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OPTIMAL CHANGE-POINT ESTIMATION IN INVERSE PROBLEMS 

Michael H. Neumann 
Weierstrass Institute for Applied Analysis and Stochastics, Berlin 

ABSTRACT. We develop a method of estimating change-points of a function in the 
case of indirect noisy observations. As two paradigmatic problems we consider de-
convolution and errors-in-variables regression. We estimate the scalar products of 
our indirectly observed function with appropriate test functions, which are shifted 
over the interval of interest. An estimator of the change point is obtained by the 
extremal point of this quantity. We derive rates of convergence for this estimator. 
They depend on the degree of ill-posedness of the problem, which derives from the 
smoothness of the error density. Analyzing the Hellinger modulus of continuity of 
the problem we show that these rates are minimax. 
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1. INTRODUCTION 

Change-point estimation has often been studied in the regression context. There are 
many practical motivations why one is interested in knowing such points of rapid 
change. Sometimes there is real scientific interest in these point, but one can also 
exploit knowledge about them for estimation purposes themselves. 
The simplest case is that of a single jump of an otherwise smooth function. The 
optimal rate at which then a change-point can be estimated is known to be n-1 . 

Korostelev (1987) derives an optimal method in the Gaussian white noise model, 
which can also be applied in the usual nonparametric regression setting. Another 
popular approach is based on the analysis of differences of certain kernel estimators; 
see, e.g., Yin (1988), Miiller (1992), Hall and Titterington (1992) and Wu and Chu 
(1993). Wang (1995) considers a closely related method based on wavelets. It can be 
shown that one can achieve the optimal rate of convergence also by the kernel-based 
method, provided one uses an appropriate, necessarily discontinuous kernel. 
In the present paper we study this problem in the context of ill-posed inverse pro-
blems. Such problems arise when we can observe an object of interest only indi-
rectly. Typical settings are deconvolution, errors-in-variables regression, estimation 
of mixing densities, image blur models and image reconstruction in computerized 
tomography. The quality at which a function can be estimated from such indirect, 
noisy observations depends on the degree of ill-posedness of the problem. For exam-
ple, deconvolution becomes harder as smoothness of the error distribution increases. 
Most of the avail.able results focus on the estimation of functions with homogeneous 
smoothness; see Hall (1990), Zhang (1990), Fan (1991) and Fan and Truong (1993). 
However, in practical applications one is often confronted with functions that have 
quite inhomogeneous smoothness characteristics: they are quite smooth on one part 
of the domain, but much less regular on another part. In such situations usual linear 
smoothing methods, which apply a global degree of smoothing, are no longer appro-
priate. Locally adaptive methods for estimating a function in the setting of indirect 
observations are developed by Donoho (1992) on the basis of Wavelet-Vaguelette 
Decompositions. However, the author is not aware of any work on change-point 
estimation in this context . 

. Here we focus on change-point estimation in one-dimensional inverse problems, as 
opposed to the more complex problem of edge estimation in higher dimensions. We 
study a quite general method and show its applicability for two paradigmatic pro-
blems, deconvolution and errors-in-variables regression. 
Our motivation is at least twofold: First, knowledge of the location of a jump is helpful 
when one intends to estimate the function itself. One can then use this information 
and apply one-sided estimation techniques around this point. Second, one might be 
interested in estimating the support of a density, which amounts to the estimation of 
change-points in the case of a sharp boundary. Finally, there exist many interesting 
higher-dimensional inverse problems like image deblurring or density estimation from 
computer tomography data.· We hope that the methodology developed in this article 
can be carried over to edge detection in these important problems. 
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We propose a method which is similar to well-established kernel methods for direct 
observations. Starting from an appropriate compactly supported function <p we define 
test functions 'Pfl(.) = cp( (. -iJ) / hn) , where iJ varies in the interval of interest and the 
bandwidth hn tends to zero at a certain rate. Our method is based on the idea that 
the scalar products of <pfJ and a discontinuous function attain their maximum value in 
modulus at some iJ close to the change-point iJ0 • We define empirical versions of these 
scalar products and take that value of iJ, which maximizes them in absolute value, as 
an estimator of iJ0 . We show that this estimator converges with the rate n-1/(a.+3/ 2) 

to 'IJ0 , where a is the degree of ill-posedness of the inverse problem. Analyzing the 
Hellinger modulus of continuity of the problem we show that this is actually the 
optimal rate of convergence. 

2. CHANGE-POINT ESTIMATION IN THE DECONVOLUTION PROBLEM 

Suppose we have n i.i.d. random variables X1 , · · · , Xn distributed according to a 
density fx. However, we do not observe the X/s directly, but 

(2.1) 

where the e/s are i.i.d. with density fe, also independent of the X/s. 
There already exists a considerable body of literature on estimating the density f x 
in model (2.1); e.g. Carroll and Hall (1988) and Fan (1991). The first of these papers 
also describes some practical applications. It turns out that f x can be more or less 
successfully estimated on the basis of observations {Yi}, where the rate at which an 
optimal estimator converges to fx depends on the smoothness of both fx and fe· 
Here, a smooth fx and a rough fe are most favorable. 
In ordinary change-point estimation problems, i.e. in the presence of direct obser-
vations, a widely used method is to take just that point, where the difference of 
two-sided kernel estimators attains its maximum in absolute value; cf. Yin (1988), 
Muller (1992) , Wu and Chu (1993) and Wang (1995). (Strictly speaking, Wang uses 
wavelets rather than the difference of two kernels; however he did not ~ctually exploit 
their special properties like orthonormality, which distinguish them from the kernel 
difference approach.) · · 
For the sake of a clear presentation of the main idea we consider the simplest case of 
a single jump, whose height is bounded away from zero. It will become clear how this 
method can also be used for the detection of an unknown number of jumps, which 
are separated from each other by at least an arbitrarily small, but fixed constant. 
We will assume that the density fx is a member of the class :F, where, for a< b, 

· :F = {JI lf(x)I ~ C1 Vx, and for some 'IJo E [a, b]: 
lf(iJo-)-f(iJo+)I ~ C2 and lf(x)-f(y)I ~ C3lx-yl, if iJo ft. [x,y]}. 

Here and in the following C, 01 , 0 2 , .•• denote generic constants. Our basic as-
sumption on the error density fe is, for some 0 < C4 ~ 0 5 < oo and a ~ 1 , 
that 

(Al) 04(1 + lwl)-a. ~ lhl :=; Cs(l + lwl)-a. Vw E lR, 
where g( w) = f g( x) exp( ixw) dx denotes the Fourier transform of a function g E 
L1 (IR) . This assumption basically means that that fe has about a derivatives. It 
turns out that (Al) with an appropriate value of a is satisfied for gamma distributions 
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with shape parameter a, which contain for a = 1 the exponential and for a = 
{} /2 the chi-square distribution with {} degrees of freedom as special cases. Another 
example, which satisfies (Al) with a = 2 , is the Laplace (double exponential) 
distribution. 
The basic idea of our method is as follows. Assume for definiteness that fx( {}0-) ~ 
fx({}o+) + C2 . Then fx can be written as 

fx = f + h, (2.2) 

where h({}o-) ~ h({}o+) + 02 , h(x) ~ 0 for x < {}0 , h(x) S 0 for x > '190 , 

and f and hare Lipschitz continuous on JR. and JR.\ { {}0}, respectively. Let cp be some 
nonzero function with cp( x) ~ 0 , if x < 0 , and c.p( x) S 0 , if x > 0 . The functions 
c.p19(.) = cp((. - {})/hn) with '19 E [a, b] and hn --+ 0 can be used for "scanning" 
fx for a discontinuity. In particular, (c.p19, h) will attain its maximum at {} = '190 , 

whereas ( cp19, f) is of smaller order because of the Lipschitz continuity of f and 
hn--+ 0 . Our method amounts to estimating the scalar products ( c.piJ, fx) . An ideal 
choice of c.p is such, that the ratio of the contrast ( cp190 , f x) - ( c.p-o, fx) and the noise 
.j var( ( c.p-;::-Jx) - ( ;;:J";)) , where ( ;;:J";) is an appropriate estimate of ( cpiJ, f x ), is 
maximized. In ordinary change-point estimation, i.e. with direct noisy observations, 
this goal is achieved by a function c.p with a discontinuity at zero. However, the 
situation changes in the context of indirect observations. To embed the deconvolution 
problem in the general frame of ill-posed inverse problems, define the bounded linear 
operator K : L1 (1R.)--+ L1 (1R) with 

(Kg)(x) = j g(x -y)fe:(Y) dy. 

Deconvolution is ill-posed, since K does not have a bounded inverse. Since we are only 
given observations in the image of K, estimation of ( c.p19, fx) amounts to estimating 
( 1iJ, K fx) for some function 119· Now it turns out that a discontinuous function c.p19 
leads to a function 119 with an unbounded L 2-norm. Since this makes the following 
statistical analysis impossible, we have to look for better alternatives. 
For the function cp we will require that 

(A2) (i) cp has compact support, 
(ii) cp is an odd function with c.p( x) ~ 0 , if x < 0 , 

(iii) llcp(w)(l + lwl)a+2 lli < oo for i = 1, 2, 
(iv) cp'(O) ~ 0. 

Note that (iv) of (A2) is essential. It takes the role of the discontinuity of cp in the 
case of direct observations, and provides the optimal ratio between contrast and noise 
m our case. 
Let cp19 ( x) = cp( ( x - {})/ hn) . The sequence of equalities 

( <p{), g) - (27r t 1 j 'Re( cp"(w )9(w )) dw = (27rt1 j 'R.e(rp"(w)/ f.(w) 9(w)f.(w )) dw 

Re (.r--1( cpil/ h), g * fe:) = (Re(F-1( cp19/ h)), g * fe:), (2.3) 

which is valid for all g E L1 (JR.), motivates us to define 

(2.4) 
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where y:--1(g )( x) = (27r t 1 Jg( w) exp( -iwx) dw denotes the inverse Fourier trans-
form. 
We consider 

n 

a11 = n-1 2: !11(Yi), (2.5) 
i=l 

which is an unbiased estimator of ( <.p11, f x ). Let 

a11 = E~ = ( <.p11, f x ). (2.6) 
A first insight into the essential properties of the ~'sis given by the following lemma. 

Lemma 2.1. Assume {Al}, {A2} and hn--+ 0 . Then, for n large enough, 

(i) I I _ I I > { Csli?o - '111 2 /hn - C1hnl'!90 - 111, if li?o - 111 ~ hn, 
Ct.IJo Ct.IJ - Cshn, if li?o - 111 > hn ' 

(ii) Jvar(~o - a11) = 0 (n-112 1110 -i?lh~cc-l/2)' if li?o - 111 ~ hn 

(iii) Jvar(~) = 0 (n-112 h~a+if2) 

hold uniformly in 19 E (a, b] and fx E F. 

First, observe that, according to (i) and (iii) of the above lemma, the noise is of smaller 
order of magnitude than the contrast in the case of 111-i?ol > hn , if hn ~ n-l/(2a+i) . 
This will imply that such values of 19 can be excluded with very high probability as 
values for J 0. Further we infer from (i ), that some positive contrast is guaranteed, 
if li?o -111 > (Cs/C5)h!. Furthermore, the noise increases linearly in li?o -111, 
whereas the contrast grows quadratically.- Both quantities are equated (in order) at 
li?o-111 x n-1/ 2h;,,a+l/2 • This already gives some hint that 190 can be estimated with 
the rate h~ + n-1l 2h;,,a+i/2 , which is optimized for hn X n-l/(2a+J) . 
Let 

fio E arg max{l~I}. 
· IJE(a,b] 

(2.7) 

The following theorem states that .6.n = n-1/(a+3/ 2) is actually the rate of conver-
gence for this estimator. 

Theorem 2.1. Assume {Al}, {A2} and hn x n-1/(2a+3). Then 

sup {Etx (.6.~ 1 (Jo - '!90))2} ~ C. 
fxE:F 

Remark l. 
1) As can be seen in the proof of this theorem, we have to choose the bandwidth 
hn exactly of this order. If we increase hn, then we blur the information about 190 
too much. On the other hand, recognition of a signal becomes more difficult as the 
amount of localization increases. Hence, if we choose hn smaller we would increase 
the magnitude of noise in~' which would also lead to a worse rate. 
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However, in sharp contrast to bandwidth selection in curve estimation, the optimal 
rate for hn does not depend on any unknown smoothness parameters of the function 
to be investigated. It depends only on the degree of ill-posedness a of the problem, 
which we know exactly since we know fe· 

2) For simplicity of presentation we have only considered the simplest case of a single 
discontinuity. Proceeding as in Wu and Chu (1993) one can easily extend this method 
to the case of multiple jumps, also to the case of an unknown number of them. 

3. CHANGE-POINT ESTIMATION IN ERRORS-IN-VARIABLES REGRESSION 

Non parametric regression with errors in the independent variables forms another 
instance of an ill-posed inverse problem. It is well-known that then the estimation of 
the regression function is harder than in the case of exactly known regressors. This 
fact is underlined by results in Fan and Truong (1993), who derived minimax rates 
in errors-in-variables regression. 
Let (X, Z) be a pair of random variables and let m( x) = E( Z I X = x) . However, we 
do not observe X directly, but Y = X + e, where e is some stochastic measurement 
error. Suppose, we are given a sample of n observations (Yi, Zi), we arrive at the 
following basic model: 

(3.1) 

(3.2) 
Let fx denote the density of X. To make the estimation problem identifiable, we 
assume to know the density fe of the i.i.d. errors ei, which are independent of the 
(Xi, Zi)'s. 
Now we assume that the function m has a single jump at fJo E [a, b], and is smooth 
otherwise. Again we intend to estimate fJ0 as accurate as possible. 
As a functional, which is aimed at drawing the essential information about {}0 from 
the sample {(Yi, Zi)} we consider the quantity 

n 

fifJ = n-1 L /fJ(Yi)Zi, 

where /fJ was defined by (2.4). 
Now we have 

{3{) - E~{) 

i==l 

- E1fJ(X + e)m(X) 

- j j /fJ(x + e)m(x)fx(x)fe(e)dxde 

- j /fJ(x) j m(x - e)fx(x - e)fe(e) de dx 

( /fJ, (mfx) * fe) 
- ( cpfJ, mf x ). 

(3.3) 

(3.4) 

Hence, fifJ primarily aims at detecting a jump in m(x)fx(x) at fJ. However, it can 
also serve for the detection of change points in m, if 
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(A3) fx is unifoqnly Lipschitz, fx(x) ~ C for x E [a - 8, b + 8] and some 
8 > 0. 

Now, ~'19 shows a similar behaviour as iiiJ in the previous section. 

Lemma 3.1. Assume {Al), {A2), {A3), hn ~ 0 and supy{E(Z2 I Y = y)} < oo . 
Then, for n large enough, 

(i) if l19o - 19j ~ hn, 
if l19o - 19 I > hn ' 

(ii) Vvar(~iJo - ~iJ) = 0 ( n-112 1190 - 19lh~a-l/2), if l19o· - 191 ~ hn 

(iii) ./var(~iJ) = 0 (n- 112 h;;a+lf2 ) 

hold uniformly in 19 E [a, b] and m E :F. 

This lemma indicates that we can again estimate the location of the jump with a rate 
.6.n = n-1/(a+J/2) , which can actually be proved under the additional assumption 

(A4) supy{E(IZIM I Y = y)} < oo for M large enough. 
Let, analogously to the definition of the change point estimator in the previous sec-
tion, 

J0 E arg max {l~iJI}. 
'8E[a,b] 

This estimator converges again with the rate .6.n to 190 • 

Theorem 3.1. Assume {Al} through {A4} and hn ~ n-1/(2a+3). Then 

sup {Em ( .6.~ 1 ( Jo - 190) )2} ~ C. 
mE:F 

4. LOWER BOUNDS FOR CHANGE-POINT ESTIMATION 

(3.5) 

In "ordinary" change-point estimation it is known that the location of a jump can 
be estimated with the rate n-1 (or e2 in the closely related Gaussian white noise 
model); cf. Korostelev (1987). It can be shown that one can achieve this rate by a 
kernel-based method similar to that considered here. However, a special kernel has 
to be employed. 
In view of these facts it is not obvious if the proposed method is optimal. To have an 
appropriate frame for such considerations, we consider minimax rates of convergence. 
Similarly to work of Fan (1991) and Fan and Truong (1993), who derived minimax 
rates for estimating the function itself in deconvolution and errors-in-variables re-
gression, respectively, we obtain this minimax rate analyzing the Hellinger modulus 
of continuity at n-1/ 2 • As shown in Donoho and Liu (1987), this will immediately 
provide the desired lower bound for the rate of convergence. 
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4.1. A lower bound in the deconvolution problem. Our method consists in 
finding a sequence of two densities lx,1,n, lx,2,n E F and some le satisfying (Al), 
such that 

H (/x,1,n *le, lx,2,n *le) = O(n-112) ( 4.1) 

and 

( 4.2) 

where H(f, g) = (!(VJ - y9)2) 
112 

is the Hellinger distance and i9i,n are the change-
points of I X,i,n . From ( 4.1) and ( 4.2) we will infer that b.n is a lower bound for the 
minimax rate of convergence. 
Now we consider two possible sets of conditions on lx,i,n and le, which allow to derive 
( 4.1) and ( 4. 2). We try to assume as few as possible beyond (Al) for I e, and choose 
the lx,i,n's appropriately. 

(A5) (i) le satisfies (Al), and additionally f1.\[c,d] 11£.B>(x)I dx ~ C for any 
integer (3 ~ 2a + 1 and any compact interval [ c, d], 

(ii) l x,1,n = l x,1 E F with I x,1( x) > 0 for .all x, 
(iii) l x ,2 ,n = Ix ,1,n + bn , where the construction of bn is exactly described 

in the proof of Lemma 4.1. 
The essential features of bn will be that J xk bn( x) dx = 0 for k = 0, 1, ... , (3 - 1 
and f lbn(x )I dx = O(b.~2 ) • 

To accommodate also the important problem of estimating the endpoint of the sup-
port of a density, we consider also the following restrictions on lx,i,n and le· 
(A5') (i) le satisfies (Al), and additionally f1.\[c,d] 11£.B>(x)I dx ~ C for any 

integer (3 ~ 2a + 1 and any compact interval [c, d], and P(e > d) > 0 , 
(ii) lx,1,n = lx,1 E :F with fx,1(x) > 0 for all x < 191,n, 

(iii) fx,2,n = lx,1,n+bn, where bn is again defined in the proof of Lemma4.l. 
Now we obtain the following lemma.' 

Lemma 4.1. Assume {A5} or {A5'). Then {4.1} and {4.2} are fulfilled. 

The final step towards the lower bound can be described as follows; cf. also Donoho 
and Liu (1987). Define for two densities p and q the Hellinger affinity p(p, q) -
J ft..jq. . Further, let p[n] denote the n-dimensional product measure of p. Then 

P (Ux,1,n * /e)fnJ, (/x,2,n * fe)[n]) 
- pn (/x,1,n *le, f X,2,n *le) 

- ( 1 - ~H2(fx,1,n *f., fx,2,n * J.)r 
> (1 - C/nt ~ C > 0. 
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On the other hand, we have for any estimator J0 that 

P (Ux,1,n * le)[nl, (fx,2,n * le)[n]) 

< j [Jo(y ~~ ..91,nf JUx,1,n * /,)lnl(y )J(!x,2,n * /,)lnl(y) dy 

+ j [Jo(Y ~~ ..92,nl JUx,1,n * /,)lnl(y )J(!x,2,n * /,)lnl(y) dy 

< V E1x,1,n (.D.;;-1(Jo - '91,n))
2 + V Eix,,,n (.D.;;-1(Jo - '92,n)f, 

which immediately leads to the following theorem. 

Theorem 4.1. Assume {AS} or (AS'). Then 

{ ( 1 ..... )2} inf max E f x ~~ ( 'l?o - 'l?o) io fxE{fx,1,n.,Jx,2,n.} 
~ c > 0. 

4.2. A lower bound for errors-in-variables regression. We will obtain the de-
sired lower bound for the accuracy in estimating 1?0 again analyzing the Hellinger mo-
dulus of continuity of the problem. In the construction of the two densities l(X,Z),1,n 
and lcx,z),2,n we adapt a nice idea of Fan and Truong (1993), which allows us to use 
the result about the Hellinger distance of the two densities lx,1,n *le and lx,2,n *le 
from the previous section. 
To facilitate proofs, we choose le and I X,i,n according to ( A5). Further, we choose 
densities I 0 , g0 and a function ho with the following properties: 

(A6) (i). lo(x) ~ Clx,1(x) Vx, lo(x) =Jo> 0 for x E [1?1 - 5,1?1 + 5] and 
any 5 > 0, 

(ii) J zgo(z) dz = 0, 
(iii) J ho(z) dz = 0, J zho(z) dz = 1, 
(iv) go(z) ~ 2supx{lx,1(x)}lho(z)I Vz. 

Now we define our two densities lcx,z),1,n and lcx,z),2,n as 

lcx,z),i,n(x,z) = lo(x) [go(z) + lx,i,n(x)ho(z)]. (4.3) 

Because of (A5)(ii), the marginal density of X turns out to be equal to lo, which 
provides that 

Etcx,z),i,JZ IX= x) = j z[go(z) + lx,i,n(x)ho(z)] dz = lx,i,n(x). (4.4) 

Hence, the regression function m( x) has exactly the same change-points as the den-
sities lx,i,n from the previous section. Finally, we can estimate the Hellinger distance 
between l(Y,Z),1,n and l(Y,Z),2,n, where 

l(Y,Z),i,n(.y, Z) = J l(X,Z),i,n(Y - x, Z )le( X) dx, 
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by 

H2 (f(Y,Z),1,n> f(Y,Z),2,n) 

< J fiJ1+d+6 (f(Y,Z),1,n(y,z) - f(Y,Z),2,n(y,z)) 2 dydz 
1,,1 +c-6 f(Y,Z),1,n(Y, Z) 

+ f [ \[ ] lf(Y,Z),1,n(Y, z) - f(Y,Z),2,n(Y, z)j dy dz 11. fJ1 +c-6,191 +d+o 

J 
/191+d+6 (ho(z) f fo(Y - x)bn(Y - x)fe(x) dx)2 dy dz 

liJ1+c-6 f f(X,Z),1,n(Y - x, z)fe(x) dx 

+jlho(z)ldz f IJ!o(y-x)bn(y-x)fe(x)dxl dy 11. \[191 +c-6,191 +d+6] 

< fo
2 

j 2(ho(z))2 dzj (J bn(Y - x)fe(x)dx)2 dy 
C go(z) f fx,1(Y - x)fe(x) dx 

+ 0 ( f If fo(Y - x)bn(Y- x)fe(x)dxl dy). (4.5) 11. \[fJ1 +c-6,fJ1 +d+o] 

Here the essence of the idea of Fan and Truong becomes again apparent: we could 
separate the part involving integration over z from that which depends on y .. The 
integrals over y on the right-hand side C?f ( 4.5) are just the same as 11 and 12 from 
the proof of Lemma 4.1. 
Now we can derive, in analogy to Lemma 4.1, the following assertion. 

Lemma 4.2. Assume {A5} and {A6). Then 

H (!(Y,Z),1,n, f(Y,Z),2,n) = 0( n-112 ). 

Hence, we have again the fact that the two experiments according to f(Y,Z),l,n and 
f(Y,Z), 2,n are statistically not distinguishable. Arguing as above we get the desired 
lower bound for the accuracy in estimating 110 • 

Theorem 4.2. Assume {A5} and {A6}. Then 

inf max { E1,ui (b.;1(Jo - '110))2} 2': C > 0. 
;9°0 f(Y,z)E{f(Y,Z),1,1uf(Y,Z),2,n} ' 

5. PROOFS 

Lemma 5.1. Assume {A2}. Then 
(i) llf~k)ll2 = O(h~a-k+i/2), 

(ii) llr~k)lloo = O(h;;a-k) 
for k = 0, 1, 2 . 
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Proof We have that 

llr~k)ll~ - (27r t 111 lwlk-Tu(w )II~ 
- 0 (lllwlk~(w)(l + lwltll~) 
- 0 (llhncp(hnw)(l + lwltlwlkll~) 
- 0 ( hnllcp(w)(l + lwl/hnt(lwl/hn)klln 
_ Q (h~2a-2k+1) , 

and, analogously, 

llr~k)lloo < (27rt1lllwlk'Tu(w)ll1 
- 0 (llhncp(hnw)(l + lwltlwlkll1) 
- 0 (h~a-kllcp(w)(l + lwlt(lwl)kll1) 
- Q (h~a-k). 

D 

Proof of Lemma 2.1. 
(i) Let, w.l.o.g., fx( iJ0-) = fx( iJo+) + b,. for some b,. > 0 . Note that fx can be 
written as 

fx(x) = f(x) + h(x), (5.1) 

where f and h are uniformly Lipschitz on IR and IR \ {t?0 }, respectively. Moreover, 
we choose h such that h( t?0-) = b,./2 , h( iJ0 +) = -b,./2 , h( x) 2:: 0 , if x < 0 , and 
h( x) ~ 0 , if x > 0 are satisfied. 
Since <p-a satisfies J cp-a(x) dx = 0 and has a length of support of O(hn), we get 

( <pu0 - <p{J, f) = 0 ( hn j lipu0 ( x) - <p{J( X )I dx) = 0 ( {1inl11o -111) A h!) . (5.2) 

Here the last equality holds, because cp has bounded total variation. 
For iJ0 E supp( <p-a) we obtain that 

( <pu0 - <p{J, h) = .6./2 t: ( 'PiJo ( x) - <p{J( x )) dx - .6./2 L~ ( <p{J0 ( x) - <pu( x )) dx 

+ 0 (J Ix -1?ollipu0 (x) - <p.i(x)I dx), 

> Cslt?o - t?l 2 /hn - C1hnliJo - t?I, (5.3) 

whereas we get for iJ0 ~ supp( <p-a) that 

(<p{J0 - <p.i, h) ~· Csh,, - 0 (J <p{J(x )h(x) dx) ~ Csh,, - C1h!. 

(i) follows from (5.2), (5.3) and (5.4). 

(5.4) . 
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(ii) Since fx * fe is bounded, we obtain that 

var( ii.90 - li,i) :::; n-1 E ( l.io (Y) - 1.i(Y))2 = 0 ( n-1 j (1'.i0 ( x) -1.i( x) )2 dx) . 

Now we have by Lemma 5.1 that 

111'.io -1.ill~ = j (l 0 1~( x + z) dz r dx :::; l11o - 11!2111'~11~ = 0(1110 - 1112 h;;-2
"'-

1 
), 

which implies (ii). 
(iii) follows from 

D 

Proof of Theorem 2.1. The proof of this theorem is mainly based on a repeated appli-
cation of Bernstein's inequality, which we quote for reader's convenience from Shorack 
and Wellner (1986, p. 855): 
Let Z1 , ... , Zn be i.i.d. random variables with EZ1 = 0 and IZ1 I ~ K almost 
surely. Then, for Z = n-1 l: Zi, 

P(Z > c) nc2 /2 ) 
var(Z1 ) + (Kc)/3 

c
2 

) ( 3nc) 4var(Z) +exp - 4K (5.5) 

holds for arbitrary c > 0. 
(i) Let eii = ail - ail . 
First we estimate the probability of the event n = { w I 1et91 > IC1.t9o l/3 for any iJ E 
[a, b]}. For that we approximate f,, on the grid 

r n = {kdn I k E Z} n [a, b], 

where dn = o(h~+2) , d~1 = O(n6 ) for any 5 < oo . 
Since IC1.t9o I ~ hn , we obtain by Lemma 2.1, Lemma 5.1 and (5.5) for fixed iJ that 

p ( 1et9 I > lat9o l/6) < 2 exp ( lat9o 12 /36) + 2 exp (- IC1.t9o In ) 
4var(et9) Bll1't9lloo 

( h! ) ( hnn) < 2exp -G n-lh;2a+i + 2exp -G h;a. 

0 ( exp(-Gn1f(a.+3f 2>) + exp(-On(a.+2)/(2a+3))) • (5.6) 

Further, let 'l!J* = iJ*(iJ) E I'n be that element of I'n, which is closest toil. Then we 
have with probability one that 
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for all {} E [a, b] , if n is large enough. This yields 

0 ( n 8 exp( -Cn1f(o.+ 3! 2))) • 

(ii) It is obvious that w (/:. fi implies that 

'f9•ern. 

Jo Ee= {tJ E [a,b] I laiJl 2:: I0'.'19ol/3}. 
We decompose E> into the subsets 

Im= {tJ EE> I {}ms{} s {Jm+i}, m = -M, ... ,0,1, ... ,M, 

(5.8) 

where tJm = rJ0 + ml:::..n and Mis the smallest possible integer such that 8 is covered 
by LJ!ml$M Im · 
Provided n is large enough, we have by Lemma 2.1 that 

Moreover, since the "essential part" of a19, which is equal to 

j iJo roo 
1:::../2 _

00 
rp19( x) dx - 1:::../2 }

190 
rp19( x) dx 

(see the proof of Lemma 2.1 for details), is nonnegative for all iJ, we get immediately 
that 

la19l = O(h!), if sgn(0'.'19) # sgn(a190 ). 

Let, w.l.o.g., a190 > 0 . Then, again for n large enough, 

a19 > 0 for all {} E 8. (5.9) 

Hence, we obtain that 

. where Cm= aiJ0 - supiJEim. {O'.iJ}. From Lemma 2.1 we have that 

(5.11) 

an.cl appropriately fixed ma. Let .iJm,k = {}m + (k/ Ln)l:::..n , k = 0, ... , Ln - 1 , 
where Ln will be chosen below. For {} E [iJm,k, iJm,k+i) ~ [iJm, iJm,1) we consider the 
decomposition 



By Bonferroni's inequality we obtain that 

P(nm) ~ P (eiJ= - eiJo ?:. em/4) 

+ P ( ~ne~= ?:. em/4) 
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+ P ( eiJ=,,. - eiJ= - ( '!9m,k - '!9m)e~= ?:. Cm/ 4 for any k E 0, ... , Ln - 1) 

+ P ( eiJ - eiJ=,1c ?:. em/4 for any k E 0, ... , Ln -1, '19 E ['!9m,k, '!9m,k+1)) 

Pml + · · · + Pm4· (5.13) 
It will turn out that this somewhat involved decomposition (5.12) is really necessary 
for proving that P(nm) decreases fast enough as lml grows. To get a valid result 
for a continuum of points, we have to approximate eiJ - eiJo on a sufficiently fine 
grid, with spacings that are of smaller order of magnitude than ~n· Hence, even on 
a fixed interval Im = ['!9m, '!9m+i) we have to consider an increasing number of grid 
points. The stochastic fluctuations of the first two terms on the right-hand side of 
(5.13) will be of about the same order of magnitude as Cm for small !ml; hence we 
consider only a single term of these kinds for every m. The third term is of smaller 
order of magnitude than em; therefore we can include an increasing number of them 
(namely Ln for every m ). Finally, provided we choose Ln large enough, we find a 
non-stochastic upper estimate for the forth term, which is of smaller order than Cm· 
Now we turn to the estimation of Pml through Pm4. Using 

var(eiJ= - e190 ) = 0 (n-11'!9m - '!9al 2h;2a-1) = O((m~n)2h~), 

llriJ= -(iJolloo = 0 (l'!9m - '!9olh;a-l) = O(m~nfi;a-1 ), 
and (5.11) we obtain due to (5.5) that 

p 1 < exp (- (em/4)2 ) + exp (- 3nem/4 ) 
m 4var(eiJ'm - eiJo) 4llriJ'm - riJo lloo 

< exp(-Cm2) + exp(-Cmn(a+l)/(2a+3)). (5.14) 

By 

and 
~nllr~Jloo = Q ( ~nh;cx-l) = O(~nh;a-l ), 

we get analogously to (5.14) that 

Pm2 ~ exp( -Cm4) + exp(-Cm2n(a+1)/(2a+a)). (5.15) 

Further, we obtain from 

var(L:m·\e~-eUdz) = o(n-1 jjt·\-r~-'Y~m)d{) = o(n-1 ~!1/'Y~I/~) = o(~!) 
and 



14 

that 

( (m~n)4/h~) ( n(m~)2 /hn) 
Pm3 < Lnexp -0 ~~ + Lnexp -0 ~2h~a-2 

< Ln exp(-Om4n 2/(2a+3)) + Ln exp(-Om2n(a+2)/(2a+3)). (5.16) 

Finally, we get for 1'11 - '11m,kl = O(L~ 1 ) that e{} - fem.,,. = O(L~1 ll1~ lloo) = o( em), 
if L~1 = o(h~+4) = o(n-(a+4)/(2a+3)) . Provided we choose Ln in such a way, we 
obtain 

Pm4 = 0. 

Now we conclude from (5.8) and (5.14) through (5.17) that 

D 

E ( ~~1 (Jo - '110) r ~ 0(~~2 )P(fi) 
+ (lmol + 1)2 

M 

+ L: (lmJ + 1)2 P(Hm) 
lml=mo 

0(1). 

(5.17) 

Proof of Theorem 3.1. This theorem can be proved in complete analogy to Theo-
rem 2.1. The only modification will concern the exponential decay of the probability 
bounds in (5.8) and (5.14) through (5.16). Since we assume only that a certain finite 
number of moments of Z are finite, we will get an additional term of order 0( n->.) in 
these bounds, where .A can be chosen arbitrarily large in dependence on a sufficiently 
large choice of Min (A4). Instead of Bernstein's inequality we can then apply results 
of Nagaev (1965). D 

Proof of Lemma 4.1. 
(i) Construction of bn 
Let Pi be Lipschitz continuous functions supported on [-1, O] such that 

j xipi(x) dx = -8i;/(i + 1) for j = 0, 1, ... ,/3- 1. 

Now we define 

It is easy to see that bn is supported on ['111 - $n, '111 + ~n] , satisfies J I bn( x) I dx = 
O(~n), and J xibn(x) dx = 0 for j = 0, 1, ... ,/3- 1. 

(ii) Proof of (4.1) under (A5) 
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We have 

H2 (fx,1 * fe, fx,2,n * fe) 

< rfl1+d+o ((bn * !e)(x))2 dx + f l(bn * !e)(x)I dx 
Jil1+c-6 (fx,1 * fe)(x) J1.\[fl1+c-6,fl1 +d+8] 

11 + 12. (5.19) 

Since f x,1( x) > 0 't/x we have that (f x,1 * fe)( x) > 0 't/x , which means that 
fx,1 * fe is bounded away from zero on the compact interval [~1 + c- 6, ~1 + d + 6]. 
Hence, we obtain that 

11 < C j ( ( bn * fe )( X) )2 dx 

C j l~(w)h(w)l 2 <Li 

< Cb. .. j lb .. (./ftt)( ~w)lwl-ar di,, 

- c1:;.~+1/2 J b,.(-:!7t)(w)lwl-ar di,, 

< c1:;.~+1!2 [! lb~-ll(x/~)12 da: + J lb~-(tl-lll(x/~)1 2 dx] 
0 ( Li~+3!2) = O(n-1 

). (5.20) 

From a Taylor expansion with integral remainder we get that 

j bn(Y)fe(x -y)dy 

o (Ll'!-1
)12 j lbn(Y )I dy f, IJ!13 )( x - ;)I dy) 

yEsupp(bn) 

holds for x E JR.\ [~1 + c - 6, ~1 + d + 6] , which implies that 

12 < c Ll'!+1>12 f f, 1!!13>( x - y) I dy dx 
}1, \[t91+c-6,t91 +d+6] yEsupp(bn) 

- 0 (Ll'f+2>!2) = O(n-1 ). (5.21) 

This completes the proof of ( 4.1). The proof under (A5') is similar, since (fx,1 * 
fe)( x) ~ C > 0 can also be shown for x E [~1 + c - 6, ~1 + d + 6] and sufficiently 
small 6 > 0. 
( 4.2) follows directly from the construction of fx,2,n· D 
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