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Abstract

We investigate a many-body wave function for particles on a cylinder known as Laugh-

lin’s function. It is the power of a Vandermonde determinant times a Gaussian. Our main

result is: in a many-particle limit, at fixed radius, all correlation functions have a unique limit,

and the limit state has a non-trivial period in the axial direction. The result holds regard-

less how large the radius is, for fermions as well as bosons. In addition, we explain how

the algebraic structure used in proofs relates to a ground state perturbation series and to

quasi-state decompositions, and we show that the monomer-dimer function introduced in

an earlier work is an exact, zero energy, ground state of a suitable finite range Hamiltonian;

this is interesting because of formal analogies with some quantum spin chains.
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1 Introduction

In this article we study a many-body wave function for particles on long cylinders. The wave
function is the product of the power of a Vandermonde determinant and a Gaussian. It arises
as a model wave function in the fractional Hall effect [Lau2] and is known as Laughlin’s wave
function, but the wave function, or variants of it, play a role in other areas too, e.g., rapidly rotating
Bose gases (see [LS] and the references therein) and classical Coulomb systems (“jellium”
or one-component plasma), see for example [Š, F]. The function also resembles expressions
studied in random matrix theory.

A full discussion of the quantum Hall effect background is beyond the scope of this article,
and we should stress that our result does not seem to have direct implications in terms of
quantized conductance. There are, nevertheless, reasons that might make the result interesting
in the quantum Hall effect context. The key words are Laughlin’s argument, Chern numbers,
incompressibility, topological order, and the plasma analogy.

Laughlin’s argument for the integer Hall effect [Lau2] used the cylinder geometry and gauge
invariance in order to show that Hall conductances should have integer quantization. It was later
suggested that a ground state degeneracy, possibly due to translational symmetry breaking,
is required in order to reconcile this argument with fractional conductances [TW]. The relation
between ground state degeneracy and fractional conductance can in fact be made rigorous on
a torus, in the Chern number approach [ASY]. This leads to the question whether Laughlin’s
state, on a cylinder, considered as an approximate ground state, is degenerate or not: this was
the initial motivation of the present article, see [JLS] for further references. Our main result is
that at filling factor 1/p, Laughlin’s state exhibits indeed p-fold symmetry breaking, at all values
of the radius, complementing previous thin cylinder results [RH, JLS].

This shows, in a way, that the use of Laughlin’s function is consistent with an important ingredient
of the theory of the fractional Hall effect, incompressibility or the existence of a gap above the
ground state(s), see the review [BF] and also the discussion in [BES]. Indeed, on a cylinder, at
non-integer filling factor, incompressibility implies translational symmetry breaking [Ko]. Let us
mention, however, that our symmetry breaking result holds at all values of the radius and of the
filling factor, regardless of whether or not there is a gap.

The symmetry breaking proven here can be read as another illustration of the geometry-dependent
degeneracy which is considered a hallmark of “topological order”. We do not wish to discuss this
notion here, and instead refer the reader to [HM] and the references therein for a discussion in
combination with the fractional Hall effect.

The plasma analogy refers to the observation that the modulus squared of Laughlin’s function
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is proportional to the Boltzmann weight for a classical system of point charges moving in a
neutralizing background. It was originally invoked [Lau2] in order to justify that, at not too low
filling factors, in a disk geometry, Laughlin’s state describes a homogeneous liquid. Interestingly,
this very same argument, when adapted to the cylinder geometry, suggests a spatial periodicity.
From this point of view, the symmetry breaking proven here is closely related to results for one-
dimensional jellium [Ku, BL, AM], jellium on a semi-periodic strip at the “free-fermion point” [CFS]
and at even-integer coupling [ŠWK], and jellium on quasi one-dimensional tubes with periodic
or Neumann boundary conditions, at arbitrary coupling [AJJ].

A curious aspect of the quasi one-dimensional jellium is that it interpolates between one-dimensional
jellium, which is known to have no phase transition [Ku], and higher-dimensional jellium, which
is expected to undergo a Wigner crystallization phase transition (related to the formation of vor-
tices in a rotating Bose gas). An interesting open question is, therefore, whether at low filling
factor 1/p, Laughlin’s state has a phase transition as the radius is varied. We know that for every
fixed filling factor, when the cylinder radius is sufficiently small, the infinite volume correlations
depend on the radius in an analytic way, and there is exponential clustering [JLS]. Our results
imply that if there is a phase transition, it cannot manifest itself in a change of the state’s spatial
periodicity. A possible scenario, instead, could be that exponential clustering is replaced with
algebraic decay of correlations, which in turn is related to the question whether the gap of some
toy Hamiltonian vanishes at some finite value of the radius as the radius is increased.

The simplest motivation, perhaps, is to consider Laughlin’s function as a partially solvable, quan-
tum many-body toy problem. It is well-known, indeed, that the wave function is an exact ground
state of a suitable interaction which encodes that the wave function has zeros of a given order
as particles get close [H, PT, TK]. Our problem can also be seen as a problem for fermions, or
bosons, on a one-dimensional lattice, and the interaction takes the form

H =
∑

k1+k2=n1+n2

F (n1 − n2)F (k1 − k2)c
∗
k1
c∗k2
cn2
cn1

(1)

for some suitable rapidly decaying function F . Studying Laughlin’s wave function amounts to
studying the ground state of this simple looking Hamiltonian.

Our main results are the following: when we let the particle number go to infinity, at fixed radius,
all correlation functions have a unique limit, and the limit state has a non-trivial period along the
cylinder axis. At filling factor 1/p, the period is p times the period of the filled lowest Landau
level; equivalently, p times the period of the Hamiltonian H from Eq. (1). We also show that the
state is clustering, and that bulk correlation functions are insensitive to the precise choice of
the domain of integration. This is akin to the accumulation of excess charge at the boundary of
Coulomb systems.

These results extend previous results for fermions on thin cylinders [JLS]. They leave open,
however, some questions that were answered positively on thin cylinders. Most notably, on thick
cylinders, we do not know whether the symmetry breaking is already apparent at the level of the
one-particle density, and we do not know whether the correlation length is finite. This last ques-
tion is, via the exponential clustering theorem [NS] related to another open question, namely,
whether the Hamiltonian H has a gap above its ground state (see, however, [SFL+] for numeri-
cal results at filling factor 1/3).
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The symmetry breaking proven here is also closely related to results for classical quasi one-
dimensional Coulomb systems [AJJ]. From this perspective our result is, on the one hand, a
specialization of [AJJ] to 1+1-dimensional semi-periodic strips; on the other hand, our result is
an improvement in the sense that we examine the full quantum mechanical state and we prove
uniqueness (up to shifts) and ergodicity of the limiting state.

Our proofs follow [JLS] by exploiting the algebraic structure of the wave function. Some of the
results in [JLS] were proven using a perturbative arguments in the thin strip limit. We adapt
methods from [AJJ] in order to show that part of these results are not perturbative but true for
all radius values. In particular, the associated renewal process has always finite mean.

Another goal of this article is to cast the algebraic manipulations and expressions of infinite
volume correlation functions from [JLS] in a form that allows for a more explicit expression of
the relationship between quantum mechanics and an associated probability problem. We will
see that the formalism implicitly used in [JLS] does not stand alone, but is actually similar to
structures encountered in magnetic itinerant electrons and in spin chains.

Quickly summarized, [JLS] exploited an algebraic property of powers of Vandermonde deter-
minants in order to give a representation both of the normalization CN = ||ΨN ||2 and the
correlation functions. The normalization was expressed as a polymer partition function, or more
precisely, a sum over partitions of some discrete volume into non-overlapping intervals with
multiplicative weights.

This representation of the normalization is similar to a formula for the canonical partition function
for magnetic itinerant electrons given by Aizenman and Lieb, Eq. (11) in [AL]. The canonical
partition function was written there as a sum over partitions {ni} of the number of electrons N ,
with the interpretation that

“as far as the z-component S is concerned (...) the system is in a superposition of
states in which the particles form independent ‘cliques’ of size ni.” [AL], Remark (1)

after Eq. (11)

The clique structure carries over to a representation of the correlation functions: for quantum
spin chains, the state can is a weighted superposition of (quasi-)states, corresponding each
to a partition of spins into “random clusters of total spin zero” ([AN]). The weights define a
probability measure on partitions, and a good understanding of this probability measure is a
starting point for a good understanding of the quantum-mechanical state.

Something similar can be done for Laughlin’s wave function. The physical meaning of the anal-
ogous clique structure is unclear, but we shall try to give some intuition in terms of a ground
state perturbation series. Let us explain right away why the representation is so useful for the
infinite volume limit. We will write expectations as convex combinations of linear functionals
(quasi-states), indexed by partitions X :

〈ΨN , aΨN〉
||ΨN ||2

=
∑

X

pN(X )ωX (a).

The weights define a probability measure PN on partitions. The decomposition allows us to
reduce the question of convergence of quantum mechanical states to the much simpler problem
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of convergence of probability measures. In the limit N → ∞, the measure PN has a limit P,
and

〈ΨN , aΨN〉
||ΨN ||2

→
∫

dP(X )ωX (a).

The measure P is a p-periodic renewal process and it is mixing. The infinite volume state inher-
its the periodicity and the clustering from the measure P.

Finally, we show that the solvable monomer-dimer function introduced in [JLS] arises as an
exact ground state. At filling factor 1/3, the Hamiltonian is obtained from H by restricting the
interaction range to |k1 − k2| ≤ 3, |n1 − n2| ≤ 3. This does not enter the proofs of our main
results in any way, but is interesting for two reasons. First, the monomer-dimer Hamiltonian
might be a good toy model for open questions about gaps and incompressibility. Second, the
monomer-dimer Hamiltonian, as a sum of non-commuting, positive, local operators

∑
sB

∗
sBs,

resembles spin chains with nearest neighbor spin singlet projections. This calls for a better un-
derstanding of the relation of our monomer-dimer structure and the valence bond structures and
dimerization encountered in spin chains [AKLT, AN].

The article is organized as follows: Sect. 2 states the main results in terms of the continuum
wave function; the lattice formulation, many-body Hamiltonian and monomer-dimer model are
presented in Sect. 3. The renewal structure of the wave function and the quasi-state decom-
position are explained in Sect. 4. In Sect. 5, we explain how methods from quasi-1D Coulomb
systems help strengthen perturbative results from [JLS]. Finally, Sect. 6 weaves together the
formalism from Sect. 4 and the bounds from Sect. 5 to prove our results on correlation func-
tions.

2 Main results

ConsiderN particles moving on a cylinder of radiusR > 0. Particles have complex coordinates
z = x + iy. The real part x is a coordinate along the cylinder axis, and the imaginary part
0 ≤ y ≤ 2πR is an angular coordinate around the cylinder. We are interested in the wave
function

ΨN(z1, ..., zN) = κN

∏

1≤j<k≤N

(
exp(zk/R) − exp(zj/R)

)p

exp

(
− 1

2ℓ2

N∑

k=1

x2
k

)
. (2)

The parameters ℓ > 0 and p ∈ N are considered fixed. In the quantum Hall effect, ℓ ∝
1/
√
|B| is the magnetic length, and 1/p is the filling factor. When p is odd, ΨN is a wave

function for fermions; when p is even, ΨN is a wave function for bosons. The multiplicative
constant κN is irrelevant for correlation functions; a convenient choice is nevertheless given in
Eq. (12).

Before we state our results, we mention an illuminating alternative form of the wave function’s
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modulus. Using the factorization

exp(zk/R) − exp(zj/R) =
(
1 − exp([zj − zk]/R)

)
exp(zk/R).

and a completion of squares, we find

|ΨN(z1, . . . , zN)|2 ∝
∏

1≤j<k≤N

∣∣∣1 − exp
(zj − zk

R

)∣∣∣
2p

× exp

(
− 1

ℓ2

N∑

k=1

(
xk − (k − 1)

pℓ2

R

)2
)
. (3)

The Gaussian clearly favors a period pℓ2/R in the x-direction. The prefactor should not destroy
the periodicity, since in the sector x1 ≤ x2 ≤ · · · ≤ xN ,

1 − exp
zj − zk

R
= 1 +O

(
exp
(
−|xj − xk|

R

))

is almost unity when zj and zk are far apart. Moreover, since the Gaussian decays exponentially
outside a finite cylinder of length pNℓ2/R, the exact choice of the domain of integration Λ
should not affect bulk correlation functions. Theorems 2.1 and 2.2 below state that this picture
is correct; that this is true for all values of the cylinder radius, and not just for a radius small
compared to the magnetic length ℓ, is in essence the main result of this paper.

Remark. The dimensionless parameters are p ∈ N and the ratio γ := ℓ/R. In the proofs, we
will choose length units such that ℓ = 1, so that the period of the state becomes pℓ2/R = pγ.

We now state our results in more detail. Let Z = R×[0, 2πR]. For a given domain of integration
Λ ⊂ Z and N ∈ N, we consider the n-point correlation function

ρN,Λ
n (z1, . . . , zn; z′1, . . . , z

′
n)

:=
N !

(N − n)!

1

||ΨN ||2Λ

∫

ΛN−n

ΨN(z1, . . . , zn, zn+1, . . . , zN)

× ΨN(z′1, . . . , z
′
n, zn+1, . . . , zN) dxn+1dyn+1 · · ·dxNdyN .

We willl consider domains of the form

Λ = [a, b] × [0, 2πR], −∞ ≤ a ≤ C, Npℓ2/R− C ≤ b ≤ ∞ (4)

for some N -independent constant C , but a and b possibly N -dependent. For example, we can
integrate over the infinite cylinder Z : −∞ ≤ x ≤ ∞, the semi-infinite cylinder x ≥ 0, or a
finite cylinder of length pNℓ2/R.

We are interested in the limit N → ∞ at fixed cylinder radius R > 0, and fixed parameters
ℓ, p. The cylinder length b − a as in Eq. (4) goes to infinity. In this limit, the bulk correlation
functions have a unique limit, and the limit is pℓ2/R-periodic. More exactly, we shall see that

( N∏

j=1

u(pyj)
)
ρn

(
{zj − pℓ2/R}n

j=1; {z′j − pℓ2/R}n
j=1

) N∏

j=1

u(py′j)

= ρn(z1, . . . , zn; z′1, . . . , z
′
n). (5)
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for all z1, . . . , z
′
n ∈ Z , and u(py) = exp(ipy/R); the unitary u(y) comes from the magnetic

translation (
t(ℓ2/R ex)ψ

)
(z) = exp(iy/R)ψ(z − ℓ2/R).

Theorem 2.1 (Infinite volume correlation functions, p-periodicity). Let N → ∞ at fixed R
and Λ as in Eq. (4). Then there is a unique family of infinite volume correlation functions
ρn({zj}; {z′j}) such that, for suitable ε(d) with ε(d) → 0 as d → ∞, and suitable constant
Kn, ∣∣∣ρN,Λ

n (z1, . . . , zn; z′1, . . . , z
′
n) − ρn(z1, . . . , zn; z′1, . . . , z

′
n)
∣∣∣ ≤ Knε(d),

whenever z1, . . . , z
′
n ∈ Λ satisfy xj , x

′
j ≥ d and xj , x

′
j ≤ pNℓ2/R − d for all j. The infinite

volume correlations are pℓ2/R-periodic in the sense of Eq. (5). They do not depend on the
precise choice of Λ.

The error terms Kn and ε(d) may depend on C in the choice of Λ, Eq. (4). The infinite volume
correlation functions are invariant (in the usual sense) with respect to arbitrary shifts in the
y-direction, yj → yj + s, and with respect to reversals zj → −zj .

Remark. The correlation functions ρn determine uniquely a state 〈·〉 on a suitable bosonic or
fermionic observable algebra, and we also have convergence of states on that algebra, i.e.,
〈ΨN , aΨN〉/||ΨN ||2 → 〈a〉.

The periodicity statement in the previous theorem does not yet guarantee that pℓ2/R is the
smallest period of the state, but the next theorem does.

Theorem 2.2 (Symmetry breaking). For all ℓ, R > 0 and p ∈ N, there is some correlation
function ρn(z1, . . . , zn; z1, . . . , zn) that has pℓ2/R as its smallest period.

This should be contrasted with the result from [JLS]: on thin cylinders (R ≪ ℓ), we know that
pℓ2/R is the smallest period of the one-particle density ρ1(z; z), which is a function of x alone.
Theorem 2.2 leaves open whether this stays true for thick cylinders. In any case, however, the
one-particle density has a non-trivial period which must be a multiple of the filled lowest Landau
period ℓ2/R [JLS, Lemma 2].

The use of higher order correlation functions in the formulation of symmetry breaking may look
confusing, so let us try to make it more concrete. Suppose we are given samples of electron gas
in the state ΨN , and we can make repeated measurements of the number of particles N(x),
N(x̃) in small width ǫ annuli at two different abscissas x and x̃. This gives two histograms which
will look different unless x̃− x is a multiple of pℓ2/R. On thick cylinders, the histograms might
have the same average 〈N(x)〉 = 〈N(x̃)〉 but different shapes, so we might have to look at
higher moments 〈N(x)m〉 in order to see the difference.

The C∗ algebraic content of Theorem 2.2 is that the states ω1, . . . , ωp associated with the bulk
correlation functions (ρn) and its shifts by ℓ2/R along the cylinder axis are distinct. We shall
see that they are actually disjoint in the sense of [BR, Sect. 4.2.2, p. 370], see Sect. 6.5. This
corresponds to the mutual singularity of probability measures proven in [AJJ].

The correlation functions are clustering. We formulate the next theorem for integration on the
infinite cylinder Z , but note that the insensitivity to the precise domain of integration stated in
Theorem 2.1 allows us to transfer the statement to other domains of integration.
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Theorem 2.3 (Clustering). Let m,n ∈ N and {zj , z
′
j; 1 ≤ j ≤ m}, {zj, z

′
j : m+ 1 ≤ j ≤

n} be coordinate clouds having distance ≥ d > 0 to each other. Then
∣∣∣ρN,Z

m+n(z1, . . . , z
′
m+n) − ρN,Z

m (z1, . . . , z
′
m) ρN,Z

n (zm+1, . . . , z
′
m+n)

∣∣∣ ≤ Km+nε(d).

for some N -independent function ε(d) with ε(d) → 0 as d→ ∞, and some suitable constant
Km+n.

On thin cylinders, it was shown in [JLS] that there is exponential clustering, i.e., ε(d) → 0
exponentially fast. Whether this stays true on thick cylinders is an open question.

Clustering is not only of interest in itself, but also enters the proof of the insensitivity of bulk
correlation functions to the precise choice of domain of integration. We will see, indeed, that a
switch from integration on the infinite cylinder to integration on a finite cylinder can be seen as
a perturbation localized at the boundary; clustering allows us, then, to show that this boundary
perturbation does not affect bulk correlations.

Theorem 2.3 is a statement about diagonals: in each of the coordinate clouds, the number of
primed variables equals the number of unprimed variables – we do not separate zj from z′j .
There is off-diagonal decay too, but do not offer any explicit estimate, except for the one-particle
matrix.

Proposition 2.4 (Off-diagonal decay of the one-particle matrix). For some suitable constant K
and all N , z, z′,

∣∣ρN,Z
1 (z; z′)

∣∣ ≤ K exp
(
−(x− x′)2

4ℓ2

)
.

Prop. 2.4 is proven in Sect. 5.3.

3 Interacting fermions and bosons

For the proofs, it is convenient to view the wave function as a wave function for fermions, or
bosons, on a one-dimensional lattice. Here we explain how this is done. In addition, we recall
the expression of the many-body Hamiltonian whose exact ground state Laughlin’s function is,
and we show that the monomer-dimer function from [JLS] is the exact ground state of a suitable
Hamiltonian too.

One-dimensional lattice Straightforward algebra shows that ΨN(z1, . . . , zN ) is a linear com-
bination of products of one-particle functions

ψk(z) ∝ exp(kz/R) exp
(
− 1

2ℓ2
x2
)

∝ exp(iky/R) exp
(
− 1

2ℓ2
(x− kℓ2/R)2

) (6)

with 0 ≤ k ≤ pN − p ; see Eq. (14) below. The proportionality constants are chosen positive
and such that the ψk(z), k ∈ Z, are orthonormal in L2(Z).
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The one-particle function ψk(z) is localized in the cylinder axis direction around x = kℓ2/R.
Thus we may identify lattice sites k ∈ Z with the orbitals ψk(z) and view our wave function as
a function for bosons, or fermions, on a one-dimensional lattice.

It is convenient, therefore, to work with creation and annihilation operators c∗k and ck, whose
definition we briefly recall. When p is odd, let F be the fermionic Fock space associated with the
one-particle space L2(Z). For k ∈ Z, the creation operator c∗k is the linear map in F given by
c∗kF = ψk∧F , with the antisymmetrized product f∧g(z, w) = [f(z)g(w)−g(z)f(w)]/

√
2.

The annihilation operator ck is the adjoint of c∗k in F . When p is even, the definitions are similar,
except the wedge product is replaced by a symmetrized tensor product and we have to work
in bosonic Fock space. Thus c∗k creates a particle at lattice site k, or in the orbital ψk(z), and
ck annihilates a particle. The number of particles at site k is given by the occupation number
operator n̂k := c∗kck.

We are going to investigate expectations

〈a〉N,Λ :=
〈ΨN , aΨN〉Λ

||ΨN ||2Λ
.

for observables a that are products of creation and annihilation operators c∗k and ck. The contin-
uum n-point correlation functions is easily recovered from expectations of such operators. For
example, the one-particle function is

ρN,Λ
1 (z; z′) =

∑

k,m∈Z

〈c∗mck〉N,Λψk(z)ψm(z′)

In our case, the expectations 〈c∗mck〉N,Λ actually vanish when k 6= m.

When p = 1, the wave function is a simple Slater determinant and describes independent
fermions. As soon as p ≥ 2, it has built-in correlations and is the ground state of a suitable
many-body Hamiltonian.

Many-body Hamiltonian The wave function ΨN at filling factor 1/p has a zero of order p
when two particles get close, zj−zk → 0. In the subspace spanned by products of one-particle
functions ψ0(z), . . . , ψpN−p(z), ΨN is the unique wave function with this property. This leads
to the characterization of ΨN as the unique ground state of a suitably defined Hamiltonian [H,
PT, TK]. The aim of this section is to recall the form of this Hamiltonian for the cylinder problem,
see [LL, SFL+] for similar expressions at filling factor 1/3. This will not be used in any of our later
proofs, but helps the interpretation of our results in terms of a quantum many-body problem.

Let Hn(z), n ∈ N0, be the Hermite polynomials, given by the generating function relation

exp(2tz − z2) =

∞∑

n=0

tn

n!
Hn(z)

and Fn(t) := Hn(t) exp(−t2/4). At filling factor 1/p, let F (t) := F0(t) + · · · + Fp−1(t);
alternatively, sum only those Fk(t) where 0 ≤ k ≤ p− 1 and k has the same parity as p. For
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example, F (t) = F1(t) when p = 3. Consider the formal sum over k1, k2, n1, n2 ∈ Z with
k1 + k2 = n1 + n2:

H =
∑

k1+k2=n1+n2

F
(
(n1 − n2)γ

)
F
(
(k1 − k2)γ

)
c∗k1
c∗k2
cn2
cn1
. (7)

(Recall γ = ℓ/R.) We define the finite volume Hamiltonians via free boundary conditions: For
L = {0, . . . , pN−p} we letHL be the Hamiltonian obtained from this formal sum by restricting
summation to integers k1, k2, n1, n2 ∈ L.

Proposition 3.1. The Hamiltonian HL is positive HL ≥ 0, ΨN is an exact ground state
HLΨN = 0, and ΨN is the unique ground state of HL, considered as a Hamiltonian for N
particles in the finite lattice L = {0, 1, . . . , pN − p}.

The content of the Proposition seems is well-known in the physics literature. For mathematical
completeness, we include nevertheless a proof adapted to the cylinder setting.

Proof. The positivity of the Hamiltonian follows from an alternative expression of Eq. (7)

H =
∑

s∈(1/2)Z

B∗
sBs, Bs =

∑′

k

F (2kγ)cs−kcs+k. (8)

see [LL, Eq. (2)]. The first sum is over half-integers s, the second sum is either over integers
k ∈ Z (when s is integer) or half-integers k ∈ ((1/2)Z)\Z (when s is half-integer but not
integer); note that the sum of two integers and their difference have the same parity, 2s =
k1 + k2 = k1 − k2 mod 2. For the ground state property, let us first look at two-particle
functions. Let

Ψ(z1, z2) =
∑

m1,m2

λ(m1, m2)ψm1
(z1)ψm2

(z2)

with the normalized one-particle functions ψm(z) ∝ exp(−m2γ2/2) exp(imγy − x2/2). We
use the generating functions relations for the Hermite polynomials: and expand

exp(x2 − z2)Ψ(Z + z, Z − z) =

∞∑

n=0

zn

n!
Φn(Z).

where
Φn(Z) ∝

∑

m1,m2

λ(m1, m2)Fn

(
(m1 −m2)γ

)
ψm1+m2

(Z).

Looking at the L2 norm of Φn(Z) we see that Φn(Z) ≡ 0 if and only if
∑

m1+m2=k1+k2

λ(m1, m2)Fn

(
(m1 −m2)γ

)
Fn

(
(k1 − k2)γ

)
λ(k1, k2) = 0. (9)

Ψ(z1, z2) has a zero of order ≥ p as two particles get close if and only if Φ0(Z), . . . ,Φp−1(Z)
vanish identically, which because of Eq. (9) happens if and only if 〈Ψ, HLΨ〉 = 0. Note that,
depending on the parity of p, symmetry or antisymmetry gives Φ2n(Z) ≡ 0 or Φ2n+1(Z) ≡ 0
for free. This proves Prop. 3.1 for N = 2 particles. For more than 2 particles, the previous
argument is applied separately for each pair of particle coordinates (zj , zk), j < k.
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Monomer-dimer function In [JLS, Sect. 2] a solvable model was introduced; this was moti-
vated, roughly, by neglecting the overlap between next-nearest Gaussians, or replacing Gaus-
sians with functions of compact support. Here we explain an alternative motivation: it turns out
that the monomer-dimer function is an exact ground state of a Hamiltonian obtained from H by
keeping only leading order terms.

We only look at p = 3. We start as in Eq. (7) but keep only terms with |k1 − k2| ≤ 3 and
|n1 − n2| ≤ 3. This gives, up to a factor exp(−γ2/2), the monomer-dimer Hamiltonian

HMD =
∑

k

(
n̂kn̂k+1 + 4 exp(−3γ2/2)n̂kn̂k+2 + 9 exp(−4γ2)n̂kn̂k+3

+ 3 exp(−2γ2)(c∗k+1c
∗
k+2ck+3ck + c∗kc

∗
k+3ck+2ck+1)

)
.

Equivalently,

HMD = 4 exp(−3γ2/2)n̂0n̂2

+
(
c∗1c

∗
2 + 3 exp(−2γ2)c∗0c

∗
3

)(
c2c1 + 3 exp(−2γ2)c3c0

)
+ translates. (10)

These sums are, of course, formal; given a finite lattice L = {0, 1, . . . , 3N − 3} we associate
as before a Hamiltonian HMD

L via free boundary conditions.

Note that in a thin strip (large γ) limit, truncating the interaction range amounts to keeping only
leading order contributions, i.e., we neglect high powers of exp(−γ2).

We define a many-body wave function as follows: for k ∈ Z, let

A{k} := c∗3k, A{k,k+1} := −3 exp(−2γ2)c∗3k+1c
∗
3k+2.

Thus a monomer operator creates a single particle and a dimer operator creates a pair of parti-
cles. The wave function is a sum over monomer-dimer partitions (X1, . . . , XD) of {0, 1, . . . , N−
1} (labeled from left to right):

ΨMD

N :=
∑

(X1,...,XD)

AX1
· · ·AXD

|vacuum〉.

ΨMD

N is the sum of |0 3 6 · · · (3N − 3)〉, corresponding to a partition consisting of monomers
only, and orthogonal terms obtained by hopping one or several pairs of particles, for example,
3 6 → 4 5. In particular, all particle pairs have distance 1, 3 or higher; there are no pairs of
particles at mutual distance 2.

We have an analogue of Prop. 3.1. We do not, however, prove uniqueness of the ground state.

Proposition 3.2. The Hamiltonian HMD

L is positive, HMD

L ≥ 0, and ΨMD

N is an exact, zero
energy, ground state.

Proof. The positivity follows from Eq. (10). In order to check that ΨMD

N is a zero energy state, we
first note that ΨMD

N has no pairs of particles at mutual distance 2 and therefore n̂jn̂j+2Ψ
MD

N = 0
for all j. It remains to see that

BjΨ
MD

N = 0, Bj := cj+1cj+2 + 3e−2γ2

cjcj+3

11



for all j. When j is not a multiple of 3, BjΨ
MD

N vanishes because the wave function has no
particle pairs at positions (j, j + 3) or (j, j + 1). When j = 3k for some k = 0, . . . , N − 1,

(
c3k+1c3k+2 + 3e−2γ2

c3kc3k+3

)
AX1

· · ·AXD
|vacuum〉 6= 0 (11)

implies that either the partition has a dimer {k, k + 1} or it has two monomers {k}, {k + 1}.
As a consequence we can factorize

B3kΨ
MD

N = B3kL
(
c∗3kc

∗
3k+3 − 3e−2γ2

c∗3k+1c
∗
3k+2

)
R|vacuum〉.

L is a sum over partitions of {0, . . . , k−1} and R is a sum over partitions of {k+2, . . . , N−
1}. Eq. (11) follows from the observation that B3k commutes or anticommutes with L and R,
and

B3k

(
c∗3kc

∗
3k+3 − 3e−2γ2

c∗3k+1c
∗
3k+2

)
|vacuum〉 = 0.

4 Renewal structure

In this section we present the structure of the wave function that is key to our proofs. This
structure is already visible at the level of normalization constants, provided, however, we make
a good choice for the multiplicative constant κN in Eq. (3). From here on we fix

κN :=
1√
N !

× 1

(2πRℓ
√
π)N/2

× exp

(

−1

2
p2γ2

N∑

j=1

(j − 1)2

)

(12)

(recall γ = ℓ/R). With this choice, the normalizationCN = ||ΨN ||2Z becomes supermultiplica-
tive [JLS, Sect. 3.2].

In the remaining part of this article we choose length units such that the magnetic length is
ℓ = 1.

4.1 Block structure of the Vandermonde matrix

Laughlin’s wave function involves the p-th power of a N ×N Vandermonde determinant in the
variables Zj = exp(γzj). For 1 ≤ k ≤ N , the upper left k × k block of the Vandermonde
matrix is itself a Vandermonde matrix. The lower right (N−k)×(N−k) block is a Vandermonde
matrix in which the row with variable Zj has been multiplied with Zk

j :





1 · · · Zk−1
1

...
...

. . .

1 · · · Zk−1
k

Zk
k+1 · · · ZN−1

k+1
. . .

...
...

Zk
N · · · ZN−1

N





p

. (13)
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Thus the Vandermonde matrix has a simple block structure. Now, the power of the Vander-
monde determinant is a polynomial and as such can be written as a sum of monomials. The
block structure suggests that the expansion coefficients have some recursive structure. This is,
indeed, true, as was shown in [FGIL]. Moreover, the recursive structure carries over to coeffi-
cients in Laughlin’s wave function [JLS, Lemma 3].

Let us explain this in some more detail. Let ψk(z) be the orthonormal basis functions from
Eq. (6). We can write

ΨN(z1, . . . , zN ) =
1√
N !

∑

m1,...,mN

aN(m1, . . . , mN)ψm1
(z1) · · ·ψmN

(zN ). (14)

The sum is over integer m1, . . . , mN running from 0 to pN − p. Not all such m’s contribute to
the sum: if aN(m) 6= 0 , then for all k = 1, . . . , N ,

m1 + · · · +mk ≥ 0 + p+ · · · + p(k − 1) (15)

with equality for k = N . We call such m’s admissible. If (m1, . . . , mN) is admissible and in
Eq. (15) there is equality for some k ≤ N − 1 then

m1, . . . , mk ≤ pk − p, pk ≤ mk+1, . . . , mN

and
aN (m1, . . . , mN ) = ak(m1, . . . , mk)aN−k(mk+1 − pk, . . . ,mN − pk). (16)

This product rule mirrors the block structure of the Vandermonde matrix (13). Not every aN(m)
factorizes as in Eq. (16): some m’s are irreducible. Others, in contrast, may factor along more
than one k.

Example. For p = 3, the one- and two-particle wave functions are

Ψ1 = ψ0, Ψ2 = ψ0 ∧ ψ3 − 3 exp(−2γ2)ψ1 ∧ ψ2.

a2(1, 2) does not factorize, but a2(0, 3) does:

a2(0, 3) = 1 = 1 × 1 = a1(0) × a1(3 − 3).

Remark. Product rules have been derived for other fractional Hall effect trial functions [BeR].

4.2 Ground state perturbation series

It would be nice to have a physical interpretation of the product rule described in the previ-
ous section. Unfortunately, such an interpretation does not seem readily at hand. We hope,
however, that the ground state perturbation series argument presented in this section provides
some physical intuition. The reader should compare the product rule (16) to a “ground state
concatenation” equation, Eq. (19) below.
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In this section we consider only filling factor 1/p = 1/3. We start with the Hamiltonian H , or
its finite lattice version HL, defined in Sect. 3. For large γ, the dominant contribution to the
Hamiltonian comes from nearest and next-nearest neighbor repulsion

HL =
∑

k∈L

exp(−γ2/2)n̂kn̂k+1 +
∑

k∈L

4 exp(−2γ2)n̂kn̂k+2

+O
(
exp(−10γ2/4)

)
.

(Thus we discard even more terms than in the definition of the monomer-dimer Hamiltonian.)
An exact ground state of the nearest and next-nearest neighbor repulsion is, obviously, the
so-called “Tao-Thouless state” [TT]

ΨTT

N = c∗0 c
∗
3 · · · c∗3N−6 c

∗
3N−3 |vacuum〉

which is why we will abbreviate the corresponding HamiltonianHTT

L . For L = {0, 1, . . . , pN−
p}, ΨTT

N is actually the unique ground state of HTT

L . Thus starting from

HLΨN = (HTT

L + VL)ΨN = 0, HTT

L ΨTT

N = 0,

we obtain

ΨN = ΨTT

N +

∞∑

n=1

(−1)n
(
Q(ĤTT

L )−1QVLQ
)n

ΨTT

N . (17)

whereQ = QN,L projects onto the orthogonal complement of ΨTT

N and (ĤTT

L )−1 is the inverse
of HTT

L restricted to R(Q). For sufficiently large γ, the expansion (17) should be convergent.
Eq. (17) is a perturbation series for the ground state, simplified because both the unperturbed
and the perturbed ground state energy are equal to 0.

In the occupation number basis, the Tao-Thouless Hamiltonian HTT

L and the projection Q are
diagonal, while VL has non-diagonal, “hopping”, terms, e.g., c∗0c

∗
3c2c1. Thus Eq. (17) tells us

that the ground state is a sum of the Tao-Thouless state and orthogonal terms obtained from
ΨTT

N by hopping a pair of particles, (n1, n2) → (n1 + r, n2 − r).

More precisely, let BL be the set of pairs ((k1, k2), (n1, n2)) of integers in L with k1 + k2 =
n1 + n2, discarding pairs of the form (k1, k2) = (n1, n2) = (k, k + 1) or = (k, k + 2), or
permutations thereof. Let

AL(b) := −f(k1 − k2)f(n1 − n2)Q(ĤTT

L )−1Qc∗k1
c∗k2
cn2
cn1

Q

so that
Q(ĤTT

L )−1QVLQ = −
∑

b∈BL

AL(b).

Thus ΨN is a sum over bond-paths (b1, b2, . . . , bn) of variable length n,

ΨN = ΨTT

N +

∞∑

n=1

∑

b1,...,bn∈BL

AL(b1) · · ·AL(bn)ΨTT

N . (18)

Now let k ∈ {1, . . . , N − 1} and imagine drawing a vertical line at x = pk − 1/2 splitting the
Tao-Thouless state in two. A path (b1, . . . , bn) crosses the line if one of the bonds bi involves
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integers both to the left and to the right of the line. If in Eq. (18) we discard crossing paths, the
sum factorizes as

ΨTT

N +
∑

non-crossing paths

AL(b1) · · ·AL(bn)ΨTT

N = Ψk ∧ pk-shiftedΨN−k, (19)

(or a symmetrized product instead of∧, depending on the parity of p). This is a k-particle ground
state to the left of the separation line, concatenated with an (N − k)-particle ground state to
the right of the line, and is a version of the product rule (16).

Remark. The idea of treating the full Hamiltonian as a perturbed version of a thin cylinder
Hamiltonian is related to “one-dimensional” approaches to the quantum Hall effect, see [BK]
and the references therein.

4.3 Renewal points and lattice partitions

Here we explain how the product rule (16) was exploited in [JLS]. First we need some notation.
We call the points along which aN(m) factorizes renewal points. More precisely, let m =
(m1, . . . , mN). If m is not increasing, let σ be a permutation that rearranges the integers,
mσ(1) ≤ · · · ≤ mσ(N). We call r = pk, k = 0, . . . , N , a renewal point of m if

∑k
1 mσ(j) =∑k

1 p(j − 1). The end points 0 and pN are always renewal points. The set of renewal points
of m is denoted R(m).

Sometimes it is more convenient to work with partitions rather than renewal points. Thus let PN

be the set of partitions of the discrete volume {0, ..., pN − 1} into discrete intervals or “rods”
X1, ..., XD of the form {pj, . . . , pj + pn − 1}. The number D of rods in the partition varies
from 1 to N , and the rods are always labeled from left to right, i.e., the elements of X1 are
smaller than those of X2, etc. We use the short-hand

X = (X1, . . . , XD)

and let R(X ) be the set of starting points pj of Xk ’s, with pN added. We write X (m) for the
partition associated with the renewal points of m.

It is useful to group together m’s that give rise to the same partition. Thus we write

ΨN(z1, . . . , zN) =
∑

X∈PN

uX (z1, . . . , zN) (20)

with

uX (z1, . . . , zN) :=
1√
N !

∑

X (m)=X

aN(m1, . . . , mN)ψm1
(z1) · · ·ψmN

(zN ). (21)

As a consequence of the product rule, the function uX (z1, . . . , zN) factorizes into an (anti-
)symmetrized product of functions vX associated with individual rods instead of the whole par-
tition: if X = (X1, . . . , XD) and p is odd,

uX (z1, . . . , zN) = vX1
∧ · · · ∧ vXD

(z1, . . . , zN). (22)
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Good orthogonality properties ensure that

||ΨN ||2Λ =
∑

X∈PN

||uX ||2Λ =
∑

(X1,...,XD)∈PN

||vX1
||2Λ × · · · × ||vXD

||2Λ

whenever Λ has the form [a, b] × [0, 2πR]. The family of functions (vX) has the following
properties when p is odd:

� vX is an antisymmetric function of N(X) = n complex variables, with pn the cardinality
of X , i.e.,X = {pj, . . . , pj + pn− 1} for some j.

� vX(z1, . . . , zN(X)) depends on X , p and γ, but not on N .

� vX is a linear combination of antisymmetrized products of the ψk ’s with localized indices
k:

vX ∈ ∧N(X)span{ψk | k ∈ X}. (23)

� Up to a y-dependent phase, vX+p({zj}) is the same as vX({zj − pγ}). Put differently,
the shift of a rod is equivalent to the magnetic translation of the associated function. (Here
p+X could be, e.g., 3 + {0, 1, 2} = {3, 4, 5}.)

Similar statements hold for even p, provided we replace antisymmetrized products with sym-
metrized products, e.g., in Eq. (22).

For later purpose we note that the translational covariance allows us to define functions vX for
intervalsX = {pj, pj+1, . . . , pj+pn−1} not necessarily contained in {0, 1, . . . , pN−1},
and functions uX (z1, . . . , zN) when X is a partition of some set {pj, pj+1, . . . , pj+pN−1},
j ∈ Z.

The decomposition of ΨN as a sum over partitions was exploited in [JLS] in order to deduce
statements about correlation functions, or expectation values of observables. We will essentially
follow this approach. First, however, let us explain how to go from a decomposition of the vector
ΨN to a decomposition of the state |ΨN〉〈ΨN |.

4.4 Quasi-state decomposition

To each partition X = (X1, . . . , XD) assign the weight

pN (X ) =
1

||ΨN ||2
||vX1

||2 × · · · × ||vXD
||2. (24)

Because of Eq. (4.3) the weights sum up to 1 and define a probability measure PN on PN . It
is natural to try to write the state |ΨN〉〈ΨN | as a weighted sum of states ωX , associated each
with a partition. Eq. (20) immediately yields

|ΨN〉〈ΨN | =
∑

(Y ,Z)∈PN×PN

|uY〉〈uZ|.
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The state |ΨN〉〈ΨN | is, therefore, a sum over pairs of partitions. In order to reduce this to a
sum over single partitions, we group pairs according to their common renewal points. For a
given partition X ∈ PN , let MN(X ) be the set of pairs (Y ,Z) such that

R(Y) ∩R(Z) = R(X ).

Thus in particular, (X ,X ) ∈ MN(X ). Let ωX be the operator

ωX :=
1

||uX ||2
∑

(Y ,Z)∈MN (X )

∣∣uY
〉 〈
uZ
∣∣.

By a slight abuse of language we use the same letter for the linear functional on operators,

ωX (a) =
1

||uX ||2
∑

(Y ,Z)∈MN (X )

〈uZ , a uY〉.

The sum contains, on top of the diagonal term |uX 〉〈uX |, off-diagonal terms where Y 6= Z .
We can write, then,

〈·〉N =
1

||ΨN ||2
|ΨN〉〈ΨN | =

∑

X∈PN

pN (X )ωX . (25)

which is the decomposition we had looked for.

Example. Consider the two-particle wave function at filling factor 1/3. Thus N = 2 and p = 3.
The discrete volume {0, 1, . . . , 5} has two admissible partitions: P2 = {V,W} with

V = ({0, 1, 2}, {3, 4, 5}), W = ({0, 1, . . . , 5}).

We have Ψ2 = uV + uW with

uV = ψ0 ∧ ψ3, uW = −3 exp(−2γ2)ψ1 ∧ ψ2.

The corresponding probability distribution is

p2(V) =
1

1 + 9 exp(−4γ2)
, p2(W) =

9 exp(−4γ2)

1 + 9 exp(−4γ2)
.

The state decomposes as 〈·〉2 = p2(V)ωV + p2(W)ωW with

ωV = |03〉〈03|,

ωW = |12〉〈12| − 1

3
exp(2γ2)

(
|12〉〈03|+ |03〉〈12|

)
(26)

where we have used the short-hand |03〉 = |ψ0 ∧ ψ3〉.

An important remark, immediate from Eq. (26), is that the matrices ωX are in general not density
matrices, and in general we do not have ||ωX (a)|| ≤ ||a||. The picture changes, however, if
we evaluate only diagonal operators: let a be a product of occupation numbers n̂k, or any other
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operator which is diagonal in the basis of Slater determinants ψm1
∧ · · · ∧ ψmN

. The functions
uX have a strong orthogonality property which ensures that

(
a diagonal and Y 6= Z

)
⇒ 〈uY, a uZ〉 = 0.

As a consequence, if a is diagonal,

ωX (a) := tr (ωXa) = 〈uX , a uX 〉/||uX ||2.

Thus as far as diagonal operators are concerned, ωX is a state. In the language of [AN], ωX is
a quasi-state: a linear map on a C∗ algebra whose restriction to a commutative sub-algebra is
a state, and Eq. (25) is a quasi-state decomposition.

The quasi-state decomposition allows us to shift our focus from the complicated quantum me-
chanical state to the probability measure PN , which is a much simpler object. This reduction is
useful because the ωX themselves are reasonably simple, as ensured by the following proper-
ties:

� Clustering: let a, b be local observables. “Local” refers to the lattice picture: a and b are,
for example, Wick-ordered monomials, and if a = c∗1c3, we call the set {1, 3} = supp a
the support of a. Let X ∈ PN be a partition whose renewal points separate a and b, i.e.,
there is a r ∈ Z such that

r ∈ R(X ), supp a ⊂ {. . . , r − 2, r − 1}, supp b ⊂ {r, r + 1, . . .}.

Then
ωX (ab) = ωX (a)ωX (b).

� Translational covariance: Shifting a partition is equivalent to shifting an observable: for
every observable a ∈ A,

ωp+X (a) = ωX (τ p
x(a)).

Here for example, τ 3
x(c∗2c

∗
6) = c∗5c

∗
9. More generally, τx is the automorphism on the

observable algebra induced by the magnetic translation t(ℓ2/R ex) in the one-particle
Hilbert space. Note that the shift transforms a partition of {0, . . . , pN−p} into a partition
of {p, . . . , pN}.

� Locality: let a be a local observable. Let N ∈ N and X ,X ′ ∈ PN be two partitions.
Suppose that X and X ′ coincide on some interval containing supp a, i.e., they have
common renewal points r, s such that that supp a ⊂ {r, . . . , s− 1} and

R(X ) ∩ {r, . . . , s} = R(X ′) ∩ {r, . . . , s}.

Then
ωX (a) = ωX ′(a).
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These properties are, again, a consequence of the product rule Eq. (16).

For later purpose let P∞ be the set of partitions of Z into sets of the form {pj, pj+1, . . . , pj+
pn− 1}, n ∈ N, j ∈ Z. Thus we explicitly forbid partitions that contain an infinite component,
and every lattice site has a renewal point to its left and a renewal point to its right. For X ∈ P∞,
and a a local observable, let r and s be two renewal points of X enclosing the support of a. We
can restrict X to a partition Xr,s of {r, . . . , s− 1} and set

ωX (a) := ωXr,s
(a).

Locality ensures that this definition does not depend on the precise choice of renewal points
r, s ∈ R(X ).

In this way we obtain a family of linear maps a 7→ ωX (a), indexed by partitions of Z, X ∈ P∞,
and defined on local observables a. These maps inherit the clustering, locality and translational
covariance from their finite volume counterparts. They will allow us to write the infinite volume
state as an integral,

〈ΨN , aΨN〉
||ΨN ||2

→
∫

P∞

ωX (a) dP(X )

in terms of a suitable probability measure P on partitions of Z.

5 Peierls type argument and consequences

As explained in the introduction, the algebraic structure described in the previous subsections
allows for a considerable simplification of the problem of thermodynamic limits: instead of look-
ing at a full quantum-mechanical state, we can look at a simpler probability measure PN . A
further simplification is that PN can be shown to have a stationary limit P if a certain condition
on the asymptotics of normalization constants is satisfied, see [JLS] and Sect. 5.4.

The aim of this section is to prove that this condition is indeed satisfied. This is shown by viewing
the normalization as a partition function for a Coulomb gas. In Sect. 5.2, we adapt the methods
of [AJJ] to prove that with positive probability, the system splits into neutral subsystems with
finite interaction, and deduce the required statements on asymptotics (Sect. 5.1).

We also derive an auxiliary bounds on correlation functions, needed for bosons (even p), in
Sect. 5.3.

Throughout this section we fix Λ = Z , i.e., all integrations are on the infinite cylinder, and
|| · || = || · ||Z refers to the L2 norm on the infinite cylinder.

5.1 Normalization on an infinite cylinder

Let

CN := ||ΨN ||2 =

∫

RN

dN
x

∫

[0,2πR]N
dN

y |ΨN(z1, ..., zN)|2.
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In [JLS], it was shown that the limits

lim
N→∞

1

N
lnCN =: − log r(p, γ), lim

N→∞
CNr(p, γ)

N =:
(
µ(p, γ)

)−1

(27)

exist and are finite, with 1/µ(p, γ) = 0 not yet excluded:

0 < r(p, γ) ≤ 1, 0 < µ(p, γ) ≤ ∞.

As was shown in [JLS], on thin cylinders (γ large), µ(p, γ) is certainly finite. However, what
happens on thick cylinders was left open. Here we answer this question: µ(p, γ) is finite, no
matter how large the cylinder radius is.

Theorem 5.1. For all p and γ, the quantity µ(p, γ) is finite.

The proof of the theorem uses a form of submultiplicativity, which complements the supermulti-
plicativity CN+M ≥ CNCM :

Proposition 5.2 (Submultiplicativity). For all N,M and a suitable constant c(p, γ) > 0,

CN+M ≤ c(p, γ)CNCM . (28)

The proof of the submultiplicativity is deferred to the next section.

Proof of Theorem 5.1. All we need to show is that for allN and some ǫ > 0, CNr(p, γ)
N ≥ ǫ.

But this follows from Eq. (28) and (27), by standard arguments: repeated application of Eq. (28)
yields

CmN ≤ c(p, γ)m−1Cm
N .

We take the logarithm, divide by mN , and let m→ ∞. This gives

− log r(p, γ) ≤ 1

N
log c(p, γ) +

1

N
logCN .

It follows that CNr(p, γ)
N ≥ 1/c(p, γ) for all N and µ(p, γ) ≤ c(p, γ) <∞.

5.2 Particle excess function

Recall from Eq. (3) that |ΨN(z1, . . . , zN)|2 favors particle abscissas xk = (k − 1)pγ, k =
1, . . . , N . Think of the infinite cylinder as a collection of N annuli of width pγ, centered around
those optimal abscissas, and a left and right tail. Let x̄ be at the boundary between two annuli,
i.e.,

x̄ = (k − 1/2)pγ

for some k = 1, . . . , N − 1. The state should prefer configurations with k particles to the
left of x̄, and N − k particles to the right of x̄. Deviations from this optimum configuration are
measured by the particle excess function

K(x̄; z1, . . . , zN) := #{j | xj ≤ x̄} − k = N − k − #{j | xj > x̄}.
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Theorem 5.3. LetPN be the probability measure on ZN with density proportional to |ΨN(z1, . . . , zN)|2.
Let x̄ and K(x̄; z) as above. Then, for some constant c(p, γ) <∞ independent of N and x̄

PN

(
K(x̄; z1, . . . , zN) = 0

)
≥ 1/c(p, γ) > 0.

Prop. 5.2 will follow from a similar lower bound on the probability that not only the particle excess
vanishes, but moreover particles do not accumulate too close to x̄, see the definition of regular
configurations Ωreg below. The next theorem will be useful for the bosonic wave function.

Theorem 5.4. With the notation of Theorem 5.3: For suitable constantsC, c > 0 and all n ∈ N0

PN

(
|K(x̄; z1, . . . , zN )| ≥ n

)
≤ C exp(−cn3).

C and c do not depend on N or x̄.

The proofs follow ideas from [AJJ]. They are best understood in the light of the plasma analogy:
we think of |ΨN |2 as the Boltzmann weight for a classical Coulomb system. Note that Theo-
rems 5.3 and 5.4 only involve the modulus of the wave function and they do not refer to the full
quantum mechanical setting.

Proof of Prop. 5.2. Let N,M ∈ N. Taking into account proportionality constants, Eq. (3) be-
comes

|ΨN+M(z1, . . . , zN+M)|2 =
(2π

√
π/γ)−(N+M)

(N +M)!
exp(−U(z1, . . . , zN+M))

The “energy” U(z) is, up to a multiplicative and an additive constant, the energy of some clas-
sical quasi 1D Coulomb system. It is the sum of a one-dimensional energy and a correction,

U(z1, . . . , zN) := U1(x1, . . . , xN ) +
∑

1≤j<k≤N

V2(zj − zk)

where, for x1 ≤ · · · ≤ xN+M ,

U1(x1, . . . , xN+M) :=

N+M∑

j=1

(
xj − (j − 1)pγ

)2

V2(z) = −2p ln
∣∣∣1 − exp

(
−γ(|x| + iy)

)∣∣∣.

Let
Ω := {z ∈ C

N+M | x1 ≤ · · · ≤ xN+M , 0 ≤ yj ≤ 2πR}
be the configuration space forN +M particles on the infinite cylinder, labeled from left to right.
We imagine the cylinder split into two half-infinite cylinders, separated by x̄ := (N − 1/2)pγ.
Let Ωreg ⊂ Ω be the set of configurations that are regular in the following sense:

(i) Each particle is in the “correct” half-cylinder,

x1 ≤ · · · ≤ xN ≤ (N − 1

2
)pγ ≤ xN+1 ≤ · · · ≤ xN+M .
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(ii) Particles do not accumulate at the boundary: for all j = 1, . . . , N +M ,

∣∣∣xj −
(
N − 1

2

)
pγ
∣∣∣ ≥

∣∣∣j −N − 1

2

∣∣∣
pγ

2
.

In Ωreg, the system’s energy U(z1, . . . , zN ) is the sum of energies associated with the subsys-
tems of N and M particles, plus an interaction term that is lower bounded by

VLR(z) := 2p

N∑

j=1

N+M∑

k=N+1

V2(zj − zk)

≥ −2p
N∑

j=1

N+M∑

k=N+1

ln[1 + exp(−γ|xj − xk|)]

≥ −2p
(
1 − exp(−pγ2/2)

)−2

,

for all N and M . As a consequence,

(2π
√
π/γ)−(N+M)

∫

Ωreg

exp(−U) ≤ constCN CM ,

for some suitable N,M independent constant. Eq. (28) follows immediately once we know that
regular configurations have positive probability, i.e.,

∫

Ω

exp(−U) ≤ const

∫

Ωreg

exp(−U), (29)

uniformly in N and M .

So it remains to show Eq. (29). To this aim we use a Peierls-type argument: with each irregular
configuration we associate a regular configuration that has a smaller energy. This is done by
shifting particles that are in the wrong half-cylinder, or too close to the boundary, closer to
their optimum positions (j − 1)pγ. Some technicalities arise because the implementing map
T : Ω → Ωreg is not one to one and has non-trivial Jacobian, resulting in an entropy loss that
has to be carefully evaluated.

We start with the definition of the map T : Ω → Ωreg. Let z ∈ Ω. Let j ≤ N . We shift the j-th
particle as follows:

� if xj > x̄ (irregular particle, wrong half-cylinder), then

x′j := (j − 1)pγ − exp(−|xj − x̄|).

� if x̄− (N +1/2− j)pγ/2 < xj ≤ x̄ (irregular particle, too close to the boundary), then

x′j := (j − 1)pγ +
|xj − x̄|

N + 1/2 − j
.

� if xj ≤ x̄− (N + 1/2 − j)pγ/2 (regular particle), then x′j := xj .
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Particles belonging to the right half-cylinder, j ≥ N + 1, are shifted in an analogous way. To
complete the definition of T , let y′j := yj and

T (z) = (z′σ(1), . . . , z
′
σ(N+M))

with σ a permutation that reorders the shifted particles from left to right. One can check that T
maps Ω into Ωreg.

It is convenient to group together configurations that have the same irregular particles. Thus, for
J ⊂ {1, . . . , N +M} we let ΩJ be the configurations that have x′j 6= xj , if and only if j ∈ J .
This gives a partition of Ω.

Ω =
⋃

J⊂{1,...,N+M}

ΩJ , Ω∅ = Ωreg.

We claim that for suitable constants c1, c2, independent of N , M and J ,

∫

ΩJ

exp(−U) ≤ c1 exp
(
−c2

∑

j∈J

(j −N)2
)∫

Ωreg

exp(−U). (30)

Eq. (29) follows from Eq. (30) by a summation over subsets J ⊂ {1, . . . , N +M}, noting that

∑

J⊂{1,...,N+M}

exp
(
−c2(j −N)2

)
≤
(

∞∏

k=0

(
1 + exp(−c2k2)

)
)2

<∞.

We are finally left with the proof of Eq. (30). It is shown with the help of a change of variables.
We refer the reader to [AJJ] for the details and content ourselves here with some hints about
the necessary estimates:

Entropy: One has to give an upper bound of the maximum number of preimages |T−1(z′)| of
points in z

′ ∈ T (ΩJ), and a lower bound for Jacobian of |dT (z)/dz| for z ∈ ΩJ ; note that
T is almost everywhere differentiable. The bounds depend on the set of irregular particle labels
and are bad when there are a lot of irregular particles, but this is compensated by a gain in
one-dimensional energy ∆U1.

Energy: The simplest to estimate is the decrease in 1D energy,

∆U1 := U1(z) − U1(T (z)) ≥ k1

∑

j∈J

(j −N)2 + k1

∑

j: wrong
half-cyl.

(xj − x̄)2

for some suitable constant k1.

For the V2-interactions, note that only the interactions affecting irregular particles are changed.
Now, instead of estimating the change in V2-interaction directly, we adopt a three step proce-
dure. First, we drop the affected V2-interaction altogether, using

∑

j∈J

N+M∑

k=1

V2(zj − zk) ≥ −k2|J |2
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for some constant k2. Next, we shift xj 7→ x′j . Finally, we reinsert the dropped interactions with
Jensen’s equality: for fixed x 6= 0, V2 is a harmonic function of y, hence

∫
V2(x+ iy)dy = 0

and ∫
1 dy

′ ≤
∫

exp
(
−
∑

j∈J

N+M∑

k=1

V2(z
′
j − z′k)

)
dy

′.

All y-integrations go from 0 to 2πR. At the end, we obtain an estimate on y-averaged Boltzmann
weights,

∫
exp(−U(z))dy ≤ exp

(
k2|J |2 − ∆U1

)∫
exp(−U(T (z)))dy

′,

with
∫

dy
′ the integration over y-coordinates of T (z). Eq. (30) is obtained by combining this

last estimate with the entropy estimates.

Proof of Theorem 5.3. In the notation of the proof of Prop. 5.2, regular configurations have zero
particle imbalance and, therefore, Eq. (29) gives

PN+M

(
K(x̄; z1, . . . , zN+M)

)
≥ PN+M(Ωreg) ≥ 1/ const > 0,

uniformly in N and M .

Proof of Theorem 5.4. Again, it is enough to have a closer look at the proof of Prop. 5.2. We
remark that if the particle excess is negative, there are too many particles in the right half-
cylinder: if K(x̄; z1, . . . , zM+N) ≤ −k for k ∈ N, then xN ≥ · · · ≥ xN−k+1 ≥ x̄. Thus the
particles with labels N − k + 1, . . . , N are irregular. Since

∑

J⊂{1,...,N+M}
{N−k+1,...,N}⊂J

exp
(
−c2

∑

j∈J

(j −N)2
)
≤ exp

(
−c2

k−1∑

s=0

s2
)
(

∞∏

j=0

(
1 + exp(−c2j2)

)
)2

we find that the weight of configurations with particle excess ≤ −k is of order exp(− const k3),
uniformly in N and M . A similar reasoning can be applied to positive particle excess. This
proves Theorem 5.4.

5.3 Uniform moment bounds for lattice bosons

Before we investigate the thermodynamic limit, we give bounds on correlation functions in terms
of the 1D lattice system. This is an auxiliary result needed for bosons (p even) only. For fermions,
the bounds given below are trivial since there can be at most one fermion per lattice site.

Recall that c∗k, ck, k ∈ Z, are the creation and annihilation operators for the orbital ψk(z). Also,
we denote 〈a〉N := 〈ΨN , aΨN〉/CN , with integration on the infinite cylinder.

Proposition 5.5. Let n ∈ N. Then for some suitable constant D > 0, all n,N ∈ N and all
k1, . . . , kn, m1, . . . , mn ∈ Z,

∣∣〈n̂k1
· · · n̂kn

〉N
∣∣ ≤ Dn (31)

∣∣〈c∗k1
· · · c∗kn

cmn
. . . cm1

〉N
∣∣ ≤ Dn. (32)
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Proof. We start with the proof of the first inequality in the case k1 = · · · = kn = k. Thus we
seek to estimate 〈n̂n

k〉N . Let A := [a, b) × [0, 2πR] be the annulus of width γ, centered at
x = kγ, i.e., a, b = kγ ± γ/2. For a given configuration (z1, . . . , zN ), the number of particles
in A is

NA(z1, . . . , zN) = 1 +K(b; z1, . . . , zN ) −K(a; z1, . . . , zN). (33)

It follows that NA has moments of all orders, which by Theorem 5.4 are uniformly bounded,
EN(Nn

A) ≤ wn for all n,N,A and some suitable w > 0. Here EN refers to the measure PN

on ZN with density ∝ |ΨN(z1, . . . , zN)|2, and we use that
∑

k k
n exp(−k3) grows at most

exponentially in n. In order to translate bounds from the continuum picture to the lattice picture,
we use the formula for the n-point correlation function at zj = z′j :

ρN
n (z1, . . . , zn; z1, . . . , zn) =

∑
〈c∗k1

· · · c∗kn
cmn

· · · cm1
〉N

ψk1
(z1) · · ·ψkn

(zn)ψm1
(z1) · · ·ψmn

(zn). (34)

The sum is over the integers kj, mj ∈ Z. When we integrate over the y-coordinates, the
contributions with kj 6= mj vanish and the non-vanishing contributions are positive. Hence,
integrating over An, we obtain

EN

(
NA(NA − 1) · · · (NA − n+ 1)

)
≥ u(γ)n

〈
(c∗k)

n(ck)
n
〉

N
.

The constant u(γ) < 1 comes from integrating the Gaussian |ψk(z)|2 over the annulus A;
it does not depend on N or k. For the left-hand side, we have used that the diagonal n-point
correlation is a factorial moment density (see [DVJ, Sect. 5.4] for an explanation of this notion).
The right-hand side is a factorial moment too, since

(c∗k)
n(ck)

n = n̂k(n̂k − 1) · · · (n̂k − n+ 1) =: n̂
[n]
k .

Now, moments are linear combinations of factorial moments with positive coefficients ∆j,n ≥ 0,
the Stirling numbers of the second kind [DVJ, Sect. 5.2]. We deduce

EN

(
Nn

A) =
n∑

j=1

∆j,nEN

(
N

[j]
A

)
≥

n∑

j=1

∆j,nu(γ)
j
〈
n̂

[j]
k

〉
N
≥ u(γ)n

〈
n̂n

k

〉
N
.

It follows that 〈
n̂n

k

〉
N
≤ (w/u(γ))n =: Dn

for all n. Repeated use of the Cauchy-Schwarz inequality |〈a∗b〉| ≤ 〈〈a∗a〉1/2〈b∗b〉1/2 yields
Eq. (31). Since factorial moments are smaller than moments, it follows that Eq. (32) holds when
k1 = m1, . . . , kn = mn, from which the general case kj 6= mj is deduced, again, with the
help of Cauchy-Schwarz.

As an application we prove Prop. 2.4.

Proof of Prop. 2.4 when Λ = Z . We know that 〈c∗kcn〉N 6= 0 whenever k 6= n, see [JLS], thus

ρN
1 (z; z′) =

pN−p∑

k=0

〈n̂k〉Nψk(z)ψk(z′).
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For every integer k, we can factorize

∣∣ψk(z)ψk(z′)
∣∣ ∝ exp

(
−1

2

(
(x− kγ)2 + (x′ − kγ)2

))

= exp
(
−1

4

(
x− x′)2

)
exp
(
−1

4

(
x+ x′ − 2kγ

)2)
.

By Prop. 5.5, the occupation numbers are uniformly bounded. The proof is concluded by noting
that

∑
s∈Z

exp(−(x− sγ)2/4) is bounded too, uniformly in x ∈ R.

5.4 Stationary renewal process

Recall the weights pN (X ) and the corresponding measure PN on PN , see Eq. (24). When we
integrate on the infinite cylinder, the translational covariance of the functions vX(z1, . . . , zN(X))
gives Eq. (4.3) the form

CN = ||ΨN ||2 =
∑

n1+···+nD=N

αn1
× · · · × αnD

.

As shown in [JLS], the positive numbers αn relate to the quantities r(p, γ) and µ = µ(p, γ)
from Section 5.1 through

∞∑

n=1

αnr(p, γ)
n = 1,

∞∑

n=1

nαnr(p, γ)
n = µ(p, γ).

Thus we may consider pn := αnr(p, γ)
n as a probability distribution on N, with finite expecta-

tion µ(p, γ). We have

uN := CN r(p, γ)
N =

∑

n1+···+nD=N

pn1
× · · · × pnD

.

This is the probability for a renewal process with waiting time distribution (pn) to have a renewal
point at N , given that it had one at 0. For our purpose it is more convenient to view (pn) as a
measure on pN. The renewal process is then called p-periodic.

The weights pN(X ) from Eq. (24) become

pN (X ) = pn1
· · · pnD

/uN

whereX is a partition of {0, 1, . . . , pN−1} intoD consecutive intervals of lengths pn1, . . . , pnD.
Thus PN is a p-periodic renewal process conditioned on 0 and pN being renewal points.

Now, given a distribution on N with finite expectation µ, there is a standard way of defining a
stationary renewal process, or, in our case, a p-periodic renewal process. To each partition of
Z we associate the indicator function of the renewal points. In this way P∞ inherits the product
topology and Borel σ-algebra from {0, 1}Z. There is a unique measure P on P∞ such that for
all integer j,

P(pj is a renewal point) =
1

µ(p, γ)
,
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and for all j < k,

P
(
pk is a renewal point | pj is a renewal point

)
= uk−j.

This measure P is invariant with respect to shifts by multiples of p. The following three lemmas
will be fundamental for the investigation of the thermodynamic limit.

Lemma 5.6 (PN → P). Let r, s ∈ N have distance ≥ d from 0 and N , d ≤ r, s ≤ N − d.
Consider the event Ers that pr and ps are renewal points of X and moreover the restriction of
X to {pr, . . . , ps− 1} coincides with some given partition of this subset. Then

∣∣PN(Ers) − P(Ers)
∣∣≤ const PN(Ers) sup

k≥d
|uk − µ−1|.

Proof. Suppose that we require that X coincides, in {pr, . . . , ps − 1}, with a partition into
successive intervals of lengths pn1, . . . , pnD, n1 + · · · + nD = s− r. Then

P(Ers) = µ−1pn1
· · · pnD

PN(Ers) = urpn1
· · ·pnD

uN−s/uN

PN(Ers) − P(Ers)

PN(Ers)
= 1 − uN

µuruN−s

The claim then follows from the observation that un → µ−1 as n→ ∞.

Lemma 5.7 (Long intervals are unlikely). Let α, β ∈ Z with β − α ≥ pd for some d ∈ N and
c(p, γ) > 0 as in Prop. 5.2. Then, for all N ∈ N,

PN

(
X has no renewal point in {α, . . . , β − 1}

)
≤ c(p, γ)

∑

k≥d

kpk.

Proof. The submultiplicativity Prop. 5.2 gives

ujuN−j−n

uN
≤ 1

un
≤ c(p, γ).

The probability that a partition X contains the interval {pj, . . . , pj + pn− 1} is therefore

ujpnuN−j−n/uN ≤ c(p, γ)pn.

We have to sum over pairs (j, n) such that pj ≤ α and pj + pn ≥ β. Noting that
∑

j≥0

∑

n≥j+d

pk =
∑

n≥d

(n− d)pn ≤
∑

n≥d

npn,

we obtain the desired inequality.

Lemma 5.8 (The renewal process is clustering). Let 0 ≤ r ≤ s ≤ N have mutual distance
s − r ≥ d. Let L be the event that pr is a renewal point and moreover the restriction of X to
{0, . . . , pr − 1} coincides with some given partition of this subset. Define R in a similar way
referring to the subset {ps, . . . , pN − 1}. Then

∣∣PN (L ∩R) − PN(L)PN(R)
∣∣≤ const PN(L)PN(R) sup

k≥d
|uk − µ−1|.
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Proof. The proof is similar to the proof of Lemma 5.6, except that the term to be estimated, in
the end, is

us−r/uN

(uN−s/uN) (ur/uN)
− 1 =

us−ruN

uN−sur
− 1.

Again, this term is small for large d because un → µ−1 as n→ ∞.

6 Correlation functions

In order to prove our main results, all there is left to do now is to go from the convergence of
measures PN → P to convergence of states 〈a〉N → 〈a〉. This is essentially an interchange in
the order of summation and limits, and, therefore, involves some technical estimates; we hope,
however, that we have conveyed the simplicity of the underlying idea.

The proofs follow ideas from [JLS], even though the presentation is slightly different as no use
was made, in that work, of the framework of quasi-state decompositions. Some estimates be-
come more involved because we extend the results to bosons, so that creation and annihilation
operators are unbounded. Another novelty is the proof of the insensitivity towards the precise
choice of the domain of integration in Sect. 6.4.

6.1 A variant of the Cauchy-Schwarz inequality

Recall Eq. (25)

〈a〉N =
1

CN

〈ΨN , aΨN〉 =
∑

X∈PN

pN(X )ωX (a). (35)

We would like to deduce from Lemma 5.6 that

〈a〉N →
∫

dP(X )ωX (a) =: 〈a〉. (36)

To this aim we will need to control the contribution of unfavorable partitions X . When a is a
diagonal, bounded operator, and F is some collection of partitions, we can write

∑

X∈F

pN(X ) |ωX (a)| ≤ ||a||PN(X ∈ F). (37)

For observables that are not diagonal or bounded, we use a variant of the Cauchy-Schwarz
inequality Tr(ρA∗B) ≤ (Tr ρA∗A)1/2(Tr ρB∗B)1/2. This will help us, in some situations,
replace the estimate (37) by an estimate of the type

∑

X∈F

pN(X ) |ωX (a)| ≤ d(a)〈a∗a〉1/2
N

(
PN(X ∈ F)

)1/2

for some a-dependent constant d(a).
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Lemma 6.1. Let ρ be a trace class, positive operator in ℓ2(N) with matrix (ρij)i,j∈N. Let A =
(Aij)i,j∈N be an operator in ℓ2(N). Suppose that Tr ρA∗A <∞, with A possibly unbounded,
and that A has at most d(A) non-zero matrix elements Aij per row. Then for all S ⊂ N,

∑

i∈N

∑

j∈S

|ρijAji| ≤ d(A)
(
Tr ρA∗A

)1/2(
Tr ρ1S

)1/2

.

Proof. It is enough to treat the case when A has at most one non-zero matrix element per row.
Write ρij =

∑
n∈N

λnxn
i x

n
j with λ1 ≥ λ2 ≥ · · · ≥ 0 the eigenvalues of ρ and xn ∈ ℓ2(N)

the normalized eigenvectors. There is a map φ : N → N assigning to each row i the column
j = φ(i) with the non-zero entry. If all entries in the row vanish, φ(i) is arbitrary. Then

∑

i∈N

∑

j∈S

|ρijAji| ≤
∑

n

∑

j∈S

λn|xn
jAj,φ(j)x

n
φ(j)|

≤
∑

n

λn

(∑

i∈S

|xn
i |2
)1/2(∑

i∈S

|Ai,φ(i)x
n
φ(i)|2

)1/2

≤
(
∑

n

λn

∑

i∈S

|xn
i |2
)1/2(∑

n

λn

∑

i∈S

|Ai,φ(i)x
n
φ(i)|2

)1/2

≤
(∑

i∈S

ρii

)1/2 (
Tr ρA∗A

)1/2

.

As a first application of the previous lemma we show:

Proposition 6.2. Let a = c∗k1
· · · c∗kn

cqt
· · · cq1

be a Wick ordered monomial of creation and
annihilation operators. Then, for all N ∈ N,

∑

X∈PN

pN(X )|ωX (a)| ≤ 〈a∗a〉1/2
N .

Proof. For every m = (m1, . . . , mN) with 0 ≤ m1 ≤ · · · ≤ mN ≤ pN − p, there is at
most one m

′ such that 〈ψ
m

′ , aψm〉 6= 0. Thus we are in the setting of case 2. of the previous
lemma, with d(a) = 1, and we deduce

∑

X∈PN

pN(X )|ωX (a)| ≤ 1

CN

∑

m,m′

∣∣∣aN (m)aN(m′)〈ψ
m

′ , aψm〉
∣∣∣ ≤ 〈a∗a〉1/2

N .

As a consequence, the candidate limit 〈a〉 in Eq. (36) is well-defined:

Corollary 6.3. Let a be a linear combination of products of creation and annihilation operators
c∗k, cm. The integral from Eq. (36) is absolutely convergent,

∫

P∞

dP(X ) |ωX (a)| <∞.
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This is shown by passing to the limitN → ∞ in the previous proposition, and using Lemma 5.6
and the uniform moment bounds from Prop. 5.5.

Remark. Cor. 6.3 has an analogue when a is a local, bounded operator, for example a =
exp(ic∗1c1). This can be shown with the help of yet another variant of the Cauchy-Schwarz
inequality.

Note that despite the notation 〈·〉, we do not know yet whether the linear map a 7→ 〈a〉 is
positive or defines a proper state.

6.2 Thermodynamic limit

In this section we prove Theorem 2.1 when the infinite cylinder Λ = Z is chosen as the domain
of integration. We first estimate the difference between left- and right-hand side in Eq. (36).

Lemma 6.4. Let a be a Wick ordered monomial supported in {α, . . . , β − 1} ⊂ Z. Let d ∈ N

and Ed be the set of partitions with renewal points in both [α− pd, α] and [β, β + pd]. Then

∑

X /∈Ed

pN(X )|ωX (a)| ≤ 〈a∗a〉1/2
N

(
2c(p, γ)

∑

k≥d

kpk

)1/2

.

Proof. We abbreviate m = (m1, . . . , mN) and

aN (m) = aN(m1, . . . , mN ), ψ(m)=̂ψm1
(z1) · · ·ψmN

(zN).

Let ρ(m,m′) := aN (m)aN (m′)/CN . For d ∈ N, let S be the set of m’s without renewal
points in [α − pd, α] or without renewal point in [β, β + pd]. For every m, 〈ψ(m′), aψ(m)〉
is non-vanishing for at most one vector m

′. Thus by Lemma 6.1,

∑

X /∈Ed

pN(X )|ωX (a)| ≤ 1

N !CN

∑

m,m′∈S

∣∣∣aN(m)aN (m′)〈ψ(m), aψ(m′)〉
∣∣∣

≤ 〈a∗a〉1/2
N

[∑

m∈S

|aN (m)|2/(N !CN )
]1/2

= 〈a∗a〉1/2
N

(
PN(Ec

d)
)1/2

and we conclude with Lemma 5.7.

Lemma 6.5. Let a be a Wick ordered monomial supported in {α, . . . , β − 1} ⊂ Z, d ∈ N,
and Ed as in the previous lemma. We may consider Ed as a subset of PN or of P∞. Then

∣∣∣
∑

X∈Ed

pN(X )ωX (a) −
∫

Ed

dP(X )ωX (a)
∣∣∣

≤ const
(
sup
k≥d

|uk − µ−1|
) ∑

X∈PN

pN(X )|ωX (a)|.
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This is a consequence of Lemma 5.6 and the locality of the ωX .

Proof. A partition X ∈ Ed has a renewal point r ∈ [α − pd, α] and a renewal point s ∈
[β, β + pd]. Choose r the largest possible and s the smallest possible. The value of ωX (a)
depends only on Xr,s, the restriction of the partition to the volume enclosed by the renewal
points. The contribution of partitions with the same r, s and same restriction Xr,s is of the
form ωXr,s

(a)PN (Ers). A similar form can be derived for partitions of the infinite lattice Z. By
Lemma 5.6,

∣∣∣ωXr,s
(a)PN (Ers) − ωXr,s

(a)P(Ers)
∣∣∣

≤ const
(
sup
k≥d

|uk − µ−1|
) ∣∣ωXr,s

(a)
∣∣PN(Ers),

and the proof is concluded by summing over r, s and Xrs.

The previous two lemmas, together with Prop. 6.2 and Lemma 5.6 yield a lattice version of
Theorem 2.1.

Corollary 6.6. Let a be a Wick-ordered monomial whose support has distance ≥ pd to the
lattice boundaries, supp a ⊂ {pd, . . . , pN − pd− 1}. Then

∣∣∣〈a〉N − 〈a〉
∣∣∣ ≤ const

(
sup
M

〈a∗a〉M
)1/2(

4c(p, γ)
(∑

k≥d

kpk

)1/2
+ sup

k≥d
|uk − µ−1|

)
.

Note that the upper bound goes to 0 as d → ∞ because
∑
kpk < ∞, uk → µ−1, and

because of the uniform moment bounds from Prop. 5.5.

Proof of Theorem 2.1 when Λ = Z . In view of Cor. 6.6, all there is left to do is to go from lattice
correlations to continuum correlations. This is easily achieved, thanks to the explicit relation
between lattice and continuum and the Gaussian decay of the one-particle functions ψk(z). For
the sake of clarity we write down the proof for the two-point functions only; the other correlation
functions can be treated in a similar way. Recall

ρN,Z
2 (z1, z2; z

′
1, z

′
2) =

∑

0≤k,ℓ,m,n≤pN−p

〈c∗mc∗ncℓck〉N ψk(z1)ψℓ(z2)ψm(z′1)ψn(z′2). (38)

Therefore we define

ρ2(z1, z2; z
′
1, z

′
2) :=

∑

k,ℓ,m,n∈Z

〈c∗mc∗ncℓck〉ψk(z1)ψℓ(z2)ψm(z′1)ψn(z′2)

with the bulk expectation 〈·〉 as in Eq. (36). The infinite sum converges because the expectations
〈· · ·〉 appearing in the sum are bounded as in Prop. 5.5, and

sup
z

∑

m∈Z

|ψm(z)| ∝ sup
x

∑

m∈Z

exp[−(x−mγ)2/2] <∞.
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The translational covariance of ωX (a) and the stationarity of the renewal process P make the
two-point correlation function pℓ2/R-periodic in the sense of Eq. (5).

The difference between the finite volume and infinite volume two-point function is a sum over in-
tegers k, l,m, n. Suppose that z1, z

′
1, z2, z

′
2 are at distance ≥ D ≥ 2pdγ from the boundaries

of the cylinder x = 0 and x = pNγ. The contribution to the two-point function from summands
with all of the four indices between d and pN − pd can be bounded with the help of Cor. 6.6.
The contribution from quadruplets (k, l,m, n) with k ≤ pd, is bounded by a constant times

∑

k≤d

|ψk(z
′
1)| ∝

∑

k≤pd

exp
(
−(x′1 − kγ)2/2

)
≤
∑

κ≥0

exp
(
−p2(d+ κ)2γ2/2

)
. (39)

which is small for large d. Contributions where another index is smaller than pd or larger than
pN − pd can be bounded in a similar way.

6.3 Clustering

The clustering for Λ = Z is deduced from the renewal process Lemma 5.8, in the same way
as the thermodynamic limit was deduced, in the previous section, from Lemma 5.6. Again, we
start with lattice correlations.

Consider a and b two Wick-ordered monomials of creation and annihilation operators with sup-
ports at mutual distance ≥ 3pd for some d ∈ N. Thus let α, β ∈ Z such that β − α ≥ 3d
and supp a ⊂ {. . . , pα − 1} and supp b ⊂ {pβ, oβ + 1, . . .}. Let F be the set of partitions
X with a renewal point in [pα, pα + pd] and G the set of partitions with a renewal point in
[pβ − pd, pβ].

We write the expectation of ab as a sum over partitions in F ∩ G plus a remainder; similarly
for a and b. In order to estimate 〈ab〉N − 〈a〉N〈b〉N , we need to estimate four terms, the three
remainders, and the difference

∑

X∈F∩G

pN(X )ωX (a)ωX (b) −
(∑

X∈F

pN(X )ωX (a)
)(∑

X∈G

pN(X )ωX (b)
)
. (40)

Recall that if X ∈ F ∩ G, then ωX (ab) = ωX (a)ωX (b). The remainders for a and b are
simplest to estimate,

∑

X /∈F

pN(X )
∣∣ωX (a)

∣∣ ≤
(
〈a∗a〉Nc(p, γ)

∑

k≥d

kpk

)1/2

,

and an analogous inequality holds for b and G. The proof is similar to the proof of Lemma 6.4.
The difference (40) is bounded by some constant times

(
sup
k≥d

|µ−1uk − 1|
)
〈a∗a〉1/2

N 〈b∗b〉1/2
N .

This is shown with the help of Lemma 5.8, and proceeding in a way similar to the proof of
Lemma 6.5.
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The remaining estimate of the contribution to 〈ab〉N from partitions not in F ∩G is slightly more
involved. First we switch to an occupation number picture. With m = (m1, . . . , mN ), we asso-
ciate a sequence of occupation numbers n = (n0, n1, . . . , npN−p) in the obvious way; for ex-
ample, when N = 2, p = 2, and (m1, m2) = (1, 1), we have (n0, n1, n2, n3) = (0, 2, 0, 0).
We let |n〉 be the normalized wave function proportional to the (anti-)symmetrized product of
ψm1

,..., ψmN
. The |n〉’s form an orthonormal system. The many-particle wave function be-

comes
ΨN =

∑

n

AN (n0, n1, . . . , npN−p)|n0n1 · · ·npN−p〉.

When p is odd, the coefficients AN(n) are in one-to-one correspondence with the coefficients
aN(m). When p is even, the correspondence is up to factors

√
ni!.

Next, we observe that the notion of renewal point, since it does not depend on the order of the
mj ’s, can be transferred to occupation numbers. Hence pk is a renewal point of n if and only if

pk−1∑

j=0

nj = k and

pk−1∑

j=1

jnj = pk(k − 1)/2. (41)

The admissibility condition for m leads to the following property, valid whenever AN(n) 6= 0:
for all k = 1, · · · , N − 1,

pk−1∑

j=0

nj = k ⇒
pk−1∑

j=1

jnj ≥ pk(k − 1)/2. (42)

Now let S be the set of n’s with no renewal point in [α, α+pd] or no renewal point in [β−pd, β],
and E the set of pairs (n,n′) with no common renewal point in [α, α + pd] or no common
renewal point in [β−pd, β]. Thus n ∈ S is a sufficient, but not necessary, condition for (n,n′)
to be in E. Write

∑

X /∈F∩G

pN(X )ωX (ab) =
1

CN

∑

(n,n′)∈E

AN(n)AN(n′)
〈
n| ab |n′

〉
. (43)

The next lemma paves the way for an application of a Cauchy-Schwarz-inequality to Eq. (43).

Lemma 6.7. Let a, b, E as described above, and suppose in addition that a preserves the
total particle number, i.e., it is the product of n creation operators and the same number n of
annihilation operators. If (n,n′) ∈ E and

AN(n)AN (n′)
〈
n|ab|n′

〉
6= 0, (44)

then n ∈ S or n
′ ∈ S.

Proof. Recall the notion of support of an observable: when a = c∗1c
∗
3, supp a = {1, 3}. If

Eq. (44) holds, then n and n
′ must coincide outside supp(a) ∪ supp(b). We may assume,

without loss of generality, that
pα−1∑

j=1

jnj ≥
pα−1∑

j=1

jn′
j . (45)
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(Otherwise swap n and n
′.) If a preserves the total particle number, e.g., a = c∗1c2, then n and

n
′ must have the same number of particles in supp a. It follows that for every site v between

supp a and supp b, they have the same number of particles to the left of v,

n0 + n1 + · · ·+ nv−1 = n′
0 + · · · + n′

v−1, pα ≤ v ≤ pβ − 1. (46)

Suppose that n has a renewal point pk between supp a and supp b, α ≤ k ≤ β. Then n has
k particles to the left of v = pk, and by Eq. (46), so has n′

j . Moreover, since n and n
′ coincide

outside supp(ab), Eq. (45) implies that

pk−1∑

j=1

jn′
j ≤

pk−1∑

j=1

jnj = pk(k − 1)/2.

Eqs. (42) and (41) then imply that pk is a renewal point of n
′ too. Thus every renewal point

of n between supp a and supp b is in fact a common renewal point of n and n
′. Therefore, if

(n,n′) ∈ E, necessarily n ∈ S.

Now we can apply Lemma 6.1 which together with Lemma 5.7 yields

∣∣∣
∑

X /∈F∩G

pN (X )ωX (ab)
∣∣∣ ≤ 2〈(ab)∗ab〉1/2

N

(
2c(p, γ)

∑

k≥d

kpk

)1/2

.

Using our uniform moment bounds, we obtain:

Proposition 6.8. Let a be a product of n creation operators and n annihilation operators, and b
a product of m creation and m annihilation operators. Suppose that supp a ⊂ {. . . , pα− 1},
supp b ⊂ {pβ, . . .} and β − α ≥ 3d. Then, for some suitable constant Km+n and for all N ,

∣∣∣〈ab〉N − 〈a〉N〈b〉N
∣∣∣ ≤ Km+n

(
(
∑

k≥d

kpk)
1/2 + sup

k≥d
|uk − µ−1|

)
.

Remark (Off-diagonal decay). Suppose, for example, a = c∗k and b = c∗l cmcn for some
k, l,m, n ∈ N. Then 〈a〉N = 0 = 〈b〉N = 0 and, because of y-momentum conservation,
〈ab〉N = 0 unless k + l = m+ n. Imagine shifting b along the x axis,

b→ c∗l+dcm+dcn+d = τd
x (b).

Then 〈aτd
x (b)〉N 6= 0 unless k + (l + d) = m+ n+ 2d, so we find

d > k + l −m− n ⇒ 〈aτd
x (b)〉N = 0 = 〈a〉N〈τd

x (b)〉N .

The same reasoning applies to higher correlations where a, or b, does not conserve particle
number. Hence there is clustering for off-diagonal correlations too.

Proof of Theorem 2.3. Just as in the proof of Theorem 2.1 on p. 31, all we need to do is pass
from lattice (Prop. 6.8) to continuum. Again, for simplicity we write down the proof only for the
two-point correlation. Let z1, z

′
1 have large distance from z2, z

′
2 along the cylinder axis, i.e.,
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x1, x
′
1 ≤ wγ and x2, x

′
2 ≥ (w + 3D)γ for some integer w and large D. We write the sum in

Eq. (38) as a main contribution M , plus a remainder. The main contribution consists of those
summands where k,m ≤ w+D and l, n ≥ w+2D. Because of Prop. 6.8, we have a bound

∣∣〈c∗mc∗nclck〉N − 〈c∗mck〉N〈c∗ncl〉N
∣∣ ≤ const g(D)

for some function g(D) → 0 as D → ∞. It follows that the difference between the main
contribution M and

( ∑

k,m≤w+D

〈c∗mck〉Nψk(z1)ψm(z′1)
)( ∑

l,n≥w+2D

〈c∗ncl〉Nψl(z2)ψn(z′2)
)

can be bounded by a constant times g(D) too. But in this last term we recognize the main
contribution to ρN

1 (z1; z
′
1)ρ

N
1 (z2; z

′
2); so we are left with the remainders to estimate. This is

easily achieved: the remainders, for the one-particle matrix as well as for the two-point function,
can be estimated by terms of the type (39).

6.4 Non-influence of the domain of integration

In this section we show that the precise choice of domain of integration does not affect bulk cor-
relations. The idea is to rewrite integrals over Λ as integrals over the infinite cylinder Z with the
indicator function of Λ in the integrand, and then translate the indicator into a lattice operator.
This will allow us to view the indicator function as a quantity that lives at the cylinder’s bound-
aries, and to decouple this boundary perturbation from bulk correlations with the help of the
state’s clustering. We start with a simple computation. Let m1, . . . , mN ∈ Z (not necessarily
ordered or distinct). Then

∫

ΛN

|ψm1
(z1)|2 · · · |ψmN

(zN)|2dz1 · · ·dzN = ||ψm1
||2Λ · · · ||ψmN

||2Λ.

We can rewrite this as

||ψm1
⊗ · · · ⊗ ψmN

||2Λ =
〈
ψm1

⊗ · · · ⊗ ψmN
, JN,Λψm1

⊗ · · · ⊗ ψmN

〉
Z
,

using the diagonal operator in L2(ZN)

JN,Λ : ψm1
⊗ · · · ⊗ ψmN

7→
(
||ψm1

||2Λ · · · ||ψmN
||2Λ
)
ψm1

⊗ · · · ⊗ ψmn

(we set JN,Λ equal to 0 in the orthogonal complement of the lowest Landau level, i.e., the space
spanned by the ψk(z)). The Fock space version of this operator, again denoted JN,Λ, is

JN,Λ =

pN−p∏

k=0

(
||ψk||2Λ

)n̂k .

In this product, only boundary terms, k small or close to pN − p, contribute. Indeed, for 0 ≤
k ≤ pN − p, and Λ = [a, b] × [0, 2πR],

||ψk||2Λ =
1√
π

∫ b

a

e−(x−kγ)2dx = 1 − ǫk − δpN−p−k. (47)
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The error terms ǫk and δj depend on the precise choice of the domain of integration. They are
small when k → ∞, resp. j → ∞. For example, when a = 0, b = (pN − p)γ,

δk = ǫk =
1√
π

∫ ∞

kγ

e−s2

ds→ 0 (k → ∞).

Lemma 6.9. The normalization and the one-particle density for ΨN with domain of integration
Λ are given by

||ΨN ||2Λ = 〈ΨN , JN,ΛΨN〉Z

ρN,Λ
1 (z; z′) =

pN−p∑

k=0

〈ΨN , c
∗
k JN,ΛckΨN〉Z

〈ΨN , JN,Λ ΨN〉Z
ψk(z)ψk(z′), (z, z′ ∈ Λ). (48)

Similar formulas hold for n-point correlations.

Proof. The formula for the normalization is a consequence of the computations used to define
JN,Λ. For the one-particle matrix, we note

(ckΨN)(z2, . . . , zN) =
√
N

∫

Z

ψk(z1) ΨN(z1, z2, . . . , zN)dz1

= (N − 1)!−1/2
∑

m2,...,mN

aN (k,m2, . . . , mN)ψm2
(z2) · · ·ψmN

(zN).

Let d(m2, . . . , mN) := ||ψm2
||2Λ · · · ||ψmN

||2Λ. We obtain

〈
ΨN , c

∗
k JN,ΛckΨN

〉
Z

=
1

(N − 1)!

∑

m2,...,mN

|aN(k,m2, . . . , mN)|2 d(m2, . . . , mN).

On the other hand, N times the integral of ΨN(z, z2, . . . , zN )ΨN(z′, z2, . . . , zN) with the zj

integrated over Λ, equals

N
1

N !

∑

m1

|aN(m1, . . . , mN )|2d(m2, . . . , mN)ψm1
(z)ψm1

(z′),

and the proof is easily concluded.

Because of Eq. (47), it is natural to think of our lattice indicator JN,Λ as a product of a left, bulk,
and right term. We write JN,Λ := LBR with

L =

d−1∏

j=0

(
1 − ǫj − δpN−p−j

)n̂j ,

B a similar product for j from d to pN −p−d, and R the product from pN −p−d to pN −p.
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Lemma 6.10. For all N and d with pN − p ≥ 3d and a suitable,N -independent function f(d)
with f(d) → 0 as d→ ∞:

sup
d≤k≤pN−p−d

∣∣〈c∗kJN,Λck〉N,Z − 〈L〉N,Z 〈c∗kck〉N,Z〈R〉N,Z

∣∣ ≤ f(d),

∣∣〈JN,Λ〉N,Z − 〈L〉N,Z 〈R〉N,Z

∣∣ ≤ f(d).

Proof. Let d be large enough so that ǫd ≤ 1/4 and δd ≤ 1/4. Let c > 0 such that ln(1−x) ≥
−cx when |x| ≤ 1/2. For pN − p ≥ 3d, we have

1 ≥ B ≥ 1 − c

pN−p−d∑

j=d

(ǫj + δpN−p−j)n̂j,

as an operator inequality. Noting that B and ck, c∗k commute or anticommute with L and R,

∣∣〈c∗k LBR ck〉N,Z − 〈c∗k LR ck〉N,Z

∣∣

≤
〈
Lc∗k(1 − B)ckL

〉1/2

N,Z

〈
Rc∗k(1 − B)ckR

〉1/2

N,Z

≤
〈(
c∗k(1 − B)ck

)2〉1/2

N,Z
≤
〈(
c

pN−p−d∑

j=d

(ǫj + δpN−p−j)n̂j

)2〉1/2

N,Z
.

Using the uniform moment bounds from Prop. 5.5, this can be further upper bounded by a
constant times

∑∞
j=d(ǫj + δj), which is finite and goes to 0 as d→ ∞.

Next, we want to use Prop. 6.8 in order to decouple L, c∗kck = n̂k and B. We note, first,
that Prop. 6.8 is not directly applicable to L and B, since these operators are not polynomials of
creation and annihilation operators. Power series expansions yield a simple remedy. To illustrate
the procedure, we explain how Prop. 6.8 can be applied to a product of two exponentials. We
have, for suitable K,D > 0 and ε(d) → 0 as d→ ∞,

∣∣∣
〈
exp(−sn̂0) exp(−tn̂d)

〉
N
−
〈
exp(−sn̂0)

〉
N

〈
exp(−tn̂d)

〉
N

∣∣∣

≤ K
∞∑

k=0

∞∑

q=0

sk

k!

tq

q!
Dk+qε(d) ≤ K exp(sD) exp(tD)ε(d).

Here we have used Prop. 5.5 in the form 〈n̂2k
0 n̂

2q
d 〉1/2

N ≤ Dk+q for suitableD. Something similar
can be done to bound

〈L n̂k R〉N,Z − 〈L〉N,Z〈n̂k〉N,Z〈R〉N,Z . (49)

The upper bound will involve

(d−1∏

j=0

(1 + ǫj + δpN−p−j)
)D

and a similar term for the right boundary. We note that this term can be bounded, uniformly in
N and d, and deduce that the absolute value of (49) is bounded by some function g(d) with
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g(d) → 0 as d → ∞. In combination with our earlier bound which justified the replacement
B ≈ 1, this proves the first inequality of the lemma when d ≥ d0 for some d0. When d ≤ d0,
we note that the left-hand side of the inequality can be bounded, uniformly in N , and set f(d)
equal to that bound.

The proof of the second inequality is similar.

Next, we observe that 〈L〉N,Z and 〈R〉N,Z stay bounded away from 0 as N → ∞. Indeed, if
(tk) is a sequence of numbers in [0, 1] and

∑
k tk <∞, Jensen’s inequality gives

〈pN−p∏

j=0

(1 − tj)
n̂j
〉

N,Z
≥ exp

(〈pN−p∑

j=0

n̂j ln(1 − tj)
〉

N,Z

)

≥ exp
(
K

∞∑

j=0

ln(1 − tj)
)
> 0.

Here K is a uniform upper bound for the occupation numbers 〈n̂k〉N,Z . This argument can be
adapted without problems to lower bound the expectations of L and R. Note that, as operators
with norm ≤ 1, they have expectations upper bounded by 1.

As a consequence, we can pass to quotients and deduce from Lemma 6.10

sup
d≤k≤pN−p−d

∣∣∣
〈c∗kJN,Λck〉N,Z

〈JN,Λ〉N,Z
− 〈c∗kck〉N,Z

∣∣∣ ≤ g(d)

for some N -independent function g(d) which goes to ∞ as d → ∞. From here the proof of
Theorem 2.1 for the one-particle matrix for general Λ, i.e., the insensitivity to the domain of
integration, is proven with the help of Eq. (48) by imitating the proof of Theorem 2.1 for Λ = Z
on p. 31. The proofs for general n-point functions are similar.

6.5 Symmetry breaking

We conclude the paper with a proof of Theorem 2.2, which is essentially a consequence of
results of [AJJ]. Let us also recall that on thin cylinders, the slightly stronger statement that the
one-particle density (and not just any correlation function) has a non-trivial period was proven
in [JLS].

Proof of Theorem 2.2. The diagonal infinite volume correlation functions
ρn(z1, . . . , zn; z1, . . . , zn) are the correlation functions (= factorial moment densities) of some
point process on Z . Because of Theorem 2.1, the corresponding measure P is the limit, in a
suitable sense and up to shifts, of the measurePN with density ∝ |ΨN(z1, . . . , zN)|2, choosing
the finite cylinder −pγ/2 ≤ x ≤ p(N − 1/2)γ as the domain of integration. With this choice
PN is exactly the Gibbs measure for N particles moving in a neutralizing background, studied
in [AJJ].

Therefore, by [AJJ, Theorem 3.1], if we shift P by θ ∈ R along the x-axis, we obtain a measure
P θ which is singular to P unless θ is an integer multiple of pγ. Now, Theorem 5.4 together
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with Eq. (33) shows that the point process satisfies conditions which ensure that it is uniquely
determined by its correlation functions [DVJ]. Remember that passing from correlation functions
to the point process is like passing from moments of a probability measure to the measure itself.
Thus if θ is not an integer multiple of pγ, the θ-shifted measure must have some correlation
function which is different from the one for the original measure P . This proves Theorem 2.2.

Remark. Repeated shifts of the infinite-cylinder state ω1(·) = 〈·〉 by ℓ2/R in the x-direction
yield states ω2, . . . , ωp. By Theorem 2.2, those p states are distinct. They are actually also
disjoint (this notion generalizes mutual singularity of probability measures). This follows from
general arguments [BR, Sect.4], combining the fact that ω1, . . . , ωp are distinct and mixing (by
Theorem 2.3), hence ergodic with respect to shifts in the x-direction.
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