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Abstract

We consider the passage from viscous system to rate-independent system in the limit of van-

ishing viscosity and for wiggly energies. Our new convergence approach is based on the (R,R∗)
formulation of De Giorgi, where we pass to the Γ limit in the dissipation functional. The difficulty

is that the type of dissipation changes from a quadratic functional to one that is homogeneous of

degree 1. The analysis uses the decomposition of the restoring force into a macroscopic part and

a fluctuating part, where the latter is handled via homogenization.

1 Introduction

Thermodynamics has developed an extended theory to explain how viscous dissipation on a meso-
copic level can be understood via coarse graining from fluctuations in a microscopic systems, see e.g.
[OnM53, Ött05] and the references therein. The Onsager principle states that the rate ż of the state
z changes according to the associated thermodynamic driving force −DF(z) modified by a linear
operator K(z), which is symmetric (Onsager’s symmetry relations) and positive definite. Thus, the
system takes the form

ż = −K(z)DF(z) or equivalently G(z)ż = −DzF(z)

where G(z) = K(z)−1 plays the role of a viscosity matrix, which is again symmetric and positive
definite. In mathematical terms these systems are called gradient systems, where G is Riemann’s
metric tensor.

Here we discuss the next level of coarse graining, where the above system is externally forced on a
very slow time scale, i.e. we consider E(t, z) = F(z) − 〈ℓ(t), z〉. Then, one expects the system
to stay in metastable states (local equilibria) most of the time with fast transitions between the slow
phases. In a wiggly energy landscape the gradient DzE(t, z) fluctuates and for all times there are
many metastable states. Hence, on a coarse grained level one expects again a slow motion which is
driven by dry friction, or more generally called rate-independent dissipation. Such phenomena also
occur in the hysteretic behavior of shape-memory alloys (see e.g. [HuM93, ACJ96, BrS96, Mül98]),
where the wiggly energy landscape arises through the discrete atomistic positions of the interfaces
between different phases.

To formulate the question in a mathematically more precise manner, we consider a family of viscous
problems in the form of gradient systems (Z, Eε,Rε), where Rε(z, v) = 1

2
〈Gε(z)v, v〉 is the dissi-

pation potential and DvRε(z)v is the viscous friction force. Hence the system reads

0 = DżRε(z, ż) + DzEε(t, z). (1.1)

Here the time variable t ∈ [0, T ] is chosen such that it denotes the slow macroscopic time, meaning
that ∂tEε(t, z) is of order 1 in ε. On this time scale the viscosity will be small, i.e. Gε = O(εα) for
α > 0, such that the viscous relaxation time is small as well.
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The aim is to show that the solutions zε : [0, T ] → Z converge to solutions z0 : [0, T ] → Z of a
suitable limit system that is again a generalized gradient system, namely

0 ∈ ∂żR(z, ż) + DzE(t, z). (1.2)

The convergence from viscous gradient systems (1.1) to a limit systems that is again a viscous gra-
dient systems, is successfully investigated in many works, see e.g. [Ste08, SaS04, Ser10]. We are
interested in the case where the nature of dissipation changes, namely when the limit dissipation
is rate independent, and thus gives rise to hysteresis phenomena. Typical examples are dry fric-
tion in the surface of rough bodies, elastoplasticity, or phase transformation in shape-memory alloys
[Mül89, HuM93, Mül98, MüS01]. Rate independence means that the dissipation potential R is posi-
tively homogeneous of degree 1:

R(z, γv) = γR(z, v) for all γ > 0, z ∈ Z, and v ∈ TzZ.

Thus, it is obvious that the quadratic potentials Rε for the viscous model (1.1) cannot converge as
functions to the corresponding R in the limit system (1.2). Nevertheless, we expect that in the energy
balance

Eε(t, zε(t))+

∫ t

0

DżRε(zε(s), żε(s))·żε(s)ds = Eε(0, zε(0))+

∫ t

0

∂tE(s, zε(s))ds (1.3)

the total dissipated energy converges to the dissipated energy in the limit model, namely

lim
ε→0

∫ t

0

2Rε(zε(s), żε(s))ds =

∫ t

0

R(z(s), ż(s))ds,

where we used ∂vRε(z, v) · v = hεRε(z, v) with hε = 2 for ε > 0 and ∂vR(z, v) · v = h0R(z, v)
with h0 = 1, reflecting the degree hε of homogeneity.

In [Jam96, ACJ96] a simple toy problem was introduced for explaining the hysteresis in shape-memory
alloys. In fact, a slight variant of this model was introduced much earlier by [Pra28], which is called
Prandtl-Tomlinson model in [Pop10, Ch. 11], see Figure 1.1. This model was devised to describe hys-

ℓ(t)

Figure 1.1: Hysteresis occurring in surface friction as explained in the Prandtl-Tomlinson model.

teresis and the kinetic relations for friction on a rough surface, which we call a wiggly surface. The
differential equation takes the form

mz̈ + d(ż − ℓ̇(t)) + k(z − ℓ(t)) = a cos(z/ε). (1.4)

This is indeed similar to the model we are interested in. In fact, we consider the quasistatic case only
where m = 0 and with small viscosity, i.e. d = εα for some α > 0.

This paper is devoted to a new and more general approach to the limit analysis. Moreover, in Section
4 we will summarize the results in [MiT11], where a chain of N = 1/ε of bistable, viscous elements
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was studied leading to a limit model of one-dimensional elastoplasticity. This work builds on the devel-
opments in [PuT00, PuT02, PuT05] and the abstract concepts of Γ convergence in rate-independent
systems in [MRS08]. For a stochastic version of wiggly energies we refer to [Sul09].

Our main result is Theorem 3.2, which concerns a new convergence proof for the passage from sys-
tems with small viscosity and a wiggly energy to systems with rate-independent friction. Our approach
is based on an energetic formulation for generalized gradient systems, the so-called (R,R∗) formu-
lation of De Giorgi, see [DGMT80]. In particular, considering solutions zε : [0, T ] → R of (1.4) for
m = 0 and d = εα, we show that the solutions converge to a function z : [0, T ] → R satisfying the
limit equation

0 ∈ a Sign(ż) + kz−kℓ(t). (1.5)

While this convergence result was already established in [PuT02, PuT05], the main point here is to
introduce a new and hopefully more flexible variational approach for passing to the limit in (1.1). This
allows us to study a more general version of the model (1.4) with m = 0 or that of [Jam96], but still
dealing with a scalar variable z ∈ Z = R. The functional E is given in the form

Eε(t, z) = Φ(z) + εW (z, z/ε) − ℓ(t)z,

where Φ is a uniformly convex macroscopic potential, while W denotes the wiggly part of the energy,
because we assume the periodicity W (z, p) = W (z, p+1) for all z, p ∈ R. The dissipation is
assumed to be small namely Rε(z, v) = εα

2
v2 for α > 0. To pass to the limit we use De Giorgi

(R,R∗) formulation, which reads here

Eε(T, z(T )) +

∫ T

0

(
Rε(z, ż) + R∗

ε(z,−DzEε(t, z))
)

dt = Eε(0, z(0)) −

∫ T

0

ℓ̇(s)z(s)ds,

where R∗
ε is the dual dissipation potential

R∗

ε(z, ξ) = sup{ 〈ξ, v〉−Rε(z, v) | v ∈ TzZ }.

It is surprising that this scalar estimate posed only for the final time T is equivalent to the evolution
equation (1.1), see Proposition 2.1. Note that the energy balance (1.3) looks similar at a first glance,
but it is significantly weaker as it does not involve the (R,R∗) duality.

The crucial point is then to pass to the limit in the dissipation integral. Suitable a priori estimates
for the solutions zε are stated in Proposition 3.3 and proved in Appendix B. The necessary lower
semicontinuity result is stated in Proposition 3.1 and proved in Appendix A using homogenization
arguments as in [Bra02, Ch. 3]. In the limit we obtain the upper energy estimate

E(T, z(T )) +

∫ T

0

M
(
z(t), ż(t),−DE(t, z(t))

)
dt ≤ E(0, z(0)) +

∫ T

0

∂tE(t, z(t))dt,

where M(z, v, ξ) does not have the structure R(z, v)+R∗(z, ξ). Nevertheless, analyzing the struc-
ture of M we find the limit system (Z, E ,R) with

E(t, z) = Φ(z) − ℓ(t)z and R(z, v) =

{
ρ+(z)v for v ≥ 0,

ρ−(z)|v| for v ≤ 0,

where ρ+(z) = max{DyW (z, y) | y ∈ R } and where ρ−(z) = −min{DyW (z, y) | y ∈ R }.
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As our main general conclusion, we find that E is the macroscopic (non-wiggly) part of the energy Eε,
while the dissipation R is determined solely from the wiggly part W . The conclusion was obtained
in [MiT11], where the vanishing-viscosity limit for a chain of N bistable springs is considered. We
summarize the results in Section 4 and display the arising pseudo-elastic continuum model with a
scalar internal phase indicator obeying a rate-independent evolution law. This model is well-known
to describe the evolution of certain phase transformations shape-memory wires, see [Mül89, BrS96,
Mül98, MüS01].

2 Multiscale limits for gradient systems

2.1 Generalized gradient systems

The mathematical modeling of dissipative systems was largely simplified by the concept of dissipa-
tive materials involving a dissipative potential for the rate of the internal variable z, see e.g. [HaN75,
ZiW87]. Mathematically this leads to so-called generalized gradient systems (Z, E ,R), where Z is
the state space, E is the possibly time-dependent energy functional, and R is the dissipation potential.
As −DzE is the thermodynamic driving (restoring) force and DvR(z, v) the dissipative friction force,
the force balance leads to the systems

DżR(z, ż) + DzE(t, z) = 0 ∈ T∗

zZ. (2.1)

In viscous systems R depends quadratically on v and the friction force is linear in v, namely G(z)v,
see [OnM53, Ött05]. However, other cases may be relevant in cases far away from equilibrium. The
friction force is then no longer uniquely defined but contained in the convex subdifferential

∂vR(z, v) := { η ∈ T∗

Z | R(z, v+w) ≥ R(z, v) + 〈η, w〉 for all w ∈ TzZ }.

For instance, in viscoplasticity one may have R(z, v) = σyield(z)|A(z)v| + 1
2
〈G(z)v, v〉 and is led

to the equation
0 = σyieldA(z)∗ Sign(A(z)ż) + G(z)ż + DzE(t, z).

The force balance (2.1) can be reformulated equivalently to a rate equation or a (rate of a) energy
balance by using the Legendre equivalence for subdifferentials. If Ψ : X → R is a convex functional,
then the Legendre transform Ψ∗ : X∗ → R is defined via Ψ(ξ) = sup{ 〈ξ, v〉−Ψ(v) | v ∈ X } and,
by definition, we have the Fenchel estimate

Ψ(v) + Ψ∗(ξ) ≥ 〈ξ, v〉 for all v ∈ X and ξ ∈ X∗. (2.2)

Moreover, we have the Legendre-Fenchel equivalence

ξ ∈ ∂Ψ(v) ⇐⇒ v ∈ ∂Ψ∗(ξ) ⇐⇒ Ψ(v) + Ψ∗(ξ) ≤ 〈ξ, v〉. (2.3)

In the last condition the estimate “≤” is sufficient to conclude equality, since “≥” is automatic from
(2.2).

Denoting by R∗(z, ·) the Legendre transform ofR(z, ·), system (2.1) is equivalent to the rate equation

ż ∈ ∂R∗(z,−DzE(t, z)) for a.a. t ∈ [0, T ]. (2.4)
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Note that (2.1) and (2.4) ask that for almost all t ∈ [0, T ] an inclusion in a Banach space holds. Hence,
it surprising the the following upper energy estimate, which is scalar and only for the final time T , is
also equivalent. This formulation is also called the (R,R∗) formulation of De Giorgi, cf. [DGMT80].

Proposition 2.1 If z : [0, T ] → Z satisfies the upper energy estimate

E(T, z(T )) +

∫ T

0

(
R(z, ż)+R∗(z,−DzE(t, z))

)
ds ≤ E(0, z(0)) +

∫ T

0

∂sE(s, z(s))ds, (2.5)

then it also satisfies (2.1) and (2.4).

Proof: The chain rule and the Fenchel estimate (2.2) give

d

ds
E(s, z(s)) = 〈DzE(s, z), ż〉+∂sE(s, z) ≤ −R(z, ż)−R∗(z,−DzE(s, z))+∂sE(s, z). (2.6)

We define the function e(t) = E(t, z(t)) +
∫ t

0
R(z, ż)+R∗(z,−DzE(t, z)) ds − E(0, z(0)) +∫ t

0
∂sE(s, z)ds. Integrating the above estimate for s ∈ [t0, t1] for 0 ≤ t0 < t1 ≤ T we obtain easily

obtain the monotonicity e(t2) ≥ e(t1) ≥ e(0) = 0. Since the upper energy estimate (2.5) means
e(T ) ≤ e(0) = 0, we conclude e(t) = 0 for all t ∈ [0, T ]. Thus, we must have equality in (2.6) for
a.a. t ∈ [0, T ], which allows us to apply (2.3). Hence, (2.1) and (2.4) hold.

2.2 Multiscale passage

We consider a family of generalized gradient systems (Z, Eε,Rε) and are interested to find a limit
system (Z, E ,R) such that the solutions zε converge to the solutions z of the limit system.

Definition 2.2 We say that the systems (Z, Eε,Rε) dynamically converges to the system (Z, E ,R),
if the following holds:

zε : [0, T ] → Z solves (Z, Eε,Rε)

z0
ε → z0, Eε(0, z

0
ε) → E(0, z0)



 =⇒





∀ t ∈ [0, T ]: zε(t) → z(t) and

z : [0, T ] → Z solves (Z, E ,R).
(2.7)

The major task is to find conditions on the convergence of (Eε,Rε) towards (E ,R) which guarantees
the dynamical convergence. There are several theories for such convergences if the nature of the
dissipation stays the same. For classical gradient systems (with quadratic Rε) there is the rather
general theory of Γ-convergence in [Ste08, SaS04, Ser10]. For purely rate-independent systems the
theory developed in [MRS08] has found several applications in homogenization, dimension reduction
and numerical convergence, see e.g. [RSZ09, Mie11].

Obviously, the convergence Rε → R is not available in our case, because Rε is quadratic, whereas
R is 1-homogeneous. So we need to develop a new theory allowing for the change of the structure of
the dissipation. We will do this by using De Giorgi’s (R,R∗) formulation of Proposition 2.1, now given
in the form

Eε(T, zε(T )) + Dε(zε) ≤ Eε(0, zε(0)) +

∫ T

0

∂sEε(s, zε(s))ds, (2.8)
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where the dissipation functional Dε is given in the form

Dε(z) =

∫ T

0

Mε(t, z(t), ż(t))dt with Mε(t, z, v) = Rε(z, v)+R∗

ε(z,−DEε(t, z)).

For our limit passage we will construct a limit functional E and a limit functional D in the form∫ T

0
M(t, z, ż)dt such that for all t ∈ [0, T ] the following convergences hold

z̃ε → z̃ =⇒ E(t, z̃) ≤ lim inf
ε→0

Eε(t, z̃ε) and ∂tEε(t, z̃ε) → ∂tE(t, z̃), (2.9a)

z̃ε → z̃ in C0([0, T ];Z) =⇒ D(z̃) ≤ lim inf
ε→0

Dε(z̃ε). (2.9b)

Obviously, these convergences are enough to pass to the limit ε → 0 in (2.8). However, to have a
counterpart of Proposition 2.1 we need more structure on the integrand M of D.

In our application we will show that D can be represented in the form

D(z) =

∫ T

0

M(z(t), ż(t)),−DE(t, z(t))dt, (2.10a)

where M may no longer have the structure R+R∗. For more general cases we refer to Remark 2.4.
In all cases, the crucial condition inherited from Mε will be

M(z, v, ξ) ≥ 〈ξ, v〉 for all z, v, ξ. (2.10b)

Recall that this lower estimate is holds for Mε(z, v, ξ) = R(z, v)+R∗
ε(z, ξ) because of (2.2). Having

this, we can define the contact set (cf. [MRS11]) via

CM(z) = { (v, ξ) | 〈ξ, v〉 = M(z, v, ξ) < ∞}. (2.10c)

Then, the arguments in the proof of Proposition 2.1 involving the chain rule show that the limit z always
has to satisfy (ż(t),−DE(t, z(t)) ∈ CM(z(t)). Hence, it is sufficient to find a limiting dissipation
potential R such that for all z we have

CM(z) = CR+R∗(z) := { (v, ξ) | 〈ξ, v〉 = R(z, v)+R∗(z, ξ) < ∞}. (2.10d)

Note that this relation is weaker than M(z, v, ξ) ≥ R(z, v)+R∗(z, ξ), and the structure of R
might be different from those of Rε. In our application Rε(z, ·) will be quadratic, while R(z, ·) is
1-homogeneous. We are led to the following convergence result.

Theorem 2.3 Let the solutions zε : [0, T ] → Z of (Z, Eε,Rε)ε>0 satisfy (2.9),

zε → z in C0([0, T ];Z), and Eε(0, zε(0)) → E(0, z(0)).

Moreover, assume that D, M, R satisfy (2.10), then z : [0, T ] → Z is a solution of the generalized
gradient system (Z, E ,R).

Proof: We first observe that z satisfies the upper energy estimate (2.5). Comparing with the integrated
version of the chain rule we obtain

∫ T

0

M(z, ż,−DE(t, z)) + 〈DE(t, z), ż〉dt ≤ 0.
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Using (2.10b) we conclude that the integrand vanishes a.e. in [0, T ]. This implies that (ż,−DE(t, z))
lies in CR+R∗ a.e. in [0, T ]. Now the Fenchel equivalence (2.3) yields

0 ∈ ∂żR(z, ż) + DE(t, z) or ż ∈ ∂ξR
∗(z,−DE(t, z)),

which is the desired result.

Remark 2.4 In general, the dissipation functionals Dε will have a Γ- lim inf of the form D(z) =∫ T

0
M(t, z(t), ż(t))dt, see e.g. [AM∗11]. Thus, we have lost the control over the derivatives ξ. Then,

the crucial condition (2.10b) needs to be replaced by

M(t, z, v) ≥ −〈DE(t, z), v〉 for all t, z, v. (2.11)

It is an open question to provide good sufficient conditions guaranteeing that this condition holds
automatically, but it is usually easy to check for concrete cases.

Clearly, M(t, z, ·) will be convex and lower semicontinuous. If additionally M can be written in the
form

M(t, z, v) = R(z, v) + m(t, z)

for a dissipation potential R, then (2.11) implies m(t, z) ≥ R∗(z,−DE(t, z)). Hence, we obtain the
upper energy estimate

E(T, z(T )) +

∫ T

0

(
R(z(t), ż(t))+R∗(z(t),−DE(t, z(t)))

)
dt

≤ E(T, z(T )) +

∫ T

0

M(t, z(t), ż(t))dt ≤ E(0, z(0)) +

∫ T

0

∂tE(t, z(t))dt

and conclude, as in Proposition 2.1, that z is a solution of the generalized gradient system (Z, E ,R).

3 Limit passage in the wiggly energy model

We now turn our attention to a slightly more general version of the particular model introduced in
[Jam96] and further analyzed in [PuT05]. It is a viscous gradient system (Z, Eε,Rε) with

Z = R, Eε(t, z) = Φ(z) + εW (z, z/ε) − ℓ(t)z, Rε(z, ż) =
εα

2
ż2.

Here Φ ∈ C2(R) and W ∈ C2(R2) denote the macroscopic part and the wiggly part of the energy,
while ℓ ∈ C1([0, T ]) is the loading. For Φ we assume uniform convexity D2Φ(z) ≥ φ0 > 0. The
wiggly energy is assumed to be nontrivially periodic with period 1 in the second variable. In particular,
we assume

ρ+(z) := max{DyW (z, y) | y ∈ R } > 0, ρ−(z) := min{DyW (z, y) | y ∈ R } < 0. (3.1a)

Figure 3.1 shows that the wiggles in the energy are not seen macroscopically while the restoring force
DzEε is strongly oscillating.
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Figure 3.1: The wiggly energy functional Eε and its derivative DzEε .
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Figure 3.2: Simulations for Eε(t, z) = 1
2
z2 + ε cos( z

ε
) − (2 sin t + 0.3t)z and R(ż) = ż2/2000 for

ε = 0.125 (left) and ε = 0.05 (right), respectively.

The ODE describing the evolution is given explicitly as follows:

εαż = −Φ′(z) − DyW (z, z
ε
) − εDzW (z, z

ε
) + ℓ(t). (3.2)

The dynamics of the solutions is displayed in Figure 3.2. The rate-independent hysteretic behavior is
already nicely established for moderate ε > 0. Figures 3.1 and 3.2 also match diagrams in [MüS01]
for the modeling of pseudo-elasticity, where N = 1/ε plays the role of interfaces in a shape-memory
wire.

To study the limiting behavior for ε → 0 we use the approach described in Section 2.2, which is based
on the equivalent (R,R∗) formulation in terms of upper energy estimate (2.5). The integrand Mε of

the dissipation functional Dε(z) =
∫ T

0
Mε(z, ż,−DE(t, z))dt now has the simple form

Mε(z, v, ξ) =
εα

2
v2 +

1

2εα
|ξ|2.
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The trick for controlling the limit passage is to decompose the restoring force along a solution zε :
[0, T ] → R in a specific way, namely

ξε(t) := −DEε(t, zε(t)) = ηε(t) − wε(t) with

ηε(t) = −Φ′(zε(t)) − εDzW (zε(t), zε(t)/ε) + ℓ(t) and

wε(t) = DyW (tε(t), zε(t)/ε).

(3.3)

Here the macroscopic part ηε will converge uniformly to −Φ′(z(t)) + ℓ(t) if zε converges uniformly
to z. This will be used in the following key result, where the wiggly part will is controlled by a homoge-
nization argument as in [Bra02, Sect. 3].

Proposition 3.1 Let zε, z ∈ W1,1([0, T ]) and ηε, ξ ∈ C0([0, T ]) be such that

zε → z and ηε → η in C0([0, T ]).

Let W and Mε be given as above with α > 0. Then,

lim inf
ε→0

∫ T

0

Mε(zε, żε, ηε−DyW (zε, zε/ε))dt ≥

∫ T

0

M(z, ż, η)dt, (3.4)

where the limit function M is given by

M(z, v, ξ) = |v|K(z, ξ) + χ[ρ−(z),ρ+(z)](ξ),

K(z, ξ) =

∫ 1

y=0

|ξ+DyW (z, y)|dy and χA(ξ) =

{
0 for ξ ∈ A,

∞ for ξ 6∈ A.

The proof of this result is the content of Appendix A.

We can now construct the contact set CM by using the structure of K(z, ξ). Since the range of
DyW (z, ·) is [ρ−(z), ρ+(z)] we have K(z, ξ) = |ξ| outside of this interval, while K(z, ξ) > |ξ| for
ξ ∈ ]ρ−(z), ρ+(z)[. Thus, we conclude M(z, v, ξ) ≥ |v||ξ| ≥ vξ as desired. Moreover, to have the
equality M(z, v, ξ) = vξ we need

ξ ∈ [ρ−(z), ρ+(z)] and |v|K(z, ξ) = vξ,

which implies the representation

CM(z) = { (v, ξ) ∈ R × [ρ−(z), ρ+(z)] | v = 0 or
(
± v > 0 and ξ = ρ±(z)

)
}.

Defining the 1-homogenous dissipation potential R and its dual R∗ via

R(z, v) :=

{
ρ+(z)v for v ≥ 0,

ρ−(z)v for v ≤ 0,
=⇒ R∗(z, ξ) = χ[ρ−(z),ρ+(z)](ξ), (3.5)

we easily find the same contact sets, i.e.

CM(z) = CR+R∗(z) = { (v, ξ) ∈ R
2 | ξv = R(z, v) + R∗(z, ξ) < ∞}. (3.6)
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Thus, Theorem 2.3 leads us to the final convergence result for the wiggly-energy model in its small
viscosity limit, see Theorem 3.2. The limit system is the generalized gradient system (R, E ,R) with
E(t, z) = Φ(z) − ℓ(t)z and R from (3.5). The corresponding ODE is the differential inclusion

0 ∈ ∂żR(z, ż) + DzE(t, z). (3.7)

However, to achieve the program described above, we need one further essential condition, which is
called joint-convexity condition in [Mie05, MiR07]. This condition reads

inf{Φ′′(z) | z ∈ R } =: φ2 > w2 := sup{ |DzDyW (z, y)| | z, y ∈ R } (3.8)

and implies that the functions ρ+ and ρ− may not vary too fast. Obviously this condition is satisfied if
Φ is uniformly convex (i.e. φ2 > 0) and W does not depends z (i.e. w2 = 0) as in [Jam96, ACJ96,
PuT05]. A natural consequence of this condition is

|ρ+(z1) − ρ+(z2)| ≤ w2|z1−z2| and |ρ−(z1) − ρ−(z2)| ≤ w2|z1−z2| (3.9)

for all z1, z2 ∈ R. To see this, fix z1 and z2 and choose yj with DyW (zj , yj) = ρ+(zj). Then,
ρ+(z1) = DyW (z1, y1) ≥ DyW (z1, y2) ≥ −w2|z1−z2|+DyW (z2, y2) = −w2|z1−z2|+ρ+(z2).
Interchanging z1 and z2 the estimate for ρ+ follows, and ρ− works analogously.

To formulate our main convergence result we introduce the functions z̃± : [0, T ] → R via the condi-
tions

Φ′(z̃+(t)) + ρ−(z̃+(t)) = ℓ(t) and Φ′(z̃−(t)) + ρ+(z̃−(t)) = ℓ(t). (3.10)

Condition (3.9) shows that z̃+ and z̃− are uniquely defined and are Lipschitz continuous with Lip(z̃±) ≤
Lip(ℓ)/(φ2−w2).

Theorem 3.2 Let Φ, W, ℓ, and Eε be as described above and such that (3.8) holds. Then for every
α > 0 we have the following convergence result. If zε : [0, T ] → R are solutions of (3.2) satisfying

zε(0) → z0 ∈ [z̃−(0), z̃+(0)],

then for ε → 0 we have and the convergences

zε → z in C0([0, T ]) and

∫ t2

t1

2Rε(żε(t))dt →

∫ t2

t1

R(ż(t))dt

for 0 ≤ t1 < t2 ≤ T , where z : [0, T ] → R is the unique solution of the generalized gradient flow
(3.7) with z(0) = z0.

The discussions in [Mie05, Sect. 3.5+3.6] show that condition (3.9) is essential for (3.7) to have a
unique Lipschitz continuous solution. We will need this to control the solutions zε in such a way that
we are able to apply Proposition 3.1. The condition z0 ∈ [z̃−(0), z̃+(0)] is also needed to have a
solutions for the limit problem (3.7).

In fact, the dynamics of the limit system (3.7) is easily described by writing the different cases associ-
ated with the nonsmooth subdifferential ∂żR(z, ·). We have

0 = ρ+(z) + Φ′(z) − ℓ(t) ⇔ z = z̃−(t) =⇒ ż ≥ 0,

0 ∈ ]ρ−(z), ρ+(z)[ + Φ′(z) − ℓ(t) ⇔ z = ]z̃−(t), z̃+(t)[ =⇒ ż = 0,

0 = ρ−(z) + Φ′(z) − ℓ(t) ⇔ z = z̃+(t) =⇒ ż ≤ 0,

0 6∈ [ρ−(z), ρ+(z)] + Φ′(z) − ℓ(t) ⇔ z 6∈ [z̃−(t), z̃+(t)] is forbidden.
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Figure 3.3: Solution z(t) of (3.7) moves between z̃−(t) and z̃+(t).

Hence, the solution stays between the moving boundaries z̃−(t) and z̃+(t) in such a way that it is
constant as long as possible, see Figure 3.3.

The following result shows that the solutions zε can be controlled in a suitable way.

Proposition 3.3 Let Φ, W, ℓ, and Eε be as described above such that (3.8) holds and let α > 0.
Then, there exists constants C > 0 and c > 0, such that the following holds: If the solutions zε :
[0, T ] → R of (3.2) satisfy

σε := dist
(
zε(0), [z̃−(0), z̃+(0)]

)
→ 0, (3.11)

then for all t, s ∈ [0, T ] we have the estimates

|zε(t) − zε(s)| ≤ C
(
σε + ε + εα/2 + |t−s|

)
, (3.12a)

dist
(
zε(t), [z̃−(t), z̃+(t)]

)
≤ C

(
σεe

−ct/εα

+ ε + ε2α
)
. (3.12b)

We refer to Appendix B for the proof of this proposition. With these notations and the above proposi-
tions at hand, the proof of Theorem 3.2 can be completed as follows.

Proof of Theorem 3.2: The estimate (3.12a) gives equicontinuity of the family (zε)ε∈]0,1[. Hence, the
Arzelà-Ascoli theorem yields a subsequence (zεj

)j∈N with εj → 0 and a limit z ∈ C0([0, T ]) such
that zεj

→ z uniformly. Exploiting (3.12a) once again, we have the Lipschitz continuity |z(t)−z(s)| ≤
C|t−s|.

Thus, we are able to apply Proposition 3.1 with ηε defined in (3.3). Hence, the limit function z satisfies
the upper energy estimate

E(T, z(T )) +

∫ T

0

M(z(t), ż(t),−Φ′(z(t))+ℓ(t))dt = E(0, z(0)) −

∫ T

0

ℓ̇zdt.

By the definition of the contact sets, the relation CM = CR+R∗ (cf. (3.6)), and the chain-rule argument
of Proposition 2.1 we obtain

(ż(t),−Φ′(z(t))+ℓ(t)) ∈ CR+R∗(z(t)) for a.a. t ∈ [0, T ].

Hence, we have shown that z is the desired solution of (3.7) with z(0) = z0 = limε→0 zε(0). So
far, we have established only the convergence of the subsequence (zεj

)j∈N only. However, because
the solution z of (3.7) with z(0) = z0 is unique (see [Mie05, MiR07], where we again use the joint
convexity (3.8)), the whole family has to converge.
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Figure 4.1: Viscoelastic chain with bistable springs.

To obtain the convergence of the dissipation integral we use that for ε > 0 all solutions zε satisfy
2Rε(żε) = Rε(żε)+R∗

ε(−DEε(t, zε)), Hence, for all 0 ≤ t1 < t2 ≤ T we have

∫ t2

t1

2Rε(żε(t))dt =

∫ t2

t1

(
Rε(żε(t))+R∗

ε(−DEε(t, zε))
)
dt

= Eε(t1, zε(t1)) − Eε(t2, zε(t2)) −

∫ t2

t1

ℓ̇(t)zε(t)dt

→ E(t1, z(t1)) − E(t2, z(t2)) −

∫ t2

t1

ℓ̇(t)z(t)dt =

∫ t2

t1

R(ż(t))dt.

Hence, Theorem 3.2 is established.

We note that the convergence of the dissipated energy 2Rε(żε) to its limit R(z, ż) is not uniform
but only in the weak∗ sense of measures as indicated in Theorem 3.2. This is due to quite different
microscopic behavior of żε. The times for passing adjacent wiggles is proportional to ε, however the
maximal speed during this transition is of order ε−α as DyW varies of order 1. In fact, żε is of order
1 most of the time with a short burst where |żε| ∼ ε−α on an interval of a length of order ε1+α. This
behavior is nicely displayed in Figure 3.2.

Thus, Rε(żε) = εαż2
ε/2 is of order εα most of the time with localized burst with size and length of

the orders ε−α and ε1+α, respectively. Only taking integrals over fixed intervals we see convergence
to

∫ t2
t1

R(ż(t))dt.

4 Elastoplasticity arising from a chain of viscous, bistabl e springs

Another system with a wiggly energy is studied in [MiT11]. It is given in terms of a chain of N bistable
springs with small viscous damping, see Figure 4.1. Denoting by ej the strain in each spring we
consider the coupled system

νėj = −Φ′(ej) + µN
j + G(t, j/N) + σ(t) for j = 1, ..., N ;

CN ((ej)) := 1
N

∑N
j=1 ej = ℓ(t).

}
(4.1)

Here Φ : R → R is a double-well potential, which is conveniently chose to be the biquadratic potential

Φbiq(e) :=
k

2
min{(e+a)2, (e−a)2}. (4.2)

The coefficients µN
j are biases that are chosen independently and identically distributed according to

a probability density f ∈ L1([−µ∗, µ∗]) with average 0.
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Here the system is driven by the Dirichlet loading ℓ ∈ C1([0, T ]) prescribing the total length of
the chain. The parameter σ is the Lagrange parameter associated with this constraint. Moreover,
the function G ∈ C1([0, T ] × [0, 1]) allows for a given time-dependent volume forcing. Using e =
(e1, ..., eN) as a state vector, the system has the energy functional EN and the dissipation potential
RN :

EN(t, e) =
1

N

N∑

j=1

(
Φ(ej) − µN

j ej + G(t, j/N)ej

)
and RN (e, ė) =

ν

2N

N∑

j=1

ė2
j .

The total system can now be written abstractly as a driven gradient system via

0 = DėRN (e, ė) + DeEN(, e) + σ(t)DCN(e), CN (e) = ℓ(t).

In this system the small parameter is ε = 1/N , which is the ratio between the length of the springs
and the total length. As we are interested in the case ε → 0 or N → ∞, the energy EN becomes
wiggly in the sense that there are many local minimizers for a given constraint CN(e) = ℓ, namely up
to 2N .

In [MiT11] the limit of particle number N → ∞ and viscosity ν → 0 is studied by embedding the
system into a spatially continuous setting for Ω = ]0, 1[. For Φ = Φbiq we have two wells or phases
for the springs, which we characterize by the phase indicators

zj = sign(ej) ∈ {−1, 0, 1}.

The discrete variables zj are the precursors of continuum plastic strain variables, which appear in the
weak limit. To define the macroscopic averages we first need to introduce a spatial averaging operator.

We begin by embedding the solutions e ∈ R
N into L2(Ω) via the characteristic functions

χN
j = χ](j−1)/N,j/N [ : x 7→

{
1 for x ∈ ](j−1)/N, j/N [ ,

0 otherwise.
(4.3)

This allows us to define the elastic strain fields eN and a plastic strain field pN via (eN(t), pN(t)) :=
PN (eN(t)) where

PN :





R
N → L2(Ω) × L2(Ω),

e = (ej)j=1,...,N 7→
(∑N

j=1 eN
j χN

j , a
∑N

j=1 zN
j χN

j

) (4.4)

Note that e and p are introduced in such a way that the relation

Φ′(eN (t, x)) = k(eN (t, x) − pN(t, x))

holds. Thus, the nonlinear stress-strain relation is turned into a linear one, after using the nonlinear
relation e 7→ sign(e) for defining the plastic strain.

We now define the limit system (Q, E ,R) via Q = L2(Ω) × L2(Ω),

E(e, p) =

∫

Ω

k

2
(e(x)−p(x))2 + H(p(x)) + G(t, x)e(x)dx, R(ṗ) =

∫

Ω

ka|ṗ(x)|dx.
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Moreover, we have the constraint C(e) :=
∫
Ω

e(x)dx = ℓ(t), such that the limit equation reads

0 ∈ DeE(e, p) + σ(t)DC = k(e−p) + σ, C(e) = ℓ(t),

0 ∈ ∂R(ṗ) + DpE(e, p) = ka Sign(ṗ) + k(p−e) + ∂H(p).
(4.5)

Here the function H : R → R ∪ {∞} is the convex hardening function induced by the random
choices of the bias coefficients µN

j . From its distribution function f ∈ L1([−µ∗, µ∗]) we obtain H in
the form

H(p) = 2aF ∗
(
(a−p)/(2a)

)
∈ R ∪ {∞} for p ∈ R,

where the function F ∗ is obtained from f as follows. Define F ∈ W2,1 such that F ′′ = f on [−µ∗, µ∗]
and F ′′ = 0 otherwise. Moreover, assume F (µ) = 0 for µ ≤ −µ∗. Then, F is convex and has a
convex Legendre transform F ∗ : R → R ∪ {∞} with F ∗(ξ) = ∞ for ξ 6∈ [0, 1]. Hence, we have
H(p) = ∞ for |p| ≥ a in the general case. For the rectangular distribution f(µ) = 1/(2µ∗) on
[−µ∗, µ∗] and 0 otherwise, we obtain H(p) = µ∗(p

2−a2/(2a).

The major result of [MiT11] is concerned with the limit ε = 1/N → 0 and ν → 0 for small-viscosity
system (RN , EN ,Rν,N) with the wiggly energy EN under the constraint CN . To simplify the presen-
tation here we choose the viscosity νN = 1/Nα = εα for a fixed α > 1. In fact, we hope that
the energetic method developed in the previous sections of this paper will allows us to treat the case
α ∈ ]0, 1] as well. The following result is proved in [MiT11, Thm. 5.2] by completely different methods,
namely by controlling the evolution of the viscous solutions e

N : [0, T ] → R
n is a careful manner

and uniform manner.

Theorem 4.1 Assume νN = 1/Nα for a fixed α > 1. Consider the solutions e
N : [0, T ] → R

N of
the gradient system (RN , EN ,RνN ,N), where the biases µN

j are chosen randomly (iid) according to
the distribution f . Let the initial conditions e

N (0) satisfy e
N
j (0) < 0 and

PN(eN (0)) ⇀ (e0, p0) in Q and E
N(0, eN(0)) → E(0, e0, p0)

as ε = 1/N → 0. Then, with probability 1 with respect to the random biases µN
j we have

PN (eN(t)) ⇀ (e(t), p(t)) in Q for all t ∈ [0, T ] as ε = 1/N → 0,

where (e, p) is the unique solution of the pseudo-elastic system (Q, E ,R) with constraint C and initial
data (e(0), p(0)) = (e0, p0).

A Proof of Proposition 3.1

In this section we give the full proof of the central liminf estimate that allows us to pass from the small
viscosity limit to the rate-independent limit.

We derive a lower bound by estimating

Mε(z, v, ηε−wε) =
εα

2
v2 +

1−εα/2

2εα
(ηε−wε)

2 +
εα/2

2εα
(ηε−wε)

2

≥ (1−εα/2)|v|
∣∣ηε−wε

∣∣ +
1

2εα/2
dist(ηε, [ρ−(zε), ρ+(zε)])

2 =: M (1)
ε + M (2)

ε ,
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where we used wε = DyW (zε, zε/ε) ∈ [ρ−(zε), ρ+(zε)]. To treat the second term we simply
observe the pointwise liminf estimate

(zε, ηε) → (z, η) =⇒ lim inf
ε→0

1

2εα/2
dist(ηε, [ρ−(zε), ρ+(zε)])

2 ≥ χ[ρ−(z),ρ+(z)](η).

Integration over [0, T ] and Fatou’s lemma yield the first result:

lim inf
ε→0

∫ T

0

M (2)
ε dt = lim inf

ε→0

∫ T

0

dist(ηε,[ρ−(zε),ρ+(zε)])2

2εα/2 dt ≥

∫ T

0

χ[ρ−(z),ρ+(z)](η)dt. (A.1)

Thus, it remains to establish the liminf estimate for the first term M
(1)
ε , namely

lim inf
ε→0

Dε ≥

∫ T

0

|ż|K(z, η)dt, where Dε =

∫ T

0

M (1)
ε dt =

∫ T

0

|żε||ηε(t)−DyW (zε, zε/ε)|dt,

whenever zε and ηε converge uniformly to z and η, respectively. Here we proceed analogously to
[Bra02, Ch. 3]. For arbitrary n ∈ N fixed we obtain for all ε ∈ ]0, 1/n[ the lower estimate

Dε ≥
n∑

j=1

∫

In
j

|żε(t)|h
n
j (zε(t)/ε)dt with In

j = [ j−1
n

T, j
n

T ] and

hn
j (y) = min{ |ηε(s)−DyW (zε(s), y)| | s ∈ In

j , ε ∈ ]0, 1/n[ }.

We assume first z( j−1
n

T ) < z( j
n
T ), then for ε → 0 we obtain

∫

In
j

|żε(t)|h
n
j (zε(t)/ε)dt ≥

∫ zε(
j
n

T )

zε(
j−1
n

T )

hn
j (z/ε)dz −→

∫ 1

0

hn
j (y)dy

(
z( j

n
T )−z( j−1

n
T )

)
,

where we used periodicity of hn
j (·). We argue similarly for z( j−1

n
T ) ≥ z( j

n
T ) and obtain

lim inf
ε→0

∫

In
j

|żε(t)|h
n
j (zε(t)/ε)dt ≥

∫ 1

0

hn
j (y)dy

∣∣z( j
n
T )−z( j−1

n
T )

∣∣.

Denoting by zn the piecewise affine interpolant with zn( j
n
T ) = z( j

n
T ) and kn(t) =

∫ 1

0
hn

j (y)dy for
t ∈ In

j , we obtain

lim inf
ε→0

Dε ≥

n∑

j=1

∫ 1

0

hn
j (y)dy

∣∣z( j
n
)−z( j−1

n
)
∣∣ =

∫ T

0

kn(t)|żn(t)|dt. (A.2)

Using z ∈ W 1,1([0, T ]) we obtain żn → ż strongly in L1([0, T ]). Moreover, the uniform conver-
gence of (zε, ηε) to (z, η) yields the uniform convergence kn(t) → K(z(t), η(t)), where we use the
continuity of the mapping

R
2 × [0, 1] ∋ (z, η, y) 7→ |η−DyW (z, y)|.

Thus, passing to the limit n → ∞ in the right-hand side of (A.2) we obtain the desired estimate
lim infε→0

∫ T

0
M

(1)
ε dt ≥

∫ T

0
|ż|K(z, η)dt.

Combining this with (A.1) Proposition 3.1 is proved.
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B Proof of Proposition 3.3

Throughout this appendix we let β = min{1, 2α} such that εβ = max{ε, ε2α}.

The proof consists of two parts. Part I is concerned with the solutions starting at time t in or near to
[z̃−(t), z̃+(t)]. These solutions are shown to move in the interval [t, t+εβ] at most by Cεβ. Part II is
concerned with the approach to the interval [z̃−(t), z̃+(t)] if the solution starts outside.

Before we start, we emphasize that all solutions zε occurring in Proposition 3.3 lie in a bounded set
Z = [zmin, zmax] ⊂ R. This follows easily from the energy estimate Eε(t, zε(t)) ≤ Eε(0, zε(0)) −∫ t

0
ℓ̇(s)zε(s) ds and a Gronwall estimate. Thus, we can take suprema of continuous functions such

as Φ and W and its derivatives up to order 2.

Lemma B.1 (Part I) Under the assumptions of Proposition 3.3, for any C1 > 0 there exists a C2

such that for all ε ∈ ]0, 1[ and all solutions zε of (3.2) we have the following implication. If for some
t0 ∈ [0, T ] we have

dist
(
zε(t0), [z̃−(t0), z̃+(t0)]

)
≤ C1ε

β, (B.1)

then |zε(t)−zε(t0)| ≤ C2ε
β for all t ∈ [t0, t0+εβ] ∩ [0, T ].

Proof: We apply a blocking principle by showing that the solution cannot pass points ζ− and ζ+ with
zε(t0)−C2ε

β ≤ ζ− < zε(t0) < ζ+ ≤ zε(t0)+C2ε
β. Writing gε(z) = −φ′(z)− εDzW (z, z/ε)−

DyW (z, z/ε) it suffices to satisfy

∀ t ∈ [t0, t0+δ] : gε(ζ−) + ℓ(t) ≥ 0 and gε(ζ+) + ℓ(t) ≤ 0.

We consider the case ζ+ only, as ζ− can be treated analogously.

We first choose y+ such that DyW (zε(t0), y+) = ρ+(zε(t0)) and search for ζ+ in the set y+ + εZ.
Using (B.1), the definition of z̃− in (3.10), and Λ := Lip(ℓ) we estimate ℓ(t) via

ℓ(t) ≤ ℓ(t0) + Λ(t−t0) ≤ Φ′(z̃−(t0)) + ρ+(z̃−(t0)) + Λεβ.

With this and C1
W = sup{DzW (ζ, y) | z ∈ Z, y ∈ R } and w2 from (3.8) we proceed

gε(ζ+) + ℓ(t) = −Φ′(ζ+) − εDzW (ζ+, y+) − Wy(ζ+, y+) + ℓ(t)

≤ −Φ′(ζ+) + εC1
W − DyW (zε(t0), y+) + w2(ζ+−zε(t0)) + Φ′(z̃−(t0)) + ρ+(z̃−(t0)) + Λεβ

≤ −Φ′(ζ+) + Φ′(zε(t0)) + w2(ζ+−zε(t0)) + εβC3 ≤ −(φ2−w2)(ζ+−zε(t0)) + εβC3,

where C3 = C1
W + Λ + Lip(Φ′)C1. Because φ2−w2 > 0 by (3.8), we can define η+ = zε(t0) +

εβC3/(φ2−w2) and choose ζ+ ∈ y+ + εZ as small as possible but satisfying ζ+ ≥ η+. Hence, the
construction is finished with C2 = 1 + C3/(φ2−w2).

Thus, with the similar construction of ζ− we conclude that zε(t) remains inside the interval [ζ−, ζ+];
and the assertion is established.

Next we show that solutions zε(t) outside the interval [z̃−(t), z̃+(t)] are attracted back to this interval
exponentially fast.

16



Lemma B.2 (Part II) Under the assumptions of Proposition 3.3 there exists a constant C0 > 0 such
that δε(t) = dist(zε(t), [z̃−(t), z̃+(t)]), where zε is a solution of (3.2), satisfies

δε(t) ≤ δε(0)e−λεt + εβC0 where λε = φ2−w2

εα > 0. (B.2)

Proof: We derive the differential inequality εαδ̇ε ≤ −(φ2−w2)δε+max{ε, εα}C , which immediately
implies the desired estimate for δε with C0 = C/(φ2−w2).

To obtain the differential inclusion we distinguish three cases. In the case zε(t) ∈ ]z̃−(t), z̃+(t)[ we
have δε = δ̇ε = 0 and the differential inclusion holds trivially. We will treat the case zε(t) ≥ z̃+(t), as
the case zε(t) ≤ z̃−(t) is similar. Using (3.8) we find

εδ̇ε = εαżε − εα ˙̃z+

≤ −Φ′(zε) − εDzW (zε, zε/ε) − DyW (zε, zε/ε) + Φ′(z̃+) + ρ−(z̃+) + εαC+

≤ −
(
Φ′(zε) + ρ−(zε) − Φ′(z̃+) − ρ−(z̃+)

)
+ εC1

W + εαC+

≤ −(φ2−w2)δε + εC1
W + εαC+ ≤ −(φ2−w2)δε + max{ε, εα}C,

where C1
W = sup |DxW |, C+ = sup | ˙̃z+|, and C = C1

W + C+.

Clearly, this lemma provides the second estimate in Proposition 3.3, namely (3.12b). To derive the
first estimate, i.e. (3.12a), we combine the two lemmas by taking C0 from the second and choosing
C1 = 2C0 in the second. If σε = δε(0) ≤ εβC0 the estimate (B.2) shows that (B.1) holds for all t0,
which allows us to derive (3.12a) easily. Assuming 0 ≤ s < t ≤ T we let Jε = 1 + [|t−s|/εβ] ∈ N

and τ = (t−s)/Jε ≤ εβ and obtain

|zε(t) − zε(s)| ≤
∑Jε

j=1 |zε(s+jτ) − zε(s+jτ−τ)| ≤ C2Jε εβ ≤ C2(ε
β + (t−s)). (B.3)

If σε = δε(0) > εβC0 we have a transient phase of length tε where δε(tε) = εβC0. From (B.2) we see
that tε ≤ Cεα/2. Looking into the proof of Lemma B.2 we find that zε is monotone on the [0, tε]; e.g. if
zε(0) > z̃+(0)+εβC0 we have εαżε ≤ −(φ2−w2)δε +εC1

W ≤ −(φ2−w2)εC0+εC1
W ≤ 0 by the

definition of C0 = (C1
W +C+)/(φ2−w2). With a similar argument for the case zε(0) ≤ z̃−(0)−εβC0,

we have the estimate

|zε(t) − zε(s)| ≤ |zε(tε) − zε(0)| ≤ σε + Cεα/2 for s, t ∈ [0, tε].

Combining this with (B.3) on the interval [tε, T ] we obtain the desired result (3.12a). Hence, the proof
of Proposition 3.3 is complete.
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