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Abstract In this article we contribute to the moment analysis of branching processes in catalytic
media. The many-to-few lemma based on the spine technique is used to derive a system of
(discrete space) partial differential equations for the number of particles in a variation of constants
formulation. The long-time behavior is then deduced from renewal theorems and induction.

1. Introduction and Results

A classical subject of probability theory is the analysis of branching processes in discrete or
continuous time, going back to the study of extinction of family names by Francis Galton. There
have been many contributions to the area since, and we present here an application of a recent
development in the probabilistic theory. We identify qualitatively different regimes for the longtime
behaviour for moments of sizes of populations in a simple model of a branching Markov process in
a catalytic environment. For this problem, which was first approached from an analytic point of
view, the interplay of the two effects of spatial motion and branching can easily be tackled with
the many-to-few lemma.

To give some background for the branching mechanism, we recall the discrete-time Galton-Watson
process. Given a random variable X with law µ taking values in N, the branching mechanism is
modelled as follows: for a deterministic or random initial number Z0 ∈ N of particles, one defines
for n = 1, 2, ...

Zn+1 =

Zn
∑

r=0

Xr(n),

where all Xr(n) are independent and distributed according to µ. Each particle in generation n
is thought of as giving birth to a random number of particles according to µ, and these parti-
cles together form generation n + 1. For the continuous-time analogue each particle carries an
independent exponential clock of rate 1 and performs its breeding event once its clock rings.

It is well-known that a crucial quantity appearing in the analysis is m = E[X], the expected
number of offspring particles. The process has positive chance of long-term survival if and only if
m > 1. This is known as the supercritical case. The cases m = 1 (critical) and m < 1 (subcritical)
also show qualitatively different behaviour in the rate at which the probability of survival decays.
As this paper deals with the moment analysis of a spatial relative to this system, we mention the
classical trichotomy for the moment asymptotics of Galton-Watson processes:

lim
t→∞

e−k(m−1)tE
[

Zk
t

]

∈ (0,∞) ,∀k ∈ N,(1.1)

so that all moments increase to infinity if m > 1, stay bounded if m = 1, and decay to zero if
m < 1.

In the present article we are interested in the moment asymptotics in a version of the Galton-
Watson process for which a system of branching particles moves in space and particles branch
only in the presence of a catalyst. More precisely, we start a particle ξ which moves on some
countable set S according to a continuous-time Markov process with Q-matrix A. This particle
carries an exponential clock of rate 1 that only ticks if ξ is at the same site as the catalyst, which
we assume for now sits at 0. (We will later give results for a moving catalyst.) If and when the
clock rings, then the particle dies and is replaced in its position by a random number of offspring.
This number is distributed according to some offspring distribution µ, and all newly born particles
behave as independent copies of their parent: they move on S according to A and branch after an
exponential rate 1 amount of time spent at 0.
The main objective of our study is the longtime behaviour of the moments

Mk(t, x, y) = E
[

Nt(y)k
∣

∣ ξ0 = x
]

and Mk(t, x) = E
[

Nk
t

∣

∣ ξ0 = x
]

,

where Nt(y) is the number of particles alive at site y at time t and Nt =
∑

y∈Zd Nt(y) is the total
number of particles alive at time t.

Under the additional assumption that A = ∆ is the discrete Laplacian, the moment analysis
was carried out in [AB00], [ABY98], [ABY98] via partial differential equations and Tauberian

1



2

theorems. Our approach is more robust so that the assumptions on the underlying motion can be
dropped.

To our knowledge the asymptotics of higher moments of the branching process in a catalytic
environment were first considered analytically in [Y91] for the special case of a binary branching
mechanism (i.e. µ is concentrated on 0 and 2 only) and particles performing simple random walks.
In [ABY98], see also the Erratum [ABY98b], it was proposed (without rigorous proofs) to study
the asymptotics for the moments via partial differential equations and Tauberian theorems under
the assumptions

(A1) irreducibility,
(A2) spatial homogeneity,
(A3) symmetry,
(A4) finite variance of jump sizes

on the underlying spatial motion A. Interestingly, the effects of the spatial motion and the
branching mechanism are well separated in the partial differential equations allowing for a detailed
analysis of their interplay. Those equations were derived rigorously under (A1) to (A3) in [AB00]
via analytic arguments from partial differential equations for the generating functions Ex[e−zNt(y)]
and Ex[e−zNt ].

Our approach is different from the analytic approaches mentioned above: first we apply a combi-
natorial spine representation of [HR11] to derive sets of partial differential equations, in variation
of constants form, for the kth moments of Nt(y) and Nt. A set of combinatorial factors can be
given a direct probabilistic explanation, whereas the same factors appear in [AB00] abstractly
from Faà di Bruno’s formula of differentiation.
To derive asymptotic results as announced in [ABY98], one might then follow their approach via
spectral theory and Tauberian theorems applied to the partial differential equations. The price one
has to pay is to assume additionally a property like (A4) as then the local central limit theorem
yields the asymptotic behaviour for the transition probabilities which, via Tauberian theorems,
can be translated to asymptotics for the moments.
We follow a different route: building upon ideas of [DS10], renewal theorems are applied to the
variation of constants formula for the first moments. This, combined with an induction for higher
moments, allows us to circumvent all assumptions (A1) to (A4).

In order to avoid many pathological cases we do impose from now on the assumption

(A) the motion governed by A is irreducible.

This assumption is not necessary, and the interested reader may easily reconstruct the additional
cases from our proofs. It simply allows us to avoid many pathological examples. To state the main
result, we denote the transition probabilities of A by

pt(x, y) = Px(ξt = y)

and the Green function by

G∞(x, y) =

∫ ∞

0

pt(x, y) dt.

Recall that, by irreducibility, the Green function is finite for all x, y ∈ S if and only if A is
transient.

Theorem 1. Suppose µ has finite moments of all orders; then the following regimes occur for all
integers k ≥ 1:

i) If the branching mechanism is subcritical, then

lim
t→∞

Mk(t, x) ∈ (0, 1) ⇐⇒ A is transient

lim
t→∞

Mk(t, x) = 0 ⇐⇒ A is recurrent,

and

lim
t→∞

Mk(t, x, y) = 0 in all cases.
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ii) If the branching mechanism is critical, then

lim
t→∞

Mk(t, x) ∈ (0,∞)

and

lim
t→∞

Mk(t, x, y) = 0 ⇐⇒ lim
t→∞

pt(x, y) = 0,

lim
t→∞

Mk(t, x, y) ∈ (0, 1] ⇐⇒ lim
t→∞

pt(x, y) > 0.

iii) If the branching mechanism is supercritical, then there is a critical constant

β =
1

G∞(0, 0)
+ 1

such that
a) for m < β

lim
t→∞

Mk(t, x) ∈ (0,∞)

and

lim
t→∞

Mk(t, x, y) = 0.

b) for m = β

lim
t→∞

Mk(t, x) = ∞

and

lim
t→∞

Mk(t, x, y)

{

∈ (0,∞) :
∫∞

0
rpr(0, 0) dr < ∞

= ∞ :
∫∞

0
rpr(0, 0) dr = ∞

(in both cases the moments grow only subexponentially fast).
c) for m > β

lim
t→∞

e−kr(m)tMk(t, x) ∈ (0,∞)

and

lim
t→∞

e−kr(m)tMk(t, x, y) ∈ (0,∞),

where r(m) equals the unique solution λ to
∫∞

0
e−λtpt(0, 0) dt = 1

m−1 .

The formulation of the theorem does not include the limiting constants. Indeed, the proofs give
some of those (in an explicit form involving the transition probabilities pt) in the supercritical
regime but they seem to be of little use. The use of spectral theory for symmetric Q-matrix A
allows one to derive the exponential growth rate r(m) as the maximal eigenvalue of a Schrödinger
operator with one-point potential and the appearing constants via the eigenfunctions. Our renewal
theorem based proof gives the representation of r(m) as the inverse of the Laplace transform of
pt(0, 0) at 1/(m− 1) and the eigenfunction expressed via integrals of pt(0, 0). As pt(0, 0) is rarely
known explicitly, the integral form of the constants is not very useful (apart from the trivial case
of Example 1 below). Only in case iii) b) for

∫∞

0
rpr(0, 0) dr = ∞ are the proofs unable to give

strong asymptotics. This is caused by the use of an infinite-mean renewal theorem which only
gives asymptotic bounds up to an unknown factor between 1 and 2.
There is basically one example in which pt(0, 0) is trivially known:

Example 1: For the trivial motion A = 0, i.e. branching particles are fixed at the same site as
the catalyst, the supercritical cases iii) a) and b) do not occur as A is trivially recurrent so that
β = 1. Furthermore, in this example pt(0, 0) = 1 for all t ≥ 0 so that r(m) = m − 1. In fact by
examining the proof of Theorem 1 one recovers (1.1) with all constants.

The explicit representation for the exponential growth rate allows for a more careful comparison
with the non-spatial case.
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Corollary 1. Let r(m) be the exponential growth rate obtained in the supercritical case of Theo-
rem 1. Then

m 7→ r(m)

is convex, with

r(0) = 0, r(m) ≤ m − 1, lim
m→∞

r(m)

(m − 1)
= 1.

Proof. This follows from elementary manipulations of the defining equation for r(m). �

Example 2: The most classical non-trivial example is to take A = ∆ on Zd as studied in [ABY98].
In the recurrent case d = 1, 2, implying β = 1, our approach gives

Mk(t, x) ∼











0 : m < 1

C : m = 1

Cekr(m)t : m > 1,

Mk(t, x, y) ∼











0 : m < 1

0 : m = 1

Cekr(m)t : m > 1.

In the transient case d ≥ 3, implying β > 1, our proofs give

Mk(t, x) ∼



















C : m < β

Ctk : m = β, d = 3, 4

∞ : d ≥ 5

Cekr(m)t : m > β,

Mk(t, x, y) ∼



















0 : m < β

∞ : m = β, d = 3, 4

C : m = β, d ≥ 5

Cekr(m)t : m > β

with asymptotic equivalence to infinity interpreted as divergence to infinity. We will sketch in
Remark 1 below how the additional property limt→∞ pt(x, y)td/2 ∈ (0,∞), due to the local central
limit theorem, can be used to derive explicit asymptotic rates in all cases.

A similar question to that in Theorem 1 is discussed in [GH06] for a corresponding parabolic
Anderson model. Supposing that at t = 0 one branching particle starts at each site x of the
lattice and the branching particles and a catalyst ζ moves according to simple random walks on
Zd with jump rate κ, the quenched first moment of the number of particles solves the random
heat equation

{

∂
∂tu(t, x) = κ∆u(t, x) + W (t, x)u(t, x), t ≥ 0, x ∈ Zd,

u(0, x) = 1, x ∈ Zd.

The random potential W (t, x) equals 1 if at time t the catalytic particle is at site x and 0 otherwise.
In contrast to the present article, they consider longtime asymptotics of the moments Eζ

[

u(t, x)p
]

;
that is they first average over the branching before taking the moments and then averaging over
the random environment.
Indeed, we can extend our renewal theory approach in this direction. Much of our proof of Theorem
1 works also when we allow the catalyst to move according to some random process. In fact we
do not need to assume that ζt is a simple random walk; for our results it is sufficient to assume
that the difference process ξt − ζt is a well-defined homogeneous Markov process. Nonetheless the
heavy use of renewal theorems forces us to restrict the moment analysis in the supercritical case
to the total number of particles.
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Theorem 2. Suppose µ has finite moments of all orders; suppose that the catalyst ζt moves in
such a way that ξt − ζt is a well-defined homogeneous Markov process with generator C. Then the
following regimes occur for all integers k ≥ 1:

i) If the branching mechanism is subcritical, then

lim
t→∞

Mk(t, x) ∈ (0, 1) ⇐⇒ C is transient

lim
t→∞

Mk(t, x) = 0 ⇐⇒ C is recurrent,

and

lim
t→∞

Mk(t, x, y) ∈ (0, 1) ⇐⇒ C is transient and lim
t→∞

pt(x, y) > 0

lim
t→∞

Mk(t, x, y) = 0 ⇐⇒ otherwise.

ii) If the branching mechanism is critical, then

lim
t→∞

Mk(t, x) ∈ (0,∞)

and

lim
t→∞

Mk(t, x, y) = 0 ⇐⇒ lim
t→∞

pt(x, y) = 0,

lim
t→∞

Mk(t, x, y) ∈ (0, 1] ⇐⇒ lim
t→∞

pt(x, y) > 0.

iii) If the branching mechanism is supercritical, then there is a critical constant

β =
1

∫∞

0
Px(ξt = ζt)dt

+ 1

such that
a) for m < β, limt→∞ Mk(t, x) ∈ (0,∞).
b) for m = β, limt→∞ Mk(t, x) = ∞ but Mk(t, x) grows only subexponentially fast.
c) for m > β, limt→∞ e−kr(m)tMk(t, x) ∈ (0,∞) where r(m) equals the unique solution

λ to
∫∞

0
e−λtPx(ξt = ζt) dt = 1

m−1 .

2. Proofs

The key tool in our proofs will be the many-to-few lemma proved in [HR11] which relies on modern
spine techniques. These emerged from work of Kurtz, Lyons, Pemantle and Peres in the mid-1990s
[KLPP97, L97, LPP95]. The idea is that to understand certain functionals of branching processes,
it is enough to carefully study the behaviour of one special particle, the spine. In particular very
general many-to-one lemmas emerged, allowing one to easily calculate expectations of sums over
particles like

E

[

∑

v∈Nt

f(v)

]

,

where f(v) is some well-behaved functional of the behaviour of the particle v up to time t, and
Nt here is viewed as the set of particles alive at time t, rather than the number. It will always be
clear from the context which meaning for Nt is intended.
It is natural to ask whether similar results exist for higher moments of sums over Nt. This is the
idea behind [HR11], wherein it turns out that to understand the kth moment one must consider
a system of k particles. The k particles introduce complications compared to the single particle
required for first moments, but this is still significantly simpler than controlling the behaviour of
the potentially huge random number of particles in Nt. Our results here work equally well in the
case where the catalyst is also moving within S according to a Markov process: as above we write
ζt for the position of the catalyst at time t.

While we do not need to understand the full spine setup here, we shall require some explanation.
For each k ≥ 0 let pk = P(X = k) and mk = E[Xk], the kth moment of the offspring distribution
(in particular m1 = m). We define a new measure Q = Qk

x, under which there are k distinguished



6

lines of descent known as spines. The construction of Q relies on a carefully chosen change of
measure, but we do not need to understand the full construction and instead refer to [HR11]. In
order to use the technique, we simply have to understand the dynamics of the system under Q.
Under Qk

x particles behave as follows:

• We begin with one particle at position x which (as well as its position) has a mark k. We
think of a particle with mark j as carrying j spines.

• Whenever a particle with mark j, j ≥ 1, spends an (independent) exponential time with
parameter mj in the same position as the catalyst, it dies and is replaced by a random
number of new particles with law Aj .

• The probability of the event {Aj = a} is ajpam−1
j . (This is the jth size-biased distribution

relative to µ.)
• Given that a particles v1, . . . , va are born, the j spines each choose a particle to follow

independently and uniformly at random. Thus particle vi has mark l with probability
a−l(1 − a−1)j−l, l = 0, . . . , j, i = 1, . . . , a. We also note that this means that there are
always k spines amongst the particles alive; equivalently the sum of the marks over all
particles alive always equals k.

• Particles with mark 0 are no longer of interest (in fact they behave just as under P,
branching at rate 1 when in the same position as the catalyst and giving birth to numbers
of particles with law µ, but we will not need to use this).

For a particle v, we let Xv(t) be its position at time t and Bv be its mark (the number of spines it
is carrying). Let σv be the time of its birth and τv the time of its death, and define σv(t) = σv ∧ t
and τv(t) = τv ∧ t. Let χi

t be the current position of the ith spine. We call the collection of
particles that have carried at least one spine up to time t the skeleton at time t, and write skel(t).
Figure 1 gives an impression of the skeleton at the start of the process.

Figure 1. An impression of the start of the process: each particle in the skeleton
is a different colour, and particles not in the skeleton are drawn in pale grey. The
circles show the number of spines being carried by each particle in the skeleton.

A much more general form of the following lemma was proved in [HR11].

Lemma 1 (Many-to-few). Suppose that f : R → R is measurable. Then, for any k ≥ 1,

E





∑

v1,...,vk∈Nt

f(Xv1(t)) · · · f(Xvk
(t))





= Qk



f(χ1
t ) · · · f(χk

t )
∏

v∈skel(t)

exp

(

(mBv
− 1)

∫ τv(t)

σv(t)

1ζs
(Xv(s))ds

)



 .

Clearly if we take f ≡ 1, then the left hand side is simply the kth moment of the number of
particles alive at time t. The lemma is useful since the right-hand side depends on at most k
particles at a time, rather than the arbitrarily large random number of particles on the left-hand
side.
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Having introduced the spine technique, we can now proceed with the proof of Theorem 1. We first
use Lemma 1 for the case k = 1, which is simply the many-to-one lemma, to deduce two convenient
representations for the first moments: a Feynman-Kac expression and a variation of constants
formula. Indeed, the exponential expression equally works for other random potentials and, hence,
is well known for instance in the parabolic Anderson model literature. More interestingly, the
variation of constants representation is most useful in the case of a one-point potential: it simplifies
to a renewal type equation. Understanding when those are proper renewal equations replaces the
spectral theoretic arguments of [ABY98] and explains the different cases appearing in Theorem 1.

Lemma 2. For any catalyst ζt, t ≥ 0, the first moments can be expressed as

M1(t, x) = Ex

[

e(m−1)
R

t

0
1ζr (ξr) dr

]

,(2.1)

M1(t, x, y) = Ex

[

e(m−1)
R

t

0
1ζr (ξr) dr

1y(ξt)
]

,(2.2)

where ξt is a single particle moving with Q-matrix A. In the case of the fixed catalyst ζt = 0 these
quantities fulfill

M1(t, x) = 1 + (m − 1)pt(x, 0) ∗ M1(t, 0),(2.3)

M1(t, x, y) = pt(x, y) + (m − 1)pt(x, 0) ∗ M1(t, 0, y),(2.4)

where ∗ denotes ordinary convolution in t. Equation (2.3) also holds whenever ξt − ζt is a homo-
geneous Markov process.

Before giving the proof let us briefly mention why the renewal type equations occur naturally, at
least in the case of the static catalyst ζt = 0. The Feynman-Kac representation can be proved in
various ways; we derive it simply from the many-to-few lemma. The Feynman-Kac formula then
leads naturally to solutions of discrete-space heat equations with one-point potential:

{

∂
∂tu(t, x) = Au(t, x) + (m − 1)10(x)u(t, x)

u(0, x) = 1y(x)
.

Applying the variation of constants formula for solutions gives

u(t, x) = Ptu(0, x) +

∫ t

0

Pt−s(m − 1)10(x)u(s, x) ds

= pt(x, y) + (m − 1)

∫ t

0

pt−s(x, 0)u(s, x) ds,

where Pt is the semigroup corresponding to A, i.e. Ptf(x) = Ex[f(ξt)]. As we do not want (and do
not need) to refer to analytic results we now give a direct simple proof for these representations.

Proof of Lemma 2. To prove (2.1) and (2.2) we apply the easiest case of Lemma 1: we choose
k = 1 and f ≡ 1 (resp. f(z) = 1y(z) for (2.2)). Since there is exactly one spine at all times,
the skeleton reduces to a single line of descent. Hence mBv

− 1 = m − 1 and the integrals in the
product combine to become a single integral along the path of the spine up to time t. Thus

M1(t, x) = Qx

[

e(m−1)
R

t

0
1ζr (ξr) dr

]

and M1(t, x, y) = Qx

[

e(m−1)
R

t

0
1ζr (ξr) dr

1y(ξt)
]

which is what we claimed but with expectations taken under Q rather than the original measure
P. However we note that the motion of the single spine is the same (it has Q-matrix A) under
both P and Q, so (since — given the position of the catalyst — the right hand sides above depend
only on the position of the spine) we may simply replace Q with P, giving (2.1) and (2.2).
The variation of constants formulas can now be derived from the Feynman-Kac formulas in the
case of the static catalyst ζt = 0. We only prove the second identity, as the first can be proved
similarly (even when ξt − ζt is any homogeneous Markov process - one simply replaces position 0
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with ζt and applies homogeneity at the final step). We use the exponential series to get

Ex

[

e(m−1)
R

t

0
10(ξr) dr

1y(ξt)
]

= Ex

[

∞
∑

n=0

(m − 1)n

n!

(
∫ t

0

10(ξr) dr

)n

1y(ξt)

]

= Px(ξt = y) + Ex

[

∞
∑

n=1

(m − 1)n

n!

∫ t

0

. . .

∫ t

0

10(ξr1) · · ·10(ξrn
) drn . . . dr11y(ξt)

]

= pt(x, y) + Ex

[

∞
∑

n=1

(m − 1)n

∫ t

0

∫ t

r1

. . .

∫ t

rn−1

10(ξr1
) · · ·10(ξrn

) drn . . . dr2dr11y(ξt)

]

.

The last step is justified by the fact that the function that is integrated is symmetric in all
arguments and, thus, it suffices to integrate over a simplex. We can exchange sum and expectation
and obtain that the last expression equals

pt(x, y) + (m − 1)

∫ t

0

∞
∑

n=1

(m − 1)n−1

∫ t

r1

. . .

∫ t

rn−1

Px[ξr1
= 0, . . . , ξrn

= 0] drn . . . dr2dr1.

Due to the Markov property, the last expression equals

pt(x, y) + (m − 1)

∫ t

0

pr1
(x, 0)

∞
∑

n=1

(m − 1)n−1

∫ t

r1

. . .

∫ t

rn−1

P0[ξr2−r1
= 0, . . . , ξrn−r1

= 0] drn . . . dr2dr1

and can be rewritten as

pt(x, y) + (m − 1)

∫ t

0

pr1(x, 0)

(

∞
∑

n=1

(m − 1)n−1

∫ t−r1

0

. . .

∫ t−r1

rn−1

P0[ξr2 = 0, . . . , ξrn
= 0] drn . . . dr2

)

dr1.

Using the same line of arguments backwards for the term in parentheses, the assertion follows. �

Having derived variation of constants formulas, there are different ways to analyze the asymptotics
of the first moments. Assuming more regularity for the transition probablities, this can be done
as sketched in the next remark.

Remark 1. Taking Laplace transforms L in t, one can transform (2.3), and similarly (2.4), into
the algebraic equation

LM1(λ, x) =
1

λ
+ (m − 1)LM1(λ, 0)Lpλ(x, 0) , λ > 0,

which can be solved explicitly to obtain

LM1(λ, x) =
1

λ(1 − (m − 1)Lpλ(x, 0))
, λ > 0.(2.5)

Assuming the asymptotics of pt(x, 0) are known for t tending to infinity (and are sufficiently reg-
ular), the asymptotics of Lpλ(x, 0) for λ tending to zero can be deduced from Tauberian theorems.
Hence, from Equation (2.5) one can then deduce the asymptotics of LM1(λ, x) as λ tends to zero.
This, using Tauberian theorems in the reverse direction, allows one to deduce the asymptotics of
M1(t, x) for t tending to infinity.
Unfortunately, to make this approach work, ultimate monotonicity and asymptotics of the type
pt(x, 0) ∼ Ct−α are needed. This motivated the authors of [ABY98] to assume (A4) so that by
the local central limit theorem

pt(x, 0) ∼

(

d

2π

)d/2

t−d/2.

As we did not assume any regularity for pt, the aforementioned approach fails in general. We
instead use an approach based on renewal theorems recently seen in [DS10].



9

Proof of Theorem 1 for M1. Taking into account irreducibility and the Markov property of A, we
see that the property “

∫∞

0
10(ξr) dr = ∞ almost surely” does not depend on the starting value

ξ0. If A is recurrent, we thus obtain from dominated convergence and (2.2) that M1(t, x) tends
to zero for all x ∈ Zd in regime i). If A is transient, then M1(t, x) converges to a constant since
it is decreasing and bounded from below: fix s such that Px(ξr 6= 0 ∀r ≥ s) > 0, and note that

(2.6) M1(t, x) ≥ Ex[e(m−1)
R

t

0
10(ξr)dr

1{ξr 6=0 ∀r≥s}] ≥ e(m−1)sPx(ξr 6= 0 ∀r ≥ s) > 0.

However,

M1(t, x, y) = Ex

[

e(m−1)
R

t

0
10(ξr) dr

1y(ξt)
]

≤ Px(ξt = y)
t→∞
−→ 0,

so that regime i) is proved.
Regime ii) is trivial as here M1(t, x) = 1 and M1(t, x, y) = pt(x, y). Next, for regime iii) a) we
exploit both the standard and the reverse Hölder inequality for p > 1:

M1(t, x, y) ≥ Ex

[

e−(1/(p−1))(m−1)
R

t

0
10(ξr) dr

]−(p−1)
pt(x, y)p,(2.7)

M1(t, x, y) ≤ Ex

[

ep(m−1)
R

t

0
10(ξr) dr

]1/p
pt(x, y)(p−1)/p.(2.8)

In the recurrent case G∞(0, 0) = ∞ and thus β = 1, so this case has already been dealt with
in regime ii). Hence we may assume that A is transient so that

∫∞

0
10(ξr) dr < ∞ with positive

probability. This shows that the expectation in the lower bound (2.7) converges to a finite constant.
By assumption m−1 < β so that there is p > 1 satisfying p(m−1) < β. With this choice of p, part
3) of Theorem 1 of [DS10] implies that also the expectation in the upper bound (2.8) converges
to a finite constant. In total this shows that

Cpt(x, y)p ≤ M1(t, x, y) ≤ C ′pt(x, y)(p−1)/p

and the claim for M1(t, x, y) follows. For M1(t, x) we can directly refer to Theorem 1 of [DS10].

For regimes iii) b) and c) we give arguments based on renewal theorems. A closer look at the
variation of constants formula (2.4) shows that only for x = 0, M1(t, x, y) occurs on both sides
of the equation. Hence, we start with the case x = 0 and afterwards deduce the asymptotics for
x 6= 0.
Let us begin with the simpler case iii) c). As mentioned above, in this case we may assume that A
is transient so that

∫∞

0
pr(0, 0) dr < ∞. Hence, dominated convergence ensures that the equation

∫∞

0
e−λtpt(0, 0) dt = 1/(m − 1) has a unique positive root λ, which we call r(m). The definition

of r(m) shows that U(dt) := (m − 1)e−r(m)tpt(0, 0) dt is a probability measure on [0,∞) and
furthermore e−r(m)tpt(0, y) is directly Riemann integrable. Hence the classical renewal theorem
(see page 349 of [F71]) can be applied to the (complete) renewal equation

f(t) = g(t) + f ∗ U(t),

with f(t) = e−r(m)tM1(t, 0, y) and g(t) = e−r(m)tpt(0, y). The renewal theorem implies that

lim
t→∞

f(t) =

∫∞

0
g(s) ds

∫∞

0
U((s,∞)) ds

∈ (0,∞)(2.9)

so that the claim for M1(t, 0, y) follows including the limiting constants.

For iii) b), we need to be more careful as the criticality implies that (m − 1)
∫∞

0
pr(0, 0) dr = 1.

Hence, the measure U as defined above is already a probability measure so that the variation of
constants formula is indeed a proper renewal equation. The renewal measure U only has finite
mean if additionally

∫ ∞

0

rpr(0, 0) dr < ∞.(2.10)

In the case of finite mean the claim follows as above from (2.9) without the exponential correction
(i.e. r(m) = 0). Note that pt(0, y) is directly Riemann integrable as the case β > 0 implies that
A is transient and pt(0, y) is decreasing.



10

If (2.10) fails, we need a renewal theorem for infinite mean variables. Iterating Equation (2.4)
reveals the representation

M1(t, 0, y) = pt(0, y) ∗
∑

n≥0

(m − 1)npt(0, 0)∗n,(2.11)

where ∗n denotes n-fold convolution in t and pt(0, y) ∗ pt(0, 0)∗0 = pt(0, y). Note that convergence
of the series is justified by

(m − 1)npt(0, 0)∗n ≤

(

(m − 1)

∫ t

0

pr(0, 0) dr

)n

and the assumption on m. Lemma 1 of [E73] now implies that
∑

n≥0

(m − 1)npt(0, 0)∗n ≈
t

(m − 1)
∫ t

0

∫∞

s
pr(0, 0) drds

(2.12)

which tends to infinity as (m − 1)
∫∞

s
pr(0, 0) dr → 0 for s → ∞ since we assumed that (m −

1)pr(0, 0) is a probability density in r. To derive from this observation the result for M1(t, 0, y),
note that the simple bound pt(0, y) ≤ 1 gives the upper bound

M1(t, 0, y) ≤

∫ t

0

∑

n≥0

(m − 1)npr(0, 0)∗n dr.(2.13)

For a lower bound, we use that due to irreducibility and continuity of pt(0, y) in t, there are
0 < t0 < t1 and ǫ > 0 such that pt(0, y) > ǫ for t0 ≤ t ≤ t1. This shows that

M1(t, 0, y) ≥ ǫ

∫ t−t1

t−t0

∑

n≥0

(m − 1)npr(0, 0)∗n dr.(2.14)

Combined with (2.12) the lower and upper bounds directly prove the claim for M1(t, 0, y).

It remains to deal with regime iii) b) and c) for x 6= 0. The results follow from the asymptotics
of the convolutions as those do not vanish at infinity. But this can be deduced from simple upper
and lower bounds similar to (2.13) and (2.14).

The asymptotic results for the expected total number of particles M1(t, x) follow from similar
ideas: estimating as before

1 + ǫ

∫ t−t1

t−t0

M1(r, 0) dr ≤ M1(t, x) ≤ 1 +

∫ t

0

M1(r, 0) dr,

and applying case 2) of Theorem 1 of [DS10] to (2.1) with x = 0, the result follows. �

Proof of Theorem 2 for M1. Since the many-to-one result holds for any motion of the catalyst ζt,
most of the proof of Theorem 2 proceeds just as for Theorem 1 with the location 0 replaced now
by the location of the catalyst, ζt. We concentrate therefore on the points at which differences
occur.
In case i), the lower bound for M1(t, x, y) when C is transient and Px(ξt = y) 6→ 0 proceeds via
the same argument as the lower bound for M1(t, x) when C is transient. The rest of case i) and
all of case ii) are just as in Theorem 1.
In case iii), the renewal equations can be solved only for M1(t, x). For M1(t, x, y), the probability
of the event {ξt = y} depends strongly on where the particle first meets the catalyst, which removes
any possibility of applying renewal theory. For M1(t, x) this problem does not occur since the
difference ξt − ζt is homogeneous, and the proof carries through without any problems. �

We now come to the crucial lemma of our paper. We use the the many-to-few lemma to reduce
higher moments of Nt and Nt(y) to the first moment. More precisely, a system of equations is
derived that can be solved inductively once the first moment is known. This particular useful
form is caused by the one-point catalyst. A similar system can be derived in the same manner in
the deterministic case if the one-point potential is replaced by a n-point potential. However the
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case of a random n-point potential is much more delicate as the sources are “attracted” to the
particles, destroying any chance of a renewal theory approach.

Lemma 3. For k ≥ 2, in the case of the fixed catalyst ζt = 0 the kth moments fulfill

Mk(t, x) = M1(t, x) + M1(t, x, 0) ∗ gk

(

(M1(t, 0), · · · ,Mk−1(t, 0)
)

,(2.15)

Mk(t, x, y) = M1(t, x, y) + M1(t, x, 0) ∗ gk

(

M1(t, 0, y), · · · ,Mk−1(t, 0, y)
)

,(2.16)

where

gk

(

M1, ...,Mk−1
)

=
k
∑

r=2

E

[(

X

j

)]

∑

i1,...,ij>0
i1+...+ij=k

k!

i1! · · · ij !
M i1 · · ·M ij .

Equation 2.15 also holds when the catalyst is random (provided that ξt − ζt is an inhomogeneous
Markov process).

Proof. We shall only prove equation (2.15); the proof of equation (2.16) is almost identical, as is
the extension to the case of the random catalyst. We recall the spine setup, and introduce some
more notation. To begin with, all k spines are carried by the same particle ξ which branches at
rate mk = E[Xk] when at 0. Thus the k spines separate into two or more particles at rate mk −m
when at 0 (since it is possible that at a birth event all k spines continue to follow the same particle,
which happens at rate m). We consider what happens at this first “separation” time, and call it
T .
Let i1, . . . , ij > 0, i1 + . . .+ ij = k, and define Ak(j; i1, . . . , ij) to be the event that at a separation
event, i1 spines follow one particle, i2 follow another, . . . , and ij follow another. The first particle

splits into a new particles with probability akpam−1
k (see the definition of Qk). Then given that

the first particle splits into a new particles, the probability that i1 spines follow one particle, i2
follow another, . . . , and ij follow another is

1

ak
·

(

a

j

)

·
k!

i1! · · · ij !

(the first factor is the probability of each spine making a particular choice from the a available;
the second is the number of ways of choosing the j particles to assign the spines to; and the third
is the number of ways of rearranging the spines amongst those j particles). Thus the probability
of the event Ak(j; i1, . . . , ij) under Qk is

1

mk
E

[(

a

j

)]

k!

i1! · · · ij !
.

(Note that, as expected, this means that the total rate at which a separation event occurs is

mk ·
1

mk

k
∑

j=2

E

[(

X

j

)]

∑

i1,...,ij>0
i1+...+ij=k

k!

i1! · · · ij !
= mk − m

since the double sum is just the expected number of ways of assigning k things to X boxes without
assigning them all to the same box.)
However, for j ≥ 2, given that we have a separation event, Ak(j; i1, . . . , ij) occurs with probability

1

mk
E

[(

X

j

)]

k!

i1! · · · ij !

(

mk

mk − m

)

.

Write χt for the position of the particle carrying the k spines for t ∈ [0, T ), and define Ft to be
the filtration containing all information (including about the spines) up to time t. Recall that the
skeleton skel(t) is the tree generated by particles containing at least one spine up to time t; let
skel(s; t) similarly be the part of the skeleton falling between times s and t. Using the many-to-few
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lemma with f = 1, the fact that by definition before T all spines sit on the same particle and
integrating out T , we obtain

E
[

Nk
t

]

= Qk





∏

v∈skel(t)

e
(mBv−1)

R τv(t)

σv(t)
10(Xv(s))ds





= Qk



e(mk−1)
R

T

0
10(χs)ds

1{T≤t}Q
k





∏

v∈skel(T ; t)

e
(mBv−1)

R τv(t)

σv(t)
10(Xv(s))ds

∣

∣

∣

∣

∣

∣

FT









+ Qk
[

e(mk−1)
R

t

0
10(χs)ds

1{T>t}

]

=

∫ t

0

Qk

[

e(mk−1)
R

u

0
10(χs)ds(mk − m)10(χu)e−(mk−m)

R

u

0
10(χs)ds

· Qk

[

∏

v∈skel(u; t)

e
(mBv−1)

R τv(t)

σv(t)
10(Xv(s))ds

∣

∣

∣

∣

Fu;T = u

]

]

du

+ Qk
[

e(mk−1)
R

t

0
10(χs)dse−(mk−m)

R

t

0
10(χs)ds

]

.

To prove equation (2.16), the same arguments are used with f = 1y in place of f = 1. Now we
split the sample space according to the distribution of the numbers of spines in the skeleton at
time T . Since, given their positions and marks at time T , the particles in the skeleton behave
independently, we may split the product up into j independent factors. Thus

E
[

Nk
t

]

=

∫ t

0

k
∑

j=2

∑

i1,...,ij>0
i1+...+ij=k

E

[(

X

j

)]

k!

i1! · · · ij !
Qk

[

e(m−1)
R

u

0
10(χs)ds

10(χu)

·

j
∏

l=1

Qil

[

∏

v∈skel(t−u)

e
(mBv−1)

R τv(t−u)

σv(t−u)
10(Xv(s))ds

]

]

du

+ Qk
[

e(m−1)
R

t

0
10(χs)ds

]

=

∫ t

0

k
∑

j=2

∑

i1,...,ij>0
i1+...+ij=k

E

[(

X

j

)]

k!

i1! · · · ij !
Ex [Nu(0)] ·

j
∏

l=1

E0

[

N il

t−u

]

du + Ex [Nt] ,

where we have used the many-to-few lemma backwards with f = 10 (first expectation) and f = 1
(two last expectations) to obtain the last line. This is exactly the desired equation (2.15). For
Equation (2.16) we again use f = 1y in place of f = 1 and copy the same lines of arguments. �

Remark 2. The factors appearing in gk are derived combinatorially from splitting the spines. In
Lemma 3.1 of [AB00] they appeared from Faà di Bruno’s differentiation formula.

We can now finish the proof of our main result by induction.

Proof of Theorem 1 and Theorem 2 for Mk. As the righthand sides of (2.15) and (2.16) do not
depend on the left-hand side, the results can now be easily deduced by induction starting with
the asymptotic results for M1(t, x) and M1(t, x, y) derived above. �
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