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A NOTE ON THE EXTREMALITY OF THE DISORDERED 
STATE FOR THE ISING MODEL ON THE BETHE LATTICE 

DMITRY IOFFE 

August 4, 1995 

ABSTRACT. We give a simple proof that the limit Ising Gibbs measure with 
free boundary conditions on the Bethe lattice with the forward branching 
ratio k ~ 2 is extremal if and only if I' is less or equal to the spin glass 
transition value, given by tanh(/J;c) = 1/Vk. 
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In this short note we prove the following: 

Theorem 1. For the Ising model on the Bethe lattice with the forward branching 
ratio k 2:: 2 the limit infinite volume Gibbs state with free boundary conditions is 
extremal if and only ff 

tanh(,B) ~ tanh(,e;c) = 1/Vk. 
The role played by the spin glass transition value ,e:c was analysed in details in 

the context of the Ising spin glass on the Bethe lattice with k = 2 in [CCST]. A mo-
dification of their method was used in [B] to prove the theorem above, but the latter 
paper contains a mistake. This mistake is claimed to be corrected in a recent article 
[BRZ]. We refer to the articles [CCST], [B] and [BRZ] for a thorough discussion of 
the underlying problem. A method of the proof we suggest here is different from 
those in [B] and [BRZ], seems to be much simpler from the computational point of 
view and, in a way, intrinsic for the model under consideration. However, as in [B] 
and [BRZ], the key idea of reductions to recursive estimates on second moments is 
inherited from the original paper [CCST]. 

. So let T = (V, &) to denote the halfspace Bethe lattice with the forward branc-
hing ratio k 2:: 2, where V and e are the corresponding vertex( or site) and edge( or 
bond) sets respectively. The root site of T will be always indexed by zero. For any 
:fl.nit~ connected subtree ~ = (A, EA) we define the Gibbs state on TA with free 
boundary conditions at the inverse temperature ,B > 0 as a probability measure JP~ 
on nA = {-1, l}A, which assigns weights 

exp{ -,B L xix;} 
<i,j> 

1The work was partially. supported by the NSF grant DMS 9504513 
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to spin configurations (xi)ieA E nA. The summation above is over all unordered 
pairs of nearest neighbours i,j :< i,j >E eA. In fact all P~ are relativizations on 
nA of a certain probability measure ptJ on n = {-1, l}V, which is precisely the 
limit infinite volume Gibbs measure with free boundary conditions, also referred to 
as the disordered state in the title of this note. It is the tree structure of the graph 
T which is entirely responsible for the latter assertion. This becomes transparent 
if one evokes the FK (Fortuin-Kasteleyn) representation of lattice ferromagnetic 
systems with pair interactions (see, for example, [ACCN] in general and [CCST] 
for the Bethe lattice case). In our situation everything boils down to the following 
representation of P1: 

Set p = tanh(,B). 
Step!. Consider an independent Bernoulli percolation on eA, i.e. assign to each 
bond configuration nA E {O, lYA the probability 

in.P ( ) _ l:i.ee n.A(b)(l _ )IEAI- l:i.ee n.A(b) ""lA nA - p A p A , 

where leAI is the cardinality (number of edges) in eA. 

Step2. Given a bond configuration nA, two sites i,j E A are called connected 
if they are connected by the chain of open bonds in eA, i.e if nA = 1 on all bonds 
from the (unique) chain leading from i to j. Thus, any (random) configuration nA 
splits A into disjoint union of maximal connected components (or clusters). Now, 
in order to specify values of spins at various sites of A, paint independently each 
cluster of A into +1 or -1 with probability 1/2 each. 

After performing both steps above we end up with a probability distribution on 
nA. The important fact is that this measure happens to be precisely p~. 

The above two-step procedure can be, using some labelling algorithm to avoid 
ambiguities, equally applied to construct probability meas.ures P1 f~r infinite con-
nected subsets A ~ V , in particular for V itself. Thus, let QP to denote the 
independent Bernoulli percolation measure on {O, l}e and JPP to denote the corre-
sponding measure on n. Clearly, pP possesses the relativization property claimed 
above, i.e 

(1) 

where xlA is the restriction of the configuration x E 0 to A. Equally clear is that 
pP is the thermodynamic limit of the finite volume Gibbs states with free boundary 
conditions. 

Consequently, many questions about pP and P1 admit a natural percolation 
interpretation. A basic example is provided by the following computation: 

For any finite subset AC V set 



Then, if IAI is odd, 

(2) 
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< XA >fJ = 0, 

where < • >fJ is the expectation with respect to pP. 
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If IAI is even, let us say that a configuration n E {O, lY splits A evenly, if there 
is even number of vertices of A in each maximal connected component of n. Then, 

(3) < XA >P = QP(n: n splits A evenly) 

Formulas (2) and (3) are immediate consequences of the FK representation and (1). 
Indeed, let T(A) = (V(A), t:(A)) be the minimal connected subtree which spans A. 
Then, by (1), 

< XA >p = < XA >~(A)' 
where < • >~(A) is the expectation with respect to P~(A)• Simple combinatoric 
arguments, then, imply: 

< XA >~(A) = 0 , 
in the odd case, and 

< xA >~(A) = Q~(A)(n: n splits A evenly) 

in the even case. Since Q~{A) is the relativization of Q1', (3) follows. 
Another example of how the percolation approach works is provided by the fol-

lowing: 

Proposition 2. Let two disjoint finite subsets A, B C V have edge disjoint minimal 
spanning trees, i.e t:(A) n t:(B) = 0. 

a) If both IAI and IBI are even, then 

(4) 
b) If both IAI and IBI are odd, then for any site j, which lies on the unique chain 
connecting V(A) to V(B), 

(5) < XAXB >fJ = < XAX; >fJ < XsX; >fJ . 
Proof: Both formulas are consequences of (2) and (3) above and independence 

relations for Bernoulli percolation. 

We now turn to the proof of Theorem 1. Let x0 to denote the value of the spin at 
the root site of T. Also let BN be the set of sites at distance N from the root, where 
the distance d( i, j) between two sites i and j is defined to be the number of edges 
in the unique chain connecting those two sites. Finally, let FN be the a-algebra 
generated by the spin configurations from {-1, l}BN. Note that pP is extremal, i.e 
pP has a trivial tail a-field, if and only if, 

(6) 

where all the expectations are computed with respect to pP. Since < x 0 >fJ = 0, we 
shall identify :FN with the Eucledian space of all PP-zero mean functions 
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f : {-1, l}BN ~ JR equipped with the scalar product < • >P. :FN is, then, 
spanned by the linear independent family { x A} ACE N. We also use :Ft to denote the 
positive cone spanned by this family. To facilitate notations let us use xN to denote 
the restriction of a configuration x on {-1, l}BN (instead of xlBN above ).Define: 

9N(xN) = If (xolFN) = Proil.rNXo. 

Because of the self similarity of the measure JFP, we may consider 9N to be just a 
function on {-1, l}A:N and use it unambiguously to denote the projection of any 
spin to the u-algebra generated by its N-th generation of descendants. Here we say 
that i belongs to the N-th generation of descendants of j, if d( i, j) = N and j lies 
on the unique chain leading from i to zero. 

There are k branches emanating from the root site. Let us denote by xk the 
restriction of a configuration XN E {-1, l}BN to the l-th branch. Similarly, each 
subset A~ BN can be splitted into the disjoint union 

A = U~Az, 
where Ai contains those sites of A which lie on the l-th branch. We may, then, 
rewrite xA as 

A: 
XA = II x~ •. 

1 

Finally, define Fj., to be the subspace of FN, which is spanned by the polynomials 
rr~ x~, with IAd odd. Obviously, 

Proposition 3. For every l; l = 1, ... , k, 

(7) Proil.rk9N(xN) = P9N-1(xk ). 

Proof: If IAd is odd, then by (4) and (5), 

< Xo II xA_ >P = < x~ x~, >P < xox~ >P < II xA_ >P = 
m m# 

= P < 9N-1(xk)x~, >P< II xA_ >P = P < 9N-1(xk) IT xA_ >P · 
m¢l m 

The above proposition provides a gateway for a recursive estimate on 

ll9Nll 2 d;!_ Var8(lf (xolFN )). 

Another crucial property of 9N can be formulated as follows: 

Proposition 4. For each N 2: 0 the projection 9N( XN) belongs to the positive cone 
Ft. 
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Proof: The claim follows by induction. We have to show that for each M E N; 
if u E :FM and< xAu >/3$. 0 VxA E :Fjj, then 

(8) 

also. This is, of course, straightforward for M = 0. Assume that the induction 
assumption holds for M = N -1 and suppose that (9) is no longer true for M = N, 
i.e that one can find u E :FN, such that < UNU >/3 > O, whereas < xA u >/3 $. 
0, VA~ BN. By the symmetry considerations we may assume from the beginning 
that u E :F],, i.e that 

l: 

u = L L aA1A2 ... A .. IT x~,. 
IAil-odd IA2l+···+IA1ol-even 1 

Then, by ( 4) and ( 7), 

where 

< UN(xN )u >13 = < Xou >13 = L aAi < UN-1(x1-1)x~i >13 , 
IA ii-odd 

l: 

aAi = P L aAiA2 ... A,. < IT x~, >13 · 
IA2l+ ... +IA1al even :2 

Consequently, setting ii. = ii.( x}v) = p EIAil-odd a Ai xt , we obtain: 

0 < < UN(XN )u >13 = < 9N-1(x1 )ii. >13 . 
Because of the self similarity of pP, this contradicts the induction assumption. In-
deed, for any x~ with IAI odd, 

0 ~<x~u>P=<x~il(xir)>P, 

which means that il(xN_i) provides an example of :FN-l function for.which (8) fails 
with M = N -1. 

Let us define a function (random variable) eN via. 
l: 

(9) UN = p LuN-1(x~) - eN· 
l=l 

It follows immediately from Propositions 3 and 4 that < eNu >/3 ~ 0 for each 
u E :F~. In particular, 

(10) 
Therefore, multiplying both sides of (9) by UN we obtain, in a view of (7), that 

llUNll:l = kp:lllUN-111 2 
- < eNUN >{J $_ kp:lllUN-111 2

' 

which implies the claim of the theorem for kp:l < 1. 
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The assertion of the theorem in the critical case kp2 = 1 follows from the recursive 
estimate on ll9Nll below: 

(11) 

which is just a refinement of (10). Namely, we claim that for any u E F't-, 

(12) 

In particular, 

and (11) follows. 
Thus it remains to verify (12). It is enough to consider u = zA E Ffr. H IAql is 

odd for some q > 1, i.e if zA also belongs to some F'f.r, then 

I: 

< eNzA >{J = p I:< 9N-1(z~ )zA >{J ~ p < 9N-1(zjy )zA >{J = 
2 

So let us assume that all IAzl, l > 1, are even. Then, 

I: 

> {J _ 1 {J II < , >{J < 9NZA - < ZoZA1 > xA, ' 
2 

and for l > 1, 

But, 

However, by the virtue of proposition 4, g1_1 is a polynomial with nonnegative 
coefficients. Therefore, by the second Griffiths' inequality, 

and (12) follows. 



ISING MODEL ON BETHE LATTICE 7 

REFERENCES 

[ACCN] M.Aizenman,J.T.Chayes,L.Chayes,C.M.Newman (1988), Diacontinv.ity of the 
magnetization in one-dimensional 1/lz - yl 2 Ising and Potts models, J .Stat.Phys. 
50,1, 1-40. 

[B] P.M.Bleher (1990), Eztremity of the disordered phase in the Ising model on the Bethe 
lattice, Comm.Math.Phys. 128, 411-419. 

[BRZ] P.M.Bleher, J .Ruiz, V.A.Zagrebnov (1995), On the purity of the limiting Gibbs state 
for the Ising model on the Bethe lattice, J.Stat.Phys. 79,1/2, 473-482. 

[CCST] J .T.Chayes, L.Chayes, J .P.Sethna, D.J .Thouless (1986), A mean field spin glass 
with short range interactions, Comm.Math.Phys. 106, 41-89. 





Recent publications of the 
Weierstra:B-lnstitut fiir Angewandte Analysis und Stochastik 

Preprints 1994 

135. J. Theodore Cox, Klaus Fleischmann, Andreas Greven: Comparison of inter-
acting diffusions and an application to their ergodic theory. 

136. Andreas Juhl: Secondary Euler characteristics of locally symmetric spaces. 
· Results and Conjectures. 

137. Nikolai N. Nefedov, Klaus R. Schneider, Andreas Schuppert: Jumping beha-
vior in singularly perturbed systems modelling bimolecular reactions. 

138. Roger Tribe, Wolfgang Wagner: Asymptotic properties of stochastic p~ticle 
systems with Boltzmann type interaction. 

Preprints 1995 

139. Werner Horn, Jan Sokolowski, Jurgen Sprekels: Control problems with state 
constraints for the Penrose-Fife phase-field model. 

140. Hans Babovsky: Simulation of kinetic boundary layers. 

141. Ralf Kornhuber: A posteriori error estimates for elliptic variational inequali-
ties. 

142. Johannes Elschner, Youngmok Jeon, Ian H. Sloan, Ernst P. Stephan: The 
collocation method for mixed boundary value problems on domains with 
curved polygonal boundaries. 

143. Johannes Elschner, Ernst P. Stephan: A discrete collocation method for 
Symm's integral equation on curves with corners. 

144. Dietmar Hornberg: A numerical simulation of the Jominy end-quench test. 

145. Sabine Hengst: On the existence of classical solutions for a two phase flow 
through saturated porous media. 

146. Anton Bovier, Veronique Gayrard: An almost sure large deviation principle 
for the Hopfield model. 

147. Hans Babovsky: Limit theorems for deterministic Knudsen flows between two 
plates. 

148. Bjorn Sandstede: Stability of multiple-pulse solutions. 



149. Bjorn Sandstede: Constructing dynamical systems possessing homoclinic bi-
furcation points of codimension two. 

150. Boris N. Khoromskij, Siegfried Prossdorf: Multilevel preconditioning on the 
refined interface and optimal boundary solvers for the Laplace equation. 

151. Anton Bevier, Christo£ Kiilske: There are no nice interfaces in 2+1 dimen-
sional SOS-models in random media. 

152. Ilja Schmelzer: Covariant geometry description. 

153. Alexander Korostelev, Michael Nussbaum: Density estimation in the uniform 
norm and white noise approximation. 

154. Peter Hall, Michael Nussbaum, Steven E. Stern: On the estimation of a sup-
port curve of indeterminate sharpness. 

155. Lev D. Pustyl'nikov: On the stability of solutions and absence of Arnol'd 
diffusion in a nonintegrable Hamiltonian system of a general form with three 
degrees of freedom. 

156. Ralf Kornhuber: Adaptive monotone multigrid methods for some non-smooth 
optimization problems. 

157. Sergej Rjasanow, Wolfgang Wagner: A generalized collision mechanism for 
stochastic particle schemes approximating Boltzmann type equations. 

158. Nikolai Nefedov, Klaus Schneider: Singularly perturbed systems: Case of ex-
change of stability. 

159. Rainer Dahlhaus, Michael H. Neumann, Rainer von Sachs: Nonlinear wavelet 
estimation of time-varying autoregressive processes. 

160. Henri Schurz: Numerical regularization for SDEs: Construction of nonnega-
tive solutions. 

161. Anton Bevier, Veronique Gayrard: The retrieval phase of the Hopfi.eld model: 
A rigorous analysis of the overlap distribution. 

162. Boris N. Khoromskij, Gunther Schmidt: A fast interface solver for the bihar-
monic Dirichlet problem on polygonal domains. 

163. Michael H. Neumann: Optimal change-point estimation in inverse prob-
lems. 


