Quasiconvexity equals rank-one convexity for isotropic sets of 2x2 matrices

Sebastian Heinz

submitted: August 16, 2011

Weierstraß-Institut
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: sebastian.heinz@wias-berlin.de

No. 1637
Berlin 2011

2010 Mathematics Subject Classification. 26B25 52A30.

Key words and phrases. Quasiconvexity, rank-one convexity, lamination convexity, isotropy.

Research supported by the DFG through FOR 797 Analysis and Computation of Microstructures in Finite Plasticity under Mie 459/5-2.
Abstract

Let K be a given compact set of real 2×2 matrices that is isotropic, meaning invariant under the left and right action of the special orthogonal group. Then we show that the quasiconvex hull of K coincides with the rank-one convex hull (and even with the lamination convex hull of order 2). In particular, there is no difference between quasiconvexity and rank-one convexity for K. This is a generalization of a known result for connected sets.

1 Introduction

We study quasiconvexity in the calculus of variations. Morrey [Mor52] introduced it as the essential property for functions in the context of sequentially weakly lower semicontinuity for multiple integrals. He also conjectured that quasiconvexity is a "non-local" property, which was later shown to be true by Kristensen [Kri99]. At the heart of Kristensen’s proof lies Šverák’s counterexample of a rank-one convex function that fails to be quasiconvex [Šve92]. However, this counterexample works only in the case of an underlying space $\mathbb{M}^{m \times n}$ with $m \geq 3$, $n \geq 2$. Müller [Mül99a] showed that rank-one convexity implies quasiconvexity on diagonal 2×2 matrices. The general situation in $\mathbb{M}^{2 \times 2}$ remains unknown.

Closely related to the quasiconvexity for functions is the corresponding concept for sets. Basically, quasiconvex sets are lower-level sets of quasiconvex continuous functions. We focus on quasiconvexity for isotropic sets in $\mathbb{M}^{2 \times 2}$ and prove the following result (see Theorem 7.2).

Theorem (Equivalence). Let $K \subseteq \mathbb{M}^{2 \times 2}$ be a given compact and isotropic set. Then K is lamination convex if and only if K is quasiconvex.

As long as the set K is connected, there is even equivalence between lamination convexity and polycovexity. This was shown by Conti et al. [CDLMR03] and, before, by Cardaliaguet and Tahraoui [CT00, CT02a, CT02b] in the case when K contains only matrices with non-negative determinant. Conti et al. [CDLMR03] give also an example of a disconnected K that is lamination convex but not polycovex. In addition, we will characterize the structure of the quasiconvex hull of K. Our main result reads (see Theorem 7.3)

Theorem (Characterization of K^{qc}). Let $K \subseteq \mathbb{M}^{2 \times 2}$ be compact and isotropic. Then its quasiconvex hull coincides with its lamination convex hull of order 2.

The paper is organized as follows:

In Section 2 we will fix the notations and recall definitions of the convexity notions that are used later on. Preliminaries can be found in Section 3 and 4. Then we refine a result by Conti et
al. [CDLMR03] for connected K in Section 5. Section 6 is dedicated to the closed lamination convex hull K^{cl} and its structure. The key observation is that the principle structure of K^{cl} is already determined by the lamination convex hull of order one. In Section 7 we deal with the equivalence of lamination convexity and quasiconvexity. The main step is to show that what is disconnected in K^{cl} remains so in K^{pc}. Then we apply a deep result by Faraco and Székelyhidi [FS08] saying that the quasiconvex hull for the support of a homogeneous gradient Young measure is connected.

2 Functions, measures, and hulls

We are going to recall some convexity notions that play an important role in this paper. Our focus lies on dimension 2. A detailed discussion, also for higher dimensions, can be found in Dacorogna [Dac89, 4.1], Ball [Bal77] and Müller [Mül99b].

We denote by $\mathbb{M}^{2\times2}$ the vector space of all real 2×2 matrices equipped with the Euclidean structure of \mathbb{R}^4. The corresponding matrix norm is denoted by $|.|$, the identity matrix by I. Let $f : \mathbb{M}^{2\times2} \rightarrow \mathbb{R}$ be a given continuous function. Then f is convex if for every $A, B \in \mathbb{M}^{2\times2}$ we have

$$\forall \lambda \in [0, 1] \quad f(\lambda A + (1-\lambda)B) \leq \lambda f(A) + (1-\lambda) f(B). \quad (1)$$

The function f is polyconvex if there exists a convex function $g : \mathbb{R}^5 \rightarrow \mathbb{R}$ such that for every $A \in \mathbb{M}^{2\times2}$ we have $f(A) = g(A, \text{det}(A))$, where $\text{det}(A)$ denotes the determinant of A. We will often use that for every real number $\alpha \in \mathbb{R}$ the function αdet is polyconvex. The function f is quasiconvex (in the sense of Morrey [Mor52]), if for every $A \in \mathbb{M}^{2\times2}$ and every smooth function $\phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ with compact support we have

$$0 \leq \int_{\mathbb{R}^2} (f(A + D\phi(x)) - f(A)) \, dx.$$

The function f is rank-one convex if (1) holds for every $A, B \in \mathbb{M}^{2\times2}$ that are rank-one connected, meaning $A - B$ equals the tensor product $a \otimes b$ for some vectors $a, b \in \mathbb{R}^2$. Polyconvexity and rank-one convexity were introduced by Ball [Bal77].

With the help of the convexity notions for functions, we now define the convexity notions for sets. Let $K \subseteq \mathbb{M}^{2\times2}$ be a given set and $A \in \mathbb{M}^{2\times2}$ a matrix. Then A lies in the polyconvex hull of K and we write $A \in K^{\text{pc}}$ whenever $f(A) \leq \sup \{ f(B) \mid B \in K \}$ holds for every polyconvex function $f : \mathbb{M}^{2\times2} \rightarrow \mathbb{R}$. The set K is called polyconvex whenever $K = K^{\text{pc}}$ holds. The quasiconvex hull and the rank-one convex hull as well as quasiconvexity and rank-one convexity for sets are defined correspondingly.

We will give an alternative characterization in the case of compact sets. Therefore, denote by $\mathcal{P}_0(\mathbb{M}^{2\times2})$ the set of all compactly supported probability measures that are defined over the Borel sets of $\mathbb{M}^{2\times2}$. Let $\nu \in \mathcal{P}_0(\mathbb{M}^{2\times2})$ be a given element. We write $\bar{\nu}$ for its mean value and $\text{supp}(\nu)$ for its support, meaning the compliment of the set $\cup \{ U \subseteq \mathbb{M}^{2\times2} \mid \nu(U) = 0 \land U \text{ open} \}$. In addition, let $f : \mathbb{M}^{2\times2} \rightarrow \mathbb{R}$ be a continuous function. Then the following pairing is finite and well-defined

$$\langle \nu, f \rangle = \int_{\mathbb{M}^{2\times2}} f(A) \, d\nu(A).$$
We define the sets \mathcal{P}^{pc}, \mathcal{P}^{qc} and \mathcal{P}^{rc}. A probability measure $\nu \in \mathcal{P}_0(\mathbb{M}^{2 \times 2})$ lies in \mathcal{P}^{pc} (\mathcal{P}^{qc} or \mathcal{P}^{rc}) if and only if Jensen’s inequality $f(\bar{\nu}) \leq \langle \nu, f \rangle$ is fulfilled for every polyconvex (quasiconvex or rank-one convex) continuous function $f : \mathbb{M}^{2 \times 2} \to \mathbb{R}$. Kinderlehrer and Pedregal [KP91] show that every $\nu \in \mathcal{P}^{qc}$ is a homogenous gradient Young measure. Whereas every $\nu \in \mathcal{P}^{rc}$ is a laminate, see Pedregal [Ped93].

Remark 2.1. Let $K \in \mathbb{M}^{2 \times 2}$ be a given compact set. Then the set K^{pc} coincides with $\{\bar{\nu} \mid \nu \in \mathcal{P}^{pc} \land \text{supp}(\nu) \subseteq K\}$ and K^{qc} as well as K^{rc} can be characterized in a corresponding way.

As in Müller and Šverák [MŠ96], K is called lamination convex if for every rank-one connected $A, B \in K$ and every real number $\lambda \in [0, 1]$ we have that $\lambda A + (1-\lambda)B$ lies in K. The closed lamination convex hull K^{clc} of all closed lamination convex subsets in $\mathbb{M}^{2 \times 2}$ that contain K. Note that $\{A, B\}^{clc}$ equals $\{\lambda A + (1-\lambda)B \mid \lambda \in [0, 1]\}$ and, hence, is a connected set if $A, B \in \mathbb{M}^{2 \times 2}$ are rank-one connected. Otherwise $\{A, B\}^{clc} = \{A, B\}$ is disconnected. Here we call a given set $S \subseteq \mathbb{M}^{2 \times 2}$ connected if there is no way to write S as the union of two disjoint nonempty relatively-open subsets of S. Moreover, we set $K^{lc,1} = \bigcup \{A, B\}^{clc} \in \mathcal{A}_2(K)$ as well as $K^{lc,2} = (K^{lc,1})^{clc}$, which are called the lamination convex hulls of order one and two, respectively. We would like to remark that, in general, the set K^{clc} and the lamination convex hull of K is different as has been shown by Kolář [Kol03].

The previous definitions together with the hierarchy of convexity notions on the level of functions imply that

$$K \subseteq K^{lc,1} \subseteq K^{lc,2} \subseteq K^{clc} \subseteq K^{rc} \subseteq K^{qc} \subseteq K^{pc}.$$

Finally, we denote by $cc(K)$ the set of all connected components (meaning maximal connected subsets) of K.

3 Compatible isotropic sets

We give a characterization of compatible isotropic sets. The general result for $\mathbb{M}^{n \times n}$, $n \geq 1$, is due to Šilhavý [Šil01, Pro. 3.1]. In our case $\mathbb{M}^{2 \times 2}$, this was already done by Aubert and Tahraoui [AT87, Thé. 2.8], if only for matrices with non-negative determinant. The proofs of Lemma 3.1 and Lemma 3.2 are given for the convenience of the reader.

We call a set $M \subseteq \mathbb{M}^{2 \times 2}$ *isotropic* whenever it is invariant under the left and right action of the special orthogonal group $SO(2)$, meaning $M = M^{iso}$ where

$$M^{iso} = \{QAR \mid Q, R \in SO(2) \land A \in M\}.$$

Here we consider $SO(2)$ as a subset of $\mathbb{M}^{2 \times 2}$ so that the group action becomes just matrix multiplication. The following notation works well in the context of isotropic sets and has been used before by many authors. Let $A \in \mathbb{M}^{2 \times 2}$ be a given matrix, then we define $\lambda(A) = (\lambda_1(A), \lambda_2(A)) \in \mathbb{R}^2$ as the only pair of real numbers such that $\{||\lambda_1(A)||, \lambda_2(A)|| \}$ is the set
of singular values of A and, in addition, $|λ_1(A)| ≤ λ_2(A)$ as well as $\det(A) = λ_1(A)λ_2(A)$ holds. In fact, we have that

$$\{A\}^{iso} = \{B\}^{iso} ⇔ λ(A) = λ(B) ⇔ (|A| = |B| \land \det(A) = \det(B)).$$

We say that two subsets $M_1, M_2 ⊆ M^{2×2}$ are **compatible** whenever there exist rank-one connected matrices $A_1 ∈ M_1$ and $A_2 ∈ M_2$. Otherwise M_1 and M_2 are called **incompatible**.

Lemma 3.1. Let $A ∈ M^{2×2}$ be a given matrix. Then $\{A\}^{iso}$ and $SO(2)$ are compatible if and only if $|λ_1(A)| ≤ 1 ≤ λ_2(A)$ holds.

Proof. Assume that $|λ_1(A)| ≤ 1 ≤ λ_2(A)$. Then the following matrices are rank-one connected: $I ∈ SO(2)$ and

$$I + \begin{pmatrix} λ_1(A)λ_2(A) − 1 & \sqrt{(1 − λ_1(A)^2)(λ_2(A)^2 − 1)} \\ 0 & 0 \end{pmatrix} ∈ \{A\}^{iso}.$$

Now assume that $\{A\}^{iso}$ and $SO(2)$ are compatible. Then there exist vectors $a, b ∈ \mathbb{R}^2$ and a matrix $C ∈ \{A\}^{iso}$ such that $C = I + a ⊗ b$. We know that $\det(C) = 1 + \langle a, b \rangle$ and $|C|^2 = 2 + 2\langle a, b \rangle + |a|^2|b|^2$. Together with the Cauchy-Schwarz inequality, we obtain the estimate $|C|^2 − \det(C)^2 ≥ 0$. This implies that

$$λ_1(A)^2 + λ_2(A)^2 − λ_1(A)^2λ_2(A)^2 − 1 = (1 − λ_1(A)^2)(λ_2(A)^2 − 1) ≥ 0.$$

Hence, we must have $|λ_1(A)| ≤ 1 ≤ λ_2(A)$. \qed

Lemma 3.2. Let $A, B ∈ \mathbb{R}^{2×2}$ be given matrices. Then $\{A\}^{iso}$ and $\{B\}^{iso}$ are compatible if and only if $|λ_1(A)| ≤ λ_2(B)$ and, at the same time, $|λ_1(B)| ≤ λ_2(A)$.

Proof. Clearly, the lemma is true for $\det(A) = \det(B) = 0$. By symmetry, we can and we will assume that $\det(B) > 0$ for the rest of the proof. If necessary, we replace A and B by $−A$ and $−B$, respectively. In particular, we then have $0 < λ_1(B)$.

First, we start with $|λ_1(A)| ≤ λ_2(B)$ and $|λ_1(B)| ≤ λ_2(A)$. Then we obtain the inequality $|λ_1(A)/λ_2(B)| ≤ 1 ≤ λ_2(A)/λ_1(B)$. By Lemma 3.1, we conclude that the sets $\{C\}^{iso}$ and $SO(2)$ are compatible where $C = \text{diag}(λ_1(A)/λ_2(B), λ_2(A)/λ_1(B))$. Hence, there exist a rotation $R ∈ SO(2)$ and vectors $a, b ∈ \mathbb{R}^2$ such that $R + a ⊗ b = C$. If we multiply both sides from the right by $\text{diag}(λ_2(B), λ_1(B))$, we get

$$R \text{diag}(λ_2(B), λ_1(B)) + a ⊗ b = \text{diag}(λ_1(A), λ_2(A)).$$

This shows that $\{A\}^{iso}$ and $\{B\}^{iso}$ are compatible.

Second, we start with $\{A\}^{iso}$ and $\{B\}^{iso}$ being compatible. Then we can write

$$R \text{diag}(λ_2(B), λ_1(B)) + a ⊗ b = \text{diag}(λ_1(A), λ_2(A))Q$$

for some rotations $R, Q ∈ SO(2)$ and vectors $a, b ∈ \mathbb{R}^2$. Multiplying both sides from the right by $\text{diag}(1/λ_2(B), 1/λ_1(B))$, we see that $SO(2)$ and the set $\{D\}^{iso}$ are compatible where

$$D = \text{diag}(λ_1(A), λ_2(A))Q \text{diag}(1/λ_2(B), 1/λ_1(B)).$$ (2)
Hence, by Lemma 3.1, we must have $|\lambda_1(D)| \leq 1 \leq \lambda_2(D)$. This implies, in particular, that we can fix a vector $x_0 \in \mathbb{R}^2$ with $|x_0| = 1$ such that $|Dx_0| = 1$.

The rest of the proof is by contradiction. Suppose that $|\lambda_1(A)| > \lambda_2(B)$. In view of (2), we obtain the inequality $|Dx_0| \geq |\lambda_1(A)|/\lambda_2(B) > 1$. Now suppose that $|\lambda_1(B)| > \lambda_2(A)$. Then we have $|Dx_0| \leq \lambda_2(A)/|\lambda_1(B)| < 1$. In both cases, we get a contradiction to the choice of x_0.

In Figure 1(a), you see a given set $\{A\}^{iso}$ and the region of all $\{B\}^{iso}$ such that $\{A\}^{iso}$ and $\{B\}^{iso}$ are compatible.

The lemma and remark are taken from Conti et al. [CDLMR03, Lem. 2.2, Rem. 2].

Lemma 3.3. Let $c \in \mathbb{R}\setminus\{0\}$ be a real number. Then the functions $\varphi_c^\pm : \mathbb{M}^{2 \times 2} \to \mathbb{R}$ given by

$$
\varphi_c^\pm(A) = \lambda_2(A) \pm \lambda_1(A) - \det(A)/c
$$

are polyconvex. The same holds for the functions $\varphi_0^\pm = -\det$.

Proof. The lemma follows from the convexity of the functions $\lambda_2 \pm \lambda_1$, which in turn is proved by the explicit computation

$$
\lambda_2(A) \pm \lambda_1(A) = \sqrt{|A|^2 \pm 2 \det(A)} = \sqrt{(A_{11} \pm A_{22})^2 + (A_{21} \mp A_{12})^2}.
$$

The functions $-\det/c$ as well as $-\det$ are polyconvex by definition.

Remark 3.4. Let $A \in \mathbb{M}^{2 \times 2}$ be given. Consider the matrices $A_+, A_- \in \mathbb{M}^{2 \times 2}$ defined via

$$
A_\pm = \begin{pmatrix}
|\det(A)|^{1/2} & \pm \sqrt{|A|^2 - 2|\det(A)|} \\
0 & |\det(A)|^{-1/2} \det(A)
\end{pmatrix}.
$$

The matrices A_+ and A_- are rank-one connected and $A_+, A_- \in \{A\}^{iso}$ holds. Thus, the matrix $(A_+ + A_-)/2 = \text{diag}(|\det(A)|^{1/2}, |\det(A)|^{-1/2} \det(A))$ as well as every other matrix $B \in \mathbb{M}^{2 \times 2}$ with $\det(A) = \det(B)$ and $\lambda_2(B) \leq \lambda_2(A)$ lies in $(\{A\}^{iso})^{lc,1}$.

4 Lamination convex sets

We will introduce the sets $L_\alpha^\pm, L_\beta^0, \Delta_+(\alpha, \beta)$ and $\Delta_0(\beta)$. With the help of these sets, the proof of our results is becoming much simpler.

The following lemma can be used to construct compact lamination convex sets.

Lemma 4.1. Let $\alpha, \beta \geq 0$ be given real numbers. Then the following three sets are closed, isotropic and lamination convex

$$
L_\alpha^\pm = \{A \in \mathbb{M}^{2 \times 2} \mid \alpha \leq \pm \lambda_1(A)\}, \quad L_\beta^0 = \{A \in \mathbb{M}^{2 \times 2} \mid \lambda_2(A) \leq \beta\}.
$$
Proof. By definition, the sets L_{a}^{+}, L_{a}^{-} and L_{a}^{0} are closed as well as isotropic. The set L_{a}^{0} is even convex, in fact, we have that $L_{a}^{0} = \{A \in \mathbb{M}^{2\times2} \mid \|A\|_{\ast} \leq \beta\}$ where $\|\cdot\|_{\ast}$ denotes the spectral norm. Since for L_{a}^{-} we can exploit the fact $L_{a}^{-} = -L_{a}^{+}$, it remains to show that L_{a}^{-} is lamination convex. Suppose that this is not the case. Then there exist rank-one connected α, β such that $\det(\mu A_{1} + (1-\mu)A_{2}) < 0$. On the one hand, since α_{0} is a singular value of the matrix $\mu A_{1} + (1-\mu)A_{2}$, there exist a normalized vector $x_{0} \in \mathbb{R}^{2}$ with $|x_{0}| = 1$ and a rotation $R \in \text{SO}(2)$ such that $x_{0}^{T}R(\mu A_{1} + (1-\mu)A_{2})x_{0} = \alpha_{0}$.

On the other hand, we know that $|x_{0}^{T}A_{i}x_{0}| \geq \lambda_{1}(A_{i}) \geq \alpha$ for $i = 1, 2$. We conclude that $x_{0}^{T}R_{1}A_{1}x_{0}$ and $x_{0}^{T}R_{2}A_{2}x_{0}$ have different signs. Hence, we can fix a real number $\mu_{0} \in [0, 1]$ such that $x_{0}^{T}R(\mu_{0}A_{1} + (1-\mu_{0})A_{2})x_{0} = 0$ and $\det(\mu_{0}A_{1} + (1-\mu_{0})A_{2}) = 0$. This forms a contradiction, since the function $-\det$ is rank-one convex (even polyconvex) and $-\det(A_{i}) \leq -\alpha^{2} < 0$ holds for $i = 1, 2$.

For given non-negative real numbers $\alpha, \beta \geq 0$ we consider the following isotropic and compact (possibly empty) sets

$$\triangle_{\pm}(\alpha, \beta) = \{A \in \mathbb{M}^{2\times2} \mid \alpha \leq \pm \lambda_{1}(A) \land \lambda_{2}(A) \leq \beta\},$$

$$\triangle_{0}(\beta) = \{A \in \mathbb{M}^{2\times2} \mid \lambda_{2}(A) \leq \beta\}.$$

We collect some properties of these sets.

Lemma 4.2. The sets $\triangle_{\pm}(\alpha, \beta)$, $\triangle_{-}(\alpha, \beta)$ as well as $\triangle_{0}(\beta)$ are compact, isotropic and lamination convex. Consider the matrices $A_{1}^{\pm} = \text{diag}(\pm \alpha, \alpha)$, $A_{2}^{\pm} = \text{diag}(\pm \alpha, \beta)$ and $A_{3}^{\pm} = \text{diag}(\pm \beta, \beta)$. Then we have $\triangle_{\pm}(\alpha, \beta) = (\{A_{1}^{\pm}\}_{\text{iso}} \cup \{A_{2}^{\pm}\}_{\text{iso}} \cup \{A_{3}^{\pm}\}_{\text{iso}})_{\text{clc}}$ as well as $\triangle_{0}(\beta) = (\{A_{3}^{-}\}_{\text{iso}} \cup \{A_{3}^{+}\}_{\text{iso}})_{\text{clc}}$.

Proof. The sets $\triangle_{\pm}(\alpha, \beta)$, $\triangle_{-}(\alpha, \beta)$ as well as $\triangle_{0}(\beta)$ can be written as the intersection of L_{a}^{0}, L_{α}^{0} and L_{β}^{0} from Lemma 4.1, which implies the first part. The second part exploits that $\{A_{1}^{\pm}\}_{\text{iso}}$ and $\{A_{2}^{\pm}\}_{\text{iso}}$, $\{A_{2}^{\pm}\}_{\text{iso}}$ and $\{A_{3}^{\pm}\}_{\text{iso}}$ as well as $\{A_{3}^{-}\}_{\text{iso}}$ and $\{A_{3}^{+}\}_{\text{iso}}$ are compatible, see Lemma 3.2.

Let $Z \subseteq \mathbb{M}^{2\times2}$ be a given compact and isotropic set. Using the pair $\sigma(Z) = (\sigma_{1}(Z), \sigma_{2}(Z))$ given by $\sigma_{1}(Z) = \min\{|\lambda_{1}(A)| \mid A \in Z\}$ and $\sigma_{2}(Z) = \max\{|\lambda_{2}(A)| \mid A \in Z\}$, we define the set $Z^{\triangle} \subseteq \mathbb{M}^{2\times2}$ (see Figure 1(b)) via

$$Z^{\triangle} = \begin{cases} \triangle_{\pm}(\sigma(Z)) & \text{if } \forall A \in Z \pm \lambda_{1}(A) > 0 \\ \triangle_{0}(\sigma(Z)) & \text{otherwise.} \end{cases} \quad (3)$$

In view of Lemma 4.2, we obtain $Z \subseteq Z^{\text{clc}} \subseteq Z^{\triangle}$.
5 A refinement for the connected case

Conti et al. [CDLMR03] show that polyconvexity and lamination convexity are the same for isotropic compact subsets of $\mathbb{M}^{2\times 2}$ that are connected. Their idea can be used to prove a bit more. In order to see that, we will sketch their proof and give the details where minor changes are necessary.

Theorem 5.1. Let $K \subseteq \mathbb{M}^{2\times 2}$ be a given isotropic and compact set and $Z \in cc(K^{lc,1})$ a connected component. Then $Z^{lc,1}$ is polyconvex.

Proof. Let $Z \in cc(K^{lc,1})$ be an arbitrary but fixed connected component. Then we have

$$Z^{lc,1} \supseteq \{ B \in \mathbb{M}^{2\times 2} \mid \exists C \in Z^{lc,1} \ det(B) = det(C) \land |\lambda_1(B)| = \lambda_2(B) \}. \tag{4}$$

In fact, set $d_1 = \min \{ \det(B) \mid B \in Z \}$ and $d_2 = \max \{ \det(B) \mid B \in Z \}$. By definition, the set $\{ B \in \mathbb{M}^{2\times 2} \mid d_1 \leq \det(B) \leq d_2 \}$ is polyconvex and, hence, $Z^{lc,1}$ is a subset of it. The connectedness of Z together with Remark 3.4 implies that every matrix $B \in \mathbb{M}^{2\times 2}$ with $d_1 \leq \det(B) \leq d_2$ and $|\lambda_1(B)| = \lambda_2(B)$ lies in $Z^{lc,1}$.

We show that for every matrix $A \in \mathbb{M}^{2\times 2} \setminus Z^{lc,1}$ there is a polyconvex function $\varphi : \mathbb{M}^{2\times 2} \to \mathbb{R}$ that separates A from $Z^{lc,1}$, meaning $\varphi(A) > \max \{ \varphi(B) \mid B \in Z^{lc,1} \}$. In order to do that, we follow Conti et al. [CDLMR03]. They show that it is sufficient to check every $A \in \mathbb{M}^{2\times 2} \setminus Z^{lc,1}$ such that $A = \mathrm{diag}(\sigma_1, \sigma_2)$ holds for some real numbers $0 \leq \sigma_1 \leq \sigma_2$. Fix such a matrix A. If $\sigma_1 = \sigma_2$ holds, the set $\{ B \in \mathbb{M}^{2\times 2} \mid \det(B) = \det(A) \}$ does not intersect $Z^{lc,1}$. Otherwise (4) yields that A must lie in $Z^{lc,1}$, a contradiction. Thus, the connectedness of $Z^{lc,1}$ implies that we can either put $\varphi = \det$ or $\varphi = -\det$ and are done.

Assume that $\sigma_2 > \sigma_1$. Given a real number $c \in [\sigma_2, \sigma_2]$, they consider the level set

$$L_c = \begin{cases} \{ B \in \mathbb{M}^{2\times 2} \mid \varphi_c^-(B) = \varphi_c^-(A) \} & \text{for } c \in [\sigma_2, \sigma_1] \\ \{ B \in \mathbb{M}^{2\times 2} \mid \varphi_c^+(B) = \varphi_c^+(A) \} & \text{for } c \in [\sigma_1, \sigma_2], \end{cases} \tag{5}$$

see Lemma 3.3 for the definition of φ_c^\pm. They show that there exists a polyconvex φ that separates A from $Z^{lc,1}$ whenever at least one of the L_c does not intersect $Z^{lc,1}$. In fact, by a nice
argument, they can reduce this further. Let \(\tilde{Z} \subseteq \mathbb{M}^{2 \times 2} \) be any compact, connected and isotropic set. They prove that there exists one \(L_c \) that does not intersect \(\tilde{Z} \) if for every \(c \in [-\sigma_2, \sigma_2] \) at least one of the sets \(L_c^* \cap \tilde{Z} \) and \(L_c^* \cap \tilde{Z} \) is empty, where \(L_c^* \) and \(L_c^* \) are the connected components of \(L_c \backslash \{A\} \). This can be used for \(\tilde{Z} = Z^{lc,1} \). Fix \(c \in [-\sigma_2, \sigma_2] \) and suppose that both sets \(L_c^* \cap Z^{lc,1} \) and \(L_c^* \cap Z^{lc,1} \) are non-empty. Then there show that \(A \) must lie in \(\{B, C\}^{lc,1} \) for some rank-one connected matrices \(B \in L_c^* \cap Z^{lc,1} \) and \(C \in L_c^* \cap Z^{lc,1} \). This forms a contradiction as long as \(Z^{lc,1} \) is lamination convex and, hence, completes their proof.

In our case, we use the following argument. We still have \(A \in \{B, C\}^{lc,1} \subseteq Z^{lc,2} \) and conclude that \(d_1 \leq \det(A) \leq d_2 \). Connectedness of \(Z \) implies that there exists a matrix \(A' \in Z \) with \(\det(A') = \det(A) \). We know that \(A \notin Z^{lc,1} \) holds and, hence, we conclude that \(\lambda_2(A') < \lambda_2(A) \) by Remark 3.4. A simple computation shows that

\[
\forall c \in [-\sigma_2, \sigma_2] \quad \varphi^\pm(A) \geq \varphi^\pm(A').
\]

If for every \(c \in [-\sigma_2, \sigma_2] \) at least one of the sets \(L_c^* \cap Z \) and \(L_c^* \cap Z \) is empty, then we use the above argument for \(\tilde{Z} = Z \). Hence, we can fix a real number \(c \in [-\sigma_2, \sigma_2] \) such that \(L_c \) does not intersect \(\tilde{Z} \). Let \(\varphi \in \{\varphi^+, \varphi^-\} \) be the function that defines \(L_c \) in (5). Then connectedness of \(Z \) implies that either \(\varphi(A) < \min \{\varphi(B) \mid B \in Z\} \) or \(\varphi(A) > \max \{\varphi(B) \mid B \in Z\} \). In view of (6), the second alternative must hold, meaning \(\varphi \) separates \(A \) from \(Z \). Polyconvexity of \(\varphi \) implies that \(\varphi \) also separates \(A \) from \(Z^{lc,1} \) and we are done. Now if there exists a real number \(c \in [-\sigma_2, \sigma_2] \) such that both sets \(L_c^* \cap Z \) and \(L_c^* \cap Z \) are non-empty, then, as before, there exist \(B \in L_c^* \cap Z \) and \(C \in L_c^* \cap Z \) such that \(A \) lies in \(\{B, C\}^{lc,1} \). But \(\{B, C\}^{lc,1} \) is contained in \(Z^{lc,1} \) and, hence, we must have \(A \in Z^{lc,1} \), a contradiction. \(\square \)

6 Closed lamination convex hull

We are going to characterize the closed lamination convex hull of an isotropic and compact set of \(2 \times 2 \) matrices. The key ingredients are the following two lemmas. The first shows that the laminates of order one fully describe the topology of the closed lamination convex hull.

Lemma 6.1. Let \(K \subseteq \mathbb{M}^{2 \times 2} \) be compact and isotropic. Let \(Z_1, Z_2 \in cc(K^{lc,1}) \) be arbitrary but fixed connected components with \(Z_1 \neq Z_2 \). Then \((Z_1)^{\Delta} \) and \((Z_2)^{\Delta} \) are incompatible and so are \((Z_1)^{lc} \) and \((Z_2)^{lc} \) as well as \(Z_1 \) and \(Z_2 \).

Proof. Since \(K \) is compact, so are the sets \(K^{lc,1} \), \(Z_1 \) and \(Z_2 \). The compact and isotropic sets given via \(K_i = Z_i \cap K \) fulfill \((K_i)^{lc,1} = (Z_i)^{lc,1} \) for \(i = 1, 2 \). In addition, the sets \(K_1 \) and \(K_2 \) are incompatible. Otherwise there exist rank-one connected matrices \(B_1 \in K_1 \) and \(B_2 \in K_2 \) such that \(\{B_1, B_2\}^{lc} \) connects \(Z_1 \) and \(Z_2 \), which forms a contradiction.

We know that \(Z_i \subseteq (Z_i)^{lc} \subseteq (Z_i)^{\Delta} \) as well as \((K_i)^{lc} \subseteq (K_i)^{\Delta} \) and, hence, \((K_i)^{\Delta} = (Z_i)^{\Delta} \) holds for \(i = 1, 2 \). It suffices to prove that \((K_1)^{\Delta} \) and \((K_2)^{\Delta} \) are incompatible. Without loss of generality, we set \(\sigma_2(K_1) \leq \sigma_2(K_2) \). We distinguish two cases. First, suppose that \(\sigma_1(K_2) > \sigma_2(K_1) \). Then, by Lemma 3.2, the sets \((K_1)^{\Delta} \) and \((K_2)^{\Delta} \) are incompatible. Second, suppose that \(\sigma_1(K_2) \leq \sigma_2(K_1) \). Fix matrices \(B_1 \in K_1 \) and \(B_2, B_2' \in K_2 \) such that \(\lambda_2(B_1) = \)}
\[\sigma_2(K_1), |\lambda_1(B_2)| = \sigma_1(K_2) \text{ and } \lambda_2(B_2') = \sigma_2(K_2). \] Since \(K_1 \) and \(K_2 \) are incompatible, so are \(\{B_1\} \) and \(\{B_2\} \) as well as \(\{B_1\} \) and \(\{B_2'\} \). We conclude that
\[|\lambda_1(B_2)| \leq \lambda_2(B_2) < |\lambda_1(B_1)| \leq \lambda_2(B_1) < |\lambda_1(B_2')| \leq \lambda_2(B_2'). \]

But then the set \(K_2 \) decomposes into at least two incompatible subsets and, hence, \(Z_2 \) is not connected. This is a contradiction. \(\square \)

The next lemma gives a candidate for the closed lamination convex hull.

Lemma 6.2. Let \(K \subseteq \mathbb{M}^{2 \times 2} \) be a given compact and isotropic set. Then the set \(T = \bigcup \{ Z_{\text{clc}} \mid Z \in \text{cc}(K_{\text{lc}}) \} \) is compact, lamination convex and contains \(K \).

Proof. By definition, \(T \) contains \(K \). We show that \(T \) is compact. Let \(A_1, A_2, \ldots \) be a given sequence in \(T \). Since \(T \) is a bounded set, we can and will assume that \(A_k \to A \in \mathbb{M}^{2 \times 2} \) holds for some matrix \(A \in \mathbb{M}^{2 \times 2} \). If necessary, we replace \(A_1, A_2, \ldots \) by a subsequence. Let \(Z_1, Z_2, \cdots \in \text{cc}(K_{\text{lc}}) \) be the sequence of connected components such that \(A_k \in (Z_k)_{\text{clc}} \subseteq (Z_k)_{\text{lc}} \) holds for every \(k = 1, 2, \ldots \). First, suppose that there exists a real number \(\epsilon > 0 \) such that for every \(k = 1, 2, \ldots \) we have \(|(Z_k)_{\text{lc}}| \geq \epsilon \) where \(|.|\) denotes the Lebesgue measure of a set. Boundedness of \(T \) implies that there exists a connected component \(Z_0 \in \text{cc}(K_{\text{lc}}) \) and a subsequence (not relabeled) such that \(Z_k = Z_0 \) for every \(k \). Since the set \((Z_0)_{\text{clc}} \) is compact, \(A \) lies in \((Z_0)_{\text{clc}} \subseteq T \). Second, suppose that there is no such \(\epsilon > 0 \) as before. Then there exists a subsequence (not relabeled) such that \(|(Z_k)_{\text{lc}}| \to 0 \) holds. In view of (3), this means that
\[\sup \{|B_1 - B_2| \mid B_1 \in (Z_k)_{\text{lc}} \land B_2 \in Z_k \} \to 0. \]

We take any sequence \(A_1', A_2', \ldots \) in \(K_{\text{lc}} \) such that \(A_k' \in Z_k \) for every \(k = 1, 2, \ldots \). Then we must have \(A_k' \to A \) and, hence, compactness of \(K_{\text{lc}} \) implies that \(A \in K_{\text{lc}} \subseteq T \).

Now we show that \(T \) is lamination convex. Let \(A_1, A_2 \in T \) be given matrices. First, suppose that \(A_1, A_2 \in Z_{\text{clc}} \) for some \(Z \in \text{cc}(K_{\text{lc}}) \). Then we have \(\{A_1, A_2\}_{\text{clc}} \subseteq Z_{\text{clc}} \subseteq T \). Second, suppose that \(A_i \in Z_{\text{lc}} \) for \(i = 1, 2 \) such that \(Z_1, Z_2 \in \text{cc}(K_{\text{lc}}) \) and \(Z_1 \neq Z_2 \). We know from Lemma 6.1 that \((Z_1)_{\text{lc}} \) and \((Z_2)_{\text{lc}} \) are incompatible and so are \(\{A_1\} \) and \(\{A_2\} \). We conclude that \(\{A_1, A_2\}_{\text{clc}} = \{A_1, A_2\} \subseteq T \). \(\square \)

Finally, we are in the position to characterize the closed lamination convex hull.

Theorem 6.3 (Characterization of \(K_{\text{clc}} \)). Let \(K \subseteq \mathbb{M}^{2 \times 2} \) be compact and isotropic. Then its closed lamination convex hull is given by \(K_{\text{clc}} = K_{\text{lc}}^{c2} \).

Proof. Let \(T \subseteq \mathbb{M}^{2 \times 2} \) be as in Lemma 6.2. On the one hand, we know that \(K_{\text{clc}} = (K_{\text{lc}}^{c1})_{\text{clc}} \subseteq T \). On the other hand, we have shown in Lemma 6.2 that the set \(T \) is lamination convex, compact and contains \(K \). We conclude that \(K_{\text{clc}} = T \).

Let \(Z \in \text{cc}(K_{\text{lc}}) \) be a connected component. Then \(Z_{\text{lc}} \) is polyconvex as an application of Theorem 5.1. In particular, we have \(Z_{\text{lc}} = Z_{\text{lc}}^{c1} \) and, hence, \(K_{\text{clc}} \subseteq K_{\text{lc}}^{c2} \). Since the other inclusion holds by definition, we conclude that \(K_{\text{clc}} = K_{\text{lc}}^{c2} \). \(\square \)
7 Quasiconvex hull

We show the equivalence of quasiconvexity and laminaton convexity for isotropic compact subsets of $\mathbb{M}^{2 \times 2}$. We rely on a result by Faraco and Székelyhidi [FS08].

The next lemma deals with the case of two connected components.

Lemma 7.1. Let $S \subseteq \mathbb{M}^{2 \times 2}$ be a given compact set (not necessarily isotropic) and $0 \leq \beta_1 < \alpha_2 \leq \beta_2$ real numbers. If $S \subseteq \triangle_0(\beta_1) \cup \triangle_+(\alpha_2, \beta_2)$ holds and S^{qc} is connected, then one of the sets $S \cap \triangle_0(\beta_1)$ and $S \cap \triangle_+(\alpha_2, \beta_2)$ must be empty.

Proof. By rescaling the matrix space $\mathbb{M}^{2 \times 2}$, if necessary, we can and we will assume that there exists a positive real number $\epsilon > 0$ such that

$$\beta_1 \leq 1 - \epsilon < 1 + \epsilon \leq \alpha_2 \leq \beta_2. \quad (7)$$

Lemma 3.3 implies that $f = \varphi_1 + 1$, with $f(A) = \lambda_1(A) + \lambda_2(A) - \det(A) - 1$, is a polyconvex function. In particular, the set $P = \{ A \in \mathbb{M}^{2 \times 2} \mid f(A) \leq -\epsilon^2 \}$ is polyconvex by definition. We are going to show that $\triangle_0(\beta_1) \cup \triangle_+(\alpha_2, \beta_2)$ is a subset of P. Consider the matrices $A_1 = \text{diag}(-\beta_1, \beta_1)$, $A_2 = \text{diag}(\beta_1, \beta_1)$, $A_3 = \text{diag}(\alpha_2, \alpha_2)$, $A_4 = \text{diag}(\alpha_2, \beta_2)$ and $A_5 = \text{diag}(\beta_2, \beta_2)$. Since, in addition, P is isotropic, Lemma 4.2 implies that it is sufficient to show that $A_i \in P$ for $i = 1, \ldots, 5$. However this can be tested easily if we make use of (7) and the fact that for every $A \in \mathbb{M}^{2 \times 2}$ we have $f(A) = (1 - \lambda_1(A))(\lambda_2(A) - 1)$.

We have shown that $S \subseteq \triangle_0(\beta_1) \cup \triangle_+(\alpha_2, \beta_2)$ is a subset of P. Since the set P is polyconvex, the quasiconvex hull S^{qc} is also contained in P. Yet the identity matrix lies not in P. As a consequence of Remark 3.4, for every matrix $A \in S^{qc}$ we must have $\det(A) \neq 1$. We know that S^{qc} is connected and, in addition, $\det < 1$ holds in $\triangle_0(\beta_1)$ and $\det > 1$ in $\triangle_+(\alpha_2, \beta_2)$. Hence, one of the sets $S \cap \triangle_0(\beta_1)$ and $S \cap \triangle_+(\alpha_2, \beta_2)$ must be empty.

Now we are going to prove our result about the equivalence of laminaton convexity and quasiconvexity.

Theorem 7.2 (Equivalence). Let $K \subseteq \mathbb{M}^{2 \times 2}$ be a given compact and isotropic set. Then K is laminaton convex if and only if K is quasiconvex.

Proof. We only have to show one implication. Assume that K is laminaton convex and let $\nu \in \mathcal{P}^{qc}$ be a fixed homogenous gradient Young measure with support $S = \text{supp}(\nu) \subseteq K$.

By Remark 2.1, we need to show that $\bar{\nu} \in K$. Let Z be the set of all connected components $Z \in \text{cc}(K)$ such that $Z \cap S$ is non-empty. First, suppose that there exists only one such connected component, meaning $Z = \{Z\}$. Since Z is isotropic, laminaton convex, compact and connected, Theorem 5.1 implies that Z is quasiconvex (even polyconvex). Hence, $\bar{\nu}$ must lie in $Z \subseteq K$.

Second, suppose that S is distributed over more than one connected component. By compactness arguments, we can fix $Z_1, Z_2 \subseteq Z$ that are extremal in the following sense. For every
\(Z \in \mathcal{Z} \) we have \(\sigma_2(Z_1) \leq \sigma_2(Z) \leq \sigma_2(Z_2) \). Up to symmetry, there are only three different cases: \((Z_2)^\Delta = \Delta_+ (\alpha_2, \beta_2)\) and either \((Z_1)\Delta = \Delta_0 (\beta_1)\), \((Z_1)\Delta = \Delta_+ (\alpha_1, \beta_1)\) or \((Z_1)\Delta = \Delta_- (\alpha_1, \beta_1)\) for some reals \(0 \leq \alpha_1 \leq \beta_1 < \alpha_2 \leq \beta_2\).

We fix real numbers \(\beta, \alpha \in \mathbb{R}\) such that \(\beta_1 < \beta < \alpha < \alpha_2\) holds as well as

\[
S \subseteq \Delta_0 (\beta) \cap \Delta_+ (\alpha, \beta_2).
\] (8)

In order to see that this can be done, let \(\epsilon > 0\) be a given real number. Recall that \(K^{lc,1} = K\) holds and, hence, Lemma 6.1 implies that elements in \(\mathcal{Z}\) are pairwise incompatible. We fix \(\beta(\epsilon), \alpha(\epsilon) \in \mathbb{R}\) such that \(\alpha_2 - \epsilon < \beta(\epsilon) < \alpha(\epsilon) < \alpha_2\) holds and, in addition, for every \(Z \in \mathcal{Z}\) we have either \(\sigma_2(Z) < \beta(\epsilon)\) or \(\sigma_1(Z) > \alpha(\epsilon)\). Suppose that \(\beta(\epsilon)\) and \(\alpha(\epsilon)\) fail to fulfill (8) for every \(\epsilon > 0\). Then there must be a sequence \(A_1, A_2, \ldots\) in \(S\) such that \(\lambda_1(A_k) < 0\) holds for every \(k = 1, 2, \ldots\) and \(\lambda_2(A_k) \to \alpha_2\). By compactness of the set \(S\), we can fix a cluster point \(A_0 \in S\) of this sequence. On the one hand, we know that \(\lambda_1(A_0) \leq 0\) and, hence, \(A_0 \notin (Z_2)^\Delta = \Delta_+ (\alpha_2, \beta_2)\). On the other hand, \(\lambda_2(A_0) = \alpha_2\) implies that \(\{A_0\}\) and \((Z_2)^\Delta\) are compatible. By Lemma 6.1, we must have \((Z_0)^\Delta = (Z_2)^\Delta\) where \(Z_0\) is given by \(A_0 \in Z_0 \in \mathcal{Z}\). This is a contradiction.

A result by Faraco and Székelyhidi [FS08, Cor. 3] implies that \(S^{qc}\) is connected. As a consequence of Lemma 7.1, one of the sets \(S \cap \Delta_0 (\beta)\) and \(S \cap \Delta_+ (\alpha, \beta_2)\) must be empty. This forms a contradiction. Hence, it is impossible that \(S\) is distributed over more than one connected component.

Our next result can be used to compute the quasiconvex hull.

Theorem 7.3 (Characterization of \(K^{qc}\)). Let \(K \subseteq M^{2 \times 2}\) be compact and isotropic. Then its quasiconvex hull coincides with its lamination convex hull of order 2.

Proof. Clearly, the set \(K^{lc}\) is compact, isotropic and lamination convex. Theorem 6.3 and Theorem 7.2 imply that \(K^{lc,2} = K^{lc} = K^{qc}\) holds. \(\square\)

References

