∫

Ω

[µ] ~H · d~Ω ,

∮

Ω

[µ] ~H · d~Ω = 0 ,

(4)

~D = [ε] ~E, ~B = [µ] ~H. (5)

The electric and magnetic flux densities ~D and ~B are complex functions of the spatial coordi-
nates. ω = 2πf is the angular frequency of the sinusoidal excitation. f denotes the frequency.
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At the ports p the transverse electric field ~Et(zp) is given by superposing weighted transmission

line modes ~Et,l(zp) (see (1)):

~Et(zp) =
m(p)
∑

l=1

wl(zp) ~Et,l(zp) . (6)

All other parts of the surface of the computation domain are assumed to be an electric or a
magnetic wall:

~E × ~n = 0 , ~H × ~n = 0 . (7)

We introduce a complex permittivity [ε] and a complex permeability [µ] diagonal tensor to obtain
a reflection-free interface between the computational area and the lossy PML region:

[ε] = (ε)[Λ(ε)] , [µ] = (µ)[Λ(µ)] (8)

with
(ε) = diag(εx, εy, εz) , (µ) = diag(µx, µy, µz) . (9)

[Λ(ε)] and [Λ(µ)] are defined for a PML in x-, y-, or z-direction as follows (ν ∈ {ε, µ}):

[Λ(ν)] =







[Λ(ν)]x = diag( 1
λν
, λν , λν)

[Λ(ν)]y = diag(λν ,
1
λν
, λν)

[Λ(ν)]z = diag(λν , λν,
1
λν
)






with (10)

λν = 1− 
κν

ν0ω
and

κε

ε0
=

κµ

µ0
. (11)

In case of overlapping at edges and corners the resulting PML tensor is the product of the PML
tensors of the individual PML walls that form the edges and corners, respectively.

4 Maxwellian Grid Equations

Maxwellian grid equations are formulated for staggered nonequidistant rectangular grids (see
Fig. 2) using the Finite Integration Technique with lowest order integration formulae [2, 14, 21]:

∮

∂Ω

~f · d~s →
∑

(±fisi) ,

∫

Ω

~f · d~Ω → fΩ ,

∮

Ω

~f · d~Ω →
∑

(±fiΩi) . (12)

The discretized form of (4) results in an equation for each field component. Presenting each
equation using matrices provides a compact form:

C̃Ds̃/µ̃
~b = ωε0µ0DÃε̃~e , S̃DÃε̃~e = 0 ,

CDs~e = −ωDA
~b , SDA

~b = 0 .
(13)

The diagonal matrices Ds̃/µ̃, DÃε̃, Ds, and DA represent all cell quantities. The so-called curl

(C, C̃) and source matrices (S, S̃) describe the topology of the two grids with the following
properties (see [22]):

SC = 0 , S̃C̃ = 0 , C = C̃T . (14)
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Figure 2: Primary and dual grid

4.1 System of Linear Algebraic Equations

Using (14), eliminating the components of the magnetic flux density (~b) in (13), and multiplying
by D

1/2
s yields a symmetric form of linear algebraic equations:

(D1/2
s CTDs̃/µ̃D

−1
A CD1/2

s − k2
0DÃε̃)D

1/2
s ~e = 0 , (15)

where k0 = ω
√
ε0µ0 denotes the wavenumber in vacuum. Moreover, the gradient of the electric

field divergence
[ε]∇([ε]−2∇ · [ε] ~E) = 0 (16)

is equivalent to the matrix equation

(D−1/2
s DÃε̃S̃

TD−1

Ṽ ε̃ε̃
S̃DÃε̃D

−1/2
s )D1/2

s ~e = 0 . (17)

The diagonal matrix DṼ ε̃ε̃ is a volume matrix for the 8 partial volumes of the dual elementary
cell.

The addition of Eqs. (15) and (17) yields the form

(B(G) − k2
0D

(G))y(G) = 0 . (18)

Taking into account the constitutive relations (5), the boundary conditions (7), and the transmis-
sion line modes ~Et,l(zp) (see (1)) we transform Eq. (18) into an inhomogeneous linear system
of equations where its right-hand side depends on (6). For it, we use the notations given in Table
1. Thus, we get from Eq. (18):

(
0

B(G) − k2
0D

(G)

)(

y
(G)
E

y
(G)
I

)

=

(
IE − IE 0

B
(G)
E B

(G)
I − k2

0D
(G)
I

)(

y
(G)
E

y
(G)
I

)

= 0 ,
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Table 1: Notations

y(G) = (y
(G)
E , y

(G)
I )T , vector of the unknown electric flux densities

y
(G)
E = (y

(G)
2d , y

(G)
3d )T , given components of the solution vector y(G)

y
(G)
E external points, y

(G)
2d solution of the

dim(y
(G)
E ) = nE 2d eigenvalue problem

y
(G)
I internal points, y

(G)
3d given boundary points

dim(y
(G)
I ) = nI ,N = nE + nI of the 3d problem

B(G) = (B
(G)
E , 0) + (0, B

(G)
I ) dim(B(G)) = (nI , N) ,

dim(B
(G)
E ) = (nI , nE) ,

dim(B
(G)
I ) = (nI , nI)

D(G) = (0, D
(G)
I ) dim(D(G)) = (nI , N) ,

dim(D
(G)
I ) = (nI , nI)

IE identity dim(IE) = (nE , nE)

(
IE 0

0 B
(G)
I − k2

0D
(G)
I

)(

y
(G)
E

y
(G)
I

)

+

( −IE 0

B
(G)
E 0

)(

y
(G)
E

y
(G)
I

)

= 0 ,

(
IE 0

0 B
(G)
I − k2

0D
(G)
I

)(

y
(G)
E

y
(G)
I

)

=

(

y
(G)
E

−B
(G)
E y

(G)
E

)

=

(

y
(G)
E

c
(G)
I

)

= c(G) . (19)

Therefore, the systems of linear algebraic equations

(B
(G)
I − k2

0D
(G)
I )y

(G)
I = c

(G)
I (20)

are to be solved. The number of such systems (20) is ms (see Section 2).

4.2 Eigenvalue Problem

The vector y
(G)
2d is the solution of the 2d eigenvalue problem. In the following, we consider a

longitudinally homogeneous transmission line. Thus, any field can be expanded into a sum of
so-called modal fields which vary exponentially in the longitudinal direction:

~E(x, y, z ± 2h) = ~E(x, y, z)e∓kz2h , (21)

where kz is the propagation constant, and 2h is the length of an elementary cell in z-direction
(see Fig. 3). Thus, we get a two-dimensional eigenvalue problem for the transverse electric
fields ~y = ~Et,l(zp), l = 1(1)m(p), (see (6)) on the transmission line region:

A~y = γ~y, γ = e−kz2h + e+kz2h − 2 = −4 sin2(hkz). (22)

A detailed derivation of the eigenvalue problem can be found in [11, 12, 13, 15].
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Figure 3: Transmission line

5 Symmetric Band Lanczos Process

We consider the iterative solution of large systems of linear algebraic equations which not only
have multiple right-hand sides, but also have multiple shifts for each right-hand side. The gen-
eralized form of Eq. (20) is the problem

(αjB + βjD)y(j,k) = c(k) , αj , βj ∈ C , (23)

with j = 1, . . . , ns and k = 1, . . . , nb. Let nb be the number of right-hand sides and ns be the
number of shifts. The Matrix B is complex, symmetric, and indefinite. A standard way to solve
systems with multiple right-hand sides is to use a block approach [18, 8, 3].

Eq. (23) can be transformed into

(D−1/2BD−1/2 + α−1
j βjI)(αjD

1/2y(j,k)) = D−1/2c(k) . (24)

Thus, we get then the common equation

A(j)x(j,k) = (A + σjI)x
(j,k) = b(k) , σj ∈ C , (25)

i.e.,









A(1)

. . . 0
A(j)

0
. . .

A(ns)



















x(1,1) · · · x(1,k) · · · x(1,nb)

...
...

...
x(j,1) · · · x(j,k) · · · x(j,nb)

...
...

...
x(ns,1) · · · x(ns,k) · · · x(ns,nb)










=
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








b(1) · · · b(k) · · · b(nb)

...
...

...
b(1) · · · b(k) · · · b(nb)

...
...

...
b(1) · · · b(k) · · · b(nb)










1

j

ns

with

A = D−1/2BD−1/2, x(j,k) = αjD
1/2y(j,k), b(k) = D−1/2c(k), and σj = α−1

j βj .

For the special case that all right-hand sides in (25) are identical, i.e.,

x(j) = x(j,k) , b(k) = b for all k = 1, . . . , nb , (26)

it is straightforward to exploit the shift structure when solving the ns systems by Krylov subspace
methods. We use the initial guess x

(j)
0 = 0 for all j. In this case, the Krylov subspaces for all

ns systems are identical:

Km(A + σjI, b) = Km(A, b) for all j = 1, . . . , ns and m ≥ 1 . (27)

This means that the computation of suitable basis vectors for the underlying Krylov subspaces
has to be performed only once. A lot of Krylov subspace methods have been developed for
shifted matrix problems. A detailed derivation of a shifted coupled two-term algorithm without
look-ahead for

A(j)x(j) = (A+ σjI)x
(j) = b , σj ∈ C , j = 1, . . . , ns , (28)

can be found in [19].

5.1 Symmetric Block-QMR Method

We first describe the general form of block Krylov subspace iterative methods for the simul-
taneous solution of linear systems with multiple right-hand sides (see [8, 16]). Solving the nb

systems
Ax(j) = b(j) , j = 1, . . . , nb , (29)

where A ∈ CN×N , x(j) ∈ CN , and b(j) ∈ CN is equivalent to solving the block system of
linear equations

A X = B , (30)

where B = [b(1) b(2) . . . b(nb)] ∈ C
N×nb and X = [x(1) x(2) . . . x(nb)] ∈ C

N×nb .

The block Krylov method generates a sequence of block iterates

Xµ = [x(1)
µ x(2)

µ . . . x(nb)
µ ] , µ = 1, 2, . . . , (31)

where x
(j)
µ ∈ x

(j)
0 +Kµ(A,R) for each j = 1, . . . , nb and R ∈ CN×nb .

Here, R = R0 = B − AX0 is the block of initial residual vectors and Kµ(A,R) denotes the

8



µ-th block Krylov subspace generated by A and R, i.e., the first µ linearly independent vectors
in the block Krylov sequence

R,AR, . . . , Ak−1R, . . . (32)

span the subspace Kµ(A,R).
By scanning the vectors in (32) from left to right and deleting each vector that is either linearly
dependent or almost linearly dependent on previous vectors, we obtain the so-called deflated
block Krylov sequence

R1, AR2, . . . , A
k−1Rk, . . . . (33)

For k = 1, we set R = R0.

In addition to the matrices A and R, the Lanczos-type process requires a second sequence
of vectors that span the block Krylov subspace Kµ(A

T , L) generated by AT and L, i.e., the
Lanczos-type process has produced right and left Lanczos vectors

{v1, . . . , vµ} and {w1, . . . , wµ} , (34)

respectively, with
Kµ(A,R) = span{v1, . . . , vµ}

and
Kµ(A

T , L) = span{w1, . . . , wµ}.
The vectors (34) are constructed to be biorthogonal, i.e.,

wT
i vj =

{
δj 6= 0 if i = j

0 if i 6= j
for all i, j = 1, . . . , µ .

An important feature of the Lanczos-type process is that the vectors (34) are generated by
means (2nb +1)-term recurrences. These recurrences can be summarized in compact form as
follows:

AVµ = VnTµ + V df
µ , µ = n−mcr ≥ 1 . (35)

Here, mcr denotes the reduced size of the current block in the deflated block Krylov sequence
(33) and n is the iteration index. Vn = [v1 v2 . . . vn] ∈ CN×n contains the first n basis
vectors, Tµ ∈ Cn×µ is a banded matrix with lower and upper band width nb + 1 containing the
recurrence coefficients, and the matrix V df

µ ∈ CN×µ consists of mostly zero column vectors
and a few nonzero columns with very small entries.
Each deflation step in the block Krylov sequence (33) reduces the lower band width of Tµ by
one. Additionally, the recurrences (35) are complemented by recurrences for the initial block R,
i.e.,

Vm1Θ+ V
df
0 = R , Vm1 ∈ C

N×m1 , m1 ≤ rank(R) ≤ nb . (36)

The matrix Θ ∈ Cm1×nb contains recurrence coefficients up to iteration when µ = 0. The
matrix V df

0 ∈ CN×nb consists of zero vectors and deflated vectors.
Notice that (35) only holds for µ ≥ 1, or equivalent for n > m1, where m1 is the size of the first
block in the sequence (33), i.e., m1 = rank(R1).
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The left Lanczos vectors in (34) are generated by means of recurrences similar to (35) and (36).
All possible block iterates (31) can be represented in the form

Xµ = X0 + VµZµ , Zµ ∈ C
µ×nb . (37)

After each deflation in the v sequence, the size of the current block in the corresponding de-
flated block Krylov sequence (33) decrease by one. Additionally, one of the linear system of (30)
can be dropped from subsequent block QMR iteration (see [8]). The solution of all such deflated
systems can be recovered from the solution of the converged remaining linear systems. There-
fore, one of the columns from the matrices Xµ, X0, and Zµ in (37) can be dropped and only the
remaining iterates need to be updated. Then, for the current block iterate Xcr

µ , we can rewrite
(37) as

Xcr
µ = Xcr

0 + VµZµ , Zµ ∈ C
µ×mcr , mcr ≤ nn. (38)

The residual block Rcr
µ corresponding to Xcr

µ is given by

Rcr
µ = Bcr − AXcr

µ

= Rcr
0 − VnTµZµ − V df

µ Zµ

= Vn

([
Θcr

0

]

− TµZµ

)

− V df
µ Zµ . (39)

The matrix Θcr ∈ Cm1×mcr consists of those columns of Θ in (36) that correspond to columns
of Xµ retained in Xcr

µ .
The free parameter matrix Zµ in (38) is determined as the solution of the matrix least-squares
problem ∥

∥
∥
∥

[
Θcr

0

]

− TµZµ

∥
∥
∥
∥
= min

Z∈Cµ×mcr

∥
∥
∥
∥

[
Θcr

0

]

− TµZ

∥
∥
∥
∥

(40)

in the Euclidean norm. The matrix least-squares problem (40) is solved by means standard
techniques based on QR factorization of Tµ. This allows to obtain the solution Zµ by updating
the solution Zµ−1 from the previous step. Implementation details are described in [8].
The banded matrix Tµ is factorized into a unitary matrix (Qµ)

Hand a nonsingular upper trian-
gular matrix Uµ:

Tµ = (Qµ)
H

[
Uµ

0

]

, Qµ ∈ C
n×n , Uµ ∈ C

µ×µ .

The lower bandwidth of the matrix Tµ is at most nb + 1. Its QR factorization can be updated
using nb Givens rotations at each iteration of the block QMR method. The update of the block
QMR iterates can be performed by means the following quantities:

[
tcrµ
τ crµ

]

= Qµ

[
Θcr

0

]

, tcrµ ∈ C
µ×mcr , τ crµ ∈ C

mcr×mcr ,

tcrµ =

[
tcrµ−1

yTµ

]

, yTµ ∈ C
1×mcr .

The solution Zµ of (40) is given by
Zµ = U−1

µ tcrµ .
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We also define a sequence of direction vectors p1, p2, . . . , pµ, µ = 1, 2, . . . , with

Pµ = [p1 p2 . . . pµ] = VµU
−1
µ .

Finally, the block QMR iterates can be updated by means

Xcr
µ = Xcr

0 + VµU
−1
µ tcrµ

= Xcr
µ−1 + pµy

T
µ .

It is well known that the classical Lanczos process for general matrices A simplifies when
applied to complex symmetric matrices. The resulting Lanczos process only involves one se-
quence of Lanczos vectors. The resulting simplified block QMR method does not require matrix-
vector multiplications with AT .

Now, we consider an adaption of block QMR to shifted systems, i.e., systems of the type

(A+ σjI)x
(j) = b(j) , σj ∈ C , j = 1, . . . , nb . (41)

We sketch the general case (41) or the case (28) if non zero initial guesses, x
(j)
0 6= 0, are

chosen. Then, the Krylov subspaces depend on j. We use the Lanczos process to still exploit
the shift structure of (41). Using the right initial block

R = R0 = [r
(1)
0 r

(2)
0 . . . r

(nb)
0 ] , r

(j)
0 = b(j) − (A+ σjI)x

(j)
0 , (42)

we generate basis vectors {v1 v2 . . . vµ} for th µ-th Krylov subspace Kµ(A,R). The µ-th

iterate x
(j)
µ for the j-th system in (41) is then defined by

x(j)
µ = x

(j)
0 + Vµz

(j)
µ , (43)

where z
(j)
µ ∈ Cµ is the solution of the least-squares problem

∥
∥
∥
∥

[
Θcr

j

0

]

− T (j)
µ z(j)µ

∥
∥
∥
∥
= min

z∈Cµ

∥
∥
∥
∥

[
Θcr

j

0

]

− T (j)
µ z

∥
∥
∥
∥
. (44)

Using (35) and A(j) = A + σjI , we get

A(j)Vµ = VnT
(j)
µ + V df

µ . (45)

Furthermore,

(A+ σjI)Vµ = AVµ + σjVµ

= VnTµ + σjVµ + V df
µ

= Vn

(

Tµ + σj

[
Iµ
0

])

+ V df
µ .

With T
(j)
µ = Tµ + σj

[
Iµ
0

]

we get from (44) the least-squares problem

z(j)µ = arg min
z∈Cµ

∥
∥
∥
∥

[
Θcr

j

0

]

−
(

(Tµ + σj

[
Iµ
0

])

z

∥
∥
∥
∥
. (46)

In (46), Tµ is the matrix of Lanczos recurrence coefficients given by (35). The vector Θcr
j is

defined as the j-th column of the matrix Θcr (see (36) and (39)).
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5.2 Symmetric Band Lanczos Method

The symmetric band Lanczos process is an extension of the classical Lanczos algorithm for
symmetric matrices and single starting vectors to multiple starting vectors (see [1, 4]). First,
we consider the nb linear systems (29), where A is a complex symmetric matrix and R =
[r(1) r(2) . . . r(nb)] is a block of nb right starting vectors. The symmetric band Lanczos process
generates orthogonal basis vectors for the subspaces spanned by leading columns of the block
Krylov matrix (see (32)):

K(A,R) = [R AR . . . AN−1R] . (47)

The columns of the matrix K(A,R) in (47) are all vectors of length N , and thus at most N of
them are linearly independent. One needs to perform so-called deflation of linearly dependent
or in some sence almost linearly dependent vectors.

After n iterations, the algorithm has generated the first n Lanczos vectors

v1, v2, . . . , vn ∈ C
N . (48)

It will be convenient to introduce the notation

Vn = [v1 v2 . . . vn] , V T
n Vn = In , (49)

for the matrices whose columns are just the right Lanczos vectors (48). In addition to (48), the
algorithm has constructed the mcr = mcr(n) vectors

v̂n+1, v̂n+2, . . . , v̂n+mcr
∈ C

N , (50)

that are candidates for the next mcr Lanczos vectors, vn+1, vn+2, . . . , vn+mcr
. Here mcr is

the current block size. At the initialization phase, i.e., n = 0, we have

mcr = nb and v̂j = r(j) , 1 ≤ j ≤ nb .

Within the algorithm, mcr is reduced by one every time a deflation occurs. The vectors (50) are
constructed so that they satisfy the orthogonality relations

V T
n v̂n+j = 0 for all j = 1, . . . , mcr . (51)

The recurrences can be summarized compactly as follows:

AVn = VnTn + [ 0 . . . 0
︸ ︷︷ ︸

n−mcr

v̂n+1 v̂n+2 . . . v̂n+mcr

︸ ︷︷ ︸

mcr

] + V̂ df
n . (52)

The entries of the matrix Tn, Tn ∈ Cn×n, are chosen so that the orthogonality conditions (49)
and (51) are satisfied. The matrix V̂ df

n contains mostly zero columns together with the v̂j vectors
that have been deflated during the first n iterations. We remark that nb − mcr is the number
of deflated v̂j vectors. It turns out that orthogonality only has to be explicitly enforced among
2mcr+1 consecutive Lanczos vectors and, once deflation has occurred, against nb−mcr fixed
earlier right Lanczos vectors. Thus, the matrix Tn is essentially banded. More precisely, Tn has

12



lower as well as upper bandwidth mcr+1. Additionally, the recurrences (52) are complemented
by recurrences for the initial block R, i.e.,

R = R0 = Vm1Θ+ V̂
df
0 , Vm1 ∈ C

N×m1 , m1 ≤ rank(R) ≤ nb . (53)

Here, m1 ≤ nb denotes the number of columns of the block R that have not been deflated. The
matrix V̂

df
0 ∈ CN×nb contains the nb − m1 deflated starting vectors and m1 zero vectors as

columns, and Θ ∈ Cm1×nb is an upper triangular matrix whose entries are chosen such that
the columns of Vm1 are orthonormal.
If no deflation has occured or if only exact deflation is performed,i.e.,

V̂
df
0 = 0 and V̂ df

n = 0 ,

then
V T
n AVn = V T

n VnTn = Tn . (54)

Furthermore, the so-called n-th Lanczos matrix Tn is symmetric:

T T
n = (V T

n AVn)
T = V T

n AVn = Tn . (55)

In the case V̂ df
n 6= 0, we get

T̃n = V T
n AVn + V T

n V̂ df
n = Tn + V T

n V̂ df
n , T̃n ∈ C

n×n .

The matrix T̃n consists of a symmetric banded part, Tn, with decreasing bandwidth and a spiked
part with potentially nonzero elements only in rows and columns with index i ∈ I and outside
of the banded part. The index set I records the positions of the potentially nonzero columns of
V̂ df
n due to deflation.

The matrix Tn is decomposed in Tn = LnUn, where Ln ∈ Cn×n and Un ∈ Cn×n are lower
and upper triangular matrices,respectively. The unit upper triangular Un consists of a banded
part with bandwidth decreasing from nb + 1 to mcr + 1. Analogous, the lower triangular Ln

consists of a banded part with bandwidth decreasing from nb + 1 to mcr + 1:

Ln =






l11 0
...

. . .

l1n · · · lnn




 , Un =






1 · · · u1n

. . .
...

0 1




 , (56)

where lij = uji = 0 for j +mcr < i ≤ n, j = 1, . . . , n−mcr, and n > mcr.

We generate a second set of vectors

p1, p2, . . . , pn ∈ C
N , Pn = [p1 p2 . . . pn] , (57)

that span the same subspaces as Vn, i.e.,

span{v1, v2, . . . , vj} = span{p1, p2, . . . , pj} for all 1 ≤ j ≤ n .

Then we set
Vn = PnUn . (58)

13



All block iterates can be represented in the form

Xn = X0 + VnZn , Zn ∈ C
n×nb . (59)

After each deflation, for the current block iterate Xcr
n , we can rewrite (59) as

Xcr
n = Xcr

0 + VnZn , Zn ∈ C
n×mcr ,

= Xcr
0 + PnUnZn

= Xcr
0 + PnYn , Yn = UnZn ∈ C

n×mcr ,

= Xcr
n−1 + pn(e

T
nYn) . (60)

Using (52), (53), (58) – (60), and V̂ cr
n = [0 . . . 0 v̂n+1 . . . v̂n+mcr

] the residual block Rcr
n

corresponding to Xcr
n can be represented as follows:

Rcr
n = Bcr −AXcr

n

= Bcr −AXcr
0 −AVnZn

= Rcr
0 − VnTnZn − V̂ cr

n Zn − V̂ df
n Zn

= Vmcr
Θcr − VnLnYn − V̂ cr

n Zn − V̂ df
n Zn

= Vn

([
Θcr

0

]

− LnYn

)

− V̂ cr
n Zn − V̂ df

n Zn . (61)

Using (61), Yn is the unique solution of the least-squares problem

Yn = arg min
Y ∈Cn×mcr

∥
∥
∥
∥

[
Θcr

0

]

− LnY

∥
∥
∥
∥
. (62)

We describe now the basic steps of the QMR approach. We first consider the solution of the
least-squares problem (62) for the case when no deflation occurs at iteration n, while generating
vn:

Vn = [Vn−1 vn] .

Using (56), we consider the decomposition of the n-th Lanczos matrix Tn:

Tn =








t1n

Tn−1
...

tn−1n

tn1 · · · tnn−1 tnn








, tij = tji , 1 ≤ i, j ≤ n ,

Tn = LnUn =

(
Ln−1 0

ln1 · · · lnn−1 lnn

)








u1n

Un−1
...

un−1n

0 1








.

Due to the fact that the lower and upper triangular Ln and Un, respectively, consist of a banded
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part with bandwidth mcr + 1 we get the following terms:

lni = tni −
i−1∑

j=j∗

lnjuji , uii = 1 ,

uin =
1

lii

(

tin −
i−1∑

j=j∗

lijujn

)

,

unn = 1 ,

lnn = tnn −
n−1∑

i=i∗

lniuin ,

for i∗ = max(1, n −mcr), j
∗ = max(1, n−mcr), and i = i∗, . . . , n− 1 . For the solution

of the least-squares problem (62) we get

LnYn = Sn , Ln ∈ C
n×n , Yn ∈ C

n×mcr , Sn ∈ C
n×mcr , i.e.,

(
Ln−1 0

lnj∗ · · · lnn−1 lnn

)(
Yn−1

yn1 · · · ynmcr

)

=

(
Sn−1

sn1 · · · snmcr

)

,

and

Ln−1Yn−1 = Sn−1

yni =
1

lnn

(

sni − (lnj∗ · · · lnn−1)Y
(i)
n−1

)

, i = 1, . . . , mcr , (63)

where Y
(i)
n−1 is the i-th column of the matrix Yn−1. We set Sn = Θcr for n = mcr and sni = 0

for i = 1, . . . , mcr and n > mcr.

Next, we describe the effect of deflation in the Lanczos-type algorithm for updating the block
iterates Xcr

n . In this case, we set vn = 0, which implies that

Vn = [Vn−1 0] .

Vn now only has column rank n− 1.

Tn = V T
n AVn =

[
V T
n−1

0

]

A[Vn−1 0] =

(
Tn−1 0
0 0

)

Tn = LnUn =

(
Ln−1Un−1 0

0 0

)

=

(
Ln−1 0
0 0

)(
Un−1 0
0 1

)

For the case when no deflation occurs we get

LnYn =

[
tcrn
τ crn

]

, tcrn ∈ C
(n−mcr)×mcr , τ crn ∈ C

mcr×mcr .

In the other case we get

LnYn =





tcrn
τ̃ crn
0



 =





tcrn−1

τ crn−1

0



 =

[
Ln−1Yn−1

0

]

with τ̃ crn ∈ C
(mcr−1)×mcr .
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At a deflation step, the residual block Rcr
n corresponding to the block iterate Xcr

n in (60) is given
by

Rcr
n = Vn−1

[
0
τ̃ crn

]

. (64)

The matrices V̂ cr
n and V̂ df

n consist only of zero column vectors. Since τ̃ crn is a rectangular matrix,
there exist a vector γ with τ̃ crn γ = 0. Multiplying (64) from the right by γ gives

Rcr
n γ = Vn−1

[
0
τ̃ crn

]

γ = 0 . (65)

In practice, the vector γ is computed by means of the last mcr columns and the last mcr − 1
rows of the matrix Ln−1.
Using (65), we can express the approximate solution of the single linear system Axγ = Bcrγ

in terms of a linear combination of columns of Xcr
n by setting

xγ = Xcr
n γ . (66)

Consequently, it is possible to delete one of the linear systems from block iterations, e.g., one
can delete the j-th system. The solution vector corresponding to the j-th system can be con-
structed when all vectors in the updated block iterate Xcr

n have converged after nmax iterations.
Using (66), we get

x(ij )
nmax

=
1

γj






xγ −

mcr∑

k=1
k 6=j

x(ik)
nmax

γk







. (67)

Now, we consider shifted systems of the type (41) with (42). Using

Vn = P (j)
n U (j)

n for all 1 ≤ j ≤ n ,

then the n-th iterate x
(j)
n for the j-th system is defined by

x(j)
n = x

(j)
0 + Vnz

(j)
n , z(j)n ∈ C

n ,

= x
(j)
0 + P (j)

n U (j)
n z(j)n

= x
(j)
0 + P (j)

n y(j)n , y(j)n = U (j)
n z(j)n ∈ C

n ,

= x
(j)
n−1 + p(j)n (eTny

(j)
n ) . (68)

Using (54) and A(j) = A + σjI , we get

T (j)
n = V T

n A(j)Vn = V T
n (A + σjI)Vn = Tn + σjI . (69)

Using the decomposition T
(j)
n = L

(j)
n U

(j)
n , y

(j)
n is the unique solution of the least-squares

problem

y(j)n = arg min
y∈Cn

∥
∥
∥
∥

[
Θcr

j

0

]

− L(j)
n y

∥
∥
∥
∥
. (70)
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5.3 Preconditioned System of Linear Algebraic Equations

Unfortunately, standard preconditioning techniques with a preconditioner

M = M1M2 = (M1M2)
T = MT , (71)

such as SSOR preconditioning, destroy the special structure when they are applied to shifted
linear systems. The only technique we are aware of that allows to preserve the shifted structure
is polynomial preconditioning (see [7]).

Using standard preconditioning techniques, we apply the symmetric band Lanczos method to
the shifted linear systems (41)

Ã(j)x̃(j) = b̃(j) , j = 1, . . . , nb , (72)

with
Ã(j) = M−1

1 (A+ σjM1M2)M
−1
2 = M−1

1 AM−1
2 + σjI ,

b̃(j) = M−1
1 b(j) and x̃(j) = M2x

(j) .
(73)

It is easy to see that the linear systems (41) and (72) with (73) are not equivalent. Only, for
M = I the systems (41) and (72) are equivalent.

It is common when implementing algorithms which involve a two-sided preconditioner to avoid
the use of the x̃(j) variable. It is possible to write the resulting algorithm in terms of quantities
corresponding to the system (41). We have the following analogies:

vn → ṽn = M−1
1 vn , pn → p̃n = M2pn ,

ṽTn ṽn = vTnM
−1vn , p̃Tn p̃n = pTnMpn ,

ṽTn Ãṽn = vTnM
−1AM−1vn , p̃Tn Ãp̃n = pTnApn .

5.4 Algorithm

We summarize the basic structure of the symmetric band Lanczos QMR method with deflation,
but without look-ahead (see [8, 4]).

0. Input : A = AT , B = [b(1) b(2) . . . b(nb)], {σ1, . . . , σnb
}.

A deflation tolerance dtol.
Choose X0 and set R = [r(1) r(2) . . . r(nb)] = R0 = B −AX0.
For j = 1, . . . , nb, set v̂j = r(j). Set mcr = nb and index set I = ∅.

For n = 1, 2, . . . , do :

1. Compute β = ‖M−1
1 v̂n‖. Set µ = n−mcr.

Decide if v̂n should be deflated. If yes, i.e., β < dtol, do the following:

1.1 If µ ≤ 0, then delete one column vector from Xcr
0 , Rcr

0 , and Θcr.
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1.2 If µ > 0 and the deflated vector v̂n is nonzero, then set I = I ∪ {µ}. Delete one
column vector from Xcr

n and Rcr
n .

1.3 Set mcr = mcr − 1. If mcr = 0, set n = n− 1 and stop.
For j = n, n + 1, . . . , n+mcr − 1, set v̂j = v̂j+1.
Return to Step 1.

2. Update V and preconditioned V sequences.

2.1 Normalize v̂n to become the n-th Lanczos vector: vn = v̂n
β

.

2.2 If µ ≤ 0, then set θcrn,n = β .

2.3 If µ > 0, then set tn,µ = β .

2.4 Compute δn = vTnM
−1vn. If δn = 0 stop.

2.5 Advance the right Krylov subspace: v̂n+mcr
= A(M−1vn) .

2.6 Set k = max{1, µ}. Orthogonalize the vector v̂n+mcr
against vectors vj ,

j ∈ I ∪ {k, . . . , n− 1}:

tj,n =
vTj M

−1v̂n+mcr

δj
and v̂n+mcr

= v̂n+mcr
− vjtj,n .

2.7 Orthogonalize the vectors v̂n+j, j = 1, . . . , mcr, against vector vn:
If µ+ j ≤ 0, then

θcrn,n+j =
vTnM

−1v̂n+j

δn
and v̂n+j = v̂n+j − vnθ

cr
n,n+j .

If µ+ j > 0, then

tn,µ+j =
vTnM

−1v̂n+j

δn
and v̂n+j = v̂n+j − vntn,µ+j .

For all j = 1, . . . , nb for which x
(j)
n has not converged yet:

3. Compute the decomposition of the matrix T
(j)
n :

T (j)
n = Tn + σjI = L(j)

n U (j)
n .

4. Compute the vector p
(j)
n :

P (j)
n = [p

(j)
1 p

(j)
2 . . . p(j)n ] = Vn(U

(j)
n )−1 , p(j)n = M−1vn −

n−1∑

i=max{1,µ}

p
(j)
i u

(j)
i,n .

5. Compute the solution y
(j)
n of the least-squares problem (70).

6. Compute the n-th iterate x
(j)
n (see (68)).

End for (j).

7. Check if all solution vectors x
(j)
n have converged. If yes, then recover solution vectors

(see (67)) and stop.

End for (n).
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6 Polynomial Preconditioning

We consider the shifted linear system

A(σ)x = (A+ σI)x = b . (74)

We use polynomial preconditioning to speed up the convergence of the iterative methods for the
solution of (74), i.e.,

P(σ)
m (A(σ))A(σ)x = P(σ)

m (A(σ))b (75)

for left preconditioning and

A(σ)P(σ)
m (A(σ))y = P(σ)

m (A(σ))A(σ)y = b , x = P(σ)
m (A(σ))y , (76)

for right preconditioning, respectively. Here, P(σ)
m is a suitable chosen polynomial in A(σ) of a

small degree, i.e., with degree no more thanm. Both linear systems (75) and (76) are equivalent.
We seek a polynomial P(σ)

m with the following two properties [6, 5]:

• The coefficient matrix P(σ)
m (A(σ))A(σ) is again a shifted matrix.

• P(σ)
m (A(σ)) is an optimal polynomial preconditioner, i.e., the convergence of the iterative

method, applied to the preconditioned system, is speed up optimally.

First, for any polynomial, we can represent A(σ)P(σ)
m (A(σ)) in the form

A(σ)P(σ)
m (A(σ)) = (A+ σI)P(σ)

m (A+ σI) = APm(A) + τI (77)

with τ ∈ C. Note that P(σ)
m , Pm, and τ are related by

(z + σ)P(σ)
m (z + σ) = zPm(z) + τ and τ = σPm(−σ) . (78)

We note that the coefficient matrix APm(A) of the preconditioned system (77) is Hermitian if,
and only if, Pm is a real polynomial. In order to guarantee that APm(A) is nonsingular, we
require that Pm(z) 6= 0 for all z ∈ S with

%(A) ⊆ S = [a, b] ∪ [c, d] , c < d < 0 < a < b ,

where %(A) is the spectrum of A.

Next, we turn to the question of optimal choice of polynomial Pm. We have two different cases:

• zPm(z) > 0 ∀z ∈ S

• zPm(z) > 0 ∀z ∈ [a, b] and zPm(z) < 0 ∀z ∈ [c, d] .

If the last case holds, then the preconditioned system remains indefinite. We can now state the
main result in the following form [6]:
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Let S = [a, b] ∪ [c, d] be the union of a positive and negative interval with c <

d < 0 < a < b and Γ = {(γ, δ) ∈ R × R : δ > 0} a parameter set. The
optimal polynomial P∗

m(z) of

w(γ, δ) = min
Pm

‖f − zPm‖g ,
‖f − zPm‖g = max

z∈S
|g(z)(f(z)− zPm(z))| ,

(79)

where

g(z) =

{
1 if z > 0
δ if z < 0

, f(z) =

{
1 if z > 0
γ if z < 0

is an indefinite polynomial preconditioner with

γ =
d̄+ c̄

b̄+ ā
and δ =

b̄− ā

d̄− c̄
.

The numbers ā, b̄, c̄, and d̄ are defined by

ā = min
z∈[a,b]

zPm(z) , b̄ = max
z∈[a,b]

zPm(z) ,

c̄ = min
z∈[c,d]

zPm(z) , d̄ = max
z∈[c,d]

zPm(z) .

Moreover, there exist parameters γ0 and δ0, (γ0, δ0) ∈ Γ, such that P∗
m(z, γ0, δ0)

is an optimal indefinite polynomial preconditioner.

(79) is a linear Chebyshev approximation problem depending on the two parameters (γ, δ) ∈ Γ.
We seek to approximate f(z) by polynomials of the form zPm(z) in the weighted uniform norm
‖.‖g . The standard tool for the numerical solution of such general real Chebyshev approxima-
tion problems is the method of Remez. The Remez type procedure is based on the equioscilla-
tion property [6]. Implementation details are described in [19].

7 Initial Guesses

The use of initial guesses for systems with multiple shifts is not as simple. The problem of initial
guesses is related to the more general problem of solving systems with multiple shifts each with
a different right-hand side (see [17]).

7.1 Multiple Shifts with Identical Right-Hand Sides

We consider the systems (41) with the same right-hand sides (see (28)). Using the initial
guesses, x

(j)
0 , we get the residuals

r
(j)
0 = b− (A+ σjI)x

(j)
0 , j = 1, . . . , nb , (80)
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and then solve

b− (A+ σjI)x
(j)
0 = r

(j)
0

(A+ σjI)x
(j) − (A+ σjI)x

(j)
0 = r

(j)
0

(A + σjI)(x
(j) − x

(j)
0 ) = r

(j)
0

(A + σjI)z
(j) = r

(j)
0 , j = 1, . . . , nb . (81)

Then, the solutions are given by x(j) = x
(j)
0 + z(j) for all j = 1, . . . , nb. In general, the new

right-hand sides, r
(j)
0 , are not collinear. Therefore, the Krylov subspaces, Kn(A + σjI, r

(j)
0 ),

are not the same. Take

x
(j)
0 =







nb∏

i=1
i 6=j

(A+ σiI)







w (82)

for any vector w, then the new right-hand sides are all equal to

r
(j)
0 = b− (A+ σjI)







nb∏

i=1
i 6=j

(A + σiI)







w = b−
{

nb∏

i=1

(A+ σiI)

}

w . (83)

The nb systems (81) with (82) and (83) can be solved with standard multi-shift Krylov meth-
ods [19]. The problem is to find the best vector w for (82).

Given approximate solutions

x̃(j) ≈ (A+ σjI)
−1b , j = 1, . . . , nb . (84)

Using (83), we get

b ≈
{

nb∏

i=1

(A+ σiI)

}

w .

Next, from the above expression, we derive the vector w:

x̃(j) ≈ (A+ σjI)
−1b ≈







nb∏

i=1
i 6=j

(A+ σiI)







w

≈ (A+ σkI)







nb∏

i=1
i 6=j,k

(A+ σiI)







w , 1 ≤ j ≤ nb ,
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x̃(k) ≈ (A+ σkI)
−1b ≈







nb∏

i=1
i 6=k

(A+ σiI)







w

≈ (A+ σjI)







nb∏

i=1
i 6=j,k

(A+ σiI)







w , 1 ≤ k ≤ nb ,

x̃(l) ≈ (A+ σlI)
−1b ≈ (A+ σjI)







nb∏

i=1
i 6=j,l

(A+ σiI)







w , 1 ≤ l ≤ nb ,

⇓

x̃(j) − x̃(k)

σk − σj
≈







nb∏

i=1
i 6=j,k

(A+ σiI)







w

≈ (A+ σlI)







nb∏

i=1
i 6=j,k,l

(A+ σiI)







w , 1 ≤ j, k ≤ nb ,

x̃(j) − x̃(l)

σl − σj
≈







nb∏

i=1
i 6=j,l

(A + σiI)







w

≈ (A+ σkI)







nb∏

i=1
i 6=j,k,l

(A+ σiI)







w , 1 ≤ j, l ≤ nb ,

⇓

x̃(j)

(σk − σj)(σl − σj)
+

x̃(k)

(σj − σk)(σl − σk)
+

x̃(l)

(σj − σl)(σk − σl)
≈







nb∏

i=1
i 6=j,k,l

(A + σiI)







w , 1 ≤ j, k, l ≤ nb .
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This process can be continued up to
∏nb

i (A+ σiI) ≡ 1. Using (84), we get

w =

nb∑

j=1

cj x̃
(j) with cj =

nb∏

i=1
i 6=j

1

σi − σj

. (85)

Note that the coefficients cj can be become very large if the shifts σj with smaller differences
increase.

7.2 Multiple Shifts with Multiple Sources

Next, we are interested in solving the systems (41) with multiple sources. We need to find a set
of initial values, x

(j)
0 , j = 1, . . . , nb, that give a common residul r0:

r0 = r
(j)
0 = b(j) − (A+ σjI)x

(j)
0 , j = 1, . . . , nb .

This can be solved by setting

x
(j)
0 =

nb−2∑

k=0

Akz(j,k) .

Then we get

r0 = b(j) − (A+ σjI)x
(j)
0

= b(j) − (A+ σjI)

{
nb−2∑

k=0

Akz(j,k)

}

= b(j) −
{

nb−2∑

k=0

Ak+1z(j,k) + σj

nb−2∑

k=0

Akz(j,k)

}

, j = 1, . . . , nb .

Equating powers of A and solve for z(j,k) in terms of b′s gives the following equations for i, j =
1, . . . , nb:

z(j,nb−2) = z(i,nb−2) ,

z(j,k−1) + σjz
(j,k) = z(i,k−1) + σiz

(i,k) , k = nb − 2, . . . , 1 ,

b(j) − σjz
(j,0) = b(i) − σiz

(i,0) .

One can also solve this by considering the polynomials

qj(A) = (A+ σjI)pj(A) with x
(j)
0 =

nb−2∑

k=0

Akz(j,k) ≡ pj(A)

at the special cases A = −σlI , 1 ≤ l ≤ nb:

rσl

0 = b(l) − ql(−σlI) = b(l) − (−σlI + σlI)x
(l)
0 = b(l) .
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This gives the nb equations for fixed j

qj(−σlI) = b(j) − rσl

0 = b(j) − b(l) , 1 ≤ l ≤ nb .

Since qj(A) is a polynomial of order nb − 1 in A the system is uniquely determined. The
polynomial

qj(A) =

nb∑

k=1







nb∏

i=1
i 6=k

A+ σiI

σi − σk







(b(j) − b(k)) (86)

satisfies these equations. Using x
(j)
0 = pj(A) = (A + σjI)

−1qj(A) we get

x
(j)
0 =

nb∑

k=1
k 6=j







nb∏

i=1
i 6=j,k

A+ σiI

σi − σk







(

b(j) − b(k)

σj − σk

)

. (87)

8 Numerical Results

A nonequidistant mesh of 57 664 elementary cells including graded PML regions is used for the
discretization of (4), that means the order of the system of linear algebraic equations is 172 992
(see (19)). The number of internal points y

(G)
I (see Table 1 and Eq. (20)) is 152 608. We use

three different matrices D (see (23)):

(I) D = diag(A), (II) D = 1
10

· diag(A), (III) D = 10 · diag(A).
We analyze the following systems of linear equations:

Linear system I II III

0 Ax(j) = b(j) (αj = 1, βj = 0) I0
1 (αjA+ βjD)x(j) = b(j) (see Sec. 5.2) I1 II1 III1
2 (αjA+ βjD)x(j) = b(j) (see Sec. 5.2) I2 II2 III2
3 (αjA+ βjD)x(j) = b(j) (see Sec. 7.2) I3 II3 III3

The systems of linear equations in row 2 (I2, II2, III2) are computed separately. The systems
of linear equations in row 3 (I3, II3, III3) are computed with new initial guesses (see (87))
and a common new right-hand side (see Sec. 7.2). This method does not work very good for
more and/or smaller shifts. The initial residuals may be large. Thus, we use a fixed number of
right-hand sides, nbm, to get new initial guesses and a new right-hand side:

I3 : nbm = 6, II3 : nbm = 3, III3 : nbm = 10.

The right-hand sides b(j), j = 1, . . . , nb, are generated by an uniformly distributed random
number generator. The stopping criterion was a reduction of the norm of the residual for the
preconditioned system (41–43) by 10−8.

Based on the family of approximation problems (79), we have computed indefinite polynomial
preconditioners. For this purpose, the Remez algorithm in [19, Sec. 6.1] was used. Using the
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Nelder-Mead method (see [19, Sec. 6.2]), optimal indefinite polynomial preconditioners were
computed by solving the constrained optimization problem numerically. The experiments were
conducted on a workstation with Intel Xeon CPU W3520 (2,67 GHz, 8 cores) running 64-bit
Linux system.

We compare the iteration counts required to solve the nb ∈ {1, 3, 5, 10} linear systems (see
(29) and (41)) using the symmetric band Lanczos method without polynomial preconditioning
with the number of iterations required to solve with polynomial preconditioning. The choice of the
parameters (γ, δ) ∈ Γ and the computation of the ’optimal’ parameters (γ0, δ0) is described
in [19].
In Table 2 are denoted the estimated boundaries for the sets S, the parameters (γ, δ) ∈ Γ
for the examples considered here, and also the computed ’optimal’ parameters (γ0, δ0) ∈ Γ.
The degree of the Lagrange polynomial Lj(z) is l = 8 and l = 9, respectively [19, Eq. (51)].

Table 2: The boundaries for S

I a b c d

2.24 · 10−6 2.00 −0.45 −5.20 · 10−7

γ ≈ −0.2241 , δ ≈ 4.4610

l = 9 : γ0 ≈ −0.7339 , δ0 ≈ 4.3407

II a b c d

1.27 · 10−4 20.00 −3.66 −5.19 · 10−6

γ ≈ −0.1825 , δ ≈ 5.4782

l = 8 : γ0 ≈ −0.5635 , δ0 ≈ 5.5894

III a b c d

9.48 · 10−7 0.20 −6.48 · 10−2 −5.19 · 10−8

γ ≈ −0.3240 , δ ≈ 3.0864

l = 9 : γ0 ≈ −0.5066 , δ0 ≈ 3.2273

We choose for the preconditioner Pm(A) (see (77)) the linear case. This choice decreases the
numerical effort and is more stable. The Tables 3 – 6 shows the numbers of iterations for shifted
and unshifted linear system, respectively. A convergence history of the three examples (see
Tables 4–6) can be found graphically in the Figs. 4–6.
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Table 3: Number of iterations for unshifted matrices, I0

I0 Number of unshifted linear systems, nb 1 3 5 10

No preconditioning 1 128 2 712 4 355 8 844

Preconditioning: (γ0, δ0) 569 1 219 1 965 4 385

Table 4: Number of iterations for shifted matrices, I1–III1

I1 Number of shifted linear systems, nb 1 3 5 10

No preconditioning 119 10 722 18 064 36 212

Preconditioning: (γ0, δ0) 58 5 374 9 225 18 784

II1 Number of shifted linear systems, nb 1 3 5 10

No preconditioning 369 13 329 14 209 76 780

Preconditioning: (γ0, δ0) 195 4 726 5 657 34 868

III1 Number of shifted linear systems, nb 1 3 5 10

No preconditioning 41 3 642 6 103 12 581

Preconditioning: (γ0, δ0) 20 1 716 2 953 6 084

9 Conclusions

We have analyzed the solution of linear systems of equations with multiple right-hand sides
each with a different shift. We have presented a variant of the symmetric band Lanczos pro-
cess with multiple starting vectors. The symmetric band Lanczos process is based on coupled
recurrences. Polynomial preconditioners for indefinite linear systems leads to indefinite pre-
conditioned coefficient matrices. Such polynomials can be obtained via the solution of linear
Chebyshev approximation problems.
We have presented a method that produce initial guesses with a common right-hand side. It
could be very useful. The main difficulty then is keeping the initial residual under control.
Another problem is to find suitable informations on the location of the eigenvalues of A, i.e., the
bounds of the two intervals [a, b] and [c, d].
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Table 5: Number of iterations for shifted matrices, I2–III2

I2 Number of shifted linear systems, nb 1 3 5 10

No preconditioning 119 4 883 5 683 13 975

Preconditioning: (γ0, δ0) 58 2 433 2 823 6 975

II2 Number of shifted linear systems, nb 1 3 5 10

No preconditioning 369 6 549 8 826 33 506

Preconditioning: (γ0, δ0) 195 3 364 4 569 18 246

III2 Number of shifted linear systems, nb 1 3 5 10

No preconditioning 41 2 480 2 746 3 921

Preconditioning: (γ0, δ0) 20 1 221 1 343 2 081

Table 6: Number of iterations for shifted matrices, I3–III3

I3 Number of shifted linear systems, nb 1 3 5 10

No preconditioning 115 3 381 2 970 5 360

Preconditioning: (γ0, δ0) 56 1 647 1 575 2 720

II3 Number of shifted linear systems, nb 1 3 5 10

No preconditioning 364 4 803 6 551 22 341

Preconditioning: (γ0, δ0) 178 2 425 3 318 11 036

III3 Number of shifted linear systems, nb 1 3 5 10

No preconditioning 37 1 100 1 135 1 175

Preconditioning: (γ0, δ0) 20 581 594 637
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