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Abstract

This paper deals with dimension reduction in linearized elastoplasticity in the rate-independent
case. The reference configuration of the elastoplastic body is given by a two-dimensional middle
surface and a small but positive thickness. We derive a limiting model for the case in which the
thickness of the plate tends to 0. This model contains membrane and plate deformations which
are coupled via plastic strains. The convergence analysis is based on an abstract Γ-convergence
theory for rate-independent evolution formulated in the framework of energetic solutions. This con-
cept is based on an energy-storage functional and a dissipation functional, such that the notion of
solution is phrased in terms of a stability condition and an energy balance.

1 Introduction

For engineering applications the derivation of lower-dimensional theories for bodies such as rods,
beams, membranes, plates and shells from a three-dimensional theory is of fundamental importance. In
[Mor59a] and [Mor59b] a first rigorous justification of Kirchhoff’s plate equation and the plane membrane
system, respectively, can be found. The term “justification” has to be understood as the convergence
of the solutions of the full three-dimensional system towards solutions of the limiting model without any
additional assumptions on the solutions. Later results for rods, linear and nonlinear plates, or shells
can be found in [CiD79; FJM06] and the references therein. An important tool in most of the recent in-
vestigations is the notion of Γ-convergence. This convergence assures, roughly speaking, that (almost)
minimizers of the three-dimensional theory (subject to suitable boundary conditions and applied loads)
converge to minimizers of the limiting lower-dimensional theory.

However, as Γ-convergence is a purely static concept, there are only very few results concerning the
justification of similar dimension reductions for evolutionary problems in nonlinear continuum mechan-
ics, see [AMM09] for a recent result. More often, lower dimensional theories are derived by ad hoc
assumptions via formal asymptotic expansion, see e.g. [MCH03; KrS07; GKS08].

In [LiM10] an elastoplastic plate model in the rate-independent case was derived using an abstract
Γ-convergence result developed in [MRS08]. The scaling of the displacements in [LiM10] follows the
classical theory, see e.g. [Cia97] and the references therein. However, the plastic strains were scaled in
a way such that the dissipation potential of the scaled system is independent of the parameter describ-
ing the thickness of the plate. Hence, it can be shown that the scaled dissipation functional converges
continuously to a limit functional and the results of [MRS08] can be directly applied.

In this paper we propose a scaling of the plastic strains that matches the scaling of the linearized strain
tensor. Therefore, the scaled dissipation functional depends on the thickness of the plate and converges
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in the sense of Mosco (see [Att84]) to a highly degenerated limit functional. Hence the method devel-
oped in [LiM10] cannot be applied. By exploiting the quadratic form of the energy functionals we are
in position to circumvent this problem and to do a limit passage from linearized elastoplasticity in three
dimensions to a model that combines two two-dimensional linear elastic models, namely the membrane
model for in-plane displacements and Kirchhoff’s plate equation for the out-of-plane displacement, with
plastic effects. Although the equations for the elastic equilibrium are the same as in [LiM10] the plastic
flow rule differs.

The evolution of an elastoplastic body in the rate-independent case can be formulated in different ways,
e.g. as a variational inequality, a differential inclusion, or as an energetic system. All three are expressed
in terms of an energy functional

Eh(t, u, p) =

∫
Ω

W h(ε(u), p)dx− 〈`(t), u〉,

defined as integral over the rescaled plate domain Ω := ω × (−1/2, 1/2). Here u and p are the
rescaled displacements and plastic strains, respectively. The small parameter h > 0 is proportional to
the unscaled thickness of the plate and occurs in Wh via the corresponding scalings of the strains.

Additionally we have a dissipation potential

Rh(ṗ) =

∫
Ω

Rh(ṗ)dx.

Rate-independence is implemented by the positive 1-homogeneity of Rh, i.e. Rh(λṗ) = λRh(ṗ) for
all λ ≥ 0 and all ṗ.

The solutions have to satisfy the differential inclusion

0 = DEh(t, u(t), p(t)), 0 ∈ ∂ṗRh(ṗ(t)) + DpEh(t, u(t), p(t)),

where the first equation is the balance of forces and the second is the plastic flow rule.

For a quadratic energy functional Eh(t, ·) the differential inclusion is fully equivalent to the so-called
energetic formulation (see [MiT04; Mie05]). The energetic formulation is stated in terms of an energetic
stability condition and the total balance of energy. The advantage of the energetic formulation is that it
is based on Eh and Rh rather than on their derivatives. Thus, notions of convergence for functionals
such as Γ-convergence and Mosco convergence can be applied.

The underlying model together with the underlying scalings will be described in Section 2.1. Moreover,
we state the main result of this paper, namely the convergence of the solutions of the three-dimensional
system to a solution of a lower-dimensional system. Its proof is the content of the following Section 3.
Here, we use the ideas developed in [MRS08].

In Section 4 we formulate the limit problem in terms of the in-plane displacements (v1, v2), the out-
of-plane displacement v3, and the plastic strain p, which is still defined on all of Ω. For an isotropic
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material, the limiting model takes the form

0 = − div
(
Σ0

(
ε1,2(v))−[p1,2]0

))
−Gmemb(t, ·) in ω, (1.1a)

0 = div div
(
Σ0

(
1
24

D2v3+[p1,2]1
))
− gbend(t, ·)− div Gbend(t, ·) in ω, (1.1b)

0 ∈ ∂R(Dṗ) +
(
[[ Σ0(p

1,2−ε1,2(v)+x3D
2v3) || 0 ]]

)
+ khardDp in Ω, (1.1c)

where Σ0(ε) := 2λµ
λ+2µ

trεI2 + 2µε, ε ∈ R2×2
sym. Here, ε1,2(v) ∈ R2×2

sym is the in-plane strain tensor and

D2v3 ∈ R2×2
sym the bending strain tensor.

Equation (1.1a) is the second-order membrane equation for (v1, v2), which is coupled to the plastic
strain p via the integrals [·]0 over x3 ∈]−1, 1[. Equation (1.1b) is a generalization of Kirchhoff’s plate
equation (of order four) for v3. It is also coupled to the plastic strain p, but now with weighted averages
[·]1.The flowrule (1.1c) exhibits the elastic strains as forcing in a very special manner concerning the
dependence on x3.

In Section 4.1 we discuss other possible choices for the scalings of the plastic strain and compare the
results with the limit model derived in [LiM10]. Finally, in Section 4.2 we show briefly how the last equa-
tion in (1.1) can be eliminated using a vector-valued hysteresis operator of play type.

2 Setup of the elastoplastic model

The starting point for our study is the classical elastoplastic model with hardening. Here we focus on
domains with plate geometry, i.e., Ωh = ω×(−h/2, h/2), where ω is the mid surface and the thickness
h > 0 is sufficiently small. We formulate the evolution of the plate in terms of a differential inclusion
or equivalently as a variational inequality. Moreover, we will outline the suitable scalings to obtain a
nontrivial limiting model. The final model will be presented in Section 2.3, while the convergence proof
is the content of Section 3.

2.1 The clamped elastoplastic plate

We consider a bounded Lipschitz domain ω ⊂ R2 and set Ωh := ω × (−h/2, h/2). We denote by
Γ0

h = γ0× (−h/2, h/2) the part of the body with prescribed boundary conditions. Here, γ0 ⊂ ∂ω has
a positive 1-dimensional Hausdorff measure. We set

H1
Γ0

h
(Ωh; R3) := {u ∈ H1(Ωh; R3) : u = 0 on Γ0

h},

where Γ0
h := γ0×(−h/2, h/2) denotes the part of the boundary where the displacement is prescribed.

The elastoplastic properties of the body Ωh are described in terms of the linearized strain tensor ε(u) =
1
2
(∇u +∇uT) and the plastic strain tensor

p ∈ R3×3
dev := {A ∈ R3×3

sym : tr p = 0}
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via the stored energy density W : R3×3
sym × R3×3

dev → R, which is assumed to be given by

W(ε, p) = 1
2
C(ε− p) : (ε− p) + khard

2
|p|2.

Here we are interested in the isotropic and homogeneous case, i.e., Ce = λtr e+2µe, where λ, µ > 0
are the Lamé constants and khard is a measure for kinematic hardening.

Moreover, the plastic flow rule of the material can be formulated in terms of a dissipation potential
R : R3×3

dev → [0,∞), which is assumed to be continuous, convex, and homogeneous of degree 1.
The latter conditions means R(λṗ) = λR(ṗ) for all λ > 0 and ṗ ∈ R3×3

dev . The corresponding elastic
domain K ⊂ R3×3

dev is defined via K := ∂R(0), which is the subdifferential of R at 0. More specifically,
we assume that R(ṗ) = σyield|ṗ| for a given yield stress σyield > 0. This corresponds to the von Mises
yield criterion.

Given time-dependent volume and surface loadings fh(t, ·) and gh(t, ·) the full elastoplastic problem
can be written in the form

− div
(
∂εW(ε(u), p)

)
= fh(t, ·) in Ωh,

0 ∈ ∂R(ṗ) + ∂pW(ε(u), p) in Ωh,

u(t, ·) = 0 on Γ0
h,

∂εW(ε(u), p)ν = gh(t, ·) on ∂Ωh\Γ0
h,

(2.1)

where ν denotes the outer normal vector on ∂Ω. Here σ = ∂εW ∈ R3×3
sym denotes the stress, while

∂pW ∈ R3×3
dev contains the deviator of the stress as well as any plastic back stresses.

We reformulate the system (2.1) in abstract form for the pair q = (u, p) via the energy functional
Eh : [0, T ]×Qh → R and the dissipation functional Rh : Qh → [0,∞] as follows

Qh := H1
Γ0

h
(Ωh; R3)× L2(Ωh; R3×3

dev ),

Eh(t, q) :=

∫
Ωh

W(ε(u), p) dx− 〈`h(t), u〉 and Rh(ṗ) :=

∫
Ωh

R(ṗ) dx.

where `h(t) ∈ Q∗
h is defined via

〈`h(t), u〉 :=

∫
Ω

fh(t, x) · u(x) dx +

∫
Ωh\Γ0

h

gh(t, x) · u(x) da(x). (2.2)

Although the dissipation potential depends only on the plastic strain rate ṗ we will also write Rh(q̇) as
no confusion will arise.

We call a function qh = (uh, ph) : [0, T ] → Qh a solution to the RIS (Qh, Eh,Rh) (and hence to the
above elastoplastic problem (2.1)), if it solves one of the following three equivalent problem formulations:
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Differential inclusion:

0 ∈ ∂Rh(q̇h(t)) + DqEh(t, qh(t)); (2.3a)

Variational inequality:

∀ q̃ ∈ Qh : 〈DqEh(t, qh(t)), q̃−q̇〉+Rh(q̃)−Rh(q̇h) ≥ 0; (2.3b)

Energetic formulation:

(S) ∀ q̃ ∈ Qh : Eh(t, qh(t)) ≤ Eh(t, q̃) +Rh(q̃−qh(t)),

(E) Eh(t, q(t)) +
∫ t

0
Rh(q̇) ds = Eh(0, qh(0))−

∫ t

0
〈 ˙̀h, qh〉 ds.

(2.3c)

Condition (S) is referred to as the stability whereas (E) is called the energy balance. We refer to [Mie05,
Sect. 2] for the equivalence between these three forms. For any h > 0 and `h ∈ W1,1(0, T ;Q∗

h) the
above problems have a unique solution (see [HaR99; MiT04])

2.2 Scaling for thin-plate domains

It is already known from the theory of linearized elasticity, see [Mor59a; Mor59b; CiD79] that the strain of
in-plane displacements (membrane modes) are smaller than the out-of-plane modes (bending modes).
As in [LiM10] we use the following scaling for the displacements:

uh(xh) = Shu
h(Shxh), where Sh = diag(1, 1, 1/h).

Since xh ∈ Ωh is mapped to x = Shxh ∈ Ω1, the rescaled function uh will be defined in U :=
H1

Γ0(Ω; R3), where Ω := Ω1 and Γ0 := γ0 × (−1/2, 1/2). In the following we will indicate functions,
functionals etc. associated with the domain Ωh by a subscript h and their rescaled counterparts by a
superscript h.

For linearized elasticity the scaling of the strains is arbitrary, because it is an infinitesimal theory by
definition. In contrast, the theory of linearized elastoplasticity is no longer scaling invariant, because
the boundary of the elastic domain K = ∂R(0) contains the given yield stresses of order 1, i.e.
independent of h. Thus, our theory needs a scaling where most of the strains in the plastic tensor p as
well as in ε are of order 1.

The scaling acts differently on the components of the strains in ε(uh), as follows

ε(uh)(xh) = Sh ε(uh)(Shxh) Sh =

 ε11(u
h) ε12(u

h) 1
h
ε12(u

h)

ε12(u
h) ε22(u

h) 1
h
ε23(u

h)
1
h
ε13(u

h) 1
h
ε23(u

h) 1
h2 ε33(u

h)

 .

Concerning the scaling of the plastic strain tensor we look for scalings of the form

ph(xh) = Πα,β
h ph(Shxh) :=

 ph
11 ph

12
1

hα ph
13

ph
12 ph

22
1

hα ph
23

1
hα ph

13
1

hα ph
23

1
hβ ph

33

 . (2.4)
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To simplify the presentation we will choose α = 1 and β = 2 which fits to the scaling of ε, i.e,
ph = Shp

hSh. Note, that this differs from the scalings in [LiM10] where α = β = 0. We refer to
the end of Section 4 for a discussion of more general scalings. The plastic strain tensors ph are thus
defined in the space

Ph := {p ∈ L2(Ω; R3×3
sym ) : p11 + p22 + p33/h

2 = 0} ⊂ P := L2(Ω; R3×3
sym ).

Finally, we introduce the spaces

Qh := U × Ph ⊂ Q := U × P .

When substituting qh = (uh, ph) in Eh and Rh we still have to take care of the change in the volume
measure. Hence we set

Eh(t, uh, ph) =
1

h
Eh(t, uh, ph) and Rh(ṗh) =

1

h
Rh(ṗh).

To control the loading part of `h defined in (2.2), we also have to assume a corresponding scaling of
the loadings namely

fh(t, xh) = S−1
h Fvol(Shxh) and gh(t, xh) = hS−1

h Fsurf(Shxh),

where xh ∈ ω×{−h/2, h/2}. For simplicity, we assume that there are no surface loadings on
∂ω\γ0 × (−h/2, h/2). They could be easily included, but need a different scaling. Then, Eh :
[0, T ]×Qh → R and Rh : Qh → [0,∞) take the form

Eh(t, u, p) =

∫
Ω

W(Shε(u)Sh, ShpSh) dx− 〈`(t), u〉, (2.5a)

Rh(ṗ) =

∫
Ω

R(Shṗ(x)Sh) dx, (2.5b)

〈`(t), u〉 =

∫
Ω

Fvol(t, x)u(x) dx +

∫
ω×{−1,1}

Fsurf(t, x)u(x) da(x), (2.5c)

where Fv and Fs are such that ` ∈ W1,1(0, T ;U∗). In order to compute the Γ-limits for Eh and Rh,
we extend Eh and Rh to the bigger space Q by setting Eh = Rh = ∞ on Q\Qh.

The only dependence in h occurs through the scaling of the elastic and plastic strains. Using Korn’s
inequality and assuming h ∈ (0, 1] we have the uniform convexity.

Eh(t, q) ≥ c(‖Shε(u)Sh‖2
L2 + ‖ShpSh‖2

L2) ≥ c(‖ε(u)‖2
L2 + ‖p‖2

L2)

≥ cKornc‖u‖2
H1 + c‖p‖2

L2

(2.6)

independently of h. The existence of solutions of the RIS (Q, Eh,Rh) is classical. For a proof of the
following theorem we refer to [Red92; HaR99; MiT04].
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Theorem 2.1. Assume that (Q, Eh,Rh) is as above with ` ∈ W1,1(0, T ;Q∗) and that qh
0 ∈ Q is

stable at t = 0 (i.e. 0 ∈ ∂Rh(0) + DqEh(0, qh
0 )), then there is a unique energetic solution qh ∈

W1,1(0, T ;Q) with qh(0) = qh
0 . Moreover, it holds that qh(t) ∈ Qh and

‖q̇h‖L1(r,s;Q) ≤ C‖ ˙̀(t)‖L1(r,s;Q∗), (2.7)

where C > 0 is independent of h and 0 ≤ r < s ≤ T .

Obviously, the scalings of the unique energetic solutions w.r.t. the RIS (rate-independent system)
(Qh, Eh,Rh) are the unique energetic solutions of the RIS (Qh, Eh,Rh).

2.3 The limiting elastoplastic model

Obviously, the energy Eh blows up for h → 0 if the strains εi3(u) and pi3 do not vanish. Thus, we
expect the limit energy to be defined on a reduced space, namely

QKL := {(u, p) ∈ Q : εi3(u) = pi3 = 0} = UKL × PKL .

The restriction in UKL take the explicit form

∂x1u3 + ∂x3u1 = ∂x2u3 + ∂x3u2 = ∂x3u3 = 0 a.e. in Ω.

The last equation implies that u3 is independent of x3. Using this the first two equations imply that u1

and u2 are affine in x3. Defining

V = {(v1, v2, v3) ∈ H1
γ0

(ω; R3) : v3 ∈ H2(ω), ∇v3 · ν = 0 on γ0}

the space UKL of so-called Kirchhoff–Love displacements can be characterized by

UKL = {u = Kv : v ∈ V } with

Kv(x1, x2, x3) =

v1(x1, x2)− x3∂x1v3(x1, x2)
v2(x1, x2)− x3∂x2v3(x1, x2)

v3(x1, x2)

 ,
(2.8)

see e.g. [Cia97; CiD79]. Note that the component u3 has gained higher smoothness.

The limit model will be defined in such a way that it is restricted to UKL × PKL. The reduced energy
is obtained by relaxing the strains εj3 and pj3 in the following way. We decompose the 6-dimensional
space R3×3

sym into two three-dimensional components by setting

ε1,2 :=

(
ε11 ε12

ε21 ε22

)
∈ R2×2

sym , ε3 := (ε13, ε23, ε33) ∈ R3. (2.9a)

For A ∈ R2×2
sym and b ∈ R3 we define [[ A || b ]] ∈ R3×3

sym such that ε = [[ ε1,2 || ε3 ]] , i.e.

[[ A || b ]] =

A11 A12 b1

A12 A22 b2

b1 b2 b3

 . (2.9b)
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Now we define a relaxed energy density depending only on ε1,2 and p1,2, namely

W(ε1,2, p1,2) := min{W( [[ ε1,2 || a ]] , [[ p1,2 || b ]] ) : a, b ∈ R3 ∧ b3 = −p11−p22}.

Note that due to the plastic incompressibility the constraint b3 = −p11 − p22 has to be included. The
definition of W implies the important lower estimate

W(ShεSh, ShpSh) ≥ W(ε1,2, p1,2) for all h ∈ [0, 1], ε, p ∈ R3×3
sym . (2.10)

For the the isotropic W defined in Section 2.1 we obtain the energy density

W(ε1,2, p1,2) =
λµ

λ+2µ

(
tr(ε1,2−p1,2)

)2
+ µ
∣∣ε1,2−p1,2

∣∣2 + khard

2

(∣∣p1,2
∣∣2 + (p11 + p22)

2
)
.

We define the limit energy E0 : [0, T ]×Q → R∞ by

E0(t, q) :=


∫

Ω

W(ε1,2(u), p1,2) dx− 〈`(t), u〉 , if q ∈ QKL

+∞, else

For the limit dissipation functional the derivation is even simpler. We immediately see that R0 : P →
R∞ defined by

R0(ṗ) =

 σyield

∫
Ω

∣∣ṗ− (ṗ11 + ṗ22)e3 ⊗ e3

∣∣ dx , if ṗ ∈ PKL

+∞, else,

is the Γ-limit, where e3 = (0, 0, 1)T.

The following convergence result, which is the central aim of this paper, shows that the solutions qh =
(uh, ph) of the RIS (Q, Eh,Rh) converge, for h → 0, to solutions q = (u, p) of the limiting RIS
(Q, E0,R0). The proof will be established in Section 3. We follow the ideas in [MRS08] and adapt
the results presented therein to our needs. The specific properties of the limit system as well as the
connection with the model derived in [LiM10] are discussed in Section 4.

Theorem 2.2. Assume that the RIS (Q, Eh,Rh) are given as above for all h ∈ [0, 1]. Consider a
family of solutions qh : [0, T ] → Q, as defined in (2.3). Moreover assume that we have Eh(0, qh

0 ) →
Eh(0, q0

0) and qh
0 ⇀ q0

0 in Q. Then for all t ∈ [0, T ] we have the convergences

qh(t) → q(t), Eh(t, qh(t)) → E0(t, q(t)),

∫ t

0

Rh(q̇h) dt →
∫ t

0

R0(q̇h) dt.

Moreover, q is an energetic solution of the RIS (Q, E0,R0).

Remark 2.3. Note that the existence of initial data qh
0 satisfying the assumptions in Theorem 2.2 is not

trivial. We refer to [LiM10] for a discussion of this question.
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3 Proof of Theorem 2.2

In this section we will prove our main result which is stated in terms of Γ-convergence of the energy
functionals Eh and the dissipation functionals Rh. We will use the weak and the strong topologies
in the underlying Hilbert space Q. More specifically we use the notion of Mosco convergence (cf.

[Dal93; Att84]) denoted by Ih M−→ I0. The definition is as follows

Ih M−→ I0 ⇐⇒


(i) Liminf estimate:

qn ⇀ q =⇒ I(q) ≤ lim inf
n→∞

In(qn),

(ii) Limsup estimate (existence of recovery sequences)
∀ q̂ ∈ Q ∃ (q̂n)n : q̂n → q̂ and I(q̂) ≥ lim sup

n→∞
In(q̂n).

(3.1)

Hence, Mosco convergence is nothing but Γ-convergence with respect to both the weak and strong
topology.

In the following we will use the notation [n] = {1, . . . , n}, n ∈ N in order to shorten notation.

3.1 Γ-limit of the energy functional

Proposition 3.1. Let Eh : [0, T ]×Q → R∞ and E0 : [0, T ]×Q → R∞ be defined as above. Then

Eh Γ→ E0 as h → 0 with respect to the weak topology on Q. Indeed, Eh even converges to E0 in the
sense of Mosco-convergence.

The proof is similar to the classical one by P. Ciarlet [Cia97, Sect. 1.4 and 1.11].

Proof. i) We start by proving the lim inf inequality. Let (hn)n∈N be a vanishing sequence. To simplify
notation we will replace (hn) by n whenever no confusion can arise. Assume that q = (u, p) ∈ Q and
qn = (un, pn) ∈ Q are such that qn ⇀ q in Q. If q /∈ QKL then there exists an index i ∈ [3] such
that either εi3(u) 6= 0 or pi3 6= 0. Notice that by (2.6) we have for any C > 0 the estimate

En(t, qn) ≥ c(‖Snε(u
n)Sn‖2

L2 + ‖Snp
nSn‖2

L2)− 〈`(tn), un〉
≥ C(‖ε(un)i3‖2

L2 + ‖pn
i3‖

2
L2)− 〈`(t), un〉

for sufficiently large n. Therefore, we deduce that

lim inf
n→∞

En(t, wn) ≥ C(‖εi3(u)‖2
L2 + ‖pi3‖2

L2)− ‖`‖L∞(0,T ;H∗)‖u‖H1 ,

where C can be chosen arbitrary large and obtain En(t, qn) → ∞. For q ∈ QKL we proceed as
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follows. First we compute

En(t, qn) =

∫
Ω

W(ε1,2(un), (pn)1,2) dx− 〈`(t), un〉

+
1

h2
n

∫
Ω

2µ
2∑

i=1

(εi3(u
n)− pn

i3)
2 + khard

2∑
i=1

(pn
i3)

2 dx (3.2)

+

∫
Ω

(λ + 2µ)

(
λ

λ+2µ

2∑
i=1

(εii(u
n)−pn

ii)+
1

h2
n

(ε33(u
n)−pn

33)

)2

dx

Note, that we can always assume that p33/h
2
n + p11 + p22 = 0 since En(tn, qn) = ∞ otherwise.

Hence, we especially have

2∑
i,j=1

(
pn

ij

)2
+
(
pn

33/h
2
n

)2
=

2∑
i,j=1

(
pn

ij

)2
+ (pn

11 + pn
22)

2.

Using that the terms in the second and third line of (3.2) are positive we obtain

En(t, qn) ≥
∫

Ω

W(ε1,2(un), (pn)1,2) dx− 〈`(t), un〉.

The right-hand side is weakly lower semi-continuous on Q and as n →∞ we obtain

lim inf
n→∞

En(t, qn) ≥ E0(t, q) .

ii) It remains to construct a recovery sequence for q ∈ QKL. For this we choose qn to be the unique
solution of the elliptic problem

〈Anqn, q̃〉 = 〈`q, q̃〉 := 〈A0q, q̃〉 ∀q̃ ∈ Qhn , (3.3)

where An : Qhn → Qhn and A0 : Q → Q∗ are the linear and self-adjoint operators associated with
the quadratic energies Eh and E0, i.e.,

Ah = DqEh on Qh and A0 = DqE0 on QKL.

Due to the Lax-Milgram theorem qn exists and is uniquely determined. We want to show that qn is
a recovery sequence for q. To this end we use (2.6) and obtain that both an := Snε(u

n)Sn and
bn := Snp

nSn are uniformly bounded in L2(Ω; R3×3
sym ) and therefore also un and pn in U and P ,

respectively. Hence we can extract a (not relabelled) subsequence qn such that qn ⇀ q̂. Moreover,
we know that q̂ = (û, p̂) ∈ QKL. Choosing a further (also not relabelled) subsequence we have that
an ⇀ a and bn ⇀ b in L2(Ω; R3×3

sym ). It holds that aij = εij(û) and bij = p̂ij for i, j ∈ [2]. We set
cn := an − bn such that cn ⇀ c := a− b.

For an arbitrary v ∈ U we set q̃ = (v, 0) in (3.3) and obtain

〈`q, q̃〉 = (3.4)∫
Ω

λ (trcn)

(
ε11(v) + ε22(v) +

1

h2
n

ε33(v)

)
+ 2µ cn : (Snε(v)Sn) dx

10



We now choose v such that v1 = v2 = 0 and multiplicate with h2
n. After passing to the limit we obtain

for all v3 ∈ H1
Γ0

(Ω) ∫
Ω

(λ (c11 + c22) + (λ + 2µ)c33) ∂x3v3 dx = 0.

Thus, we have the following identity (see [Cia97, Proof of Theorem 1.4])

c33 = − λ

2µ + λ
(c11 + c22) .

Analogously, by setting v3 = 0 in (3.4) and using the symmetry of cn we get

4µ

∫
Ω

cn
13∂x3v1 + cn

23∂x3v2 dx = hn〈`q, q̃〉 .

After passing to the limit we deduce that c13 = c23 = 0.

Since qn ∈ Qhn implies pn
33/h

2
n + pn

11 + pn
22 = 0 we directly infer that pn

33/h
2
n ⇀ −p̂11 − p̂22 = b33.

Therefore we deduce

a33 = −p̂11 − p̂22 −
λ

λ + 2µ

2∑
i=1

(εii(û)− p̂ii) . (3.5)

In a next step we set q̃ = (0, p̃) with p̃ ∈ Phn such that p̃ij = 0 for i, j ∈ [2]. By plugging it into (3.3)
we derive ∫

Ω

2µ (cn
i3p̃i3 + cn

3ip̃3i) + 2khard (bn
i3p̃i3 + bn

3ip̃3i) dx = 0.

By passing to the limit and using that c3i = ci3 = 0 we obtain b3i = bi3 = 0 and thus also a3i =
ai3 = 0 for i ∈ [2]. For an arbitrary q̃ = (ũ, p̃) ∈ QKL we define the sequence q̃n = (ũn, p̃n) ∈ Qhn

by ũn = ũ, p̃n
ij = p̃ij for (i, j) 6= (3, 3) and p̃n

33 = −h2
n(p̃11 + p̃22). Then q̂n → q̂ strongly in Q and

0 = lim
n→∞

〈Anqn, q̃n〉 − 〈`q, q̃
n〉 = 〈A0q̂, q̃〉 − 〈`q, q̃〉 = 0.

Therefore, it holds that A0(q̂− q) = 0 inQ∗
KL, which yields q̂ = q. Hence, we have that qn ⇀ q inQ.

It remains to show that the energies converge. To this end note that by means of an, a and bn, b and
the identity in (3.5) we can write

〈A0q, q〉 =

∫
Ω

C(a− b) : (a− b) + khard|b|2 dx,

〈Anqn, qn〉 =

∫
Ω

C(an − bn) : (an − bn) + khard|bn|2 dx,

(3.6)

where C is the elasticity tensor defined in Section 2.1. Hence, using the quadratic structure of the energy

11



functionals we compute

c
(
‖an − a‖2

L2 + ‖bn − b‖2
L2

)
≤

∫
Ω

C (cn − (a− b)) : (cn − (a− b)) + khard|bn − b|2 dx

= 〈A0q, q〉 − 2

∫
Ω

C(a− b) : cn + khardb : bn dx + 〈Anqn, qn〉

= 〈A0q, q〉 − 2

∫
Ω

C(a− b) : cn + khardb : bn dx + 〈`q, q
n〉

→ 〈`q, q〉 − 〈A0q, q〉 = 0.

Therefore, we obatin the strong convergences an → a and bn → b in L2(Ω; R3×3
sym ) and consequently

qn → q strongly in Q. To finish the proof note that

En(t, qn) = 1
2
〈Anqn, qn〉 − 〈`(t), un〉 −→ 1

2
〈A0q, q〉 − 〈`(t), u〉 = E0(t, q)

where we used the strong convergence of an and bn and (3.6).

3.2 Γ-limit of the dissipation functional

Proposition 3.2. Let Rh and R0 be defined as above. Then Rh Γ→ R0 with respect to the weak
topology on P . What is more, Rh converges to R0 in the sense of Mosco-convergence, too.

Proof. i) Let (hn)n∈N be a vanishing sequence, choose ṗn such that pn ⇀ ṗ Assume that ṗ /∈ PKL.
Then there exists some i ∈ [3] such that ṗi3 6= 0. For sufficiently large n we have

Rn(ṗn) = σyield

∫
Ω

|Snṗ
nSn| dx ≥ σyield

hn

∫
Ω

|ṗn
i3| dx ≥ Cσyield

∫
Ω

|ṗn
i3| dx ,

where C can be chosen arbitrarily large. Due to the lower semicontinuity of the norm we obtain
Rn(ṗn) → +∞.

Now let ṗ ∈ PKL. We can safely assume that tr(Snṗ
nSn) = 0 for all n. We have that

Rn(ṗn) = σyield

∫
Ω

|Snṗ
nSn| dx ≥ σyield

∫
Ω

√√√√ 2∑
i,j=1

(ṗn
ij)

2 + (ṗn
11 + ṗn

22)
2 dx . (3.7)

The weak lower semicontinuity of the right-hand side grants the lim inf-inequality.

ii) To construct a recovery sequence for a given ṗ ∈ PKL set ṗn
ij=ṗij for (i, j)6=(3, 3) and ṗn

33= −
h2

n(ṗ11+ṗ22). Note that tr(Snp
nSn)=0 and therefore

Rn(ṗn) = σyield

∫
Ω

|ṗ− (ṗ11 + ṗ22)e3 ⊗ e3| dx = R0(ṗ) . (3.8)

The last part of the assertion follows from the strong convergence ṗn → ṗ in P .

12



Note that for absolutely continuous functions q : [0, T ] → Q and 0 ≤ r < s ≤ T we have

Dissh(q; [r, s]) =

∫ s

r

Rh(q̇(t)) dt,

where we used the notation

Dissh(q; [r, s]) := sup{
n∑

i=1

Rh(q(ti)−q(ti−1)) : n ∈ N , r ≤ t0 < . . . < tn ≤ s} .

which is defined for all pointwise defined functions. Using the lim inf estimate from Rh M−→ R0 it is
standard to show that Dissh is lower semicontinuous in the sense that(

∀ t ∈ [0, T ] : qh(t) ⇀ q(t)
)

(3.9)

⇒ Diss0(q0, [0, T ]) ≤ lim inf
h→0

Dissh(qh, [0, T ]).

3.3 Convergence of the solutions

The main challenge is to establish the upper semicontinuity of the stable sets, i.e., limits of stable se-
quences remain stable with respect to the limit energy and dissipation functional. We have the following
crucial result:

Proposition 3.3. Let qn be such that the stability condition w.r.t. (En,Rn) is satisfied for t ∈ [0, T ]. If
qn ⇀ q in Q, then we have that q satisfies the stability condition w.r.t. (E0,R0).

Proof. In the following the time t is fixed. We make use of the quadratic form of the energy functionals.
In this case the global stability condition is equivalent to local stability condition `(t)−Anqn ∈ ∂Rn(0),
where An is the operator associated with En defined in the proof of Proposition 3.1. Hence, we want to
show that

〈A0q − `(t), q̂〉+R0(q̂) ≥ 0 ∀q̂ ∈ QKL , (3.10)

where A0 is the operator associated with the limit energy. To this end we are going to show that for all
q̂ ∈ QKL and for all stable sequences qn such that qn ⇀ q we can construct a sequence q̂n such that
Rn(q̂n) → R0(q̂) and

〈Anqn, q̂n〉 →
〈
A0q, q̂

〉
. (3.11)

Step 1. Let qn = (un, pn) be such a weakly converging stable sequence. In particular, there exists a
constant C ≥ 0 such that En(t, qn) ≤ C . As in the proof of Proposition 3.1 we obtain that

‖Snε(u
n)Sn‖2

2 + ‖Snp
nSn‖2

2 ≤ C

which directly implies εi3(u) = ε3i(u) = pi3 = p3i = 0 for i ∈ [3]; hence q ∈ QKL. Moreover,
we have that pn

11 + pn
22 + pn

33/h
2
n = 0 for all n ∈ N and therefore pn

33/h
2
n ⇀ −p11 − p22. Let

13



an := Snε(u
n)Sn and bn := Snp

nSn as before. The estimate above allows us to extract weakly
converging subsequences such that an ⇀ a and bn ⇀ b in L2(Ω; R3×3

sym ).

Step 2. If we test the global stability condition with (un ±αv, pn) for an arbitrary v ∈ U and let α → 0
we obtain ∫

Ω

λtr(an − bn) · tr(Snε(v)Sn) + 2µ(an − bn) : (Snε(v)Sn) dx = 〈`(tn), v〉.

Choosing v = (0, 0, v3)
T yields

a33 − b33 = − λ

2µ + λ
(a11 − b11 + b11 − b22) .

Since we know that bn
33 = pn

33/h
2
n ⇀ −p11− p22 and an

ij = εij(u
n) ⇀ εij(u), i, j = 1, 2, we obtain

an
33 = ε(un)33/h

2
n ⇀ −p11 − p22 −

λ

2µ + λ
(ε11(u)− p11 + ε22(u)− p22) .

Step 3. Now, we take q̂n = (ûn, p̂n) as the recovery sequence for q̂ as constructed in the proof of
Proposition 3.1, i.e.,

q̂n −→ q̂ and En(t, q̂n) −→ E0(t, q̂).

Note, that we have the strong convergence q̂n → q̂ in Q. Moreover, we know that ân := Snε(û
n)Sn

and b̂n := Snp̂
nSn converge strongly to â and b̂ in L2(Ω; R3×3

sym ), respectively. Here, we have that

âij = εij(û) and b̂ij = p̂ij for i, j = 1, 2 and

â13 = â23 = b̂13 = b̂23 = 0,

b̂33 = −p̂11 − p̂22, â33 = b̂33 −
λ

2µ + λ
(â11 − b̂11 + â22 − b̂22).

(3.12)

Step 4. In order to prove (3.11) we write the product in the following way

〈Anqn, q̂〉 = ∫
Ω

λtr(an−bn) · tr(ân−b̂n) + 2µ(an−bn) : (ân−b̂n) + khardb
n : b̂n dx

Using the weak and the strong convergence of an, bn and ân, b̂n, respectively, yields

〈Anqn, q̂n〉 →
∫

Ω

λtr(a−b) · tr(â−b̂) + 2µ(a−b) : (â−b̂) + khardb : b̂ dx

= 〈A0q, q̂〉,

where we have used the relations derived in Step 2. Thus, we have shown (3.11).
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Step 5. It remains to show that Rn(p̂n) → R0(p̂), i.e., p̂n is also a recovery sequence w.r.t. Rh. For
this, note that we have

Rn(p̂n) = σyield

∫
Ω

|b̂n| dx.

Hence, the convergence of Rn(p̂n) follows directly from the strong convergence of b̂n.

We are now in position to provide the full proof of the Γ-convergence result for the quadratic rate-
independent systems (Q, Eh,Rn).

Proof of Theorem 2.2. We will mainly follow the same six steps of the argument as in [MRS08].

Step 1: A priori estimates. Using Theorem 2.1 we obtain the uniform bounds

‖qh‖C0([0,T ];Q) + ‖q̇h‖L1(0,T lQ) ≤ C

for all h ∈ (0, 1].

Step 2: Selection of subsequences. Via the selection principle of Arzela-Ascoli we find q∗ ∈ C(0, T ;Q)
and a suitable subsequence (hn)n∈N such that qhn(t) ⇀ q∗(t) inQ for all t ∈ [0, T ]. We can estimate

n∑
k=1

|qh(tk)− qh(sk)| ≤
n∑

k=1

∫ tk

sk

∣∣q̇h(t)
∣∣
Q dt ≤ Cθ (3.13)

and using the weak lower semicontinuity of the norm we have that the limit q∗ is absolutely continuous
as well.

Step 3: Stability of the limit. Since qhn(t) is stable w.r.t. (En,Rn) and qhn(t) ⇀ q∗(t) we infer from
Proposition 3.3 that q∗(t) is also stable.

Step 4: Upper energy estimate. The energy balance for qh reads

Eh(t, qh(t)) + Dissh(qh, [0, t]) = Eh(0, qh(0))−
∫ t

0

〈 ˙̀(s), qh(s)〉 ds.

Using the weak convergence of the solutions we can pass to the limit hn → 0 by employing the Mosco
convergence of the energy functionals and (3.9). Moreover, using the dominated convergence theorem
and the uniform boundedness of uh we obtain∫ t

0

〈 ˙̀(s), uh(s)〉 ds →
∫ t

0

〈 ˙̀(s), u0(s)〉 ds

for all t ∈ [0, T ]. This leads to the estimate

E0(t, q∗(t)) + Diss0(q∗, [0, t]) ≤ E0(0, q∗(0))−
∫ t

0

〈 ˙̀(s), q∗(s)〉 ds.

Here we use the liminf-estimates on the left-hand side, while convergences hold on the right-hand side.
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Step 5: Lower energy estimate. It remains to show the opposite inequality. For this, note that q is
absolutely continuous and hence for any ρ > 0 there exists some δ > 0 such that

∀t, s ∈ [0, T ], |t− s| < δ : |q∗(t)− q∗(s)| ≤
ρ∥∥∥ ˙̀(t)
∥∥∥

L1(0,T ;U∗)

.

Choose (ri)
N
i=0 ⊂ [0, t] with r0 = 0, rN = t, ri > ri−1 and |ri − ri−1| ≤ δ for all i ∈ [N ]. Then, by

using the stability of the limit process w, we have that

E(t, q∗(t)) + Diss0(q∗; [0, t])

≥ E0(0, q∗(0))

+
N∑

i=1

E0(ri, q∗(ri)) +R0(q∗(ri)−q∗(ri−1))− E0(ri−1, q∗(ri−1))

≥ E0(0, q∗(0)) +
N∑

i=1

E0 (ri, q∗ (ri))− E0 (ri−1, q∗ (ri))

= E0(0, q∗(0)) +
N∑

i=1

∫ ri

ri−1

〈 ˙̀(t), q∗(t)〉 dt +

∫ ri

ri−1

〈 ˙̀(t), q∗(ri)− q∗(t)〉 dt

≥
∫ t

0

∂tE0(s, q∗(s)) ds + E0(0, q∗(0))− ρ .

Since ρ > 0 was arbitrary we have shown the desired lower energy estimate.

Together with the Steps 3 and 4 we conclude that q∗ is equal to the unique energetic solution q. There-
fore, the whole sequence qh(t) converges weakly to q(t) for all t ∈ [0, T ].

Step 6: Improved convergence. Since the energy equality holds we know that for all t ∈ [0, T ] we have
that

lim sup
h→0

Dissh
(
qh; [0, t]

)
= lim sup

h→0

[
Eh
(
0, qh(0)

)
+

∫ t

0

∂sEh(s, qh(s)) ds− Eh
(
t, qh(t)

)]
≥ E0(0, q(0)) +

∫ t

0

∂sE0(s, q(s)) ds− E0(t, q(t))

= Diss0(q; [0, t]) .

Combining this estimate with (3.9) we obtain that for all t ∈ [0, T ]

Dissh
(
qh; [0, t]

)
→ Diss0(q; [0, t]) and Eh

(
t, qh(t)

)
→ E0(t, q(t)).

Finally, since the energy functionals are equi-coercive on Q we get the pointwise strong convergence
of qh as a consequence of the convergence of the energies by using a similar argument as in the proof
of Proposition 3.1 .
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4 Discussion of the elastoplastic plate model

In this section we want to discuss how the limit model obtained in Section 2.3 can be reduced to a
two-dimensional problem coupled to plastic effects that can either be described by a three-dimensional
model with internal variables or by a vector-valued Prandtl–Ishlinskii operator associated to each point
x ∈ ω.

The key point is that the Kirchhoff–Love displacements u ∈ UKL can be characterized by functions
defined only on the midplane ω (see (2.8)). Therefore, the limit energy E0 can be reduced by integrating
over the variable x3. In the following we will use the letter y to indicate points in ω. Furthermore,∇ and
∆ denote the two-dimensional operators acting only on y ∈ ω, i.e. ∇ = (∂y1 , ∂y2)

T, ∆ = ∂2
y1

+∂2
y2

,
and D2v3 ∈ R2×2

sym denotes the Hessian of v3 : ω → R. Moreover we will use the two-dimensional
in-plane strain tensor

ε1,2(v) =
1

2

(
∇v1,2 + (∇v1,2)T

)
, where v1,2 = (v1, v2)

T,

which does not depend on v3.

Concerning the plastic strain variable p ∈ L2(Ω; R3×3
sym ) we will use the decomposition Ω = ω ×

(−1/2, 1/2) and the identification

L2
(
ω × (−1/2, 1/2); R3×3

sym

) ∼= L2(ω;B) with B = L2
(
(−1/2, 1/2); R3×3

sym

)
.

Thus, we associate with each point y ∈ ω an internal variable p(y, ·) ∈ B. Using the isomor-
phism K between the space UKL and V introduced in (2.8) we see that the rate-independent system
(H, E0,R0) is equivalent to the system (H0, E0,R0) with

H0 := V × L2(ω;B), R0(ṗ) =

∫
ω

∫ 1/2

−1/2
R0(ṗ) dx3 dy,

E0(t, v, p) =

∫
ω

W0(ε
1,2(v), D2v3, p) dy − 〈`0(t), v〉.

The reduced energy-density W0 can be decomposed into membrane, bending and plastic energy-
densities, i.e.

W0(ε, D, p) = Wmemb(ε, [p
1,2]0) + Wbend(D, [p1,2]1) + Wplast(p),

where

Wmemb(ε, Π) = 2λµ
λ+2µ

(1
2
(tr ε)2 − tr ε tr Π) + 2µ(1

2
|ε|2 − ε : Π),

Wbend(D, Π) = 2λµ
λ+2µ

( 1
48

(tr D)2 + tr D trΠ) + 2µ( 1
48
|D|2 + D : Π)

Wplast(p) = λµ
λ+2µ

‖tr p1,2‖2
2 + µ‖p1,2‖2

2 + khard

2
(|p|2 + (tr p)2).

Here we used
∫ 1/2

−1/2
dx3 = 1,

∫ 1/2

−1/2
x3 dx3 = 0 and

∫ 1/2

−1/2
x2

3 dx3 = 1/24 and the short-hand
notations

[g]0 =

∫ 1/2

−1/2

g(x3) dx3, [g]1 =

∫ 1/2

−1/2

x3g(x3) dx3, ‖g‖2
2 =

∫ 1/2

−1/2

|g(x3)|2 dx3.
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The reduced loading `0(t) ∈ V ∗ is given by

〈`0(t), v〉 =

∫
ω

Gmemb(t) · v1,2 + gbend(t)v3 + Gbend(t) · ∇v3 dy,

where

Gmemb(t, y) = [F 1,2
vol (t, y, ·)]0+F 1,2

surf (t, y, 1)+F 1,2
surf (t, y,−1),

gbend(t, y) = [Fvol 3(t, y, ·)]0+Fsurf 3(t, y, 1)+Fsurf 3(t, y,−1),

Gbend(t, y) = F 1,2
surf (t, y,−1)−F 1,2

surf (t, y, 1).

As in [LiM10] the important structure in the form of the reduced energy-density W0 is that the membrane
strains ε1,2(v) only couple to the (even) averages [p1,2]0, while the bending strains D2v3 only couple to
the (odd) averages [p1,2]1. The energetic formulation of the derived evolutionary system (QKL, E0,R0)
is equivalent to the subdifferential formulation. It consists of two elliptic equations, one for the membrane
part and one for the bending part, and the plastic flow rule. Both elliptic equations are nontrivially
coupled to the plastic part (see [LiM10; Lie08] for simple examples).

The strain tensors take the form

∂AWmemb(A, D) = Σ0(A−D) ∈ R2×2
sym,

∂BWbend(B, D) = Σ0(
1

24
B −D) ∈ R2×2

sym,

where Σ0(E) := 2λµ
λ+2µ

tr E I2 + 2µ E is the reduced elasticity tensor.

In order to compute the subdifferential of R0 we note that it can be written in the form R0(ṗ) = R̃0(Dṗ),
where

R̃ :

{
P̃0 → [0,∞),
ṗ 7→ σyield|ṗ|,

D :

 P0 → P̃0,

A 7→
(

A1,2 0
0 −A11−A22

)
.

and

P0 = {A ∈ R2×2
sym : A13 = A23 = A33 = 0},

P0 = {A ∈ R3×3
dev : A13 = A23 = 0}.

Now, the subdifferential of R0 can be calculated as follows by using the chain rule for subdifferentials
(see [Roc97, Theorem 23.9])

∂R0(ṗ) = D∗∂R̃(Dṗ) = D∗

{
Dṗ
|Dṗ| Dṗ 6= 0

σyieldB1(0) otherwise,

where D∗ is the adjoint operator of D and B1(0) is the unit ball in P̃0 centered at 0. A simple compu-
tation shows that for σ ∈ P ∗

0 we have (D∗)−1σ = devσ ∈ P̃ ∗
0 . For A ∈ R2×2

sym let [[ A || 0 ]] ∈ R3×3
sym
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denote the enlargement of A by 0. We compute that the plastic stress σpl is given by

σpl = DpE0(t, u, p) =

[[ Σ0(p
1,2−ε1,2(v)+x3D

2v3) || 0 ]] + khard

[[(
2p11 + p22 p12

p23 p11 + 2p22

)∣∣∣∣∣∣0]] .

Hence, the subdifferential formulation for E0 and R0 is formally equivalent to

0 = − div
(
Σ0

(
ε1,2(v)−[p1,2]0

))
−Gmemb(t, ·) in ω, (4.1a)

0 = div div
(
Σ0

(
1
24

D2v3+[p1,2]1
))
− gbend(t, ·)− div Gbend(t, ·) in ω, (4.1b)

0 ∈ ∂R̃0(Dṗ) + dev [[ Σ0(p
1,2−ε1,2(v)+x3D

2v3) || 0 ]] + khardDp in Ω, (4.1c)

We see that (4.1a) is a second-order membrane equation for the in-plane displacements v1,2 = (v1, v2)
with the average plastic strains [p1,2]0 acting as plastic strains. The fourth-order equation (4.1b) for
the out-of-plane displacement v3 generalizes Kirchhoff’s plate equation, where now the first moments
[p1,2]1 (odd averages) act as plastic strains. The flow law (4.1c) is still posed on Ω = ω×(−1/2, 1/2),
but the important point is that the coupling with ε1,2(V ) and D2V3 occurs only via special x3-dependent
profiles, namely 1 and x3, respectively.

4.1 The choice of scalings for the plastic strains

A careful inspection of the convergence proofs in Section 3 reveals that the results above remain valid
for scalings of the form

ph(xh) = Πα,β
h ph(Shxh) :=

 ph
11 ph

12
1

hα ph
13

ph
12 ph

22
1

hα ph
23

1
hα ph

13
1

hα ph
23

1
hβ ph

33

 .

with α, β > 0. This means, scalings of this particular form lead to the same limit model. By replacing
Dp by p̃ in the previous section we see that for α, β > 0 the limit model is similar to the one derived
in [LiM10], where α = β = 0 was chosen. In [LiM10] the components p13 and p23 of the plastic
strains do not vanish, however, they stay constant since they are not triggered by the elastic stresses.
Here, however, the strains p13 and p23 have to vanish due to the scalings. The component p33 can be
reintroduced due to the plastic incompressibility assumption.

4.2 Prandtl–Ishlinskii operators

The plastic flow rule for the limit system can be encoded in terms of vector-valued Prandtl–Ishlinskii
operators. We highlight here the main ideas and refer to [LiM10] for a deeper discussion.

We note that (4.1c) can be written in the form

0 ∈ ∂R̃0( ˙̃p) + Ap̃− L(t),
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with the loading L = dev [[ Σ0ε
1,2(v)− x3D

2v3 || 0 ]] and p̃ = Dp. The vector-valued play operator P
maps the loading L to the solution p̃, i.e.,

PK [L](t) = p(t),

where K = ∂R̃0(0). We now set

Pmemb[ε
1,2(v), D2v3] =

[
PK [L]

]
0
, and Pbend[ε

1,2(v), D2v3] =
[
PK [L]

]
1
.

With these definitions, we can rewrite the system (4.1) as

div
(
Σ0

(
ε1,2(v)−Pmemb[ε

1,2(v), D2v3]
))

= Gmemb(t, ·),

div div
(
Σ0

(
1
24

D2v3 + Pbend[ε
1,2(v), D2v3]

))
= gbend(t, ·) + div Gbend(t, ·).
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